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We study generalizations of the concept of direct-projectivity (respectively

pure-direct-projectivity) from module categories to abelian categories (respectively

Grothendieck categories). We examine for which categories or under what conditions

direct-projective objects are projective. Also we examine for which categories or under what

conditions pure-direct-projective objects are projective, quasi-projective, pure-projective,

flat or direct-projective. We investigate classes all of whose objects are direct-projective

(respectively pure-direct-projective). We also give applications of some results to module

categories and comodule categories.

Keywords: pure subobjects, direct-projective objects, pure-direct-projective objects,

abelian categories, Grothendieck categories

i



ÖZET

GROTHENDIECK KATEGORİLERDE SAF DİREKT PROJEKTİF
NESNELER

Batuhan Aydoğdu

Yüksek Lisans, Matematik
Danışman: Assoc. Prof. Dr. Sultan Eylem TOKSOY

Mayıs 2022, 76 sayfa

Bu tezde direkt-projektif (sırasıyla saf-direkt-projektif) kavramlarının abel kategorilere

(sırasıyla Grothendieck kategorilere) genelleştirilmesi üzerine çalıştık. Hangi kategorilerde

ya da hangi koşullar altında direkt-projektif nesnelerin projektif olduğunu inceledik.

Ayrıca hangi kategorilerde ya da hangi koşullar altında saf-direkt-projektif nesnelerin

projektif, yarı-projektif, saf-projektif, düz ya da direkt-projektif olduğunu inceledik. Bütün

nesneleri direkt-projektif (sırasıyla saf-direkt-projektif) olan sınıfları belirledik. Ayrıca bazı

sonuçlarımızın modül kategorilere ve eşmodül kategorilere uygulamalarını verdik.

Keywords: saf alt nesneler, direkt-projektif nesneler, saf-direkt-projektif nesneler, abel

kategoriler, Grothendieck kategoriler
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1. INTRODUCTION

A right R-module M is said to be direct-projective if every submodule A of M with M/A

isomorphic to a direct summand of M is a direct summand of M . Direct-projective modules

were introduced by Nicholson in [1] and further studies on direct-projective modules were

done by Tiwary and Bharadwaj in [2] and by Hausen in [3]. The notion of extending module

was generalized to purely extending module by Fuchs in [4] and basic characterisations were

given by Clark in [5]. Motivated by their work the notion of pure-direct-projective modules

were introduced and studied by Alizade and Toksoy in [6]. Namely, a right R-module is said

to be pure-direct-projective if every pure submodule A of which with M/A isomorphic to a

direct summand is a direct summand.

In this work we study generalizations of these notions to abelian categories and Grothendieck

categories, namely direct-projective objects and pure-direct-projective objects respectively.

Some generalizations of direct-projective modules to abelian categories were studied by

Crivei and Kör in [7] and Crivei and Keskin Tütüncü in [8]. An object M of an abelian

category A is said to be direct-projective if every subobject A ofM withM/A isomorphic to

a direct summand of M is a direct summand. Let M and N be objects of an abelian category

A. M is called N -projective if given any epimorphism from N to an object L of A, any

homomorphism from M to L can be lifted to a homomorphism from M to N . M is said to

be quasi-projective if it is M -projective. The following implications hold.

projective ⇒ quasi-projective ⇒ direct-projective

An object M of a Grothendieck category A is said to be pure-projective if M is relatively

projective for every pure short exact sequence in A and it is said to be pure-direct-projective

if every pure subobject A of M with M/A isomorphic to a direct summand of M is a direct

summand. We also have the following implications.

projective ⇒ pure-projective ⇒ pure-direct-projective
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Since every direct summand is a pure subobject, every direct-projective object is

pure-direct-projective.

In Chapter 2 some definitions and lemmas which will be used in the next sections of the

paper are recalled. It is shown that a locally finitely presented Grothendieck category A

is regular if and only if every pure-projective object of A is projective if and only if every

pure-projective object of A is flat (Theorem 2.12.6).

In Chapter 3 the concept of direct-projectivity is generalized to abelian categories. It is

obtained that the class of direct-projective objects of an abelian category A with enough

projective objects need not be closed under factor objects and taking finite coproducts

(Corollary 3.1.5 and Corollary 3.1.6). It is shown that the coproduct of two direct-projective

objects of an abelian category A with enough projective objects is direct-projective if and

only if every direct-projective object of A is projective (Corollary 3.1.7). It is proved that an

abelian category A with enough projective objects is (semi) hereditary if and only if every

(finitely generated) subobject of a projective object is direct-projective (Theorem 3.1.10). It

is shown for a locally finitely presented Grothendieck category A that A is regular if and only

if every pure-projective object of A is a quasi-projective (Proposition 3.1.13). Also classes all

of whose objects are direct-projective are investigated. It is proved that an abelian category

A is spectral if and only if A is perfect and every object of A is direct-projective if and only

if A is perfect and every factor object of a direct-projective object of A is direct-projective

(Theorem 3.2.5). It is shown that a locally finitely presented Grothendieck category A is

semisimple if and only if A has enough projectives and every object of A is direct-projective

if and only if A has enough projectives and the coproduct of two direct-projective objects is

direct-projective (Theorem 3.2.9).

In Chapter 4 the concept of pure-direct-projectivity is generalized to Grothendieck

categories. It is obtained that the class of pure-direct-projective objects of a locally finitely

presented Grothendieck category A need not be closed under pure factors and taking

finite coproducts (Corollary 4.1.5 and Corollary 4.1.6). It is proved that the coproduct

of two pure-direct-projective objects of a locally finitely presented Grothendieck category
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A is pure-direct-projective if and only if every pure-direct-projective object of A is

pure-projective (Corollary 4.1.7). It is shown that a locally finitely presented Grothendieck

category A is regular if and only if every pure-direct-projective object of A is flat (Theorem

4.1.9). Also it is shown that a locally finitely presented Grothendieck category A is regular if

and only if every pure-direct-projective object of A is direct-projective (Theorem 4.1.10).

It is obtained for a locally finitely presented Grothendieck category A that A is regular

and the coproduct of two pure-direct-projective objects is pure-direct-projective if and only

if every pure-direct-projective object of A is projective (Proposition 4.1.11). As a result

of this, it is given for a locally finitely presented regular Grothendieck category A that

if the coproduct of two pure-direct-projective objects is pure-direct-projective, then every

pure-direct-projective object of A is quasi-projective (Corollary 4.1.12). It is obtained that

if every pure-direct-projective object of a locally finitely presented Grothendieck category A

is quasi-projective, then A is regular (Proposition 4.1.13). It is proved for a flat object M of

a locally finitely presented Grothendieck category A that M is pure-direct-projective if and

only if its direct-projective (Proposition 4.1.14). It is shown for a locally finitely presented

Grothendieck category A with enough projective objects whose class of pure-injective

objects is closed under extensions that A is pure hereditary if and only if every subobject

of any projective object of A is pure-direct-projective if and only if every subobject of any

pure-projective object of A is pure-direct-projective (Proposition 4.1.20). It is obtained

that the class of pure-direct-projective objects of a locally finitely presented Grothendieck

category A need not be closed under subobjects (Corollary 4.1.21). It is shown that a locally

finitely presented Grothendieck category A is pure-semisimple if and only if every object of

A is pure-projective if and only if every object of A is pure-direct-projective if and only if

every pure quotient of a pure-direct-projective object of A is pure-direct-projective (Theorem

4.2.6).

In Chapter 5 applications of some of our results to module and comodule categories are given.

It is obtained that a coalgebra C over a field is hereditary if and only if every subcomodule of

a projective right C-comodule is direct-projective (Corollary 5.1.4). As a result of Theorem

3.2.5 it is obtained for comodule categories that a coalgebra C over a field is cosemisimple if

3



and only if C is right semiperfect and every right C-comodule is direct-projective if and only

if C is right semiperfect and every factor comodule of a direct-projective right C-comodule

is direct-projective (Corollary 5.1.6). Also as a result of Theorem 4.1.10 it is obtained

that a coalgebra C over a field is cosemisimple if and only if every pure-projective right

C-comodule is projective if and only if every pure-direct-projective right C-comodule is

direct-projective (Corollary 5.1.8).
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2. PRELIMINARIES

In this chapter some preliminary information which will be needed is given. Definitions,

Examples, Propositions and Theorems which are not cited can be found in [9], [10] and [11].

2.1 Categories

Definition 2.1.1. A category C consists of

(1) a collection Ob(C) of objects;

(2) a collection MorC(A,B) of morphisms f : A −→ B for any objects A,B;

(3) a function ◦ : MorC(A,B) × MorC(B,C) −→ MorC(A,C) which is called the

composition and assigns a morphism g ◦ f ∈ MorC(A,C) to every pair (f, g) where

f ∈ MorC(A,B) and g ∈ MorC(B,C) for each A,B,C ∈ Ob(C)

such that the following conditions are satisfied.

(i) Composition is associative: for each quadruple A,B,C,D of objects, if f ∈

MorC(A,B), g ∈ MorC(B,C) and h ∈ MorC(C,D), then (f ◦ g) ◦ h = f ◦ (g ◦ h),

(ii) Composition satisfies left and right unit laws: for each A ∈ Ob(C) and for each f ∈

MorC(B,A), g ∈ MorA(A,C) there exists a morphism 1A ∈ MorA(A,A) such that

1A ◦ f = f and g ◦ 1A = g. The morphism 1A is called the identity morphism.

Example 2.1.1. Category of sets, denoted by Set, can be described as follows

• Objects: All sets X.

• Morphisms: All functions between sets.

Example 2.1.2. Category of groups, denoted by Grp, we can describe as,

• Objects: All groups (G, ·) where · : G×G −→ G is the group operation on G.
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• Morphisms: All group homomorphisms ϕ : (G, ·) −→ (H, ·′).

Example 2.1.3. Another canonical example of a category is the category of topological

spaces Top, can be described as,

• Objects: All topological spaces (X, τ) where τ is a topology on the set X .

• Morphisms: All continuous functions f : (X, τ) −→ (Y, τ ′).

Example 2.1.4. We can describe the category of rings Ring as follows

• Objects: All unital rings (R,+, ·).

• Morphisms: Ring homomorphisms φ : R −→ R′.

Example 2.1.5. Let R be a ring. The category of all left R-modules R-Mod is described as

follows

• Objects: All left R-modules (M,+, ·).

• Morphisms: Module homomorphisms φ : R −→ R′.

Example 2.1.6. The category DivAb of divisible abelian groups consists of

• Objects: All divisible abelian groups (G, ·).

• Mophisms: All group homomorphisms ψ : G −→ G′.

Definition 2.1.2. Let C be a category. The opposite category Cop is defined as the category

whose objects are the same with C, but with reversed morphisms. In other words, morphism

f : A −→ B in Cop is the same with the morphism f : B −→ A in C. Composition f ◦ g of

two morphisms in Cop defined by g ◦ f in C.

Definition 2.1.3. A category C is said to be

• finite if it has only finitely many objects and morphisms.
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• locally finite if the collection Mor(A,B) of morphisms is finite for any pair A,B of

objects.

• small if the collection of objects and collections of morphisms assemble into a set.

• locally small if the collection Mor(A,B) of morphisms is a set for every pair A,B of

objects.

• large if C is not locally small.

Definition 2.1.4. Let C be a category. A category S is called a subcategory of C if it satisfies

the following conditions.

(1) Composition operator of S is the same with the composition operator of C.

(2) The objects and morphisms of S is contained in the collection of objects and

morphisms of C.

Furthermore, we say that S is a full subcategory of C if

(3) For each pair of objects A,B of S we have MorC(A,B) = MorS(A,B).

Example 2.1.7. The category of abelian groups Ab can be described as

• Objects: Abelian groups (G,+).

• Morphisms: Group homomorphisms φ : G −→ G′.

Then Ab is a full subcategory of Grp.

Definition 2.1.5. A category C is called a preadditive category or an Ab-category if for each

pair of objects A and B there is an abelian group operation + on the set MorC(A,B) such

that

◦ : MorC(A,B)×MorC(B,C) −→ MorC(A,C)

(f, g) 7−→ g ◦ f

7



is bilinear, i.e. following equations hold.

(h+ k) ◦ f = (h ◦ f) + (k ◦ f)

h ◦ (g + f) = (h ◦ g) + (h ◦ f).

Example 2.1.8. The categoryAb of abelian groups is anAb-category with usual group action

+ on morphisms: Let f, g : A −→ B be two group homomorphisms. Then f + g : A −→ B

defined by (f + g)(a) = f(a) +B f(a) is again a group homomorphism and bilinearity of

composition is satisfied.

2.2 Functors

Throughout the composition of morphisms f ∈ MorC(A,B), g ∈ MorC(B,C) will be

denoted by gf instead of g ◦ f .

Definition 2.2.1. A covariant functor F : A −→ B between categories A and B is a

mapping which assigns each object A of A to an object F (A) of B and each morphism

f ∈ MorA(A,B) in A to a morphism T (f) ∈ MorB(T (A), T (B)) in B such that the

following conditions are satisfied.

(1) If f ∈ MorA(A,B) and g ∈ MorA(B,C), then F (gf) = F (g)F (f).

(2) F (1A) = 1F (A) holds for every object A of A.

Definition 2.2.2. A contravariant functor F : A −→ B between categories A and B is a

mapping which assigns each object A of A to an object F (A) of B and each morphism f ∈

MorA(A,B) in A to a morphism F (f) ∈ MorB(F (B), F (A)) in B such that the following

conditions are satisfied.

(1) If f ∈ MorA(A,B) and g ∈ MorA(B,C), then F (gf) = F (f)F (g).

(2) F (1A) = 1F (A) holds for every object A of A.
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Example 2.2.1. Every category C is equipped with identity functor 1C , which acts as identity

map on both objects and morphisms.

Example 2.2.2. The power set functor P : Set −→ Set is a functor which maps each

set X ∈ Ob(Set) to the power set P (X) of X and each morphism f : X −→ Y to

P(f) : P (X) −→ P (Y ) which is defined by P(f)(S) = f(S) for all S ∈ P (X).

The class of morphisms MorC(A,B) of a category C is sometimes denoted by HomC(A,B).

Example 2.2.3. Let C be a locally small category. Then for each object C of C we define

covariant hom functor by

Hom(A,−) : C −→ Set

which defined on objects by C −→ Hom(A,C) and on morphisms by (f : C −→ C ′) −→

f ∗ : Hom(A,C) −→ Hom(A,C ′) where f ∗ is defined pointwise by f ∗(φ) = fφ.

Definition 2.2.3. [11, Definition 1.8.1] Let A,B, C be categories and F : A −→ B, G :

B −→ C be functors. Then the composite functor GF is defined as follows

GF : A −→ C

A 7−→ G(F (A))

(f : A −→ B) 7−→ G(F (f)) ∈ HomC(G(F (A)), G(F (B))).

Now we can see functors as morphisms of categories and since for any category C the identity

functor 1C exists, we may construct the category of all categories Cat. Unfortunately, to

avoid paradoxes like Russell’s paradox we will have to restrict objects of Cat to small

categories, since otherwise Cat would have to be an object of itself.

Example 2.2.4. Category of all small categories Cat, can be described as follows

• Objects: All small categories C.

9



• Morphisms: Functors F : C −→ C ′.

Definition 2.2.4. Let C and D be categories. A functor F : C −→ D is said to be an

isomorphism if there exists a functor G : D −→ C such that GF = 1C and FG = 1D hold.

Definition 2.2.5. A functor which simply ”forgets” some or all of the structure on objects is

called a forgetful functor.

Example 2.2.5. The functor U : Grp −→ Set mapping each group to its underlying set

of elements and group homomorphisms to themselves as just functions is a forgetful functor,

”forgetting” the algebraic group structure on objects of Grp.

Definition 2.2.6. Let F : C −→ D be a functor between categories C and D. F is then said

to be

• full if for all objects A,B of C and every morphism g : F (A) −→ F (B) there exists a

morphism f : A −→ B such that F (f) = g.

• faithful if for all objects A,B and morphisms f1, f2 : A −→ B, F (f1) = F (f2)

implies f1 = f2.

F is called a fully faithful functor if it is both full and faithful.

Definition 2.2.7. A category C is said to be concrete if there exits a faithful functor F :

C −→ Set.

Definition 2.2.8. The product category C × D of categories C and D is defined as follows

• Objects: All pairs (C,D) where C ∈ Ob(C) and D ∈ Ob(D)

• Morphisms: All pairs (f, g) with f ∈ Mor(C) and g ∈ Mor(D).

Then the composition of morphisms (f, g), (f ′, g′) in C × D is then defined by

(f ′, g′)(f, g) = (f ′f, g′g)
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provided compositions f ′f, g′g exist.

We also define the projection functors πC : C × D −→ C and πD : C × D −→ D on objects

(C,D) and on morphisms (f, g) by

πC(C,D) = C, πC(f, g) = f

πD(C,D) = D, πD(f, g) = g

Furthermore, projection functors satisfy the following property. Let B be a category. For any

pair of functors F : B −→ C and G : B −→ D, there exists a functor H : B −→ C ×D such

that πCH = F and πDH = G hold.

B
F

||
H
��

G

##
C C × DπC
oo

πD
// D

Definition 2.2.9. [11] Let F : C −→ C ′ and G : D −→ D′ be two functors. We define the

product functor F ×G : C × D −→ C ′ ×D as

• On objects: If (C,D) is an object of C × D then F ×G(C,D) = (F (C), G(D)),

• On morphisms: If (f, g) is a morphisms of C × D then F ×G(f, g) = (F (f), G(g)).

Furthermore, composition of product functors is defined by

(GG′)(F × F ′) = (GF )× (G′F ′).

Definition 2.2.10. Functors whose domain is a product category are called bifunctors.

Definition 2.2.11. Let F : A −→ B be a functor. F is said to preserve the property P if the

image of a morphism (or an object or a diagram) under F : A −→ B which has the property

P in A has also the same property P in B.
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Definition 2.2.12. Let F : A −→ B be a functor. F is said to reflect the property P if

whenever the image of a morphism (or an object or a diagram) of A under F : A −→ B has

a property P in B, already has that property P in A.

2.3 Natural transformations

Definition 2.3.1. Let F,G : A −→ B be two functors from category A to category B.

Suppose that for every object A ∈ A we have a morphism ηA : F (A) −→ G(A) in B such

that for every morphism α : A −→ A′ in A the diagram

F (A)
ηN //

F (f)

��

G(A)

G(f)

��
F (A′)

ηA′ // G(A′)

is commutative. Then we call η a natural transformation from F toG and write η : F −→ G.

Example 2.3.1. For any functor F : A −→ B between categories A and B, 1F : F −→ F

is a natural transformation.

2.4 Special morphisms

Definition 2.4.1. Let f : A −→ B be a morphism in a category C. Then f is said to be

• monomorphism (or monic) if fg1 = fg2 implies g1 = g2 for all morphisms g1, g2 :

C −→ A where C is an arbitrary object.

• epimorphism (or epic) if g1f = g2f implies g1 = g2 for all morphisms g1, g2 : A −→

D where D is arbitrary.

• split monomorphism (or section) if there exists a morphism g : B −→ A such that

gf = 1A.

• split epimorphism (or retraction) if there exists a morphism g : B −→ A such that

fg = 1B.
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Example 2.4.1. In Set, monomorphisms coincide exactly with injective functions: let f :

X −→ Y in Set be injective. Then for any g1, g2 : Z −→ X we have

f(g1(z)) = f(g2(z)) ⇒ g1(z) = g2(z)

for all z ∈ Z. Conversely, given f(a) = f(b), we can choose g1, g2 : Z −→ X to be defined

by g1(z) = a for all z ∈ Z and g2(z) = b for all z ∈ Z, hence

f(g1(z)) = f(a) = f(b) = f(g2(z)) ⇒ a = g1(z) = g2(z) = b.

Conversely, let f : A −→ B be a monomorphism and let f(x) = f(y). Define g1, g2 : C −→

A by g1(c) = x and g2(c) = y for all c ∈ C. Then fg1 = fg2 and hence x = g1(c) =

g2(c) = y.

Similarly, epimorphisms coincide with surjective functions.

Example 2.4.2. Let Fld be the category of all fields with field homomorphisms as

morphisms. Then, every nonzero morphism is a monomorphism since otherwise, kernel of it

would be non-trivial, contradicting the fact that only nontrivial ideal of a field is itself.

Definition 2.4.2. A morphism f : A −→ B between two objects A,B is said to be

isomorphism if there exists a morphism g : B −→ A such that fg = 1A and gf = 1B.

The morphism g is then called the inverse of f and it is denoted by g = f−1.

Proposition 2.4.3. Let g1, g2 be inverses of a morphism f : A −→ B in a category A. Then

g1 = g2.

Proof. Follows simply by g1 = 1Ag1 = g2fg1 = g21B = g2.

Proposition 2.4.4. Let F : C −→ D be a functor. Then F preserves isomorphisms, sections

and retractions. That is if f : A −→ B is

(1) an isomorphism, then F (f) is an isomorphism in D.

(2) a section, then F (f) is a section in D.
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(3) a retraction, then F (f) is a retraction in D.

Proof. (1) Let f : A −→ B be an isomorphism. Let g : B −→ A be the inverse of f .

Then

1F (A) = F (1A) = F (gf) = F (g)F (f),

1F (B) = F (1B) = F (fg) = F (f)F (g).

Hence F (f) is an isomorphism.

(2) Let f : A −→ B be a section. Then there exists a morphism g : B −→ A such that

gf = 1A. Hence

1F (A) = F (1A) = F (gf) = F (g)F (f).

(3) Let f : A −→ B be a retraction. Then there exists a morphism g : B −→ A such that

fg = 1B. Therefore

1F (B) = F (1B) = F (fg) = F (f)F (g).

Proposition 2.4.5. Let C be a category.

(1) If f and g are monomorphisms (respectively epimorphisms), then fg is a

monomorphism (respectively an epimorphism).

(2) If fg is a monomorphism (respectively an epimorphism), then f (g) is a monomorphism

(respectively an epimorphism)

Proof. (1) Suppose f and g are monomorphisms. If (fg)h = (fg)k for two morphisms h, k

in C, then f(gh) = (fg)h = (fg)k = f(gk). Since f is left cancellable, gh = gk and since

g is left cancellable, h = k. So fg is a monomorphism.

Suppose now f and g are epimorphism. If h(fg) = k(fg) for two morphisms h, k in C, then
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(hf)g = h(fg) = k(fg) = (kf)g. Since g is right cancellable, hf = kf and since f is right

cancellable, h = k. So fg is an epimorphism.

(2) Suppose that fg is monic. Then fg is left cancellable. Let gh = gk for two morphisms

h, k in C. Suppose f(gh) = f(gk). So (fg)h = f(gh) = f(gk) = (fg)k. Since fg is left

cancellable, h = k. Thus g is monic.

Suppose now fg is epic. Then fg is right cancellable. Let hf = kf for two morphisms h, k

in C. Suppose (hf)g = (kf)g. So h(fg) = (hf)g = (kf)g = k(fg). Since fg is right

cancellable, h = k. Thus f is epic.

Definition 2.4.6. Let C be a category.

• An object T of C is said to be terminal if for each object C there exists exactly one

morphism f : C −→ T with codomain T .

• An object I of C is said to be initial if for each object C there exists exactly one

morphism f : I −→ C with domain I .

• An object Z of C is a zero object if it is both initial and terminal, that is, given any

two objects A,B there exists exactly one morphism f : Z −→ A with domain Z and

exactly one morphism g : B −→ Z with codomain Z.

Hence, for any two objects A,B there exists a morphism through the zero object

between them, namely given by fg, called the zero morphism from B to A.

Remark 2.4.7. Initial, terminal and hence zero objects of a category C are unique up to a

isomorphism.

Example 2.4.3. Let T be a set with exactly one element. Since for any set X in Set there

exists one and only one function f : X −→ T mapping every element of X to the single

element of T , T is an initial object in Set. On the other hand, for any set X we can write a

function f : ∅ −→ X , so ∅ is an initial object in Set. In fact, it is the only initial object since

for any other initial object Y there would have to be a morphism g : Y −→ ∅ from Y to ∅.

Example 2.4.4. In Top the terminal object is point-space and the initial object is empty

space.
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Example 2.4.5. Trivial group G = {0} is a zero object in Grp.

2.5 Products and Coproducts

Definition 2.5.1. Let C be a category and A,B be objects of C. The product of A and B is

an object A×B of C equipped with morphisms

πA : A×B −→ A πB : A×B −→ B

satisfying the following universal property: for any object C of C with morphisms f : C −→

A and g : C −→ B there exists a morphism h : C −→ A × B such that f = πAh and

g = πBh, i.e. the following diagram commutes.

C
f

{{
h
��

g

##
A A×BπA
oo

πB
// B

Example 2.5.1. In Set, for any pair of objects A,B we can create cartesian product A×B

defined by

A×B = {(a, b)|a ∈ A, b ∈ B},

and projection functions by

πA : A×B −→ A πA(a, b) = a

πB : A×B −→ B πB(a, b) = b.

Then given any set C with functions f : C −→ A and g : C −→ B, we can define

h : C −→ A×B by h(a, b) = (f(a), g(b)), which satisfies the required universal property.

So Set has products.
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Example 2.5.2. Let (R,+R, ·R) and (S,+S, ·S) be two rings in Ring. We can form the

product ring of R and S to be the ring

(R× S,+, ·) = {(r, s)|r ∈ R, s ∈ S}

where for all pairs (r1, s1), (r2, s2) in R× S the ring operations defined as

• (r1, s1) + (r2, s2) = (r1 +R r2, s1 +S s2)

• (r1, s1) · (r2, s2) = (r1 ·R r2, s1 ·S s2).

This product satisfies the required universal property, hence Ring has products.

Proposition 2.5.2. [9, Proposition 1, p.73] Let C be a category with a terminal object T and

let the product object A×B for each pair of objects A and B exists in C. Then

(i) C has finite products.

(ii) There exists a bifunctor Π : C × C −→ C such that Π(A,B) = A×B.

(iii) For any three objects A,B and C of C, we have the isomorphism

(A×B)× C ∼= A× (B × C).

Definition 2.5.3. Let C be a category and let A and B be two objects of C. The coproduct of

A and B is an object A⨿B which is equipped with morphisms

iA : A −→ A⨿B iB : B −→ A⨿B (1)

with the following universal property: For any object C with a pair of morphisms f : A −→

C and g : B −→ C there exists a unique morphism h : A⨿B −→ C such that the following

diagram commutes.
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C

A

f
;;

iA
// A⨿B

h

OO

B
iB
oo

g
cc

Example 2.5.3. Let A1 and A2 be two sets. The disjoint union A1 ⊔ A2 of A1 and A2 is

defined by

A1 ⊔ A2 =
⋃2
i=1{(x, i)|x ∈ Ai}.

Furthermore, let the functions i1 : A1 −→ A ⊔ B and i2 : A2 −→ A ⊔ B be defined as

follows

i1(x) = (x, 1) i2(y) = (y, 2).

Then the disjoint union together with the functions i1, i2 satisfies the required universal

property, hence it is the coproduct of the category of sets Set.

Definition 2.5.4. [10, Chapter I, p.24] Let {(Ai)}i∈I be a family of objects in an arbitrary

category A. A product for the family of morphisms {pi : A −→ Ai}i∈I , called projections,

with the property that for any family {αi : A′ −→ Ai}i∈I there is a unique morphism

α : A′ −→ A such that piα = αi for all i ∈ I . The object A will be denoted by
∏

i∈I
Ai.

Definition 2.5.5. [10, Chapter I, p.26] The coproduct of the family {(Ai)}i∈I in an arbitrary

category A is defined dually to the product. Thus the coproduct is a family of morphisms

{ui : Ai −→ A}i∈I , called injections, such that for each family of morphisms {αi : Ai −→

A′}i∈I we have a unique morphism α : A −→ A′ with αui = αi for all i ∈ I . The object A

will be denoted by
⊕

i∈I
Ai.

Proposition 2.5.6. [9, 3.5.1] Let C be a category with an initial object I and let the coproduct

object A⨿B for each pair of objects A and B exists in C. Then

(i) C has finite coproducts.
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(ii) There exists a bifunctor Π : C × C −→ C such that ⨿(A,B) = A⨿B.

(iii) For any three objects A,B and C of C, we have the isomorphism

(A⨿B)⨿ C ∼= A⨿ (B ⨿ C).

More generally, let C be a category with a zero object. Then for any pairA,B of objects there

exists a zero-morphism 0 : A −→ B. Additionally if finite products and finite coproducts

exist in C, then there exists a canonical morphism

f : A1 ⨿ A2 ⨿ ...⨿ An −→ A1 × A2 × ...× An

of the coproduct to the product.

In R-Mod and Ab, finite products and finite coproducts of a family of objects {Ai}, where

i = 1, . . . , n, are isomorphic to each other and called the direct sum, denoted by
⊕n

i=1Ai.

2.6 Kernels and Cokernels

Definition 2.6.1. [9] Let C be a category and let f, g : A −→ B be a pair of morphisms in C.

The equalizer of f and g is then defined as a pair (E, e : E −→ A) such that fe = ge and the

following property is satisfied: For any other morphism h : C −→ A satisfying fh = gh,

there exists a unique morphism h′ : C −→ E such that h = eh′, i.e. the following diagram

commutes.

E
e // A

g
//

f // B

C

h′

OO

h

??

Proposition 2.6.2. [9, 3.4] Let C be a category. If e : C −→ A is an equalizer for a pair of

morphisms f, g : A −→ B, then e is monic.

Definition 2.6.3. [9] Let C be a category and let f, g : A −→ B be a pair of morphisms

in C. The coequalizer of f and g is then defined as a pair (D, u : B −→ D) such that

uf = ug holds, and the following property is satisfied: For any other morphism h : B −→ C

19



satisfying uf = ug, there exists a unique morphism h′ : D −→ C such that h = h′u holds,

i.e., following diagram commutes.

A
g
//

f // B
u //

h   

D

h′

��
C

Proposition 2.6.4. [9, 3.4] Let C be a category. If u : A −→ D is a coequalizer for a pair

of morphisms f, g : A −→ B, then e is an epimorphism.

Definition 2.6.5. [9] Let C be a category with a zero object Z. The kernel of a morphism

f : A −→ B is defined as equalizer of the morphisms f, 0 : A −→ B. To put more directly,

kernel of f is a morphism k : C −→ A such that fk = 0 holds and the following property

is satisfied: For any other morphism k′ : D −→ A with fk′ = 0, there exists a morphism

h : D −→ C such that k′ = kh. Visually, the following diagram commutes.

C k // A
f // B

D

h

OO

k′

??

Definition 2.6.6. We define the cokernel of a morphism f : A −→ B as the coequalizer of

morphisms f, 0 : A −→ B, i.e., a morphism g : B −→ C such that gf = 0 and for any other

morphism h : B −→ D satisfying hf = 0, there exists a unique morphism h′ : E −→ C

such that h = h′g.

A
f // B

g //

h   

E

h′

��
C

Example 2.6.1. InGrp, the group I with exactly one element is a zero-object and for any two

groups G,H the zero-morphism 0 : G −→ H is the homomorphism sending each element of

G to the identity element of H . Then the kernel of an arbitrary morphism f : G −→ H is

the inclusion map i : ker(f) −→ G of the usual kernel ker(f) of f , defined by i(g) = g.
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Example 2.6.2. In any Ab-category C, all equalizers are kernels since for any pair of parallel

morphisms f, g : A −→ B with equalizer e, abelian group structure on Hom(A,B) gives

fe = ge⇒ (f − g)e = 0,

implying e is a kernel of f − g.

2.7 Exact sequences

Definition 2.7.1. [10, 1.15] A category C is called normal (conormal) if every

monomorphism (epimorphism) f : A −→ B in C is a kernel (cokernel) of some morphism.

A normal and conormal category C is called exact if every morphism f : A −→ B can be

written as a composition f = vq where q : A −→ I is an epimorphism and v : I −→ B is a

monomorphism.

Furthermore, if this factorization exists, then q = ker(coker(f)) and v = coker(ker(f)) and

image and coimage of f are defined respectively by Im(f) = v and Coim(f) = q.

Definition 2.7.2. A composable pair of morphisms

A
f // I

g // B

is said to be exact at B if Im(f) = Ker(g).

Definition 2.7.3. An exact sequence is a sequence

... // A−1
f−1 // A0

f0 // A1
f1 // ...

of objects Ai such that (fi−1, fi) is exact at Ai for all i.

Proposition 2.7.4. [10, Proposition 15.1] Let C be an exact category. Then following

properties hold.
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(i) A α // B
β // C is exact if and only if A Bα

oo C
β
oo is exact in Cop

(ii) 0 // A α // B is exact if and only if α is a monomorphism.

(iii) A
α // B // 0 is exact if and only if α is an epimorphism.

(iv 0 // A α // B // 0 is exact if and only if α is an isomorphism.

Proof. (i) Since A is exact, factorizations α = vq and β = wr where Im(α) = v : A −→ I

and Im(β) = w : J −→ C exist. Then r = Coim(β).

I
v

��

J
w

��
A

α //

q
??

B
β //

r

??

C

If A // B // C is exact, then v = ker(β) and hence v = ker(r). Therefore r =

coker(v) and hence r = coker(α). We then have in dual category that ker(α) = v = Im(β),

and A Bα
oo C

β
oo is exact.

(ii) Let α be a monomorphism. Then Ker(α) = 0 and 0 // A
α // B is exact.

Now let 0 // A α // B be exact and let A
q // I v // B be a factorization of α where

v is a monomorphism and q is an epimorphism. Since q = coker(ker(α)) and ker(α) = 0, q

must be an isomorphism. Hence α = vq is a monomorphism.

(iii) Follows from (i) and (ii).

(iv) Any normal category is balanced, i.e., every morphism that is both epic and monic is an

isomorphism. Hence (iv) follows from (ii) and (iii).

Definition 2.7.5. [10, Chapter I, p.19] Let C be an exact category. A sequence

0 // A
α // B

β // C // 0

is said to be short exact sequence if and only if α is a monomorphism, β is an epimorphism

and α = ker(β) equivalently β = coker(α).
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Definition 2.7.6. [10, Chapter I, p.32] Let A be an exact category. Then a short exact

sequence

0 // A
α // B

β // C // 0

splits if β is a retraction.

2.8 Pullbacks and Pushouts

Definition 2.8.1. Given two morphisms α1 : A1 −→ A and α2 : A2 −→ A with common

codomain, a pullback is a commutative square

P
β2 //

β1
��

A2

α2

��
A1 α1

// A

such that for any other commutative square

P ′ γ2 //

γ1
��

A2

α2

��
A1 α1

// A

there exists a unique morphism ϕ : P ′ −→ P such that γ1 = β1ϕ and γ2 = β2ϕ.

P ′

γ1

��

ϕ

  

γ2

((
P

β1
��

β2
// A2

α2

��
A1 α1

// A

Definition 2.8.2. Given two morphisms α1 : A −→ A1 and α2 : A −→ A2 with common

domain, a pushout is a commutative square
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A
α2 //

α1

��

A2

β2
��

A1 β1
// R

such that for any other commutative square

A
α2 //

α1

��

A2

γ2
��

A1 γ1
// R′

there exists a unique morphism φ : R −→ R′ such that γ1 = φβ1 and γ2 = φβ2.

A
α1 //

α2

��

A1

β1
��

γ1

��

A2
β2 //

γ2
((

R
φ

  
R′

Proposition 2.8.3. [10, Proposition 7.1] In the pullback diagram

P
β2 //

β1
��

A2

α2

��
A1

α1 // A

if α1 is a monomorphism, then β2 is also a monomorphism.

Proof. Suppose that β2f = β2g. Then α1β1f = α2β2f = α2β2g = α1β1g, and we have

β1f = β1g since α1 is a monomorphism. Uniqueness of factorizations through the pullback

then gives f = g.
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Proposition 2.8.4. Given pushout diagram

A
α2 //

α1

��

A2

β2
��

A1
β1 // R

if α1 is an epimorphism, then β2 is also an epimorphism.

Proof. Let fβ2 = gβ2. Then fβ1α1 = fβ2α2 = gβ2α2 = gβ1α1, and we have fβ1 = gβ1

since α1 is an epimorphism. Hence by the uniqueness of factorizations through pushout we

get f = g.

Proposition 2.8.5. [10, Proposition 7.2] If each of the squares in the diagram

P

��

// Q //

��

B′

��
A // I // B

is a pullback and B′ −→ B is a monomorphism then the outer rectangle is also a pullback.

Proof. Let X be an object and let X −→ B′ and X −→ A be two morphisms such that

X −→ B′ −→ B = X −→ A −→ I −→ B. Then, since right-hand square is a pullback,

we have a morphism X −→ Q such that X −→ B′ = X −→ Q −→ B′ and X −→

I = X −→ Q −→ I . Now since the outer rectangle is commutative by our assumption,

it follows that X −→ Q −→ I = X −→ A −→ I . Hence using the fact that left-hand

square is a pullback, we have a morphism X −→ P with X −→ Q = X −→ P −→ Q

and X −→ A = X −→ P −→ A. Then we see that P −→ A is a monomorphism by

Proposition 2.8.3, and therefore the morphism X −→ P is unique.

Proposition 2.8.6. If each square in the diagram

A

��

// I //

��

B

��
A′ // I // Q
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is a pushout and A −→ A′ is an epimorphism then the outer rectangle is a pushout.

Proof. Let X be an object with two morphisms B −→ X and A′ −→ X such that A −→

B −→ X = A −→ A′ −→ X . Since the right-hand square is a pushout, there exists a

morphism Q −→ X such that B −→ X = B −→ Q −→ X and P −→ X = P −→

Q −→ X . Left-hand square is also a pushout, so we have a morphism P −→ X such that

I −→−→ B −→ X = I −→ P −→ X and A′ −→ P −→ X = A′ −→ X . Hence the

morphism Q −→ X satisfies the required conditions, and by Proposition 2.8.4 we see that

B −→ Q is an epimorphism and uniqueness follows.

Proposition 2.8.7. [10, Proposition 13.1] Consider a commutative diagram

K
γ //

∥

P

β1
��

β2 // A2

α2

��
K u // A1

α1 // A

where the right-hand square is a pullback, u = ker(α1) and γ is the morphism into the

pullback induced by two morphisms u : K −→ A1 and 0 : K −→ A2. Then γ = ker(β2).

Proof. Since u = β1γ and u is a monomorphism γ must be a monomorphism. Also β2γ = 0

by the construction of γ. Let v : X −→ P such that β2v = 0. Then 0 = α2β2v = α1β1v and

since u is the kernel of α1, we have a morphism w : X −→ K such that vw = β1v. Hence

γw = v, since each of these homomorphisms give the same thing when composed with β1

and β2. This proves that γ = ker(β2).

Proposition 2.8.8. [10, Proposition 13.2] Consider the following diagram

A′ // A

��
B′ // B
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where B′ −→ B is the kernel of some morphism B −→ B′′. Then the diagram can be

extended to a pullback if and only if A′ −→ A is the kernel of the composition A −→ B −→

B′′.

Proof. (⇒) Suppose there is a morphism A′ −→ B′ such that A′ −→ A −→ B = A′ −→

B′ −→ B. If there is another A′′ and there are morphisms A′′ −→ A and A′′ −→ B′ such

that A′′ −→ A −→ B = A
′′ −→ B′ −→ B, then there is a unique morphism A

′′ −→ A′

such that A′′ −→ A′ −→ B′ = A
′′ −→ B′ and A′′ −→ A′ −→ A = X −→ A

′′ −→ A.

Since u is the kernel of B −→ B
′′ , B′ −→ B −→ B

′′ is zero. A′ −→ A −→ B −→ B′ =

A′ −→ B′ −→ B −→ B
′′ is zero and A′′ −→ A −→ B −→ B

′′
= A

′′ −→ B′ −→ B −→

B
′′ is zero. So there is a unique morphism A

′′ −→ A such that A′′ −→ A′ −→ A = A
′′ −→

A. Hence A′ −→ A is the kernel of A −→ B −→ B
′′ .

(⇐) Suppose that A′ −→ A is the kernel A −→ B −→ B
′′ . Then A′ −→ A −→ B −→ B

′′

is zero. Since B′ −→ B is the kernel of B −→ B
′′ , there is a unique morphism A′ −→ B′

such that A′ −→ B′ −→ B = A′ −→ A −→ B. Suppose that X −→ A −→ B = X −→

B′ −→ B. Then X −→ A −→ B −→ B′ is zero. Hence there is a unique morphism

X −→ A′ such that X −→ A′ −→ A = X −→ A. Then also X −→ A′ −→ B′ −→ B =

X −→ A′ −→ A −→ B = X −→ B′ −→ B and since B′ −→ B is a monomorphism

X −→ A′ −→ B′ = X −→ B′. So the diagram can be extended to a pullback.

Proposition 2.8.9. Consider the diagram

B //

��

C

B′ // C ′

where B −→ C ′ is the cokernel of some morphism A −→ G. then the diagram can be

extended to a pushout if and only if B′ −→ C ′ is the cokernel of the composition A −→

B −→ B′.

Proof. (⇒) Suppose there is a morphism C −→ C ′ such that B −→ C −→ C ′ = B −→

B′ −→ C ′. If there is another C ′′ and there are morphisms C −→ C
′′ and B′ −→ C

′′
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such that B −→ C −→ C
′′
= B −→ B′ −→ C

′′ , then there is a unique morphism

C ′ −→ C
′′ such that C −→ C ′ −→ C

′′
= C −→ C

′′ . Since u is the cokernel of A −→ B,

A −→ B −→ C is zero. A −→ B −→ B′ −→ C ′ = A −→ B −→ C −→ C ′ is zero

and A −→ B −→ B′ −→ C
′′
= A −→ B −→ C −→ C

′′ is zero. So there is a unique

C ′ −→ C
′′ such that B′ −→ C ′ −→ C

′′
= B′ −→ C

′′ . Hence B′ −→ C ′ is the cokernel of

A −→ B −→ B′.

(⇐) Suppose that B′ −→ C ′ is the cokernel A −→ B −→ B′. Then A −→ B −→

B′ −→ C ′ is zero. Since B −→ C is the kernel of A −→ B, there is a unique morphism

C −→ C ′ such that B −→ C −→ C ′ = B −→ B′ −→ C ′. Suppose that B −→ C −→

C
′′
= B −→ B′ −→ C

′′ . Then B −→ B′ −→ C ′ −→ C
′′ is zero. Hence there is

a unique morphism C −→ C
′′ such that C −→ C ′ −→ C

′′
= C −→ C

′′ . Then also

B −→ B′ −→ C ′ −→ C
′′
= B −→ C −→ C ′ −→ C

′′
= B −→ B′ −→ C

′′ and since

B′ −→ C ′ is an epimorphism B′ −→ C ′ −→ C
′′
= B′ −→ C

′′ . So the diagram can be

extended to a pushout.

2.9 Grothendieck categories

Definition 2.9.1. [9] A category C is said to be an abelian category if it is a preadditive

category which satisfies the following properties.

(1) C has a zero object,

(2) C has biproducts for any pair of objects A,B of C,

(3) Every morphism in C has a kernel and a cokernel,

(4) Every monomorphism in C is a kernel and every epimorphism in C is a cokernel.

Example 2.9.1. The category of abelian groups Ab is an abelian category.

Example 2.9.2. Let R be a ring. The category of left R-modules R-Mod is an abelian

category.
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(1) It is clear that the trivial 0-module is a zero object in R-Mod.

(2) Products in R-Mod coincides with cartesian products, given with componentwise

addition and R-action. Coproducts in R-Mod is given by direct sums, which is the

submodule of cartesian product consisting of tuples of elements such that only finitely

many are non-zero. Then products and coproducts of finitely many objects clearly

coincide, hence R-Mod has finite biproducts.

(3) Kernel of a morphism f :M −→ N in R-Mod is given by the canonical injection map

i : Ker(f) −→ M from Ker(f) = f−1(0) to M . Dually, cokernel of f : M −→ N

is given by the canonical projection map p : N −→ N/ Im(f) from N to the quotient

abelian group N/ Im(f).

(4) Lastly, let f :M −→ N be a monomorphims and let g : N −→ N/M be its cokernel.

Then, clearly, g ◦ f = 0 and if h : L −→ N is another morphism satisfying g ◦ h = 0,

then Im(h) ⊆ M , hence we can find a morphism h′ : L −→ M such that f ◦ h′ = h,

giving that f is the kernel of g.

Remark 2.9.2. For every morphism f : M −→ N in an abelian category A we have the

following notation and analysis:

Ker(f)
ker(f) //M

f //

coim(f)

��

N
coker(f)// Coker(f)

Coim(f)
f̄
// Im(f)

im(f)

OO

where f̄ is an isomorphism.

Definition 2.9.3. Let A be an abelian category. Two exact sequences

0 //A //B //C //0 and 0 //A′ //B′ //C ′ //0 are said to be isomorphic

if there exists a triple (φ, γ, ψ) of isomorphisms such that the following diagram commutes.

0 // A //

φ
��

B //

γ
��

C //

ψ
��

0

0 // A′ // B′ // C ′ // 0
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Additionally we say that two short exact sequences are equivalent if A′ = A and C ′ = C

with φ = 1A and ψ = 1C .

Lemma 2.9.4. Let 0 //A
f //B

g //C //0 be a short exact sequence in an abelian

category A. Then the following conditions are equivalent.

(i) f is a section.

(ii) g is a retraction.

(iii) The sequence is equivalent to the sequence

0 //A
iA //A⊕ C

pC //C //0

given by the direct sum and canonical injection and projection morphisms iA : A −→

A⊕ C and pC : A⊕ C −→ C.

Proof. (i) ⇒ (iii) Let f be a section. Then there exists a h : B −→ A such that hf = 1A.

Define P = fh. Then P 2 = P . So every element b ∈ B can be written as b = (b− P (b)) +

P (b) where b − P (b) ∈ Ker(h) and P (b) ∈ Im(f). Additionally, this decomposition is

unique since if b ∈ Im(f) with f(a) = b for some a ∈ A and b ∈ Ker(h) in the same time,

0 = h(b) = h(f(a)) = a. Hence B ≃ Im(f) ⊕ Ker(h) is a direct sum and f : A −→ B is

the canonical inclusion of Im(f). Since the sequence is exact, we have Ker(h) ≃ Im(g) and

B ≃ A⊕ C with the canonical inclusion and projection.

(ii) ⇒ (iii) This part can be proved dually by (i) ⇒ (iii).

(iii) ⇒ (i) Let φ : A ⊕ C −→ B be an isomorphism such that the following diagram with

canonical injections and projections commutes.

0 // A
f //

1A
��

B

φ

��

g // C //

1C
��

0

0 // A
iA // A⊕ C

pC // C // 0

Define h : B −→ A by h = pAφ
−1. Then hf = 1A.

(iii) ⇒ (ii) Clear by (iii) ⇒ (i).
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Definition 2.9.5. A short exact sequence in an abelian category satisfying either of the

equivalent conditions in Lemma 2.9.4 is called a split short exact sequence.

Definition 2.9.6. Let A be a category, A an object of A. For an arbitrary category J , let

F : J −→ A be a functor. A family of morphisms ϕi : A −→ F (i), i ∈ J , such that for

each morphism f : i −→ j in J the following diagram commutes

A
ϕi

}}

ϕj

!!
F (i)

F (f)
// F (j)

is called a cone with A over F and it is denoted by Cone(A|F ). Dually, a collection of

morphisms φi : F (i) −→ A, i ∈ J such that for every morphism f : i −→ j in J the

following diagram commutes

F (i)
F (f) //

!!

F (j)

}}
A

is called a cone with F over A and it is denoted by Cone(F |A).

Definition 2.9.7. Let A and J be two categories. A functor ∆ : A −→ Fun(J ,A) which

sends an object A of A to the functor ∆(A) : J −→ A which maps every object i ∈ J to A

and every morphism in J is to the identity morphism 1A of A. Functor ∆ is called diagonal

functor.

Definition 2.9.8. Let F : J −→ A be a functor. The limit of F is an object limF equipped

with a natural transformation η : ∆(limF ) −→ F such that (limF, u) is universal from

∆ to limF . This means that for any other pair (A, η′ : ∆(A) −→ F ) with η′ a natural

transformation and A ∈ A, there exists a unique morphism h : A −→ limF in A such that
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the following diagram is commutative.

∆(limF )
η // F

∆(A)

δ(h)

OO

η′

;;

The morphism η : ∆(limF ) −→ F forms a cone with limF over F via family of morphisms

ηi : limF −→ F (i) for all i ∈ I .

Definition 2.9.9. Let F : J −→ A be a functor. The colimit of F is an object colimF

equipped with a natural transformation η : F −→ ∆(colimF ) such that (colimF, η :

F −→ ∆(colimF )) is universal from F to ∆. This means that for any pair (A, η′ :

F −→ ∆(A)) with η′ a natural transformation whereA ∈ A, there exists a unique morphism

h : colimF −→ A in A such that the following diagram is commutative.

F
η//

η′ $$

∆(colimF )

∆(h)

��
∆(A)

.

Definition 2.9.10. Let (I,≤) be a poset, let (Ai)i∈I be a family of objects and fij : Aj −→ Ai

for all i ≤ j be a family of morphisms. Then ((Ai)i∈I , (fij)i≤j) is called an inverse system

of objects and morphisms on I if the following properties hold.

(1) fii is the identity on Aii.

(2) fik = fij = fjk for all i ≤ j ≤ k.

Definition 2.9.11. Let (Xi, fij) be an inverse system of objects and morphisms in a category

A. The inverse limit of this system is an objectX , which is denoted by lim⇐Xi in A together

with morphisms πi : X −→ Xi satisfying πi = fijπj for all i ≤ j. The pair (X, πi) must

be universal in the sense that for any other such pair (Y, ϕi) there exists a unique morphism
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u : Y −→ X making the following diagram commute.

Y

ϕj

��

u
��

ϕi

��

X

πj~~ πi   
Xj fij

// Xi

Definition 2.9.12. Let {Ai|i ∈ I} be a collection of objects in a category A indexed by

directed set (I,≤) and fij : Ai −→ Aj be a morphism for all i ≤ j with the following

properties.

(1) fij is the identity on I .

(2) fik = fij = fjk for all i ≤ j ≤ k.

Then the pair ((Ai), (fij)) is called a direct system over I .

Definition 2.9.13. Let (Xi, fij) be an direct system of objects and morphisms in a category

A. The direct limit of this system is an object X , which is denoted by lim⇒Xi in A together

with morphisms φi : X −→ Xi satisfying φi = fijπj for all i ≤ j. The pair (X,φi) must

be universal in the sense that for any other such pair (Y, ψi) there exists a unique morphism

v : X −→ Y making the following diagram commute.

Xj

ψi

��

fij //

φi

  

Xi

ψj

��

φj

~~
X

u
��
Y

Definition 2.9.14. A family of objects {Ui}{i ∈ I} is called a family of generators for a

category A if for every pair of distinct morphisms α, β : A −→ B there is a morphism

u : Ui −→ A for some i such that αu ̸= βu. An object U in A is called a generator A if {U}

is a family of generators.
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Definition 2.9.15. [12] A category A is called a Grothendieck category if

(1) A is an abelian category.

(2) Every (possibly infinite) family of objects in A has a coproduct.

(3) Direct limits are exact in A.

(4) A has a generator, i.e. there is an object U of A for every object X of A there exists

an epimorphism U (I) −→ X , where U (I) denotes a coproduct copies of U .

Example 2.9.3. [12] Let R be a ring. Then the category of right R-modules Mod-R is an

abelian category.

Definition 2.9.16. [13] Let C be a coalgebra over a field. The category of right comodules

over the coalgebra C is denoted by MC . The objects are all right C−comodules and the

morphisms between two objects are the morphisms of comodules. We will also denote

the morphisms in CC from M to N by ComC(M,N). Similarly, the category of left

C−comodules will be denoted CM.

Example 2.9.4. [13, Corollary 2.2.8] The category MC is a Grothendieck category.

Definition 2.9.17. [14] An object M of a category A is said to be finitely generated if

whenever M = ΣMi for a family (Mi)I of subobjects of M , there is an i ∈ I such that

M =Mi.

Definition 2.9.18. [14] An object M of a category A is said to be finitely presented if it

is finitely generated and every epimorphism L −→ M when L is finitely generated has a

finitely generated kernel.

Definition 2.9.19. [14] A category A is said to be locally finitely generated (presented) if it

has a family of finitely generated (presented) generators.
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2.10 Projective objects

Definition 2.10.1. Let A be a category. An object P of A is said to be projective if every

morphism h : P −→ C whose domain is P factors through every epimorphism g : B −→ C

as h = gh′ for some h′ : P −→ B.

P

h
��

h′

��
B

g // C

Definition 2.10.2. A category A is said to have enough projectives if for each object A in A

there is an epimorphism f : P −→ A with P projective.

Proposition 2.10.3. [10, Proposition 14.2] Let P be a projective object in a category A.

Then every morphism f : A −→ P is a retraction. Conversely if every epimorphism g :

A −→ P is a retraction and if A either has enough projectives or is abelian, then P is

projective.

Proposition 2.10.4. Every short exact sequence ending with a projective object P , i.e., of

the form

0 //A //B //P //0

splits.

Proof. Clear by Proposition 2.10.3.

Proposition 2.10.5. [10, Proposition 14.3] If P =
⊕

i Pi and Pi is projective for each i,

then P is projective. Converse is true in categories with zero objects.

2.11 Purity

Definition 2.11.1. [14, Definition, p.353] A short exact sequence

0 //L //M //N //0

35



in a Grothendieck category A is said to be pure if every finitely presented object is relatively

projective to it. In this case L is a pure subobject of M .

Definition 2.11.2. [14, Definition, p.354] Also an object M of a Grothendieck category A is

said to be flat if every short exact sequence

0 //K //L //M //0

is pure.

Definition 2.11.3. [15, p. 160] Let E be a class of short exact sequences of objects of an

abelian category A such that every sequence isomorphic to a sequence in E is also in E .

Denote by Ee and Em the corresponding classes of epimorphisms and monomorphisms,

respectively. E is then called a proper class if it has the following properties.

(1) Every split short exact sequence is in E .

(2) If α, β ∈ Em then βα ∈ Em if defined.

(3) If α, β ∈ Ee then βα ∈ Ee if defined.

(4) If βα ∈ Em then α ∈ Em if defined.

(5) If βα ∈ Ee then β ∈ Ee if defined.

Lemma 2.11.4. [14, Lemma 6 (i)] The class of pure short exact sequences Pure in a

Grothendieck category A is a proper class.

Definition 2.11.5. [16, p.313] A Grothendieck category A is said to be regular if every object

M of A is regular in the sense that every short exact sequence

0 //L //M //N //0

is pure in A.
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Theorem 2.11.6. [14, Theorem 4] Let A be a locally finitely presented Grothendieck

category. Then the following statements are equivalent.

(i) A is regular.

(ii) All objects are flat.

(iii) All short exact sequences are pure.

(iv) All finitely presented objects are projective.

2.12 Pure-projective objects

Definition 2.12.1. An object M of a Grothendieck category A is called pure-projective if it

is projective relative to all pure exact sequences.

Proposition 2.12.2. [17, Proposition 4.1] Let M =
⊕

Mi in a Grothendieck category A.

Then M is pure-projective if and only if Mi is pure-projective for every i.

Proposition 2.12.3. Let A be a Grothendieck category. Then the followings are equivalent

for an object N of A.

(i) N is pure-projective.

(ii) Every pure exact sequence ending with N splits.

Proof. (i) ⇒ (ii) Let

0 //K //M α //N //0

be a pure short exact sequence in A. Since N is pure-projective, for every morphism f :

N −→ N there exists a morphism g : N −→ M such that αg = f . Choosing f = 1N , we

get αg = 1N . So the sequence splits.

(ii) ⇒ (i) Let

0 //K
k′ //P

α //M //0
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be a pure exact sequence and f : N −→ M a morphism. Forming a pullback, we have the

following commutative diagram with exact rows,

0 // K

∥

k // G

g
��

h // N

f
��

// 0

0 // K
k′ // P

α //M // 0

We know that gk = k′ is in PureM . Since the class of pure exact sequences Pure is a proper

class by [14, Lemma 6 (i)], k is also in PureM . So the first row of the diagram is a pure

exact sequence. Then

0 //K k //G h //N //0

splits by assumption. So there exists a morphism e : N −→ G such that he = 1N . Now put

γ = ge. Then we have αγ = αge = fhe = f . Thus M is pure-projective.

Definition 2.12.4. The category A is said to have enough pure-projectives if for every object

M of A there is a pure epimorphism f : P −→ M with P pure-projective that is we have a

pure exact sequence

0 //K //P //M //0

for every object M of A.

Lemma 2.12.5. [14, Lemma 6 (ii)] Let A be a locally finitely presented Grothendieck

category. Then A has enough pure-projectives.

Theorem 2.12.6. Let A be a locally finitely presented Grothendieck category. Then the

followings are equivalent.

(i) A is regular.

(ii) Every pure-projective object is projective.

(iii) Every pure-projective object is flat.

Proof. (i) ⇒ (ii) Since A is regular, every short exact sequence in A is pure by [14, Theorem

4].
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(ii) ⇒ (iii) Since every projective object is flat by [14, Lemma 7 (i)], it is clear.

(iii) ⇒ (i) Let M be an object. Since A has enough pure-projective objects by [14, Lemma

6 (ii)], there exists a pure exact sequence

0 //K //P //M //0

with P pure-projective. Now P is flat by assumption and therefore M is flat by [18,

Proposition 2.2 (c) (ii)]. Thus A is regular by [14, Theorem 4].
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3. DIRECT PROJECTIVE OBJECTS IN ABELIAN

CATEGORIES

3.1 Direct-projective objects

Definition 3.1.1. Let A be an abelian category. An object M of A is said to be

direct-projective if every subobject N of M with M/N isomorphic to a direct summand

of M is a direct summand of M .

Proposition 3.1.2. Let A be an abelian category. Then the following conditions are

equivalent for an object M of A.

(i) Given any direct summand A of M with the projection map p : M −→ A and any

epimorphism f :M −→ A there exists an endomorphism g of M such that fg = p.

(ii) M is direct-projective.

(iii) Any epimorphism f :M −→ A with A a direct summand of M splits.

Proof. (i) ⇒ (ii) Let A be a direct summand of M and N be a subobject of M with M/N

isomorphic to A. Let f : M/N −→ A be that isomorphism. There is an endomorphism g :

M −→M such that fg = π ,where π :M −→ A is the canonical projection, by assumption.

Let h = gi where i : A −→ M is the inclusion map. Then fh = fgi = πi = 1A. So f

splits. Thus N is a direct summand of M .

(ii) ⇒ (iii) Let A be a direct summand of M and f : M −→ N be an epimorphism.

Then since M/Ker(f) ∼= N , Ker(f) is a direct summand of M by assumption. Therefore f

splits.

(iii) ⇒ (i) Let A be a direct summand of M , π : M −→ A be the canonical projection

map and f : M −→ A be an epimorphism. Since f splits by assumption, there exists a

morphism h : A −→ M such that fh = 1A. Define g : M −→ M by g = hπ. Then

fg = f(hπ) = (fh)π = 1Aπ = π.
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Lemma 3.1.3. Let A be an abelian category. If M ⊕ N is direct-projective, then an exact

sequence

0 //L //M
g //N //0

of objects and morphisms of A splits.

Proof. Let p1 : M ⊕ N −→ M and p2 : M ⊕ N −→ N be canonical projection maps.

Since M ⊕ N is direct-projective and gp1 : M ⊕ N −→ N is an epimorphism, there exists

an endomorphism h of M ⊕ N such that gp1h = p2 by Proposition 3.1.2. Then choosing

f = p1hi2 where i2 : N −→M⊕N is the inclusion map, we have gf = 1N . So g splits.

Theorem 3.1.4. Let A be an abelian category with enough projective objects, M be an

object of A and ν : K −→ M be an epimorphism from a projective object K of A to M .

Then M is projective if and only if K ⊕M is direct-projective.

Proof. (⇒) Let M be projective. Then K ⊕M is projective by Proposition 2.10.5 and since

projective objects are direct-projective, K ⊕M is direct-projective.

(⇐) Let K ⊕M be direct-projective. Then the canonical short exact sequence

0 //Ker(ν) //K
ν //M //0

splits by Lemma 3.1.3. Hence M is projective.

Corollary 3.1.5. Let A be an abelian category with enough projective objects. Then the

class of direct-projective objects of A need not be closed under factor objects.

Proof. LetM be an object in A which is not direct-projective. Since A has enough projective

objects, there is an exact sequence

0 //K //N //M //0

with N projective. Since N is projective, it is direct-projective and N/K ∼= M .
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Corollary 3.1.6. Let A be an abelian category with enough projective objects. Then the

class of direct-projective objects of A need not be closed under taking finite coproducts.

Proof. Let N be a direct-projective object in A which is not projective. Since A has enough

projective objects, there is an exact sequence

0 //K //M //N //0

withM projective. NowM⊕N is not direct-projective sinceN is not projective by Theorem

3.1.4.

Corollary 3.1.7. Let A be an abelian category with enough projectives. Then every

direct-projective object is projective if and only if the coproduct of two direct-projective

objects of A is direct-projective.

Proof. (⇒) It is clear by Proposition 2.10.5.

(⇐) Let M be a direct-projective object in A. Since A has enough projectives, there exists

a projective object P of A and an epimorphism α : P −→ M . Projective objects are

direct-projective, so P ⊕ M is direct-projective by assumption. Then M is projective by

Corollary 3.1.4.

Proposition 3.1.8. Direct summands of direct-projective objects in an abelian category A

are direct-projective.

Proof. Let M be direct-projective, N be a direct summand of M , S be a direct summand

of N and let α : N −→ S be an epimorphism. Since S is a direct summand of N and N

is a direct summand of M , S is a direct summand of M . Now αpMN is an epimorphism

where pMN : M −→ N is the projection map. Since M is direct-projective, there exists an

endomorphism ψ of M such that (αpMN)ψ = pMS where pMS : M −→ S is the projection

map. Then choosing β = pMNψpNM : N −→ N , αβ = pNS .

Definition 3.1.9. An abelian category A is said to be hereditary if and only if every subobject

of a projective object is projective if and only if every quotient object of an injective object is
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injective. A is said to be semihereditary if every finitely generated subobject of a projective

object is projective and cosemihereditary if every finitely cogenerated quotient object of an

injective object is injective.

Theorem 3.1.10. Let A be an abelian category. Assume A has enough projectives. Then the

following conditions are equivalent.

(i) A is (semi)hereditary.

(ii) Every (finitely generated) subobject of a projective object is direct-projective.

Proof. (i) ⇒ (ii) Clear.

(ii) ⇒ (i) Let N be a subobject of a projective object P . Since A has enough projectives,

there is an epimorphism f : P1 −→ N with P1 projective. Now P1 ⊕N is a subobject of the

projective object P1⊕P and therefore direct-projective by assumption. Then N is projective

by Theorem 3.1.4.

Definition 3.1.11. Let M and N be objects of an abelian category A. M is said to be

N -projective if given any epimorphism from N to an object L of A, any homomorphism

from M to L can be lifted to a homomorphism from M to N .

Definition 3.1.12. An object M of an abelian category A is called a quasi-projective object

if it is M -projective.

Proposition 3.1.13. Let A be a locally finitely presented Grothendieck category. Then the

following conditions are equivalent.

(i) A is regular.

(ii) Every pure-projective object of A is a quasi-projective.

Proof. (i) ⇒ (ii) Since A is regular, every pure-projective object of A is projective by

Theorem 2.12.6. Since every projective object is quasi-projective, every pure-projective

object of A is quasi-projective.
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(ii) ⇒ (i) Let M be a pure-projective object of A. Since A has enough projective objects

by [15, Lemma 6 (ii)], there is a projective object P and an epimorphism f : P −→ M .

Since P is projective, it is pure-projective. So P ⊕ M is pure-projective. Now P ⊕ M

is quasi-projective by assumption. Since every quasi-projective object is direct-projective,

P ⊕M is direct-projective. We have an exact sequence

0 //K //P //M //0

with P projective and P ⊕M is direct-projective. Thus M is projective by Theorem 3.1.4.

Hence A is regular by Theorem 2.12.6.

3.2 Classes all of whose objects are direct-projective

Definition 3.2.1. An abelian category A is called a spectral category if every short exact

sequence in A splits.

Definition 3.2.2. An epimorphism f : P −→ M in an abelian category A is called a

projective cover of M if P is a projective object and Ker(f) ≪ P , that is for every subobject

U of P with Ker(f) + U = P implies that U = P .

Definition 3.2.3. An abelian category A is said to be perfect if every object of A has a

projective cover.

Theorem 3.2.4. [8, Theorem 3.5] Let A be an abelian category. Then A is perfect if and

only if it has enough projectives and every projective object of A is lifting.

Theorem 3.2.5. Let A be an abelian category. Then the following conditions are equivalent.

(i) A is spectral.

(ii) A is perfect and every object of A is direct-projective.

(iii) A is perfect and every factor object of a direct-projective object is direct-projective.
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Proof. (i) ⇒ (ii) ⇒ (iii) is clear.

(iii) ⇒ (ii) Let M be an object of A. Since A has enough projective objects by Theorem

3.2.4, there exists an epimorphism f : P −→ M with P projective. Therefore M is

direct-projective being a quotient object of a direct-projective object P .

(ii) ⇒ (i) Let M be an object of A. Since there are enough projective objects in A by

Theorem 3.2.4, there is a short exact sequence

0 //K //P //M //0

with P projective. Since every object of A is direct-projective, P ⊕M is direct-projective.

Then the sequence splits by Corollary 3.1.3. Therefore A is spectral.

Definition 3.2.6. An object M in a category A with a zero object is simple if there are

precisely two quotient objects of M , namely 0 and M .

Definition 3.2.7. A Grothendieck category A is said to be semisimple if each object of A is

a coproduct of simple objects.

Proposition 3.2.8. [12, Proposition 6.7 Chapter V] A locally finitely generated Grothendieck

category is semisimple if and only if it is spectral.

Theorem 3.2.9. Let A be a locally finitely generated Grothendieck category. Then the

following conditions are equivalent.

(i) A is semisimple.

(ii) A has enough projectives and every object of A is direct-projective.

(iii) A has enough projectives and the coproduct of two direct-projective objects is

direct-projective.

Proof.

(i) ⇒ (ii) ⇒ (iii) is clear.
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(iii) ⇒ (i) Let S be a simple object in A. Since A has enough projective objects, there exists

an epimorphism f : P −→ S with P projective. S is clearly quasi-projective and therefore

direct-projective. So P ⊕ S is direct-projective by assumption. Thus S is projective by

Theorem 3.1.4. Then A is semisimple by [16, 20.7] whose proof works for locally finitely

generated Grothendieck categories.
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4. PURE DIRECT PROJECTIVE OBJECTS IN

GROTHENDIECK CATEGORIES

4.1 Pure-direct-projective objects

Definition 4.1.1. Let A be a Grothendieck category. An object M of A is said to be

pure-direct-projective if every pure subobject K with M/K isomorphic to a direct summand

of M is a direct summand.

Proposition 4.1.2. [19, Proposition 3.3] Let A be a Grothendieck category. Then the

following conditions are equivalent for an object M of A.

(i) Given a direct summand N of M with the projection p : M −→ N and any

epimorphism f : M −→ N with Ker(f) pure in M there exists an endomorphism

g :M −→M such that fg = p.

(ii) M is pure-direct-projective.

(iii) Any epimorphism f : M −→ N with N a direct summand of M and Ker(f) pure in

M splits.

Proof. (i) ⇒ (ii) Let K be a pure subobject of M such that M/K is isomorphic to a direct

summand N of M . Let f : N −→ M/K be that isomorphism. By assumption there

exists an endomorphism g of M such that fg = p, where p : M −→ N is the projection

map. Define h : M −→ M by h = gi, i : N −→ M being the inclusion map. Then

fh = f(gi) = (fg)i = i holds, so f splits. Thus K is a direct summand of M.

(ii) ⇒ (iii) Let N be a direct summand of M and f : M −→ N be an epimorphism with

Ker(f) pure in M . Then, since M/Ker(f) ∼= N , Ker(f) is a direct summand of M and f

splits.

(iii) ⇒ (i) Let N be a direct summand of M , p :M −→ N be the canonical projection map

and f :M −→ N be an epimorphism with Ker(f) pure in M . Since f splits by assumption,
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there exists a morphism h : N −→ M such that fh = 1N . Define g : M −→ M by g = hp,

where p : M −→ N is the canonical projection map. Then fg = f(hp) = (fh)p = 1Np =

p.

Lemma 4.1.3. Let A be a Grothendieck category. If M ⊕ N is pure-direct-projective, then

a pure exact sequence

0 //K //M
g //N //0

of objects and morphisms of A splits.

Proof. Suppose that M ⊕ N is pure-direct-projective in A. Let p1 : M ⊕ N −→ M and

p2 : M ⊕ N −→ N be the canonical projections. Since M ⊕ N is pure-direct-projective,

there exists an endomorphism h of M ⊕N such that gp1h = p2 by Proposition 4.1.2. Define

f : N −→ M by f = p1hi2 where i : N −→ M ⊕ N is the inclusion map. Then

gf = g(p1hi2) = p2i2 = 1N . Thus the sequence splits.

Theorem 4.1.4. Let A be a Grothendieck category and

0 //K //M //N //0

be a pure exact sequence in A with M pure-projective. M ⊕ N is pure-direct-projective if

and only if N is pure-projective.

Proof. (⇒) Suppose M ⊕N is pure-direct-projective. Then the sequence

0 //K //M //N //0

splits by Lemma 4.1.3. Then N is also pure-projective by Proposition 2.12.2.

(⇐) Suppose N is pure-projective. Then M ⊕ N is pure-projective by Proposition

2.12.2 and therefore M ⊕ N is pure-direct-projective since pure-projective objects are

pure-direct-projective.

Corollary 4.1.5. The class of pure-direct-projective objects of a locally finitely presented

Grothendieck category A need not be closed under pure factors.
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Proof. Let M be an object in A which is not pure-direct-projective. Since A has enough

pure-projective objects by [14, Lemma 6(ii)], there is a pure exact sequence

0 //K //N //M //0

with N pure-projective. Since N is pure-projective, it is pure-direct-projective and N/K ∼=

M .

Corollary 4.1.6. The class of pure-direct-projective objects of a locally finitely presented

Grothendieck category A need not be closed under finite coproducts.

Proof. Let N be a pure-direct-projective object in A that is not pure-projective. Since A has

enough pure-projectives by [14, Lemma 6(ii)], there is a pure exact sequence

0 //K //M //N //0

with M pure-projective. Then M ⊕ N is not pure-direct-projective since N is not

pure-projective by Theorem 4.1.4.

Corollary 4.1.7. Let A be a locally finitely presented Grothendieck category. Then every

pure-direct-projective object of A is pure-projective if and only if the coproduct of any two

pure-direct-projective objects of A is pure-direct-projective.

Proof. (⇒) Clear by [17, Proposition 4.1].

(⇐) Let M be a pure-direct-projective object of A. Since A has enough pure-projectives by

[14, Lemma 6(ii)], there exists a pure exact sequence

0 //K //P //M //0

with P pure-projective. Since P is pure-projective, P is pure-direct-projective, and therefore

P ⊕M is pure-direct-projective by assumption . So M is pure-projective by Theorem 4.1.4.
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Proposition 4.1.8. Direct summands of pure-direct-projective objects of a Grothendieck

category A are pure-direct-projective.

Proof. Let M be a pure-direct-projective object of A and N be a direct summand of M and

π′ : M −→ N be the projection map. Let K be a pure subobject of N and π : N −→ K

be the projection map. Let f : N −→ K be an epimorphism with Ker(f) pure in N and

f ′ : M −→ N be an epimorphism. Then ff ′ : M −→ K is also an epimorphism and since

Ker(f) is a pure subobject of N and N is a pure subobject of M , Ker(f) is a pure subobject

of M by [14, Lemma 6 (i)]. Since M is pure-direct-projective, there is an endomorphism

g :M −→M such that ff ′g = ππ′. Let i : K −→ N and i′ : N −→M be inclusion maps.

Put h = f ′gi′. Then fh = ff ′gi′ = ππ′i′ = π1N = π. Thus N is pure-direct-projective by

Proposition 4.1.2.

Theorem 4.1.9. Let A be a locally finitely presented Grothendieck category. Then the

following conditions are equivalent.

(i) A is regular.

(ii) Every pure-direct-projective object is flat.

Proof. (i) ⇒ (ii) Clear by [14, Theorem 4].

(ii) ⇒ (i) Let M be an object of A. Since A has enough pure-projective objects by [14,

Lemma 6 (ii)], we have a pure exact sequence

0 //K //P //M //0

with P pure-projective. So P is flat by assumption. Then M is flat by [18, Proposition 2.2.

(c) (i)].

Theorem 4.1.10. Let A be a locally finitely presented Grothendieck category. Assume A has

enough projectives. Then the following statements are equivalent.

(i) A is regular.
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(ii) Every pure-direct-projective object of A is direct-projective.

Proof. (i) ⇒ (ii) Clear since every short exact sequence is pure exact in a regular category

by [14, Theorem 4].

(ii) ⇒ (i) Let M be a pure-projective object in A. Since A has enough projectives, there

is a projective object P and an epimorphism f : P −→ M . Since P is projective, it is

pure-projective and so M ⊕ P is pure-projective by [17, Proposition 4.1]. Therefore M ⊕ P

is pure-direct-projective. NowM⊕P is direct-projective by assumption, thusM is projective

by Theorem 3.1.4. Now it A is regular by Theorem 2.12.6.

Proposition 4.1.11. Let A be a locally finitely presented Grothendieck category. Then the

following conditions are equivalent.

(i) A is regular and the coproduct of two pure-direct-projective objects is

pure-direct-projective.

(ii) Every pure-direct-projective object of A is projective.

Proof. (i) ⇒ (ii) Let M be a pure-direct-projective object of A. Since every locally finitely

presented Grothendieck category A has enough pure-projective objects by [14, Lemma 6

(ii)], there exists a pure exact sequence

0 //K //P //M //0

with P pure-projective. Now M ⊕ P is pure-direct-projective by assumption. Then M is

pure-projective by Theorem 3.1.4 and therefore M is projective by Theorem 2.12.6.

(ii) ⇒ (i) Let M be a pure-direct-projective object of A. Then M is projective by

assumption and therefore it is flat by [14, Lemma 7 (i)]. So A is regular by Theorem

4.1.9. Since the coproduct of two projective objects is projective, the coproduct of two

pure-direct-projective objects is pure-direct-projective.

51



Corollary 4.1.12. Let A be a locally finitely presented regular Grothendieck category.

If the coproduct of two pure-direct-projective objects is pure-direct-projective, then every

pure-direct-projective object of A is quasi-projective.

Proposition 4.1.13. Let A be a locally finitely presented Grothendieck category with enough

projective objects. If every pure-direct-projective object is quasi-projective, then A is regular.

Proof. Let M be a finitely presented object of A. So M is pure-projective. Since there are

enough projective objects in A, there is an epimorphism f : P −→ M with P projective.

Now P ⊕ M is pure-projective and therefore it is pure-direct-projective. So P ⊕ M is

quasi-projective by assumption. Since every quasi-projective object is direct-projective, P ⊕

M is direct-projective. Then M is projective by Theorem 3.1.4. Hence A is regular by [15,

Theorem 4].

Proposition 4.1.14. Let A be a locally finitely presented Grothendieck category and M a

flat object of A. Then M is pure-direct-projective if and only if its direct-projective.

Proof. (⇒) LetM be a pure-direct-projective object of A, N be a direct summand ofM and

f : M −→ N be an epimorphism. Since the class of flat objects is closed under coproducts

by [18, Proposition 2.3 (a)], N is also flat. Therefore f is a pure epimorphism. Since M is

pure-direct-projective, f splits. Then M is direct-projective.

(⇐) Clear.

Definition 4.1.15. Let A be a Grothendieck category. A is said to be pure-hereditary if every

epimorphic image of an injective object is pure-injective.

Definition 4.1.16. An object M of a Grothendieck category A is said to be cotorsion if

Ext1A(M,N) = 0 for any flat object N of A.

Definition 4.1.17. A class C of objects of a A is said to be closed under extension if N ,

M/N ∈ C implies M ∈ C.

Definition 4.1.18. Let A be a Grothendieck category and M be an object of A. M is called

a pure-injective object if it is relatively injective to every pure short exact sequence in A.
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Proposition 4.1.19. Let A be a Grothendieck category with enough projectives. Suppose

that the class of pure-injective objects in A is closed under extension. Then the following

conditions are equivalent.

(i) A is pure hereditary.

(iii) Every pure subobject of any projective object is projective.

(iv) Every flat object is of projective-dimension at most 1.

Proof. (i) ⇒ (ii) Let M be a projective object of A and P be a pure subobject of M . Let

β : I −→ L be an epimorphism with I injective and let f : P −→ L be a morphism from P

to L. Since A is pure hereditary, L is pure-injective. So there exists a morphism g :M −→ L

such that gh = f . Since M is projective, there exists a morphism α :M −→ I such βα = g.

Put γ = αh : P −→ I . Then gives βγ = β(αh) = gh = f . Hence P is projective.

(ii) ⇒ (iii) Let M be a flat object. Since A has enough projectives, there exists an

epimorphism f : P −→M with P projective. Then we have the short exact sequence

0 //K //P //M //0

which is pure sinceM is flat. SoK is pure in P and thereforeK is projective by assumption.

Thus projective dimension of M is at most 1.

(iii) ⇒ (i) Let I be an injective object of A and N be a subobject of I . Then we have a short

exact sequence

0 //N //I //I/N //0 .

Let M be a flat object of A. Since projective dimension of M is at most 1 by assumption,

Ext1A(M, I/N) = 0. So I/N is a cotorsion object of A. Therefore I/N is pure-injective by

[20, Theorem 3.5.1] whose proof works in locally finitely presented Grothendieck categories.

So A is pure-hereditary.
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Theorem 4.1.20. Let A be a locally finitely presented regular Grothendieck category with

enough projective objects. If the class of pure-injective objects is closed under extensions

then the following conditions are equivalent.

(i) A is pure hereditary.

(ii) Every subobject of any projective object of A is pure-direct-projective.

(iii) Every subobject of any pure-projective object of A is pure-direct-projective.

Proof. (i) ⇒ (ii) Clear by Proposition 4.1.19.

(ii) ⇒ (iii) Since A is regular by assumption, pure-projective objects are projective.

(iii) ⇒ (i) By assumption every subobject of a projective object is pure-direct-projective

and therefore direct-projective since A is regular. So A is hereditary by Theorem 3.1.10 and

therefore it is pure-hereditary.

Corollary 4.1.21. Let A be a locally finitely presented Grothendieck category. Then the

class of pure-direct-projective objects of A need not be closed under subobjects.

4.2 Classes all of whose objects are pure-direct-projective

Recall that an abelian category A is called a spectral category if every short exact sequence

in A splits. We can give the following immediate result without proof.

Proposition 4.2.1. Let A be a spectral Grothendieck category. Then the following conditions

are equivalent.

(i) Every object in A is pure-direct-projective.

(ii) Every pure-direct-projective object of A is projective.

(iii) Every pure-direct-projective object of A is direct-projective.

Definition 4.2.2. [21, Abstract] A Grothendieck category A is said to be pure-semisimple if

it is locally finitely presented and each of its objects is pure-projective.
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Remark 4.2.3. If a Grothendieck category A is pure-semisimple, then every object is

pure-injective by [22, Theorem 2].

Remark 4.2.4. Let A be a locally finitely presented Grothendieck category. A is called

pure-semisimple if it has pure global dimension zero, which means that each of its objects is a

direct summand of a coproduct of finitely presented objects (see [23]). A is pure-semisimple

if and only if it satisfies the pure noetherian property a coproduct of any family of

pure-injective objects in A is pure-injective (see [21, Theorem 1.9]).

Lemma 4.2.5. Let A be a finitely presented Grothendieck category. Then the following

conditions are equivalent.

(i) A is pure-semisimple.

(ii) Every pure exact sequence in A splits.

Proof. (i) ⇒ (ii) By definition every object in A is pure-projective. Since any pure

exact sequence ending with pure-projective object splits by Lemma 2.12.3, every pure-exact

sequence splits.

(ii) ⇒ (i) Suppose that every pure exact sequence in A splits. Let M be an object of A. We

want to show that M is pure-projective. Since every locally finitely presented Grothendieck

category has enough pure-projective objects by [14, Lemma 6 (ii)], there exists a pure exact

sequence

0 //K //P //M //0

with P pure-projective. This sequence splits by assumption and therefore M is a direct

summand of the pure-projective object P . Then M is pure-projective by [17, Proposition

4.1]. This means that A is pure-semisimple.

Theorem 4.2.6. Let A be a locally finitely presented Grothendieck category. Then the

following conditions are equivalent.

(i) A is pure-semisimple.
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(ii) Every object of A is pure-projective.

(iii) Every object of A is pure-direct-projective.

(iv) Every pure quotient of a pure-direct-projective object is pure-direct-projective.

Proof. (i) ⇒ (ii) Let M be an object of A. Since A has enough pure-projective objects by

[14, Lemma 6 (ii)], there exists a pure exact sequence

0 //K //N //M //0

with N pure-projective. Since A is pure-semisimple, 0 //K //N //M //0 splits

by Lemma 4.2.5. So M is pure-projective [17, Proposition 4.1].

(ii) ⇒ (iii) Clear.

(iii) ⇒ (iv) Clear.

(iv) ⇒ (iii) Since A has enough pure-projective objects by [14, Lemma 6 (ii)], there exists

a pure exact sequence

0 //K //M //N //0

with M pure-projective for every object N of A. Since M/K ∼= N , N is

pure-direct-projective.

(iii) ⇒ (i) Let M be an object of A. Since A has enough pure-projective objects by [14,

Lemma 6 (ii)], there exists a pure exact sequence

0 //K //N //M //0

with N pure-projective. Since N ⊕ M is pure-direct-projective by assumption, M is

pure-projective by Theorem 3.1.4.
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5. APPLICATIONS

In this chapter we give applications some of our results to module and comodule categories.

5.1 Modules and Comodules

Remark 5.1.1. Let R be a unitary ring and Mod(R) be the category of right R-modules.

Mod(R) is a locally finitely generated Grothendieck category with enough injectives and

enough projectives. Mod(R) is hereditary if and only if the ring R is right hereditary.

Then we have the following corollary of Theorem 3.1.10 for module categories.

Corollary 5.1.2. [24, Theorem 4] Let R be a unitary ring. Then the following conditions are

equivalent.

(1) R is right hereditary.

(2) Every submodule of a projective right R-module is direct-projective.

Remark 5.1.3. Let C be a coalgebra over a field and MC be the category of right

C-comodules. MC is a locally finitely generated Grothendieck category. Then it has enough

injectives. The category MC is hereditary if and only if C is a (left and right) hereditary

coalgebra (see [25]).

Then we have the following corollary of Theorem 3.1.10 for comodule categories.

Corollary 5.1.4. Let C be a coalgebra over a field. Then the following conditions are

equivalent.

(1) C is hereditary.

(2) Every subcomodule of a projective right C-comodule is direct-projective.

Remark 5.1.5. Let C be a coalgebra over a field. Then the category MC of right

C-comodules is spectral if and only if MC is semisimple if and only if C is cosemisimple.
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Now we have the following result of Theorem 3.2.5 for comodule categories.

Corollary 5.1.6. Let C be a coalgebra over a field. Then the following conditions are

equivalent.

(1) C is cosemisimple.

(2) C is right semiperfect and every right C-comodule is direct-projective.

(3) C is right semiperfect and every factor comodule of a direct-projective right

C-comodule is direct-projective.

Proof. C has enough projectives if and only if C is right semiperfect (see [13, Theorem

3.2.3]). Since every cosemisimple coalgebra is right semiperfect, C has enough projectives.

C is a cosemisimple coalgebra if and only if every right C-comodule is projective in the

category MC (see [13, Theorem 3.1.5]).

We have the following corollary of Theorem 4.1.10 for module categories.

Corollary 5.1.7. [6, Proposition 2.10] LetR be a unitary ring. Then the following conditions

are equivalent.

(1) R is a von Neumann regular ring.

(2) Every pure-projective right R-module is projective.

(3) Every pure-direct-projective right R-module is direct-projective.

Also we have the following corollary of Theorem 4.1.10 for comodule categories.

Corollary 5.1.8. Let C be a semiperfect coalgebra over a field. Then the following

statements are equivalent.

(1) C is cosemisimple.
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(2) Every pure-projective right C-comodule is projective.

(3) Every pure-direct-projective right C-comodule is direct-projective.

Proof. C has enough projectives if and only if C is right semiperfect (see [13, Theorem

3.2.3]). Since every cosemisimple coalgebra is right semiperfect, C has enough projectives.

C is cosemisimple if and only if every right C-comodule is injective if and only if every

right C-comodule is projective by [13, Theorem 3.1.5]. If a coalgebra C over a field

is cosemisimple, then the category of right C-comodules MC is regular. Conversely, if

MC is regular, then every right C-comodule K is FP -injective, that is every short exact

sequence of the form 0 //K //M //N //0 is pure (see [14]). The category of

right C-comodules MC coincides with the category σ[∗C C] of submodules of C-generated

left C∗-modules (see [14, Section 2.5]). Since MC is locally noetherian, every FP -injective

right C-comodule is injective by [16, 35.7]. Therefore, every right C-comodule is injective.

Hence, C is cosemisimple by [14, Theorem 3.1.5].
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6. CONCLUSION

In this thesis we study direct-projective objects in abelian categories and

pure-direct-projective objects in Grothendieck categories. Also we give applications

some of our results to module and comodule categories. Our results given in Chapter 3. and

Chapter 4. are new in abelian categories and Grothendieck categories respectively. We can

list some of the most important results as follows:

6.1 Direct-projective objects

Theorem 6.1.1. Let A be an abelian category with enough projective objects, M be an

object of A and ν : K −→ M be an epimorphism from a projective object K of A to M .

Then M is projective if and only if K ⊕M is direct-projective.

Theorem 6.1.2. Let A be an abelian category. Assume A has enough projectives. Then the

following conditions are equivalent.

(i) A is (semi)hereditary.

(ii) Every (finitely generated) subobject of a projective object is direct-projective.

Proposition 6.1.3. Let A be a locally finitely presented Grothendieck category. Then the

following conditions are equivalent.

(i) A is regular.

(ii) Every pure-projective object of A is a quasi-projective.

Theorem 6.1.4. Let A be an abelian category. Then the following conditions are equivalent.

(i) A is spectral.

(ii) A is perfect and every object of A is direct-projective.
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(iii) A is perfect and every quotient object of a direct-projective object is direct-projective.

Theorem 6.1.5. Let A be a locally finitely generated Grothendieck category. Then the

following conditions are equivalent.

(i) A is semisimple.

(ii) A has enough projectives and every object of A is direct-projective.

(iii) A has enough projectives and the coproduct of two direct-projective objects is

direct-projective.

6.2 Pure-direct-projective objects

Theorem 6.2.1. Let A be a Grothendieck category and

0 //K //M //N //0

be a pure exact sequence in A with M pure-projective. M ⊕ N is pure-direct-projective if

and only if N is pure-projective.

Theorem 6.2.2. Let A be a locally finitely presented Grothendieck category. Then the

following conditions are equivalent.

(i) A is regular.

(ii) Every pure-direct-projective object is flat.

Theorem 6.2.3. Let A be a locally finitely presented Grothendieck category. Assume A has

enough projectives. Then the following statements are equivalent.

(i) A is regular.

(ii) Every pure-direct-projective object of A is direct-projective.
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Proposition 6.2.4. Let A be a locally finitely presented Grothendieck category. Then the

following conditions are equivalent.

(i) A is regular and the coproduct of two pure-direct-projective objects is

pure-direct-projective.

(ii) Every pure-direct-projective object of A is projective.

Theorem 6.2.5. Let A be a locally finitely presented regular Grothendieck category with

enough projective objects. If the class of pure-injective objects is closed under extensions

then the following conditions are equivalent.

(i) A is pure hereditary.

(ii) Every subobject of any projective object of A is pure-direct-projective.

(iii) Every subobject of any pure-projective object of A is pure-direct-projective.

Proposition 6.2.6. Let A be a spectral Grothendieck category. Then the following conditions

are equivalent.

(i) Every object in A is pure-direct-projective.

(ii) Every pure-direct-projective object of A is projective.

(iii) Every pure-direct-projective object of A is direct-projective.

Theorem 6.2.7. Let A be a locally finitely presented Grothendieck category. Then the

following conditions are equivalent.

(i) A is pure-semisimple.

(ii) Every object of A is pure-projective.

(iii) Every object of A is pure-direct-projective.

(iv) Every pure quotient of a pure-direct-projective object is pure-direct-projective.
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