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ABSTRACT

KEYFRAME EXTRACTION USING LINEAR ROTATION
INVARIANT COORDINATES

Hasan MUTLU

Master of Science , Computer Engineering
Supervisor: Asst. Prof. Dr. Ufuk ÇELİKCAN

April 2022, 63 pages

Today, with the improvements in the processing power of video cards, SOC hardware, and

smartphones, the use of 3D motion data has expanded considerably beyond video games. At

the same time, through these developments, the use of computer animation also increased

along with the rapid progress in areas such as augmented reality, virtual reality, and video

editing software. Keyframe extraction is a widely applied remedy for issues faced with

3D motion capture based computer animation. In this work, we propose a novel keyframe

extraction method. In this method, firstly the skeletal motion is represented in linear rotation

invariant (LRI) coordinates. This representation creates a mesh with joint positions of

the related frame in the skeletal motion and then applies the transformation of the LRI

coordinates. Afterwards, by performing dimension reduction using PCA, the dimensions

covering 95% of the data are automatically selected and the summary data is thus acquired.

Then, by applying K-means classification, the summary data is divided into clusters and a

keyframe is extracted from each cluster using the cosine similarity measure. To validate the

results of our proposed method, we conducted an online user study. The results of the study

show that 45% of the participants preferred the keyframes extracted using our LRI-based

method, surpassing the alternative by 6%.
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ÖZET

ROTASYONDAN BAĞIMSIZ DOĞRUSAL KOORDİNATLAR
KULLANILARAK ANAHTAR KARE ÇIKARIMI

Hasan MUTLU

Yüksek Lisans, Bilgisayar Mühendisliği
Danışman: Asst. Prof. Dr. Ufuk ÇELİKCAN

Nisan 2022, 63 sayfa

Günümüzde ekran kartlarının, akıllı telefonların ve gömülü entegre donanımlarının işlem

güçlerinin gelişmesi ile birlikte, 3B uygulamarın kullanım alanlarıda sadece oyunlarla

sınırlı kalmayarak artış göstermiştir. Bu artışın yanı sıra artırılmış gerçeklik, sanal

gerçeklik ve video düzenleme yazılımları gibi alanlardaki hızı ilerlemeyle birlikte bilgisayar

animasyonlarının bu alanlardaki kullanımıda artmıştır. Anahtar kare çıkarımı yöntemleri

3B hareket yakalama tabanlı bilgisayar animasyonlarında sıkça karşılaşılan sorunların

çözümünde sıkça kullanılmaktadır. Bu çalışmada, yeni bir anahtar kare çıkarımı yöntemi

önermekteyiz. Bu yöntem ile iskelet animasyonundaki her bir kare bir 3B şekil ile

temsil edilerek, bu şekil üzerinde rotasyondan bağımsız koordinat sistemi dönüşümü

uygulanmaktadır. Bu dönüşümden sonra ise temel bileşen analizi uygulanarak, animasyonun

en az %95 lik kısmını temsil eden bileşenler dinamik olarak seçilip, özet kare bilgisi

elde ediliyor. Daha sonrasında bu özet kare bilgilerini K-means algoritması uygulayarak

kümelere ayırıp, kosinüs benzerliği metodu ile her bir kümeden bir tane anahtar kare

çıkarımı gerçekleştiriyoruz. Sonuçlarımızın doğrulanması için ise hazırladığımız anket web

sitesinden faydalanarak karşılaştırmamızı yapıyoruz. Çalışma sonuçlarına göre önerdiğimiz
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yöntemin katılımcıların %45 i tarafından seçildiği gözlenmiş olup, alternatif yönteme göre

%6 daha fazla tercih edildiği görülmüştür.

Keywords: Anahtar kare çıkarımı, Poz çıkarımı, 3D modeller için poz önermesi, Poz

önermesi,
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1. INTRODUCTION

Computer animations are used in different areas, especially in movies and video games.

Due to its widespread use, different computer animation techniques exist such as drawing

of frames with graphic tablets by an artist or using 3D modeling and animation software.

However, the most popular animation techniques are motion capture techniques. In motion

capture technology, an actor wears a special suit that contains sensors communicating with a

computer and then performs on the stage. Computer synchronizes incoming sensor data and

matches skeletal joint with the sensor and saves the motion. This causes huge data sizes. At

the same time, editing and transmission of motion capture data remain problematic due to

large data sizes. Hence, representing motion capture data compactly continues to be a vital

consideration of research.

Skeletal animation is the most effective and commonly used technique of exploiting motion

capture data. Skeletal animation consists of two parts: a mesh and a hierarchical set of

bones. The mesh part contains surface (skin) information of the character to be rendered,

while the animation is realized with the spatio-temporal information by the latter. As

skeletal animation is performed, the technique fills the gap between two keyframes with

interpolation on the timeline. Although skeletal animation provides a solution to represent

motions compactly, frame counts remain problematically large for processing, storing, and

editing. Keyframe extraction has emerged as a widely applied solution for the challenges

and issues faced in motion capture based skeletal animation.

The keyframe extraction method must be capable of sorting out significant keyframes from

the others. Also, to improve the success rate of the solution, deriving the characteristics of

vertices concerning both the vertex itself and its neighbor vertices is important. For these

reasons, we argue that representing vertices of joints in alternative coordinate systems and

processing the motion data accordingly can provide a better solution.

There are three commonly used approaches to solve the extracting keyframes problem.

The first approach converts motion data into motion curves. The second approach applies

1



clustering algorithms and then selects keyframes. The last approach uses genetic algorithms

to solve the problem.

In this thesis, we propose a novel keyframe extraction approach. This approach represents the

joints in the frames with linear rotation invariant (LRI) coordinates [1], applying principal

component analysis (PCA) [2] to reduce the data dimension and extract summary data of

each keyframe. Then, it divides them into clusters with the K-means algorithm [3] and

selects keyframes according to cosine similarity concerning adjacent keyframes. Also, we

examine the performance effect of LRI transformation on our method against using regular

Cartesian coordinates without LRI.

1.1. Scope Of The Thesis

This thesis mainly focuses on identifying the effect of using LRI coordinate systems on

clustering based keyframe extraction methods.

1.2. Contributions

This research aims to cover these deficiencies by proposing a novel, simple and efficient

approach. The main contributions of this work are thus threefold:

• We propose a novel keyframe extraction method.

• Unlike most of the previous works, we use LRI coordinate system in our work.

• Our user experiment results show that our LRI based solution surpasses the

performance without LRI by 6%.
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1.3. Organization

The organization of the thesis is as follows:

• Chapter 1 presents our motivation, contributions and the scope of the thesis.

• Chapter 2 provides background information

• Chapter 3 gives related works

• Chapter 4 introduces our method

• Chapter 5 demonstrates experiments and results

• Chapter 6 states the summary of the thesis and possible future directions.

3



2. BACKGROUND OVERVIEW

2.1. Motion Capture

Motion capture is the method of capturing a live motion and converting it to mathematically

useable data by monitoring a series of critical points in space over time and combining them

to create a single three-dimensional representation of the performance. In a nutshell, it is the

technology that facilitates the conversion of a live performance to a digital one. The captured

subject might be anything that exists and moves in the actual world; the essential points are

the locations that best depict many moving components of the subject. These points should

serve as pivots or link rigid sections of the subject. For a human being, for example, some

of the critical locations are the joints, which serve as pivot points and link the bones. Each

of these locations is designated by one or more sensors or markers that are put on the subject

and act as conduits for information to the primary collecting device.

There are several methods for recording motion. Certain systems include cameras to capture

several views of the performance, which are then combined to determine the location of

critical spots, each of which is represented by one or more reflecting markers. Others monitor

a set of sensors using electromagnetic waves or ultrasound. Additionally, mechanical

systems based on connected constructions or armatures are available that use potentiometers

to calculate the rotation of each link.
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Figure 2.1 Example of a scene from the God of War game that uses the motion capture technique.

There are many animation file formats available for storing motion capture data. In this work,

we used AMC and BVH file formats.

2.1.0.1. ASF / AMC Files

The ASF file is much more than a simple skeleton hierarchy definition. It provides all the data

necessary to understand how the skeleton works mechanically, including units, multipliers,

degrees of freedom, limitations, and documentation. The only thing missing from this file

is the data itself, albeit it includes the starting posture or base position needed for character

setup. AMC files are all relative to the given base location. The AMC file includes the

motion data stream in its entirety. All data in this file is relative to the definitions in the ASF

file, and the fields are ordered identically to the dof field of the ASF file.
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2.1.0.2. BVH Files

The BVH file is another animation format developed by Biovision, a collection of optical

motion capture companies specialized in sports analysis and animation. The file is organized

into two distinct sections: hierarchy and motion. The hierarchy section contains all of the

definitions required to construct a skeleton in an animation software application. The data

stream is stored in the motion section.

2.2. OpenGL and WebGL

OpenGL (Open Graphics Library) is a graphics hardware-independent program interface.

The interface consists of a variety of function calls that can be used to create sophisticated

two- and three-dimensional scenarios using basic geometric primitives such as points, lines,

and polygons. Additionally, there are methods for rendering the scenarios that allow for

precise control of lighting, object surface attributes, transparency, anti-aliasing, and texture

mapping. OpenGL is a lightweight, hardware-independent interface that can be implemented

on a wide variety of graphics hardware platforms.

Modern browsers have gained a slew of sophisticated capabilities in recent years that

can be accessed simply from JavaScript. Using HTML5 technologies, one can quickly

build interactive components. In addition to HTML5, current browsers support WebGL.

With WebGL, one can make use of GPU’s processing power directly and construct

high-performance 2D and 3D online applications. However, WebGL programming directly

from JavaScript to construct and animate 3D scenes is an extremely sophisticated, verbose,

and error-prone technique that requires understanding of OpenGL.
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Figure 2.2 An example scene by rendered with Threejs

Threejs[4] is a framework that significantly simplifies this process. The framework has a lot

of functions and APIs such that includes animation API, skeletal animation control functions,

etc. We can utilize to create fantastic 3D scenes directly in our browser. Figure 2.2 shows an

example page rendered with Threejs framework.
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3. RELATED WORK

There have been a number of different approaches for keyframe extraction. These previous

methods either convert the motion data into various spaces, use motion/frame data as

trajectory/motion curves, apply clustering algorithms, handle a matrix factorization problem,

or solve a kind of machine learning problem with a genetic algorithm.

3.1. Motion Curve Based Methods

Solutions based on trajectory or motion curves convert skeletal animation to motion curves

and then apply their algorithms to these curves. After the curves are extracted from

the motion data, algorithms usually apply methods such as curve simplification, saliency

detection, curve fitting, PCA, or segmentation.

Miura et al. [5] combines curve-simplification and Bayesian information criterion to extract

keyframes from given motion capture data. After the algorithm generates the motion curve,

the method divides the curve into two segments at the point most distant from the straight

line connecting the endpoints. For the calculated error between the curve and simplified line,

the method uses the Bayesian information criterion to select keyframes. Bulut and Capin [6]

defined a metric named curve saliency. The solution detects salient parts of the curve and uses

Gaussian weighted average value distribution to select keyframes. In the method by Togawa

and Okuda[7] after the joints in the animation are converted into curves, the algorithm

calculates the cost value for all frames and eliminates frames accordingly. These steps

repeat until the most important keyframes remain. The algorithm by Yang et al. [8] applies

Butterworth filtering and PCA to the input data and then selects keyframes with zero-crossing

points of velocity. The method asserted by Zhang et al. [9] creates motion curves from the

amplitude of motion of joints, applies PCA and defines a distance characteristic curve, and

eventually uses this curve to extract keyframes. The method proposed by Halit and Capin

[10] defined a metric named ’motion saliency’. With this metric, their method analyzes

the motion curve of the animation and extracts keyframes. Ik Soo Lim and Thalmann [11]
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approximates the polygonal chain using a portion of the original chain’s vertices through a

curve simplification method. The technique begins by approximating the polygonal chain

with a single straight line segment connecting its two ends. A distance criteria is used to

validate this estimate, and keyframes are extracted. Matsuda et al.’s method [12] indicates a

time series of the rotation angles of each axis for each joint and creates a technique dubbed

interactive sequential sketching. The algorithm utilizes this stated approach to retrieve

keyframes. The method proposed by Chenxu Xu et al. [13] presents a solution for extracting

keyframes from motion capture data using curve fitting. Motion is represented by a series of

rotation information curves in this manner. Then it identifies locations where the slope varies

considerably and fits the curves using binomial to obtain segment points. The algorithm then

clusters these segment points in order to retrieve keyframes. Miura et al. [14] provides a

hybrid strategy that combines a curve-simplification algorithm with a principal component

analysis-based initialization process.

3.2. Clustering Based Methods

The main idea of the clustering-based approaches is converting motion data into different

systems, clustering these obtained data, and then implementing their proposed algorithms.

While some of the solutions handle the problem as a shortest-path problem, others try to

solve the problem with their similarity detection-based algorithms.

The method by Roberts et al. [15] simplifies the motion frames by around 10% while

retaining most of its detail. The method considers each frame as a node in a weighted

graph and calculates the weights of the graph with the perpendicular distance between joint

positions in each node(frame). After these calculations, the algorithm selects the nearest

N keyframes according to weights. The method suggested by Sun et al. [16] defines the

inter-frame similarity metric based on a group of motion joints and uses affine propagation

clustering to extract keyframes. The method by Qiang Zhang et al. [17] uses an unsupervised

clustering algorithm to divide frames into two classes by similarity distances and, in the last

step, uses dynamic clustering ISODATA to centralize similar frames and eliminate them. The
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method developed by Xin Wang et al. [18] introduces a new extended K-means algorithm

denoted by the acronym SK–means. SK-means enhances the classical K-means approach by

calculating the logic similarity of each node’s warping-direction energy to that of its parent

node. The approach utilizes this described SK-means algorithm to extract keyframes.

3.3. Methods Based on Machine Learning

Machine learning solutions mostly use genetic algorithms to determine keyframes from the

animation data. The method by Zhang et al. [19] uses a multiple-population-based genetic

algorithm and defines a fitness method to meet minimizing the reconstruction error to select

keyframes. The method raised by Liu et al. [20] uses genetic optimization algorithms and

calculates the sparseness of the frames for determining keyframes. The method proposed by

Sapinski et al. [21] presents a representation of emotional motions that are based on joint

sequences. The proposed technique constructs a sequential model of emotional movement

using low-level information derived from the spatial position and orientation of joints within

the skeleton. This low-level derived information is used with several neural networks for

selection and recognition.

3.4. Other Methods

The method by Kapadia et al. [22] encodes movements with the use of keys that reflect a

variety of structural, geometric, and dynamic characteristics of human motion. Users may

define sequences of key values as well as numerous combinations of key sequences to search

for complicated movements. It makes optimal use of a trie-based data structure to map key

sequences to movements. This established trie-based structure comprises the majority of the

animation’s salient keyframes and may be utilized for retrieval and extraction.

The method introduced by Jin et al. [23] focuses on determining the saliency of the frames.

The method computes the saliency of each frame and selects groups from these frames.

After this step, the solution uses a non-linear dimension reduction algorithm and extracts

keyframes. The method proposed by Voulodimos et al. [24] creates physic-based temporal
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summaries to calculate salient primitives of the motion. It determines different keyframes

with these calculated salient primitives. Xia et al. [25] introduces a novel representation

paradigm named joint kernel sparse representation (SR). The suggested model completes the

SR using a geodesic exponential kernel in a kernel-induced space. Additionally, the solution

can make use of the relationships between joints and resolves the difficulty of extracting

keyframes. Choensawat et al. [26] defines an algorithm named GENLABAN, the algorithm

calculates a score for each frame by analyzing body motion, body postures, and weight of

the body parts. With these scores, the algorithm extract keyframes.

Matrix factorization solutions represent given skeletal animation data as matrices and solve

the problem as a matrix problem. The algorithm by Huang et al. [27] provides a solution

handled as a constrained matrix factorization problem with a least-squares optimization

technique. This method represents the animation as matrices that contain key weights and

non-keyframe weights. The algorithm uses these two matrices to extract keyframes according

to user-specified error tolerance iteratively.

The method by Yang Li and Dongsheng Zhou et al. [28] eliminates joints that have a

negligible effect on human posture. Then, each frame of motion data is represented as

a vector in Euclidean space. Then, by computing the cosine similarity between vectors,

the keyframes are extracted. The method put forward by Ming-Hwa Kim et al. [29] uses

a motion analysis approach in sampling windows. The approach computes the difference

between motion changes in sampling windows with and without frame skipping. According

to these difference calculations, the algorithm determines the keyframes. The method by

Guiyu Xia et al. [30] presents a nonconvex low-rank learning framework for learning a

kernel to replace the specified kernel in the sparse subspace model in an unsupervised

manner. The program divides the motion capture data into distinct subspaces and then

extracts keyframes using this definition. The method proposed by Shaofan Wang et al. [31]

presents an unsupervised model for learning human pose distance metrics termed sparsity

locality preserving projection with adaptive neighbors (SLPPAN). The program estimates

similarity values and extracts keyframes using this measure.
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4. PROPOSED METHOD

Although our method uses a clustering approach, unlike other solutions, it applies LRI and

PCA methods before the clustering process. Applying LRI and PCA algorithms summarizes

the characteristic information of each keyframe. Also, our solution makes use of the cosine

similarity measure to estimate the similarity between summarized keyframes.

Our proposed method consists of two main steps. The first step comprises the representation

of skeletal motion frames in LRI local frames and dimension reduction by applying PCA.

At the end of the first step, we obtain summarized data for each frame in the animation. For

the second step, we divide obtained data from the first step into clusters with the K-means

algorithm. Then we use cosine similarity to determine the selected keyframe for each cluster.

In the following, A = (F1,F2,F3,...,Fk) defines skeletal motion where k is the keyframe

count of the animation. F defines a keyframe of a skeletal motion such that Fi =

(j1, j2, j3, ..., jn), jn ∈ R3 where n is the number of joints j in the skeleton model so that Fi

defines the set of joint positions for the ith keyframe of the given animation. As mentioned

above, our solution O(A) outputs; O(A) = (C1
1 ,C1

2 ,C1
3 ,...,C2

n1
,C2

1 ,C2
2 ,C2

3 ,...,C2
n2

, ... ,Cm
nm

)

where O applies LRI, PCA, and K-means algorithms, respectively over A. C defines a cluster

in the result that contains summarized data for each keyframe in the same order after applied

LRI conversion and PCA algorithm. m is the total number of clusters. ni is the element

count of the ith cluster. Accordingly, nm is the element count of the related extracted cluster.

After obtaining clusters from the first step, we use cosine similarity S as a measure of

detecting similarity between two summarized keyframes for the clusters of summarized

keyframes as follows.

S(X, Y ) =

∑3
n=1Xn × Yn√∑3

n=1X
2
n ×

√∑3
n=1 Y

2
n

(1)
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Our algorithm selects a keyframe from the obtained cluster iteratively. To accomplish that,

we define two vectors for each iteration. The first vector is the difference between the

candidate summarized frame data and the previous one. The second vector is the difference

between the next one and the candidate summarized frame data. With these two vectors, our

algorithm gathers information on the motion changes. If these vectors are similar, that means

these frames are also similar. For this reason, initially, the algorithm determines the second

summarized keyframe C2
m as the first candidate keyframe where m is the iterating cluster in

the algorithm and calculates two vectors using that. The first one of these is v1 = Ci
m - Ci−1

m

where i is the iterating (candidate) summarized keyframe. The equation gives the difference

between the candidate summarized keyframe and the previous one. The second one v2 =

Ci+1
m - Ci

m is the difference between next one and candidate summarized keyframe. With

these two vectors, the first similarity value σ initialized by using the equation 1 above as

σ = S(v1, v2) (2)

and the selected pose sp is initialized as 2.

After this initialization, σ will be updated when the new similarity in the processed iteration

is less than the current value. The algorithm tries to find the keyframe that has the least

similarity with the rest iteratively, as follows.

(sp, σ) =


sp = i, σ = S(V c

i−1, V
c
i+1) if S(V c

i−1, V
c
i+1) ≤ σ

resume otherwise

 (3)

In this equation, V c
i−1 defines the vector difference between the current summarized keyframe

in the iteration and the previous one in the cluster c. Similarly, V c
i+1 defines the vector

difference between the current summarized keyframe in the iteration and the next one in

the related cluster c.
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4.1. Representing Animation as LRI Local Frames

As a representation, LRI defines a separate local frame for each vertex, where the discrete

forms encode the relationship and change between adjacent local frames. A local frame

contains all characteristic properties of the vertex it belongs to and encodes properties relative

to the neighboring vertices.

LRI defines two discrete forms. The first discrete form is for the projections of the

neighboring vertices into the tangent plane of the vertex. It also denotes lengths of the

projected edges on the tangent plane and signed angles between every two adjacent projected

edges. The first discrete form provides invariability for positions of vertices, but it lacks

information in the normal direction of neighboring vertices. For this reason, LRI also

provides a second discrete form. The second discrete form can be considered as a function

that defines height distances from vertex to tangent plane. LRI calculates unit vectors as the

differences of these discrete forms of neighbor vertices. In the last step, LRI uses only the

coefficients of this calculation to represent meshes.

The critical feature of the LRI representation is that the vertices of a given mesh are

represented in relative coordinates using these specified local frames. Since this relative

definition contains no global information on the mesh’s location or orientation, it also ensures

invariance under rigid transformations.

For the discrete equations, vertices are denoted by xi, their corresponding positions in R3 are

denoted by x̂i. The edge towards the kth neighbor of i is xi
k. Mesh edges in R3 are denoted

by x̂i
k, and their projection onto the tangent plane by x̃i

k. Each vertex and their neighboring

vertices are parameterized as Ui and triangles are denoted by △i
k for defined set Ui consisting

of vertices xi, xi
k and xi

k+1. The first discrete form uses the standard inner product of triangles

corresponding in the tangent plane TiM . Let µ = µ1x
i
k + µ2x

i
k+1 be a vector in △i

k. Here,

µ1 and µ2 are the vector components of the defined triangle. According to this equation, µ

becomes the diagonal vector of the triangle.
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Figure 4.1 Representing 1-ring neighborhood mesh and tangent plane. This figure shown is taken
from Lipman et al.’s work [1].

The first discrete form equation is given as

Ĩ
(
.
)
:
di−1⋃
k1

△i
k → R. (4)

where

Ĩ(µ) = ⟨µ, µ⟩R3 = ⟨µ1x̃
i
k + µ2x̃

i
k+1, µ1x̃

i
k + µ2x̃

i
k+1⟩R3 =

µ2
1g̃

i
k,k + 2µ1µ2g̃

i
k,k+1 + µ2

2g̃
i
k+1,k+1 (5)

and the second discrete form equation is given as

ĨI
(
.
)
:
di−1⋃
k1

△i
k → R. (6)

where
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ĨI
i
(µ) := µ1⟨x̂i

k, N
i⟩R3 + µ2⟨x̂i

k+1, N
i⟩R3 =

µ1L̃
i
k + µ2L̃

i
k+1 (7)

in which the coefficients L̃ = ⟨x̃i
k, N

i⟩R3 and N i is the normal of the vertex i in the tangent

plane. LRI defines the local frame with a triplet bi1, b
i
2, N

i using these two discrete forms,

where bi1 ∈ TiM is a unit vector parallel to x̃i
1, b

i
2 is a unit vector orthogonal to x̃i

1 and δ is

the difference operator on the discrete frame vectors:

δj(b
i
1) = bj1 − bi1

δj(b
i
2) = bj2 − bi2

δj(N
i) = N j −N i

Finally, the discrete local frame equations

δj(b
i
1) = Γi,1

j,1b
i
1 + Γi,2

j,1b
i
2 + A1

j,1N
i

δj(b
i
2) = Γi,1

j,2b
i
1 + Γi,2

j,2b
i
2 + A1

j,2N
i

δj(N
i) = Γi,1

j,3b
i
1 + Γi,2

j,3b
i
2 + A1

j,3N
i

As previously stated, LRI representation defines local frames that filter out global positions

and rotations from the mesh. We use these local frames in our solution. Since the LRI

method is defined for meshes, in the first step of our solution, we transform skeleton data

for each frame into a 1-ring neighborhood mesh. We assume that each joint position of the

skeleton data is a vertex of a 1-ring neighborhood mesh (see Figure 4.2). Then, we apply

LRI to this assumed mesh to extract LRI local frames for each vertex. LRI local frames are
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a matrix that consists of 9 values and encode characteristic properties of the related vertex

and the relation between neighborhood vertices. We construct a matrix whose dimension

is 9 times the total number of employed joints for each keyframe. Although the extracted

local frames are enough to detect similarity between adjacent vertices, we apply dimension

reduction by PCA to all keyframe matrices. This way, PCA provides to eliminates the sparse

density of the matrices, improving the performance of selecting keyframes computing and

obtaining more meaningful data (Figure 4.3)

Figure 4.2 An example of representing skeletal data as a 1-ring neighborhood mesh for 3 frame.

In the dimension reduction step, instead of representing LRI data in a fixed number of

dimensions, our algorithm use representations of dynamically changing dimensions. This
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implies that the dimensionality adapts to the given animation. This is carried out according

to principles of the PCA method on the condition that the sum of them explains the given

LRI data with at least 95% accuracy. Our tests show that between 4 and 12 dimensions are

sufficient to explain LRI data with at least 95% accuracy, in general. After these steps, the

processed data can be used for extraction.

Figure 4.3 Motion data representation after LRI and PCA steps are applied. The graph shows the
distribution of the frames in the motion in 3D space.

4.2. Clustering and Extracting Keyframes

Our approach uses the K-means classification algorithm for clustering and cosine similarity

to measure similarity between keyframes. Firstly, we apply the K-means clustering algorithm

to the dimensionally reduced data (Figure 4.3 and Figure 4.4).
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Figure 4.4 Clustering result of the motion after K-Means is applied. This graph contains the
distribution of the motion as divided into 5 clusters. Each color (yellow, blue, gold, green,
and purple) in the graph represents a distinct cluster. Accordingly, one keyframe for each
cluster will be extracted.

Our method dynamically clusters up to the desired number of keyframes and calculates the

cosine similarity between sequential candidate keyframe changes. In the initial state of the

algorithm, we assume the second frame is the selected keyframe in the related cluster, and

calculate the initial similarity value according to difference vectors between the second frame

and neighboring frames in that first and third frame. Thus, our method selects a keyframe that

has the minimum similarity value relative to the rest of the cluster values for each cluster. As

a result, the most different keyframes are selected. Figure 4.5 shows examples of the result.

Each row illustrates a set of 5 keyframes extracted from kick, punch, and knee to elbows

motions, respectively.
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Figure 4.5 Sample sets of keyframes extracted using our method.

4.3. Development Environment

In this study, We prefer to use the C++ programming language and MATLAB for

implementing our solution. In our solution, we generate a MEX file that provides us to

use MATLAB functions from the C++ environment. This MEX file contains a method that

takes LRI data as input and applies PCA and K-Means implementation. After converting

animation data to LRI coordinate system and getting the result from the MEX function, we
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calculate similarities for each cluster. After these steps, our solution selects keyframes that

have the least similarity value.

We also use the QT framework for desktop application. QT is a framework written in C++

and provides users to develop cross-platform applications easily. Also, QT supports OpenGL

as a built-in component. Figure 4.6 denotes desktop application of our solution.

Figure 4.6 Screenshot of the developed desktop application

As shown in Figure 4.6, the user can extract keyframes after making the desired adjustments

on this application.

4.4. Test Environment

It is generally agreed today that people find it easier to visit websites rather than using an

external application and this helps website owners reach out to lots of people. For these

reasons, we decided to create a website that can be visited by the participants and they can

21



contribute to our research easily. To accomplish that, we used the advantages of the full-stack

javascript technologies for both server side and UI side.

4.4.1. Development Stage

Javascript is one of the most popular script languages nowadays. With NodeJS environment,

It can be used for both the server-side and UI side and also enables us to develop scalable

applications with cloud computing. In this work, we decided to use javascript technologies

on both the server-side and UI sides.

For the server-side backend, we use the ExpressJS framework in the NodeJS environment.

ExpressJS is a lightweight and versatile Node.js web application framework that includes a

wide range of functionality for developing online apps. On the UI side of our application, the

Jquery library is used to handle interactions between participants and our application. For 3D

processes, the most popular WebGL framework named ThreeJS is used. ThreeJS contains

lots of predefined WebGL methods so it gives us the opportunity to develop 3D applications

that run on GPU based on WebGL and without performance issues easily. Figure 4.7 shows

the application structure.

Figure 4.7 Application structure.
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On the other hand, for the storage solution, we use the SQLite database. SQLite is a

lightweight, standalone database. It can be used easily without any library requirement.

When the participant completed the survey, the participant’s answers were saved as an array

in the database.

4.4.2. Publishing Stage

For publishing our application, we used a cloud provider named Heroku, which supports

numerous development architectures. It has been possible to publish our application easily

on Heroku with little configuration changes on our configuration file. All one needs to do is

to create a project on Heroku and use the git repository provided by it. With this configuration

and provided git repository, when application changes are pushed to the repository, Heroku

starts the build process and then publishes our application. Besides these advantages, Heroku

allows us to bind the custom domain to the application.

4.4.3. Application

The survey procedure took place as follows. When a participant visited our online survey

website, they were first briefly informed of the study, and their gender and age information

was collected at this step (Figure 4.8). Then, the participant started the evaluation of the

results. For each motion queried, the participant initially watched the motion in a skeletal

animation twice as given in Figure 4.9. Next, each set of extracted keyframes from the

original motion was shown to the participant where the order of the two sets was randomized

(Figure 4.10). Afterwards, the participant watched the original motion with the sets of

extracted keyframes shown flanking the original motion on each side as in Figure 4.11 so

that the participant could further assess the differences between the two sets of results. On

this page, the participant responded by choosing either of the sets as the best representation

of the original motion or ’no noticeable difference’ if no significant difference was observed.

This is repeated until the participant registered their responses for all 10 motions.
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Figure 4.8 Test step where a participant is informed of the study and reports their gender and age.

Figure 4.9 Sample preview of an original motion as shown to the participants with the online survey
interface.
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As seen in the Figure 4.9, the participant watches the original motion at a speed that is 20%

slower than the normal speed. Also, the participant can change camera properties such as

zoom in/out, rotation, and translation via mouse or touches.

Figure 4.10 Sample instance where the participant is shown one of the extracted keyframes with the
online survey interface.

The participant displays each selected keyframe for 1 second, and in total the participant

watches each result for 10 seconds and 2 times.
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Figure 4.11 Sample preview of the online survey instance where an original motion is shown to the
participant with extracted keyframes of the two alternatives shown consecutively on
each side of it.

Figure 4.11 presents the screenshot of the application that shows the user the original motion

and the answers simultaneously in an endless loop. In addition, the user can change the

camera settings via mouse or touch and then choose the answer that seems most descriptive.

After the participant decided to make a choice, click the button under the related answer

indicated in green and yellow and then click the next button to answer the next question.
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5. RESULTS

In this study, we used the HDM05 [32] dataset created by M. Müller et al. for testing and

evaluation of our proposed method. HDM05 is a royalty-free motion capture dataset that may

be used for research purposes. It features about 70 motion classes in ten to fifty realizations

performed by a variety of performers. The sampling rate of all performances in the dataset is

120 Hz. For evaluation, we selected 10 relatively short motions 5.1 from the dataset and our

algorithm is used to extract five keyframes from each of these selected motions. Also, table

5.1 shows the count of selected dimensions dynamically on the LRI step for each animation.

Question Motion Frame Count Dimension(After PCA)

1 Cartwheel 401 9

2 Elbow to Knee 319 8

3 Jump Down 272 10

4 Jumping Jack 142 6

5 Kick 295 8

6 Lie Down 621 7

7 Punch 115 6

8 Squat 191 4

9 Throw Basketball 452 8

10 Throw ball 427 12

Table 5.1 The motions used in the experiment and their corresponding frame counts.

Furthermore, as our study results can be subjective, we prepared a website to survey

subjective performance evaluations of the participants comparing the results obtained by

our method using LRI representations to the ones without. The survey included the ten

pre-selected motions (Table 5.1) under consideration with two sets of 5 extracted keyframes

for each motion, one set including the results of our method and the other including the
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results obtained using the standard Cartesian coordinate representation. Figures 5.1 and 5.2

demonstrate sample results for cartwheel and punch motions in both representations.

Figure 5.1 Cartwheel motion results for LRI and Cartesian.

Figure 5.2 Jumping jack motion results for LRI and Cartesian.
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With the survey, only the gender and age information was collected from the participants,

remaining otherwise anonymous. All participants volunteered to take the online survey and

none of them have been compensated in any way.

A total of 30 people, 12 female (40%) and 18 male (60%), participated in this study. The

average age of the participants was 28± 3.14. Evaluation results are provided in Figures 5.3

and 5.4. Figure 5.3 gives participants’ preferences for each motion, while Figure 5.4 gives

the overall distribution of all participants’ preferences.

Figure 5.3 Participants’ answers by each question.

Figure 5.4 Total distribution of the answers.
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The survey outcomes per motion as shown in Figure 5.3 demonstrate that the participants

preferred mostly the sets of keyframes extracted using the Cartesian coordinate system

representation for the first four motions under consideration. However, the keyframes

obtained using the LRI representation were preferred by more participants for the remaining

six motions. Figure 5.5 shows the first 4 results that contain LRI-based solution and Cartesian

solution side by side, Figure 5.6 denotes the last 6 results except the 6th and 9th results. When

the Figure 5.3 was examined, in the 6th and 9th answers, it was observed that the LRI method

was preferred with a slight difference. Figure 5.7 indicates these motion results.

Figure 5.5 Participants’ answers for the cartwheel, elbow-to-knee, jump down and jumping jack

When the first 4 results are investigated, the figure 5.5 shows that while the selected frames by

Cartesian results don’t break the integrity of the motion, LRI results fail to select keyframes

that provide integrity of the motion. Also, we can observe that selected keyframes by the

LRI method contain very similar keyframes that indicated the red color in the figure. On
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the other hand, Cartesian results contain the most notable keyframes that indicated the green

color in the figure.

Figure 5.6 Participants’ answers for the kick, punch, squat and throw ball

When the results where the LRI method was chosen the most out of the last 6 motions

that kick, punch, squat and throw ball motions are examined, the figure 5.6 indicates that

even similar keyframes exist for the squad motion, selected keyframes by LRI contains most

different keyframes in the related motion. For example, bending the knee on the kick motion,

the punch is straight, getting up from crouching and the moment that ball is thrown.
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Figure 5.7 Participants’ answers for the lie down and throw basketball

According to the user experiment, we can see that the LRI method is very slightly preferred

for the lie-down and throw basketball motions. When we examined the figure 5.7, it shows

that on the LRI keyframes the skeleton is laying on the ground step by step, in the alternative

solution, this step was passed quickly. This similar situation is also valid for the last throw

basketball motion.

Over the whole set of 10 motion queries, the average preference count of the LRI results by

the participants was 13.6 ± 4 (45%) while the average for the alternative was 11.6 ± 3.64

(39%). Moreover, when the answers per user were examined, it was seen that each user chose

an LRI for 4.53 ± 1.63 out of 10 questions on average when the average for the Cartesian

was 3.87± 2.08. At the same time, the average number of the no difference was 1.72± 1.6.

The aggregated preference results given in Figure 5.4 show that the participants preferred the

keyframes extracted by our proposed approach more than the standard alternative by 6% in

general while 16% of the votes indicated no preference.
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6. DISCUSSION AND CONCLUSION

6.1. Discussion

We have investigated various types of keyframe extraction solutions in the literature. Most

of the solutions use the Cartesian coordinate system without applying any transformation

process. As mentioned in the literature review, While Roberts et al.’s method [15] converts

given motion frames into a weighted graph and extracts keyframes according to distance

between these nodes in the graph, Sun et al.’s method [16] uses affine clustering approach.

In the another study proposed by Qiang Zhang et al [17], the method proposes a dynamic

clustering solution. In the Xin Wang et al.’s method [18], which is last study examined in the

literature, the solution extends to classify the K-Means algorithm according to similarity and

extracts center frames of the clusters as keyframes.

This thesis work presented a different clustering approach rather than the previously reviewed

studies. In this proposed method, unlike other proposed solutions, the method converts each

frame into a mesh, applies LRI transformation (this transformation extracts characteristic

information of each vertex in the mesh), uses PCA and K-Means algorithms, and then decides

keyframes according to similarity values of each cluster with cosine similarity function.

These steps make our work different from others and allow us to handle the keyframe

extraction problem from a different perspective. Besides proposing a novel keyframe

extraction method, the purpose of this thesis work was to determine the effect on performance

using LRI coordinates according to the user experiment.

As mentioned before, the use of LRI brought with it several changes such as representing

every frame as a mesh and using PCA to reduce high dimensions coming from LRI

transformation. In the first stages of our work, we tried to use fixed-length dimensions after

applying the PCA step. But, the fixed-length dimension did not outperform enough to select

distinct keyframes. So, we used adaptive, dynamic dimension selection in the PCA step of

the method. Our algorithm selects dimensions that the PCA result covers 95% of the motion.

Our test results show that selecting dimensions between 4 and 12 is enough for motions used
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in our user experiment. Selecting dimensions less or more than this range causes extracting

similar keyframes in the results and does not affect the extracting keyframe performance.

Considering the data obtained as a result of this work, the results of this study indicate

that our method was preferred by the participants by slightly more than 6% than the

alternative method. A possible explanation for this low-performance increase might be by

our mesh representation of each frame or the used similarity metrics. The 1-ring neighbor

network representation used in this thesis may be insufficient to describe each frame in

motion and with this mesh representation, the LRI transform may not be able to extract

enough characteristic features of the vertices. For these reasons, a complete similarity-based

separation could not be able to complete in the cosine similarity method. To improve or

increase the effect on performance, mesh representation or similarity calculation steps can

be changed or replaced with a new representation or a new similarity metric. Also, using

LRI with different solutions such as motion curves, matrix factorization, or machine learning

methods can help to improve extracting performance of the related solutions.
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6.2. Conclusion

In this thesis, we have presented a keyframe extraction method based on LRI coordinates

representation and evaluated the performance of the method against the ones based on

Cartesian coordinates. Unlike other solutions, Our method represents skeletal animation

data as a mesh for each frame, applies LRI transformation and PCA, uses the K-Means

clustering algorithm, and then extracts keyframes with cosine similarity metric. Besides,

unlike other solutions that use PCA, our method decides the dimension of the represented

motion data dynamically. These differences and the user experiment show that our study

results underline the potential of LRI for keyframe extraction since using our solution based

on it outperforms the standard alternative with slightly better performance (6%).

This thesis was undertaken to propose a novel keyframe extraction method and show that

representing animation frames using different representations, such as LRI, can provide

better extraction performance for skeletal animations. For future research, it is possible

to combine our LRI-based approach with deep learning methods such as using transformer

networks or one-shot learning. These deep learning methods can provide better performance

for the similarity detection step of our solution. Moreover, our method can use different

similarity measures rather than the cosine similarity, or it can be combined with other

keyframe extraction methods such as curve simplification or matrix factorization approaches

towards achieving better performance.

Finally, most of the keyframe extraction methods in the literature are also used for keyframe

reduction. To provide this, the methods eliminate frames according to similarity metrics

without applying any clustering or another algorithm. In this context, our method can be

used as a keyframe reduction solution instead of extracting the desired number of keyframes

with a few changes and additions.
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[21] Tomasz Sapiński, Dorota Kamińska, Adam Pelikant, and Gholamreza

Anbarjafari. Emotion recognition from skeletal movements. Entropy, 21(7),

2019. ISSN 1099-4300. doi:10.3390/e21070646.

[22] Mubbasir Kapadia, I-kao Chiang, Tiju Thomas, Norman I. Badler, and Joseph T.

Kider. Efficient motion retrieval in large motion databases. In Proceedings of the

ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, I3D ’13,

page 19–28. Association for Computing Machinery, New York, NY, USA, 2013.

ISBN 9781450319560. doi:10.1145/2448196.2448199.

38



[23] Chao Jin, Thomas Fevens, and Sudhir Mudur. Optimized keyframe extraction

for 3d character animations. Computer Animation and Virtual Worlds,

23(6):559–568, 2012. doi:https://doi.org/10.1002/cav.1471.

[24] Athanasios Voulodimos, Ioannis Rallis, and Nikolaos Doulamis. Physics-based

keyframe selection for human motion summarization. Multimedia Tools

and Applications, 79(5):3243–3259, 2020. ISSN 1573-7721. doi:10.1007/

s11042-018-6935-z.

[25] Guiyu Xia, Huaijiang Sun, Xiaoqing Niu, Guoqing Zhang, and Lei Feng.

Keyframe extraction for human motion capture data based on joint kernel sparse

representation. IEEE Transactions on Industrial Electronics, 64(2):1589–1599,

2017. doi:10.1109/TIE.2016.2610946.

[26] Worawat Choensawat, Minako Nakamura, and Kozaburo Hachimura. Genlaban:

A tool for generating labanotation from motion capture data. Multimedia Tools

and Applications, 74(23):10823–10846, 2015. ISSN 1573-7721. doi:10.1007/

s11042-014-2209-6.

[27] Ke-Sen Huang, Chun-Fa Chang, Yu-Yao Hsu, and Shi-Nine Yang. Key probe: A

technique for animation keyframe extraction. The Visual Computer, 21:532–541,

2005. doi:10.1007/s00371-005-0316-0.

[28] Yang Li, Dongsheng Zhou, and Qiang Zhang. Key frames extraction of human

motion capture data based on cosine similarity. 2017.

[29] Ming-Hwa Kim, Lap-Pui Chau, and Wan-Chi Siu. Keyframe selection for motion

capture using motion activity analysis. In 2012 IEEE International Symposium on

Circuits and Systems (ISCAS), pages 612–615. 2012. doi:10.1109/ISCAS.2012.

6272106.

[30] Guiyu Xia, Beijia Chen, Huaijiang Sun, and Qingshan Liu. Nonconvex

low-rank kernel sparse subspace learning for keyframe extraction and motion

39



segmentation. IEEE Transactions on Neural Networks and Learning Systems,

32(4):1612–1626, 2021. doi:10.1109/TNNLS.2020.2985817.

[31] Shaofan Wang, Yongjia Xin, Dehui Kong, and Baocai Yin. Unsupervised learning

of human pose distance metric via sparsity locality preserving projections. IEEE

Transactions on Multimedia, 21(2):314–327, 2019. doi:10.1109/TMM.2018.

2859029.
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Appendix A

Result Images

This section contains screenshots of results used in user experiment. Each image contains

either LRI based and Cartesian based results.

41



Figure A.1 Cartwheel motion result in used user experiment.

42



Figure A.2 Elbow-to-knee motion result in used user experiment.
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Figure A.3 Jump down motion result in used user experiment.
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Figure A.4 Jumping jack motion result in used user experiment.
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Figure A.5 Kick motion result in used user experiment.
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Figure A.6 Lie down motion result in used user experiment.
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Figure A.7 Punch motion result in used user experiment.
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Figure A.8 Squat motion result in used user experiment.
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Figure A.9 Throw basketball motion result in used user experiment.
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Figure A.10 Throw ball motion result in used user experiment.

51


	ABSTRACT
	ÖZET
	ACKNOWLEDGEMENTS
	CONTENTS
	TABLES
	FIGURES
	ABBREVIATIONS
	1. INTRODUCTION
	1.1. Scope Of The Thesis
	1.2. Contributions
	1.3. Organization

	2. BACKGROUND OVERVIEW
	2.1. Motion Capture
	2.1.0.1. ASF / AMC Files
	2.1.0.2. BVH Files


	2.2. OpenGL and WebGL

	3. RELATED WORK
	3.1. Motion Curve Based Methods
	3.2. Clustering Based Methods
	3.3. Methods Based on Machine Learning
	3.4. Other Methods

	4. PROPOSED METHOD
	4.1. Representing Animation as LRI Local Frames
	4.2. Clustering and Extracting Keyframes
	4.3. Development Environment
	4.4. Test Environment
	4.4.1. Development Stage
	4.4.2. Publishing Stage
	4.4.3. Application


	5. RESULTS
	6. DISCUSSION AND CONCLUSION
	6.1. Discussion
	6.2. Conclusion

	A Result Images

