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ABSTRACT

CONTACT STRUCTURES AND LEGENDRIAN LINKS

SERCAN AY

Master of Science, MATHEMATICS
Supervisor: Prof. Dr. Sinem Onaran

September 2022, 105 pages

A contact structure on an oriented three-manifold is a maximally non-integrable 2-plane field

distributed all over the three-manifold. Legendrian knots and Legendrian links in contact

three-manifolds give important information about the contact three-manifold. A Legendrian

knot/link is a knot/link which is everywhere tangent to the contact planes. In this thesis, the

properties of Legendrian knots and links as well as the classification results are discussed.

Legendrian unknots classification and Legendrian Hopf links classification in the contact

3-sphere S3 are studied in detail.

Keywords: contact structures, legendrian knots, legendrian links, Legendrian unknot,

Legendrian Hopf link
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ÖZET

KONTAKT YAPILAR VE LEGENDRE LİNKLER

SERCAN AY

Yüksek Lisans, Matematik
Danışman: Prof. Dr. Sinem Onaran

Eylül 2021, 105 sayfa

Yönlü bir üç manifold üzerine dağılmış 2-düzlem alanı eğer integrallenemiyorsa kontakt

yapı olarak adlandırılır. Kontakt üç manifoldlar içerisinde bulunan Legendre düğümler

ve Legendre linkler kontakt üç manifoldlar ile ilgili önemli bilgiler verir. Legendre

düğümü/linki kontak düzlemlere her yerde teğet olan bir düğümdür/linktir. Bu tezde

Legendre düğümler ve linklerin özellikleri ile sınıflandırma sonuçları çalışılmıştır. Kontakt

3-küre S3 içerisindeki Legendre çözük düğümün sınıflandırma sonucu ile Legendre Hopf

linklerin sınıflandırma sonucu detaylı çalışılmıştır.

Keywords: kontakt yapılar, Legendre düğümler, Legendre linkler, Legendre çözük düğüm,

Legendre Hopf link
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1. INTRODUCTION

Contact topology is a field of smooth manifolds which is interested in geometric structures.

These geometric structures are called contact structures. The contact structure on a smooth

3-manifold can be thought of as maximally non-integrable 2-plane fields. A 3-manifold with

a contact structure on it is called a contact 3-manifold. Submanifolds of contact 3-manifolds

help us to understand contact manifolds. In particular, knots in contact structures can also be

used to understand contact structures. There are two types of knots in contact 3-manifolds:

knots that are everywhere tangent to the contact planes and knots that are everywhere

transverse to the contact planes.

Martinet proved that, in [1], each 3-manifold has a contact structure on it. There are two

types of contact structures on the 3-manifolds: tight contact structure and overtwisted contact

structure. There exists an overtwisted contact structure for all 3-manifolds. But there may

not be a tight contact structure on every 3-manifold. Etnyre and Honda construct a manifold

where there is no tight contact structure on it, in [2].

A knot in a contact 3-manifold is called a Legendrian knot, which is everywhere tangent to

the contact planes. The disjoint union of Legendrian knots is called a Legendrian link. In this

thesis, Legendrian knots, Legendrian links, and their classification will be studied in detail.

Specifically, Legendrian unknots and Legendrian Hopf links on the contact 3-sphere S3 are

considered.

The classification of Legendrian unknots in tight contact 3-manifolds in [3] is the first

classification result of Legendrian knots. In this paper of Eliashberg and Fraser, Legendrian

unknots in tight contact 3-manifolds are completely classified. Also, Eliashberg and Fraser

classify loose Legendrian unknots in overtwisted contact 3-manifolds whose complement is

overtwisted up to coarse equivalence.

After Eliashberg and Fraser, the problem of classification of Legendrian knots has attracted

the attention of many people. Etnyre and Honda classified Legendrian torus knots and

figure-8 knots in tight contact S3 in [4] and also in [5] they classified cables of knots.
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The classification problem of Legendrian knots remains popular today. Baker and Etnyre

study Legendrian rational unknots in [6]. Later, Geiges and Onaran classified Legendrian

rational unknots in tight contact lens spaces and gave a clear list of these unknots in [7]. In

addition, Geiges and Onaran classified Legendrian rational unknots with tight complement

in overtwisted contact lens spaces, in [7].

The classification problems in other 3-manifolds are also studied by Ding, Chen, and Li.

They study Legendrian torus knot classification in tight contact S1 × S2 in [8].

Little was known about the classification of Legendrian links. The [9] and [10] articles

of Ding and Geiges are the articles that study the classification of Legendrian links in the

literature. The first complete Legendrian link type classification is given by Geiges and

Onaran in [11]. In this paper, Geiges and Onaran classify Legendrian Hopf links in S3 with

any contact structure, up to coarse equivalence.

Loose Legendrian knot classification studied in [12]. In [12], Dymara shows that two loose

knots (these are knots with overtwisted complements) in an overtwisted S3 having the same

invariants are contactomorphic. In addition to that, if knots have a common overtwisted disc

in their complement, then Dymara showed that they are Legendrian isotopic in this case.

Moreover, in her paper [12], Dymara presents the first example of a non-loose knot (that is a

knot with a tight complement) in an overtwisted contact 3-manifold. Before that, no example

was known.

Chatterjee, in [13], studied links in overtwisted contact structures. In this paper, Chatterjee’s

results for the classification of links in overtwisted contact structures is this: two

null-homologous Legendrian links with the same knot type, Thurston-Bennequin invariant,

and rotation number are contactomorphic.

Computer programs are also used to classify Legendrian knots and links. Chongchitmate in

[14], used a program written in Java.
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1.1 Scope Of The Thesis

This thesis studies contact 3-manifolds. In particular, this thesis studies Legendrian knots

and Legendrian links. Invariants of Legendrian knots and Legendrian links as well as the

classification problems of Legendrian knots and Legendrian links are discussed. Moreover,

the proof of Legendrian unknots classification and the proof of Legendrian Hopf links

classification in contact 3-sphere S3 are discussed in detail.

1.2 Organization

The thesis is organized as follows:

• Chapter 1 presents our motivation, contributions, and the scope of the thesis.

• In Chapter 2, the main definitions and examples that will be used in this thesis

are given. First, tangent spaces and manifolds are introduced, and their examples

are mentioned. Then, differential forms on 3-manifolds are handled, and their

examples are given. Before handling contact 3-manifolds, knots and links are briefly

introduced, and their definitions and examples are given. Finally, contact 3-manifolds

are introduced and examples are given. In addition, Legendrian knots are defined,

properties are studied and examples are given.

• Chapter 3 provides a summary of classification results existing in the literature.

In addition, this chapter gives detailed proof for some classification results. In

particular, a detailed Legendrian unknot classification, as well as Legendrian Hopf

link classification, is given in this chapter.

• Chapter 4 states the summary of the thesis and the classification problems of

Legendrian knots and links are listed.
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2. BACKGROUND OVERVIEW

In this section, we will give some important definitions and theorems, which we will use in

the next sections. You can look into [15] for further readings.

2.1 Tangent Vectors and Tangent Spaces of R3

Definition 2.1.1. Let (x, y, z) ∈ R3 be a point in space. The tangent space of R3 at (x, y, z)

is the set of all vectors starting from (x, y, z) and denoted by T(x,y,z)R3. Its elements are

called the tangent vectors at (x, y, z). In R3, the tangent space at any point looks like R3.

There are two important roles played by tangent vectors to characterize them and define them

on a general manifold. These are the velocity vector of a curve and directional derivative.

Definition 2.1.2. A smooth curve on R3 is stated by a C∞ map c : R → R3. The velocity

vector at a point c(t) (t ∈ R) on the c is

dc

dt
(t) =

(
dc1
dt

(t),
dc2
dt

(t),
dc3
dt

(t)
)
,

where c = (c1, c2, c3). Indeed, the velocity vector at c(t) is the tangent vector of it. We can

observe that if we move the point over the curve, then we have a variety of tangent vectors

over the c(t).

Definition 2.1.3. A function f(x, y, z) is given, and partial derivatives
∂f

∂x
,
∂f

∂y
,
∂f

∂z
are

considered. For an arbitrary tangent vector

v = u1
∂

∂x
+ u2

∂

∂y
+ u3

∂

∂z

at the t = (t1, t2, t3) ∈ R3, the partial derivative vt(f) of the function f at the direction of v

is defined as

vt(f) = u1
∂f

∂x
(t) + u2

∂f

∂y
(t) + u3

∂f

∂z
(t).
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Definition 2.1.4. A vector field V on R3 is an assignment of a tangent vector V(x,y,z,) ∈

T(x,y,z)R3 to each point (x, y, z) ∈ R3.

2.2 Local Coordinates and Topological Manifolds

In this part, we will introduce topological 3-manifolds by listing conditions one by one, and

we will give a few examples.

The first condition is thatM is a Hausdorff space: letM be a topological space and p, q ∈M

such that p ̸= q. The subsets U and V are open neighborhoods of p and q respectively. M is

called a Hausdorff space if the open neighborhoods U and V do not intersect. For example,

R3 and all its subspaces are Hausdorff spaces.

The second condition is that M locally looks like R3. Let (n1, n2, n3) ∈ M and let U be

its open neighborhood. The subset U is homeomorphic to an open subset V ∈ R3. Let

ρ : U → V be such a homeomorphism. Then, the image of (n1, n2, n3) is shown below:

ρ(n1, n2, n3) = (f1(n1, n2, n3), f2(n1, n2, n3), f3(n1, n2, n3)).

This 3-tuple is called the local coordinates of (n1, n2, n3) and the neighborhood U is called

a coordinate neighborhood. Additionally, f1, f2, f3 is called coordinate functions on U. The

pair (U, ρ) is called a local chart or local coordinate system, see Figure 2.1.

Figure 2.1 Local chart

The last condition is the second countability axiom. That is, M has a countable basis.
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Definition 2.2.1. Let M be a second countable, Hausdorff space. If M locally looks like R3,

then M is called a topological 3-manifold.

Example 2.2.1. R3, the unit 3-sphere S3 and the 3-torus T 3 are some examples of important

3-manifolds.

A manifold can be connected or disconnected and compact or non-compact since it is a

topological space. Usually, the term ”manifold” is used to mean manifold with boundaries.

A non-compact manifold that has no boundary is called an open manifold.

Example 2.2.2. A manifold is a topological space. If a manifold is compact as a topological

space, then it is called a compact manifold. For example, the 3-dimensional sphere S3 and

the 3-torus T 3 are compact.

Example 2.2.3. Let M be a topological manifold. If M is a connected space, then M is

called a connected manifold. For example, the 3-sphere S3 is a connected 3-manifold.

2.3 Differentiable Manifolds

Definition 2.3.1. Let M be a topological 3-manifold. An atlas for M is an indexed family

S = {(Uγ, ργ)|γ ∈ I} of local charts on M which covers M, that is ∪γ∈IUγ =M .

Definition 2.3.2. An atlas S is called a maximal atlas such that there does not exist any atlas

A such as S ⊂ A. The maximal atlas of a manifold is unique.

Example 2.3.1. Let S2 ⊆ R3 be the unit sphere, consisting of all (x, y, z) ∈ R3 satisfying

the equation x2 + y2 + z2 = 1. We will define an atlas with (C+, ρ+) and (C−, ρ−). Let

n = (0, 0, 1) be the north pole and s = (0, 0,−1) be the south pole, and put

C+ = S2 \ {s}, C− = S2 \ {n}.

Consider R2 as a coordinate subspace of R3 with z=0. Let a stereographic projection from

the south pole be

ρ+ : C+ → R2, p 7→ ρ+(p).
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Thus, ρ+(p) is the unique point where R2 and the affine line through p and s intersect.

Similarly, a stereographic projection from the north pole is,

ρ− : U− → R2, p 7→ ρ−(p).

Thus, ρ−(p) is the unique point where R2 and the affine line through p and s intersect.

Definition 2.3.3. Let M be a 3-manifold and (Uγ, ργ) and (Vβ, ρβ) be two local charts of M

such that Uγ ∩ Vβ ̸= ∅. The transition map gβγ is defined by,

gβγ = ρβ ◦ ρ−1
γ : ργ(Uγ ∩ Vβ) → ρβ(Uγ ∩ Vβ).

This gβγ is a homeomorphism from an open subset of R3 to R3. So, it is described as

gβγ = (g1βγ, g
2
βγ, g

3
βγ) by continuous functions g1βγ, g

2
βγ, g

3
βγ . The local coordinates of any

point s on Uγ ∩ Vβ , (x1(s), x2(s), x3(s)) with respect to (Uγ, ργ) and (y1(s), y2(s), y3(s))

with respect to (Vβ, ρβ), then there exists a relation

y1(s) = g1βγ(x1(s), x2(s), x3(s))

y2(s) = g2βγ(x1(s), x2(s), x3(s))

y3(s) = g3βγ(x1(s), x2(s), x3(s))

between them. The relationship between local coordinates (Uγ, ργ) and (Vβ, ρβ) is defined

by the homeomorphism gβγ . The homeomorphism gβγ is called the coordinate change.

Definition 2.3.4. Take M as a topological manifold. An atlas S = {(Uγ, ργ)|γ ∈ I} of M is

called a C∞ atlas if all coordinate changes gβγ = ρβ ◦ ρ−1
γ are C∞ maps. The atlas S defines

a C∞ structure on M. If M has a C∞ structure on it, then M is called a C∞ differentiable

manifold or smooth manifold.

Example 2.3.2. The unit 3-sphere S3 and R3 are well-known smooth manifolds. Also, open

subsets of a smooth manifold are still smooth manifolds. Let M, N be smooth manifolds, then

their product M ×N is also a smooth manifold.
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2.4 Examples of 3-Manifolds

Example 2.4.1. R3 is a 3-dimensional smooth manifold. As an atlas, we can take only one

local chart, (R3, id).

Example 2.4.2. A 3-sphere with center (m0,m1,m2,m3) and radius r is the set of all points

(x0, x1, x2, x3) in R4 is a 3-manifold, and it is expressed as

3∑
i=0

(xi −mi)
2 = (x0 −m0)

2 + (x1 −m1)
2 + (x2 −m2)

2 + (x3 −m3)
2 = r2.

The unit 3-sphere is the 3-sphere which is centered at the origin with radius r = 1 is a

3-manifold, and generally denoted as S3.

S3 = {(x0, x1, x2, x3) ∈ R4 | x20 + x21 + x22 + x23 = 1}

Example 2.4.3. A topological space that is homeomorphic to the cartesian product of circles

T3 = S1 × S1 × S1

is called the 3-torus or 3-dimensional torus.

The usual 2-torus is the cartesian product of two circles. It is a 2-manifold.

Example 2.4.4. Let two solid tori be given, and M be a manifold obtained by gluing

these two solid tori along their boundaries with an orientation reversing homeomorphism

g : T 2 → T 2. The meridian-longitude bases of the two solid tori are (µ1, λ1) and (µ2, λ2),

respectively. The homeomorphism g agree with a matrix

B =

−q s

p r


with qr + ps = 1 where p and q are relatively prime. In particular, the curve −qµ2 + pλ2

is isotopic to the image of the meridian µ1 of the first torus, i.e. winds −q times in the θ2
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direction and p times in the ψ2 direction of the second torus. Here, θ2 denotes the direction

of the second meridian µ2 and ψ2 denotes the direction of the second longitude λ2.

Hence, p and q determine the manifold M completely. Such a manifold is called a lens space

and denoted by L(p, q).

2.5 Submanifolds

Definition 2.5.1. Let M be a C∞ 3-manifold and N be a subset of M. Then N is called a

submanifold of M if it fulfills the following condition. For any point s ∈ N there exists an

open neighborhood U of s and coordinate functions x1, x2, x3 that are defined on U such that

N ∩ U = {q ∈ U | xk+1(q) = . . . = x3(q) = 0 , k ∈ Z+}.

Example 2.5.1. The 2-torus T 2 = f−1(0) ⊆ R3, where

f(x, y, z) = (
√
x2 + y2 −R)2 + z2 − r2

is a submanifold of R3.

Example 2.5.2. The 2-sphere in Figure 2.2,

S2 = {(x, y, z)|(x− x0)
2 + (y − y0)

2 + (z − z0)
2 = r2}

in R3 with center (x0, y0, z0) and radius r > 0 is a submanifold of R3. Also, the 1-sphere S1

is a submanifold of R3.

2.6 C∞ Functions and C∞ Mappings On Manifolds

Definition 2.6.1. Let M be a C∞ manifold and f : M → R3 be a function from M to R3.

Then, f is called a C∞ function if for all local charts (U, ρ) in an atlas that defines the C∞

structure on M , the function

f ◦ ρ−1 : ρ(U) → R3
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Figure 2.2 The 2-sphere S2 in R3

is C∞. The set of all C∞ functions on M is denoted by C∞(M).

Example 2.6.1. The ’height function’ h : S2 → R, (x, y, z) 7→ z is a C∞ function.

Definition 2.6.2. Let M,N be C∞ manifolds and f : M → N be a continuous function.

Then, f is called a C∞ function at p ∈ M such that the composition ψ ◦ f ◦ ρ−1 is a C∞

function where (U, ρ) is a local chart around p and (V, ψ) is a local chart around f(p). If the

function f is a C∞ function at all p ∈M , then f is called a C∞ map.

Definition 2.6.3. Let M and N be C∞ manifolds. A one to one and onto C∞ function

f : M → N is called a diffeomorphism if the f−1 is also a C∞ function. The manifolds M

and N are called diffeomorphic if there exists a diffeomorphism between them.

Example 2.6.2. Let M be a manifold and (U, ρ) be a local chart on M . Then by definition,

there is a diffeomorphism from (U, ρ) onto an open subset of R3.

2.7 Tangent Vectors On Manifolds

Definition 2.7.1. Take a C∞ manifold M and a point p on it. If a map v : C∞(M) → R

satisfies the following conditions for arbitrary functions h, g and s ∈ R, v is called a tangent

vector to M at p.
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• v(h+ g) = v(h) + v(g), v(sh) = sv(h),

• v(hg) = v(h)g(p) + h(p)v(g),

The tangent space at p is defined as the set of all tangent vectors at p and denoted by TpM .

Let (U, ρ) be a local chart around the point p on M and x1, x2, x3 be its coordinate functions

and f ∈ C∞(M). Easily seen that the correspondence

f 7→ ∂(f ◦ ρ−1)

∂xi
(ρ(p)) (i = 1, 2, 3)

defines a tangent vector at p. It is denoted by
(
∂

∂xi

)
p

∈ TpM . If the point p is known

before, we write
∂

∂xi
for short.

Theorem 2.7.2. Let M be a 3-dimensional C∞ manifold. Therefore, the tangent space TpM

at a point p on M is a 3-dimensional vector space. Also, if (U ;x1, x2, x3) is a local chart

around p, then the tangent vectors

(
∂

∂x1

)
p

,

(
∂

∂x2

)
p

,

(
∂

∂x3

)
p

form a basis of TpM . Here, x1, x2, x3 denote the coordinate functions of the local chart.

2.8 The Differential of Maps

Definition 2.8.1. Let M,N be C∞ manifolds and f : M → N be a C∞ map. For any point

p on M , a linear map

dfp = f∗ = TpM → Tf(p)N

is called the differential of f at p and defined as follows. Let v ∈ TpM and h ∈ C∞(N);

then

f∗(v)(h) = v(h ◦ f) ∈ R

is a linear map.
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Example 2.8.1. If f : X1 → X2 is a C∞ map that is the restriction of a linear map r : R3 →

R3, then for all p ∈ X1, the differential dfp is equal to the restriction of drp which in turn is

equal to itself. Thus, dfp(a) = ra for every a ∈ TpX1 or equivalently dfp = r|TpX1 .

2.9 Immersion and Embedding

Definition 2.9.1. Let M,N be C∞ manifolds. Assume that f : M → N is a C∞ map and

f∗ : TpM → Tf(p)N is the differential of f .

• If for any p ∈M the differential f∗ is an injection, then f is called an immersion.

• If f is an immersion and also f : M → f(M) is a homeomorphism, then f is called

an embedding.

• If f is a surjection and at every point p the differential dfp is also a surjection, then f

is called a submersion.

An embedding is an immersion where we no longer allow self-intersections, see Figure 2.3.

Figure 2.3 (a) Immersion, (b) Embedding

Example 2.9.1. The curve α : R → R2 given by

α(t) = (t3 − 4t, t2 − 4)
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is an immersion, since α′(t) is never zero (as 3t2 − 4 = 2t = 0 has no solution in t).

However, it is not an injective map, as α(2) = α(−2), so this is a curve with self-intersection

at α(2) = α(−2) = (0, 0).

Example 2.9.2. The curve α : R → R2 given by

α(t) = (t3, t2)

is not an immersion, since dtα is the zero map for t = 0.

2.10 Vector Fields

Let M be a C∞ 3-manifold. A vector field X on M assigns to a point p ∈ M a tangent

vector Xp ∈ TpM . If we let (U ;x1, x2, x3) be a local chart of M , for every point p ∈ U , the

vector field X defined as follows:

Xp =
3∑

i=1

fi(p)
∂

∂xi
= f1(p)

∂

∂x1
+ f2(p)

∂

∂x2
+ f3(p)

∂

∂x3

where f1, f2, f3 are functions defined on U . If each fi (i = 1, 2, 3) is a C∞ function, Xp is

called class of C∞ with respect to p.

The set of all vector fields on M is denoted by X. Let X, Y ∈ X. Then we can define their

sum X + Y ∈ X by putting (X + Y )p = Xp + Yp. Furthermore, for a real number a ∈ R,

(aX)p = a(Xp) defines multiplication aX ∈ X of X by a. Thus, X becomes a vector space

over R with addition and multiplication on it.

2.11 Boundary and Orientation of Manifolds

Boundary and orientation are two fundamental facts concerning manifolds. Now, we will

define a manifold with a boundary and the definition of an orientable/non-orientable surface.

Then, we give a few examples.
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Definition 2.11.1. Let X be a Hausdorff space which is second countable. X is called a

manifold with a boundary such that for all x ∈ X there is such a homeomorphism φ : U →

Rn
+ where U is an open neighborhood of x. We denote ∂X as the boundary of X .

Example 2.11.1. An example of a 2-dimensional manifold with a boundary is given in

Figure 2.4. The point x is in the interior (it has a neighborhood homeomorphic to R2),

Figure 2.4 Manifold with boundary

and the point y is on the boundary (it has a neighborhood homeomorphic to R≥0 × R).

Example 2.11.2. The 3-dimensional disk D3 = {x ∈ R3|x21 + x22 + x23 ≤ 1} is a manifold

with a boundary, and ∂D3 = S2.

If a compact manifold does not have a boundary, then it is called a closed manifold.

Definition 2.11.2. Let S be a surface in a 3-manifold. At each point of S, there are two

choices for a unit normal n on S. Once a consistent choice of n is made at each point of S,

we say that an orientation is assigned to S and S is orientable. A surface for which this can

not be done is called a non-orientable surface.

Example 2.11.3. The 2-torus given in Figure 2.5 (a) is a closed surface which is orientable.

The surface in Figure 2.5 (b) is the Möbius band, it is a surface that has a boundary, so it is

not a closed surface. Moreover, it is non-orientable.

2.12 Differential Forms on R3

First, we will start with the definition of algebra. Let Λ be a vector space over the R with

an associative product and for arbitrary r ∈ R and α, β ∈ Λ. If the following condition is
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Figure 2.5 (a) The torus and (b) the Möbius band

satisfied, then Λ is called an algebra over R.

r(αβ) = (rα)β = α(rβ)

An algebra over R with unity 1 generated by dx1, dx2, . . . , dxn, that satisfy the equation

dxi ∧ dxj = −dxj ∧ dxi

for arbitrary i, j is denoted by Λ∗
n. The operation ∧ represents the product of this algebra.

We can observe that dxi ∧ dxi = 0 for any i, from the above equation. The degree of each

monomial in Λ∗
n is defined by taking the degree of dxi to be 1. For example, the degree of

dx1 ∧ dx2 ∧ dx3 is 3.

The set of all linear decompositions of degree k is denoted by Λk
n. The direct sum

decomposition

Λ∗
n =

n⊕
k=0

Λk
n = Λ0

n ⊕ Λ1
n ⊕ · · · ⊕ Λn

n

holds. Then, we can take the basis of Λk
n as

dxi1 ∧ dxi2 ∧ · · · ∧ dxik , 1 ≤ i1 < . . . < ik ≤ n.

Definition 2.12.1. A k-form (or k-differential form) on R3 is the linear combination of dxi1∧

· · · ∧ dxik with coefficients as C∞ functions on R3. A k-form is shown as below:
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ω =
∑

i1<...<ik

fi1...ik(x1, x2, x3)dxi1 ∧ dxi2 ∧ · · · ∧ dxik .

Sometimes we denote the above description simply as

∑
I

fI(x1, x2, x3)dxi1 ∧ · · · ∧ dxik .

The set of all k-forms on R3 is denoted by Ak(R3).

Let ρ and ν be k and l forms respectively. They are expressed as

ρ =
∑
I

fIdxi1 ∧ · · · ∧ dxik , ν =
∑
J

gJdxj1 ∧ · · · ∧ dxjl .

The product ρ ∧ ν ∈ Ak+l(R3) is defined by,

ρ ∧ ν =
∑
I,J

fIgJ dxi1 ∧ · · · ∧ dxik ∧ dxj1 ∧ · · · ∧ dxjl .

This is called the exterior product of ρ and ν.

The linear map d : Ak(Rn) → Ak+1(Rn) is called the exterior differentiation, and it is

defined as follows. For ρ = f(x1, . . . , xn)dxi1 ∧ · · · ∧ dxik ,

dρ =
n∑

i=1

∂f

∂xi
(x)dxi ∧ dxi1 ∧ · · · ∧ dxik .

Example 2.12.1. Let ρ be a 2-form on R3 defined as ρ = x3dx ∧ dy + 3xyzdy ∧ dz. The

exterior differentiation dρ is

dρ =
∂

∂x
(x3) dx ∧ dx ∧ dy + ∂

∂y
(x3) dy ∧ dx ∧ dy + ∂

∂z
(x3) dz ∧ dx ∧ dy

+
∂

∂x
(3xyz) dx ∧ dy ∧ dz + ∂

∂y
(3xyz) dy ∧ dy ∧ dz + ∂

∂z
(3xyz) dz ∧ dy ∧ dz
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= 3yz dx ∧ dy ∧ dz,

dρ is a 3-form on R3. Also, d(dρ) = 0, since there is no 4-form on R3.

Lemma 2.12.2. If we operate the exterior differentiation twice, it is identically 0, that is,

d ◦ d = 0.

Let ρ be a differential form. If dρ = 0, then ρ is called a closed form. If for a differential

form ν, there exists a differential form ρ such that ν = dρ, then ν is called an exact form.

Proposition 2.12.3. For ρ ∈ Ak(Rn) and ν ∈ Al(Rn), we have

(i) ν ∧ ρ = (−1)klρ ∧ ν,

(ii) d(ρ ∧ ν) = dρ ∧ ν + (−1)kρ ∧ dν.

2.13 Differential Forms on General 3-Manifolds

Let M be a 3-dimensional C∞ manifold and {(Uγ, ργ)} be an atlas of it. A k-differential

form on M is a family of k-forms ργ on each coordinate neighborhood Uγ such that for an

arbitrary γ, β with Uγ ∩ Uβ ̸= ∅, ργ and ρβ are transformed to each other by the coordinate

change. We denoted all k-forms on M by Ak(M), and

A∗(M) =
n⊕

k=0

Ak(M).

Let M be a C∞ manifold and p be a point on M . The cotangent space at p is the dual space

T ∗
pM of the tangent space TpM . Its exterior algebra is denoted as Λ∗T ∗

pM .

Definition 2.13.1. Let M be a C∞ 3-manifold. Then ρ is called a k-form on M , if it assigns

ρp ∈ Λ∗T ∗
pM to each point p ∈M and ρp is of class C∞ with respect to p.
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2.14 Various Operations on Differential Forms

Let M be a 3-dimensional C∞ manifold and Ak(M) be the set of all k-forms on M. The

direct sum of these k-forms is defined as

A∗(M) =
n⊕

k=0

Ak(M)

according to k. A∗(M) denotes the set of all differential forms on M .

2.14.1 Exterior Product

Let ρ ∈ Ak(M) be a k-form and ν ∈ Al(M) be an l-form on M . We have ρp ∈ ΛkT ∗
pM ,

νp ∈ ΛlT ∗
pM , since at each point p ∈M . Then, their product ρp ∧ νp ∈ Λk+lT ∗

pM is defined

as

(ρ ∧ ν)p = ρp ∧ νp.

This is called the exterior product of ρ and ν.

We can say that the exterior product is associative from the definition. That is, if ω ∈

Am(M), we have (ρ∧ν)∧ω = ρ∧(ν∧ω). If ρ = fdxi1∧· · ·∧dxik and ν = gdxj1∧· · ·∧dxjl ,

then

ρ ∧ ν = fgdxi1 ∧ · · · ∧ dxik ∧ dxj1 ∧ · · · ∧ dxjl .

The exterior product induces a bilinear map

Ak(M)×Al(M) ∋ (ρ, ν) 7→ ρ ∧ ν ∈ Ak+l(M),

and it has ν ∧ ρ = (−1)klρ ∧ ν.
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2.14.2 Exterior Differentiation

Let ρ ∈ Ak(M) be a k-form on M and locally it is expressed as ρ = fdxi1 ∧ · · · ∧ dxik . Its

exterior differentiation is defined by

dρ =
∑
j

∂f

∂xj
dxj ∧ dxi1 ∧ · · · ∧ dxik

and dρ ∈ Ak+1(M). The exterior differentiation defines a degree 1 linear map d : Ak(M) →

Ak+1(M), and it has the following properties.

• d ◦ d = 0

• For ρ ∈ Ak(M), d(ρ ∧ ν) = dρ ∧ ν + (−1)kρ ∧ dν.

2.14.3 Pullback Map

Let M and N be C∞ 3-manifolds and f : M → N be a C∞ map from M to N . Take the

differential f∗ : TpM → Tf(p)N of f at every point p ∈M . The dual map of f ∗ : T ∗
f(p)N →

T ∗
pM is induced by f∗, i.e. the map f ∗(α)(x) = α(f∗(x)) for α∗

f(p) and x ∈ TpM . Moreover,

the linear map f ∗ : ΛkT ∗
f(p)N → ΛkT ∗

pM is defined by for an arbitrary t

f ∗ : A∗(N) → A∗(M),

is an algebra homeomorphism.

Let ω be a differential form in Ak(N). Then, f ∗ω ∈ Ak(M) is called the pullback by f .

2.15 Knots and Links

Here, we will give some important definitions of knots and links, which we will use in the

next chapters. Moreover, we will give some examples. See [16], [17] for more information.
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2.15.1 Knots and Links

Definition 2.15.1. A knot is an embedded 1-dimensional subset of R3(S3,M3) which is

homeomorphic to S1.

Example 2.15.1. There are some knot examples shown below in Figure 2.6. These are called

knot diagrams, that is, projections of knots onto the xz-plane in R3. The left one in Figure 2.6

(a) is called the unknot or the trivial knot. The right one in Figure 2.6 (b) is the trefoil knot,

it has three crossings, and it is the only knot with this property.

Figure 2.6 (a) unknot and (b) trefoil knot

Definition 2.15.2. Let K1 and K2 be two knots in a 3-manifold M3 and f : M3 → M3 be

an orientation preserving homeomorphism. Then, K1 and K2 are called isotopic knots, if

f(K1) = K2.

Definition 2.15.3. A link is a disjoint union of knots.

Example 2.15.2. There are different link examples shown below in Figure 2.7. The left one

is called the Hopf link, given in Figure 2.7 (a), and the right one is called the Whitehead link,

given in Figure 2.7 (b).

2.15.2 Reidemeister Moves

Reidemeister moves are moves that change a projection of the knot by changing the

relationship between the crossings.
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Figure 2.7 (a) Hopf link and (b) Whitehead link

Definition 2.15.4. [18] There are three types of Reidemeister moves. The Reidemeister

moves R1, R2 and R3 are shown in Figure 2.8.

Figure 2.8 Reidemeister moves
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Theorem 2.15.5. [19][20] Two knot diagrams K1 and K2 are isotopic if and only if K1 can

be turned into K2 by a finite sequence of Reidemeister moves R1, R2, R3 or R−1
1 , R−1

2 , R−1
3 .

2.15.3 Linking Number

Definition 2.15.6. An oriented knot is a knot where a clockwise orientation or

counterclockwise orientation is given. An oriented link is a link where each component

of the link is oriented.

Example 2.15.3. There is an oriented Figure-8 knot shown in Figure 2.9.

Figure 2.9 Oriented Figure-8 knot

Now, for a given knot or link, one can assign a ±1 value to each crossing of a knot as in

Figure 2.10.

Figure 2.10 Assigning number for crossing
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Definition 2.15.7. [16][17] Let K1 and K2 be two oriented knots. The linking number

lk(K1, K2) is defined as the half sum of +1’s and −1’s corresponding to the crossings of

K1 and K2.

The linking number is a link invariant, i.e. any Reidemeister moves do not change the linking

number of a diagram.

Example 2.15.4. K1, K2 are the components of the link, which you can see in Figure 2.11.

The linking number of this link is lk(K1, K2) =
1

2
(−1−1) = −2

2
= −1. Note that we do not

count the values at self-crossing of the individual knot components. The counted crossings

must be between the components of the link.

Figure 2.11 Calculating linking number of a link

Example 2.15.5. Two Hopf links are given in Figure 2.12. Note that the Hopf link in

Figure 2.12 (a) has a linking number equal to +1, it is called a positive Hopf link. The

Hopf link in Figure 2.12 (b) has a linking number equal to −1, it is called a negative Hopf

link.
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Figure 2.12 A positive and a negative Hopf link

2.15.4 The Seifert Surface of a Knot

Definition 2.15.8. [17] Let K be a knot in a 3-manifold M . If there exists a surface S such

that ∂S = K, the surface S is called a Seifert surface of K. If a Seifert surface S exists for

K, then K is called a null-homologous knot.

Theorem 2.15.9. [21] Let K be a knot (link) in R3(S3). Then, there exists an orientable

connected surface S such that the boundary of S is K. That is, all knots in R3 (S3) are

null-homologous.

Example 2.15.6. A disc is a Seifert surface for the unknot. Consider the Hopf link. An

annulus is a Seifert surface of it.

2.16 Contact 3-Manifolds

2.16.1 Contact Structures on R3

Suppose thatM is a 3-manifold and TpM is the tangent space ofM at p ∈M . Also, consider

its tangent bundle TM = ∪p∈MTpM . Now, let us define contact structures. See [22], [23]

for more information.

Definition 2.16.1. A contact structure on a 3-manifold is a 2-plane field such that there exists

a 1-form ρ : TM → R which is locally ξ = kerρ = {v ∈ TM |ρ(v) = 0} and ρ ∧ dρ ̸= 0.

The 1-form ρ is called a contact form.
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Definition 2.16.2. Consider a 3-manifold M and a contact structure ξ on M . Then, M is

called a contact 3-manifold, and it is denoted by (M, ξ).

Example 2.16.1. Let ρ = dx3−x2dx1 be a 1 1-form and ξstd = kerρ =
〈

∂
∂x2
, x2

∂
∂x3

+ ∂
∂x1

〉
in R3. The 1-form ρ is a contact form since

ρ ∧ dρ = (dx3 − x2dx1) ∧ d(dx3 − x2dx1)

= (dx3 − x2dx1) ∧ d(dx3)− d(x2dx1) (d is a linear map)

= (dx3 − x2dx1) ∧ (−dx2 ∧ dx1) (d(dx3)=0)

= (dx3 − x2dx1) ∧ (dx1 ∧ dx2) (−dx2 ∧ dx1 = dx1 ∧ dx2)

= (dx3 ∧ dx1 ∧ dx2)− (x2dx1 ∧ dx1 ∧ dx2) (dx1 ∧ dx1=0)

= dx3 ∧ dx1 ∧ dx2

= dx1 ∧ dx2 ∧ dx3 ̸= 0.

Thus, ξstd is a contact structure on R3, see Figure 2.13.

Figure 2.13 Standard contact structure on R3

Example 2.16.2. Let ρ1 = dx3+x1dx2 be a 1-form and ξ1 = kerρ1 =
〈

∂
∂x1
,−x1 ∂

∂x3
+ ∂

∂x2

〉
in R3. ξ1 is a contact structure on R3. Moreover, 1-form ρ1 is a contact form:

ρ1 ∧ dρ1 = (dx3 + x1dx2) ∧ d(dx3 + x1dx2)

= (dx3 + x1dx2) ∧ d(dx3) + d(x1dx2) (d is a linear map)
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= (dx3 + x1dx2) ∧ (dx1 ∧ dx2) (d(dx3) = 0)

= (dx3 ∧ dx1 ∧ dx2) + (x1dx2 ∧ dx1 ∧ dx2) (dx2 ∧ dx2 = 0)

= dx3 ∧ dx1 ∧ dx2

= dx1 ∧ dx2 ∧ dx3 ̸= 0.

Example 2.16.3. Suppose 1-form ρ′ = x1dx2−x2dx1+x4dx3−x3dx4 is on the unit sphere

S3 ⊂ R4. Then,

ρ′ ∧ dρ′ = (x1dx2 − x2dx1 + x4dx3 − x3dx4) ∧ d(x1dx2 − x2dx1 + x4dx3 − x3dx4)

= (x1dx2 − x2dx1 + x4dx3 − x3dx4) ∧ (2dx1 ∧ dx2 + 2dx4 ∧ dx3)

= 2x1dx2 ∧ dx4 ∧ dx3 − 2x2dx1 ∧ dx4 ∧ dx3 + 2x4dx1 ∧ dx2 ∧ dx3 − 2dx1 ∧ dx2 ∧ dx4.

We can generate the tangent space TpS3 by the following set

〈
∂

∂x1
− x1
y1

∂

∂y1
,
∂

∂x2
− x2
y2

∂

∂y2
,
∂

∂x1
− x1
y2

∂

∂y2

〉
.

On this basis for the tangent space TpS3, ρ′ ∧ dρ′ ̸= 0. Therefore, ξstd = kerρ′ is a contact

structure on S3 since ρ′ is a contact form. This contact structure ξstd is called the standard

contact structure on S3, and it is denoted by (S3, ξstd).

Example 2.16.4. There is another contact structure on R3 is the symmetric contact structure

ξsym = kerρ2 where 1-form ρ2 = dx3−x2dx1+x1dx2. Indeed, 1-form ρ2 is a contact form:

ρ2 ∧ dρ2 = (dx3 − x2dx1 + x1dx2) ∧ d(dx3 − x2dx1 + x1dx2)

= (dx3 − x2dx1 + x1dx2) ∧ d(dx3)− d(x2dx1) + d(x1dx2) (d is a linear map)

= (dx3 − x2dx1 + x1dx2) ∧ (−dx2 ∧ dx1 + dx1 ∧ dx2) (d(dx3)=0)

= (dx3 − x2dx1 + x1dx2) ∧ (2dx1 ∧ dx2) (−dx2 ∧ dx1 = dx1 ∧ dx2)

= (dx3 ∧ 2dx1 ∧ dx2) = 2dx1 ∧ dx2 ∧ dx3 ̸= 0.
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Therefore, ξsym is a contact structure on R3. Contact structure ξsym on R3 is generated by

following sets:

if y ̸= 0 kerρ2 =

〈
x1

∂

∂x1
+ x2

∂

∂x2
, x2

∂

∂x3
+

∂

∂x1

〉
if x ̸= 0 kerρ2 =

〈
x1

∂

∂x1
+ x2

∂

∂x2
, x1

∂

∂x3
− ∂

∂x2

〉
if x = y = 0 kerρ2 =

〈
∂

∂x1
,
∂

∂x2

〉
.

Definition 2.16.3. [23] Let (M1, ξ1) and (M2, ξ2) be contact 3-manifolds. (M1, ξ1) and

(M2, ξ2) are called contactomorphic if there exists a diffeomorphism f : M1 → M2 such

that f∗(ξ1)p = (ξ2)f(p) for all p ∈ M1 where f∗ : TpM1 → Tf(p)M2 denotes the differential

of f . Such an f is called a contactomorphism.

Theorem 2.16.4. (Darboux’s Theorem)[24] “Let M be a 3-manifold. Then, for any p ∈ M

there exists a neighborhood U of p and a neighborhood V of p′ = (0, 0, 0) ∈ (R3, ξstd), such

that U is contactomorphic to V .”

Definition 2.16.5. [22][23] Let D1 be an embedded disc and (M, ξ) be a contact structure.

If D1 is tangent to the contact planes along its boundary, which is denoted by ∂D1, then D1

is called an overtwisted disc.

Example 2.16.5. A 1-form ρ3 = cos tdz + t sin tdβ in R3 with cylindrical coordinates,

ξot = kerρ3 =
〈

∂
∂t
,−t sin t ∂

∂z
+ cos t ∂

∂β

〉
is a contact structure on R3. In fact, 1-form ρ3 is

a contact form. First calculate dρ3:

dρ3 = d(cos tdz + t sin tdβ)

= − sin tdt ∧ dz + cos td(dz) + (sin t+ t cos t)dt ∧ dβ + t sin td(dβ)

= − sin tdt ∧ dz + (sin t+ t cos t)dr ∧ dβ (d(dz) = d(dβ) = 0).
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Now, let us compute ρ3 ∧ dρ3.

ρ3 ∧ dρ3 = (cos tdz + t sin tdβ) ∧ (− sin tdt ∧ dz + (sin t+ t cos t)dt ∧ dβ)

= cos t sin tdz ∧ dt ∧ dβ + t cos2 tdz ∧ dt ∧ dβ − t sin2 tdβ ∧ dt ∧ dz

= cos t sin tdz ∧ dt ∧ dβ + t cos2 tdz ∧ dt ∧ dβ + t sin2 tdz ∧ dt ∧ dβ

= (cos t sin t+ t)dz ∧ dt ∧ dβ

=

(
cos t sin t

t
+ 1

)
dz ∧ dt ∧ dβ ̸= 0 (If t > 0,

cos t sin t

t
+ 1 > 0)

Therefore, ξot is a contact structure on R3. Also, the boundary of the disc

D = {(t, β, z) ∈ R3|z = 0, t ≤ π}

is tangent to the contact planes, and hence the disc D is an overtwisted disc.

Definition 2.16.6. [22][23] LetM be a contact 3-manifold. Then,M is called an overtwisted

contact 3-manifold if there exists an overtwisted disc in M .

Example 2.16.6. (R3, ξot) has an overtwisted disc in it. Therefore, it is an overtwisted

contact structure, shown in Figure 2.14. The red circle in Figure 2.14 is the boundary of

an overtwisted disc.

Figure 2.14 Overtwisted contact structure on R3

Definition 2.16.7. [22][23] Let M be a contact 3-manifold. If M does not contain an

overtwisted disc, then M is called a tight contact 3-manifold.
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Example 2.16.7. The contact 3-manifolds (R3, ξstd) and (R3, ξsym) are examples of tight

contact manifolds.

Theorem 2.16.8. [25] Let ξ be a tight contact structure on S3. Then, ξ is isotopic to the

standard contact structure ξstd on S3, i.e. ξstd is the unique tight contact structure on S3.

Definition 2.16.9. Two contact structures (M, ξ) and (M, ξ′) are called isotopic if there exists

a contactomorphism f : (M, ξ) → (M, ξ′) such that f∗(ξ)p = (ξ′)f(p) for all p ∈ M where

f∗ : TpM → Tf(p)M denotes the differential of f and f is isotopic to the identity.

2.16.2 Classification of Tight Contact Structures on 3-Manifolds

Definition 2.16.10. [26] Let v be a vector field on a contact manifold (M, ξ). If v’s flow ϕt

preserves the contact planes, i.e. (ϕt)∗ξ = ξ, then v is called a contact vector field.

Definition 2.16.11. [26] Let (M, ξ) be a contact 3-manifold and let S be a smooth surface in

(M, ξ). The surface S is called convex, if a contact vector field v is transverse to S.

Definition 2.16.12. [26] Let S ⊂ (M, ξ) be a convex surface and the contact vector field v

on it. The dividing set of S is defined as follows:

Γ = {x ∈ S|v(x) ∈ ξx}.

Example 2.16.8. You can see, in Figure 2.15, the dividing set of S2 in (R3, ξsym).

Definition 2.16.13. Let n be a natural number. A simple finite continued fraction expansion

is an expression of the form

c0 +
1

c1 +
1

c2 +
1

. . . +
1

cn

where c0, c1, . . . , cn ∈ R. It is denoted as [c0, c1, . . . , cn].
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Figure 2.15 Dividing curve pointed out as red line

Example 2.16.9. Let us calculate the continued fraction of
187

57
.

187

57
= 3 +

16

57
= 3 +

1
57
16

= 3 +
1

3 +
1

16
9

= . . . = 3 +
1

3 +
1

1 +
1

1 +
1

3 +
1

2

Also, it is expressed as
187

57
= [3, 3, 1, 1, 3, 2].

Let p, q be integers where p > q > 0 and (p, q) = 1. For any negative rational number −p
q

and ri < −1, there exists a unique continued fraction expansion. The continued fraction

30



expansion of −p
q

is expressed by

r0 −
1

r1 −
1

r2 −
1

. . . −
1

rk

= [r0, r1, . . . , rk]

with all ri < −1, i = 0, . . . , k.

Example 2.16.10. Let us calculate the continued fraction expansion of −7

5

−7

5
= −2− 3

−5
= −2− 1

−5
3

= −2−
1

−2−
1

−3

.

Also, it is expressed as −7

5
= [−2,−2,−3].

Definition 2.16.14. Let p, q be relatively prime integers. Consider (p, q)-curve on a torus,

that is, (p, q)-curve wraps p times in the meridian direction, q times in the longitude direction.

Then, the slope of the (p, q)-curve on the torus is defined as
q

p
.

Let us consider the tight contact structures on S1 ×D2.

Theorem 2.16.15. [27][28] Consider S1×D2 with convex boundary with T 2, where T 2 has

two dividing curves and the slope of dividing curves is −p
q

such that p > q > 0. Then, the

number of the tight contact structures on S1 ×D2 is

|(r0 + 1)(r1 + 1) · · · (rk−1 + 1)rk|.

Here, r0, . . . , rk denote the coefficients of the continued fraction expansion of −p
q

and ri <

−1, i = 0, . . . , k.
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Definition 2.16.16. [28] Suppose that ξ is a tight contact structure on T 2 × I with a convex

boundary. The boundary slope on T 2×{0} is sl0 and the boundary slope on T 2×{1} is sl1.

Then, ξ is called minimally twisting(in the I-direction), if each convex torus parallel to the

boundary has slope sl between sl0 and sl1.

Theorem 2.16.17. [27][28] Consider T 2 × I with Γ0 dividing curve on T 2 × {0} and Γ1

dividing curve on T 2 × {1}. Let Γ0 be a dividing curve with two components with slope

sl0 = −1. Let Γ1 be a dividing curve with two components with slope sl1 = −p
q

such that

p > q > 0. Then, there exist exactly

|(r0 + 1)(r1 + 1) · · · (rk−1 + 1)rk|

tight, minimally twisting contact structures on T 2 × I up to isotopy. Here, r0, r1, . . . , rk

denote the coefficients of the continued fraction expansion of −p
q

and ri < −1, i = 0, . . . , k.

Theorem 2.16.18. [27][28] Consider T 2 × I . Let Γi be a dividing curve on T 2 × I with

two components with slopes sli = −1, i = 0, 1. Hence, there is a unique tight, minimally

twisting contact structure on T 2 × I .

Now, let us consider the tight contact structures on lens spaces, see Example 2.4.4 for the

definition of lens spaces.

Theorem 2.16.19. [27][28] Let p, q be relatively prime integers and L(p, q) be a lens space

and r0, r1, . . . , rk are the coefficients of the continued fraction expansion of −p
q

and ri < −1,

i = 0, . . . , k. Then, there exist exactly

|(r0 + 1)(r1 + 1) · · · (rk + 1)|

tight contact structures on the L(p, q) up to isotopy.
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2.16.3 Legendrian Knots and Links

Definition 2.16.20. [23][29] Suppose that, L is a knot in (M, ξ) which is an embedded S1.

L is called a Legendrian knot, if the tangent space at p is in ξp, i.e. TpL ∈ ξp for all p ∈ L. A

disjoint union of Legendrian knots is called a Legendrian link.

Example 2.16.11. The boundary of the overtwisted disc in (M3, ξot) is a Legendrian unknot

since it is everywhere tangent to ξot. The red circle in Figure 2.14 which is a boundary of an

overtwisted disk is a Legendrian unknot.

By Darboux’s theorem, every contact structure locally looks like (R3, ξstd). If we add a point

at infinity to R3, then we obtain S3. Hence, we can imagine that a Legendrian knot L in R3

is a Legendrian knot in S3.

Front projection is a useful tool to picture the knots. It projects curves in R3 to xz-plane.

Definition 2.16.21. [23][29] Let L be Legendrian knot at (R3, ξstd) and f : R3 → R2 be a

projection map such that f(x, y, z) = f(x, z). The image f(L) is called a front projection of

L.

Let L be a Legendrian knot in (R3, ξstd) and a parametrization γ of L is defined as:

γ : S1 → R3; α 7→ (x(α), y(α), z(α)).

Assume that γ is an immersion. Therefore, γ is differentiable, and its derivative

dpγ : TpS
1 → Tγ(p)R3

is an injective map for all points p ∈ S1. From the definition of a Legendrian knot,

γ′(α) = (x′(α), y′(α), z′(α)) ∈ ξstd and since we take the ξstd as ker(dz − ydx), the

following equation is obtained:

z′(α)− y(α)x′(α) = 0. (1)
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We know that, γ is a parametrization of L. The front projection of L is defined as

γf : S1 → R2;α 7→ (x(α), z(α)).

The front projection γf is not an immersion as distinct from γ. If we take x′(α) = 0, also

z′(α) = 0 from (1). Therefore, x′(α) could never be 0, if γf was an immersion. Therefore,

the vertical tangencies are not contained in the front projection γf except can be seen at

isolated points.

For a common C1 Legendrian embedding in R3, x′(α) only vanishes at isolated points.

Generalized cusps are the isolated points in the front projection of Legendrian knot L where

there exist well-defined tangent lines which are horizontal [29].

Also, we can express y-coordinate of γ from z′(α)− y(α)x′(α) = 0:

y(α) =
z′(α)

x′(α)

In summary, a front projection of a Legendrian knot satisfies the below conditions:

• Does not contain vertical tangencies.

• No singular points except generalized cusps.

• At each crossing, the slope of the overcrossing is smaller than the undercrossing.

Example 2.16.12. There are different front projections of Legendrian unknots given in

Figure 2.16.

Example 2.16.13. Front projections of Legendrian left-handed trefoil and Legendrian

right-handed trefoil can be seen below, in Figure 2.17.

Theorem 2.16.22. [29] Let K be a topological knot. Then, K can be converted to a

Legendrian knot.

Proof. We can convert any topological knot into a Legendrian knot by the following

movements in Figure 2.18.
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Figure 2.16 Front projections of a Legendrian unknot

Figure 2.17 Front projections of (a) a Legendrian left-handed trefoil and (b) a Legendrian
right-handed trefoil

Figure 2.18 Converting a topological knot to the Legendrian knot

Example 2.16.14. The type of a Legendrian knot is its topological knot type. There are

examples of different types of Legendrian knots converted from topological knots given in

Figure 2.19.
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Figure 2.19 (a) Legendrian unknot, (b) Legendrian right-handed trefoil, (c) Legendrian figure-8 knot

Definition 2.16.23. Let L1, L2 ∈ (M3, ξ). L1 and L2 are called Legendrian isotopic if there

exists a contactomorphism f : (M3, ξ) → (M3, ξ) such that f(L1) = L2 and f is contact

isotopic to the id.

Theorem 2.16.24. [30] “The Legendrian isotopic Legendrian knots can be expressed by

two front diagrams if and only if these diagrams are associated with regular homotopy and

a series of Legendrian Reidemeister moves”, given in Figure 2.20.

Example 2.16.15. In Figure 2.16, we can see the two front projections of a Legendrian

unknot. They are Legendrian isotopic because we can convert one to the other by Legendrian

Reidemeister moves.

2.16.4 The Classical Invariants of Legendrian Knots

2.16.5 Topological Knot Type

The topological knot type of a Legendrian knot is invariant for the knot.

Example 2.16.16. You can see two different Legendrian knots in Figure 2.21. The left one is

a Legendrian left-handed trefoil, and the other one is a Legendrian Figure-8 knot. They have

different knot types. Therefore, they are not Legendrian isotopic.
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Figure 2.20 Legendrian Reidemeister moves

Figure 2.21 (a) Legendrian left-handed trefoil and (b) Legendrian figure-8 knot

Definition 2.16.25. [23] Let L be a Legendrian knot in (M3, ξ) and v be a non-zero vector

field that is perpendicular to L. A contact framing of L is defined as the parallel push-off of

L in the normal direction to ξ.

Example 2.16.17. Let L be a Legendrian unknot in (R3, ξstd). The vector field v =
∂

∂z
is

transverse to ξstd. The contact framing of a Legendrian unknot is given in Figure 2.22.
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Figure 2.22 Contact framing of Legendrian unknot

Definition 2.16.26. [16] Consider a null-homologous knot L in (M3, ξ), and consider a

Seifert surface of L. Take a parallel push-off of L. The parallel push-off of L is called the

Seifert framing of L which stays on the Seifert surface, and the parallel push-off and the

linking number of L are zero.

Example 2.16.18. Let U be the unknot. Then, the Seifert surface of the unknot U is a disc.

You can see the Seifert framing of U in Figure 2.23.

Figure 2.23 Seifert framing of a Legendrian unknot

2.16.6 Thurston-Bennequin Invariant

Definition 2.16.27. [29] Let L be a Legendrian knot in (M, ξ) and assume that L is

null-homologous. The Thurston-Bennequin invariant of the Legendrian knot L is defined

as the twisting of the contact framing relative to the Seifert framing of L and denoted by

tb(L).

38



Consider a Legendrian null-homologous knot L ∈ (R3, ξstd). Let v be a non-zero vector

field which is transverse to ξstd along L. Take a parallel push off L′ of L in the direction of

v. Then the Thurston-Bennequin invariant tb(L) equals the linking number between L and

L′, so tb(L) = lk(L,L′). We can obtain crossings between L and L′ at the crossings and the

cusps of L. Therefore,

tb(L) = lk(L,L′) = writhe(L)− 1

2
(total number of cusps in L).

Here, writhe number denotes the sum of ±1s at each crossing in the front projection.

Example 2.16.19. Let us calculate the Thurston-Bennequin invariant of the Legendrian

right-handed trefoil, which is given below, in Figure 2.24. The writhe number of a Legendrian

right-handed trefoil is 3 and it has 4 cusps.

tb(L) = writhe(L)− 1

2
(# cusps of L)

= 3− 1

2
· 4 = 1

Figure 2.24 Right-handed trefoil

2.16.7 Rotation Number

Definition 2.16.28. [29] Let L be an oriented Legendrian knot which is null-homologous.

Suppose that the Seifert surface of L is Σ1
g. The restriction ξ|Σ1

g
is a trivial two-dimensional
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tangent bundle. A trivialization ξ|L = L × R2 is obtained from the trivialization of ξ|Σ1
g
.

Let v be a non-zero vector field which is tangent to L and which points in the direction of

the orientation on L. Later, consider v in R2, a path of vector fields in R2, then the winding

number of v is called the rotation number of L. The rotation number of L is denoted as

rot(L).

Assume that L is an oriented Legendrian knot in (R3, ξstd) and it is null-homologous. The

trivialization of L is generated by using the vector field u =
∂

∂y
which is a non-zero part of

ξstd. Let v be a vector field that is tangent to the L. So, the rotation number can be found

by calculating the signed sum of how many times u and v point in the same direction. If v

passes u counterclockwise, it is described as (+1). If v passes u clockwise, it is described as

(−1). The intersection of u and v will be positive at the down cusps, and the intersection of

u and v will be negative at the up cusps. Throughout this process, the rotation number counts

the number of v intersects both u and −u, so divide by two to get rot(L). Then, the rotation

number of L is

rot(L) =
1

2
(D − U)

where D denotes the down cusps and U denotes the up cusps.

Example 2.16.20. The Legendrian unknots with different orientations are given in

Figure 2.25. Let left one be named by L1 and the other one by L2. The rotation number

of L1 is rot(L1) =
1

2
(5−1) = 2 and the rotation number of L2 is rot(L2) =

1

2
(1−5) = −2.

Observe that the rotation number depends on the orientation of the knot.

Example 2.16.21. Two Legendrian unknots are not Legendrian isotopic to each other, which

are given in Figure 2.26. Let us show that.

Both Legendrian unknots in Figure 2.26 have the same topological knot type. Such a knot

type is the unknot. But their other classical invariants are different. The Thurston-Bennequin

invariant of a is tb(a) = writhe(a) − 1

2
(# cusps of a) = 0 − 1

2
· 2 = −1 and the

Thurston-Bennequin invariant of b is tb(b) = writhe(b)− 1

2
(# cusps of b) = 0− 1

2
·4 = −2.

Their rotation numbers are also different. The rotation number of a is rot(a) = 0 since it
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Figure 2.25 (a) Legendrian unknot with rot = 2 and (b) Legendrian unknot with rot = −2

Figure 2.26 Two non-isotopic Legendrian unknots

has one up cusp and one down cusp. Similarly, rot(b) = 1 since it has three down cusps and

one up cusp. Thus, these two Legendrian unknots are not Legendrian isotopic.

2.16.8 Stabilizations

Let a Legendrian knot L be given. We can get another Legendrian knot from L in the same

topological knot type with stabilizations.

Definition 2.16.29. [29] Let L be an oriented Legendrian knot in (R3, ξstd). If we change a

strand of L by adding a down cusp by replacing a zigzag like in Figure 2.27, the resulting

Legendrian knot is called the positive stabilization of L. It is denoted as St+(L). If we

change a strand of L by adding an up cusp by replacing a zigzag like in Figure 2.27, the

resulting Legendrian knot is called the negative stabilization of L. It is denoted as St−(L).

In Figure 2.27, you can see positive and negative stabilizations.
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Figure 2.27 Positive and negative stabilization of a Legendrian knot

After stabilizations the classical invariants change to:

tb(St±(L)) = tb(L)− 1 and rot(St±(L)) = rot(L)± 1.

Example 2.16.22. There are examples of stabilizations of Legendrian knots, given in

Figure 2.28.

Figure 2.28 (a) Legendrian unknot and (b) a positive and (c) a negative stabilization of Legendrian
unknot
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2.16.9 Knots in Overtwisted Contact Structures

Legendrian knots in overtwisted contact structures are divided into two types. If a Legendrian

knot L in an overtwisted (M, ξot) has a tight complement, then L is called an exceptional

knot. If a Legendrian knot L in an overtwisted (M, ξot) has an overtwisted complement, then

L is called a loose knot.

Example 2.16.23. The boundary of an overtwisted disc is a loose Legendrian unknot in

(S3, ξot).

3. CLASSIFICATION OF LEGENDRIAN KNOTS AND

LINKS

3.1 Legendrian Knots Classification

There are two ways to classify Legendrian knots. One way to classify Legendrian knots

is by contactomorphism. The other way is by Legendrian isotopy. Here, we will give the

definitions and in the next chapter, we will give some classification results of Legendrian

knots and links in detail.

Definition 3.1.1. [29] Consider L1 and L2 two Legendrian knots in (M, ξ). We say that L1

and L2 are coarsely equivalent when there exists a contactomorphism g : (M, ξ) → (M, ξ)

such that g(L1) = L2.

Definition 3.1.2. [29] Consider L1 and L2 two oriented Legendrian knots in (M, ξ). The

knots L1 and L2 are called Legendrian isotopic knots if there exists a contactomorphism

g : (M, ξ) → (M, ξ) so that g(L1) = L2 and g is contact isotopic to the identity function.
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3.2 Classification Results

The classification of Legendrian knots is one of the most studied problems in 3-dimensional

contact topology. In this section, we will mention classification results of Legendrian knots

and links ([3], [4], [11]).

In [3], Eliashberg and Fraser focus on the topologically trivial Legendrian knots, bounding

embedded 2-disc. When we say topologically trivial knot, we are mentioning the unknot. So,

from now on, we will use Legendrian unknot instead of the topologically trivial Legendrian

knot.

Classical invariants play an important role in the classification of Legendrian knots. These

are the topological knot type, the Thurston-Bennequin invariant, and the rotation number.

Theorem 3.2.1 gives us a complete classification for unknots in tight contact 3-manifolds.

Theorem 3.2.1. [3] Let L and L′ be two oriented Legendrian unknots in a tight contact

3-manifold (M, ξ). If the Thurston-Bennequin invariants of L and L′ are the same that is

tb(L) = tb(L′) and the rotation number of L and L′ are the same that is rot(L) = rot(L′)

then L and L′ are Legendrian isotopic.

With this theorem, the Thurston-Bennequin invariant and the rotation number determine

Legendrian unknots in tight contact 3-manifolds. Any Legendrian unknot can be obtained

from stabilizations of the unique Legendrian unknot with tb = −1 and rot = 0, see

Figure 3.1.

Eliashberg and Fraser also give us the classification results for Legendrian unknots in

overtwisted contact structures. There are two types of Legendrian unknots in overtwisted

contact structures: loose Legendrian unknots and exceptional(non-loose) Legendrian

unknots. The following theorem is about loose ones.

Theorem 3.2.2. [3] Suppose L and L′ be two loose Legendrian unknots in an overtwisted

contact 3-manifold (M, ξot). The Legendrian unknots L and L′ are coarsely equivalent if

and only if their classical invariants agree.
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Figure 3.1 Classification of Legendrian unknots

In the first version of [3], there is no known example of an exceptional knot in an overtwisted

contact structure. Eliashberg and Fraser say it could be that all Legendrian knots in

overtwisted contact manifolds are loose. The first exceptional Legendrian knot examples

are given in [12]. Also, there is a result for exceptional Legendrian unknots on overtwisted

S3 in [3].

Theorem 3.2.3. [3] Let L and L′ be two exceptional Legendrian unknots in (S3, ξot) are

coarsely equivalent if and only if they have the same Thurston-Bennequin invariant and

rotation number. A complete list of equivalence classes;

(tb, rot) = (1, 0), (tb, rot) = (n,±(n− 1)), (n ∈ Z+).

Eliashberg and Fraser completely classify Legendrian unknots in any tight contact structure

on 3-manifolds up to Legendrian isotopy. They also classify loose Legendrian unknots for

any overtwisted contact structure on 3-manifolds up to coarse equivalence.
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In [4], the classification of Legendrian torus knots and the classification of Legendrian

figure-eight knots in the tight contact structure on the 3-sphere S3 is done by Etnyre and

Honda, up to Legendrian isotopy.

Torus knots are a special class of knots that can be drawn on a torus without any

self-intersection. A (p, q)-torus knot is a knot that wraps p times along the meridian and

q times along the longitude where p and q are relatively prime.

Etnyre and Honda find the range of classical invariants for Legendrian torus knots. They

gave us a complete classification for Legendrian torus knots in the tight contact structure on

S3.

Theorem 3.2.4. [4] Let T and T ′ be oriented Legendrian torus knots in tight contact

manifold (S3, ξ). T and T ′ are Legendrian isotopic if and only if their classical invariants

tb(T ) = tb(T ′) and rot(T ) = rot(T ′).

For example, let T be a positive torus knot i.e. p, q > 0. Then, the Thurston-Bennequin

invariant of T is tb(T ) ≤ pq − p− q. If tb(T ) = pq − p− q − n where n is a non-negative

integer, then rot(T ) ∈ {−n,−n+ 2, . . . , n}.

Now, we will mention the figure-eight knots. First, Etnyre and Honda prove that the maximal

Thurston-Bennequin invariant for the figure-eight knots is −3. Here is the theorem by which

they classify figure-eight knots with maximal Thurston-Bennequin invariant.

Theorem 3.2.5. [4] Let F and F ′ be two oriented Legendrian figure eight knots. The

maximal Thurston-Bennequin invariant of F and F ′ is −3 and the rotation number rot(F ) =

rot(F ′) = 0. Then, F and F ′ are Legendrian isotopic.

Theorem 3.2.6. [4] Let F and F ′ be two oriented Legendrian figure-eight knots. F and F ′

are called Legendrian isotopic if and only if their classical invariants agree.

So far, we focus on Legendrian knots on contact 3-manifolds. Now, we will look out for

Legendrian links in contact 3-manifolds. The classification of Legendrian links studied by

Ding and Geiges in [9], [10].
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Also, Geiges and Onaran give us classification results for Hopf links up to coarse

equivalence, in [11]. Before this paper, there were few resources in the literature on

the classification of Legendrian links. Previous studies gave us more information about

the classification of Legendrian links in the standard tight contact structure ξst on S3 or

another tight contact 3-manifolds. The main theorem of their paper gives the first complete

classification of a Legendrian link with Legendrian realizations in overtwisted contact

structures.

An exceptional knot is called strongly exceptional if the complement has zero Giroux torsion

[11]. Briefly, Giroux torsion is an invariant for contact 3-manifolds. It is defined as follows.

Tor(M, ξ) is the supremum of the integers n ∈ Z+ for which there is a contact embedding

of

Tn := {T 2 × [0, 1], ker(cos(2πnz)dx− sin(2πnz)dy)}

into (M, ξ). If no such embedding exists, Tor(M, ξ) = 0.

The standard tight contact structure on S3 is ker(x1dy1 − y1dx1 + x2dy2 − y2dx2) and

denoted as ξst. It is the unique tight contact structure on S3 up to isotopy. Also, there are

countably many overtwisted contact structures up to d3 invariant. Briefly, d3 invariant of ξ is

a homotopy invariant of ξ. The overtwisted contact structure on S3 is denoted by ξd with a

d3 invariant d3 ∈ Z+ 1
2
.

Like Legendrian knots, Legendrian realizations of the Legendrian Hopf link have classical

invariants. Suppose L0 ∪ L1 is a Legendrian realization of a Legendrian Hopf link. Here

tb(Li) = tbi, i = 0, 1 is the Thurston-Bennequin invariant of L0 and L1 and rot(Li) = roti,

i = 0, 1 is the rotation number of L0 and L1.

Theorem 3.2.7. [11] The Legendrian realizations of the Legendrian Hopf link are given as

follows, up to coarse equivalence. Legendrian realizations are determined by the classical

invariants in all cases.
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1. Consider (S3, ξst). There exists a unique Legendrian realization for all combinations

of the Thurston-Bennequin invariant tb and the rotation number rot, in the range of

tb0, tb1 < 0 and

roti ∈ {tbi + 1, tbi + 3, . . . ,−tbi − 3,−tbi − 1}.

There are tb0tb1 realizations for fixed values of tb0, tb1 < 0.

2. Let tb0 < 0 and tb1 > 0. The strongly exceptional realizations of the Legendrian Hopf

link are as follows.

(a) In (S3, ξ1/2) there are realizations L0 ∪ L1 consist of an exceptional Legendrian

unknot L1 with invariants (tb1, rot1) = (n + 2,±(n + 1)), where n ∈ N0 and a

loose Legendrian unknot L0 whose Thurston-Bennequin invariant tb0 ∈ Z− and

rot0 ∈ {tb0, tb0 + 2, . . . , tb0 − 2,−tb0}. For a given tb0 < 0, there are 2|tb0 − 1|

realizations.

(b) In (S3, ξ1/2) there are realizations L0∪L1 with an exceptional Legendrian unknot

L1 and a loose Legendrian unknot L0. The invariants of L1 are (tb1, rot1) =

(1, 0) and the invariants of L0 are tb0 ∈ Z− and rot0 lies in the range

{tb0 − 1, tb0 + 1, . . . , tb0 − 1,−tb0 + 1}.

There are |tb0 − 2| Legendrian realizations for a given tb0 < 0.

3. For tb0, tb1 > 0 the strongly exceptional realizations are as follows.

(a) There is a unique Legendrian realization L0 ∪ L1 in (S3, ξ1/2) with invariants

(tbi, roti) = (1, 0), i = 0, 1. The components L0 and L1 are both exceptional.

(b) There is a pair of realizations with invariants (tb0, rot0) = (2,±3) and

(tb1, rot1) = (1,±2) in (S3, ξ−1/2).
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There are two realizations in (S3, ξ−1/2) with invariants (tb0, rot0) = (3,±4)

and (tb1, rot1) = (1,±2). Also, there is a realization live in (S3, ξ−1/2) with

(tb0, rot0) = (3, 0) and (tb1, rot1) = (1, 0).

There are four realizations with tb0 = tb1 = 2: two with rot0 = rot1 = ±3 in

(S3, ξ−1/2) and two with rot0 = rot1 = ±1 in (S3, ξ3/2).

The link components are loose in all cases.

(c) For any tb0 ≥ 4 and tb1 = 1 there are four Legendrian realizations L0 ∪ L1

with these Thurston-Bennequin invariants. For tb0 ≥ 3 and tb1 = 2 there are six

realizations. All link components are loose.

(d) Let tb0, tb1 ≥ 3. Then, there are eight realizations and in all cases link

components are loose.

4. For tb0 = 0, there exist two strongly exceptional realizations with the

Thurston-Bennequin invariant tb1 = k for each k ∈ Z and the rotation numbers

are rot0 = ±1 and rot1 = ±(k − 1). The component L0 is loose for all cases. The

component L1 is exceptional for the case k ≥ 1, loose for the case k ≤ 0.

5. If tb0 ̸= ±1 and tb1 ̸= ±1 and n ∈ N, then there exist exactly a pair of exceptional

Legendrian Hopf links L0 ∪ L1. These pair of Legendrian Hopf links are recognized

by the rotation numbers with tb(Li) = tbi (i = 0, 1) and n is equal to π-twisting in the

link complement.

6. For any choice of tb0, rot0, tb1, rot1 ∈ Z with tbi + roti odd, and for any d ∈ Z + 1
2
,

there is a unique loose Hopf link L0 ∪ L1 in (S3, ξd) with invariants tb(Li) = tbi and

rot(Li) = roti.

This paper gives us a complete classification of the Legendrian realizations of the Legendrian

Hopf link.

We mentioned three different papers to classify Legendrian knots and links, and the common

point of these papers is that all of them use classical invariants to classify Legendrian knots
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and links. So, the classical invariants are useful tools to determine Legendrian knots and

links.

3.3 Classification Results in Detail

Now, in this section, we will look at the classification of Legendrian unknots and Legendrian

Hopf links in the contact 3-sphere S3 in detail.

3.3.1 Legendrian Unknots in Contact 3-Sphere S3

Theorem 3.3.1. [3][7]

1. Let U be a Legendrian unknot in (S3, ξstd). Let, tb(U) = n with n ∈ Z−, and rot(U)

lies in the range

{n+ 1, n+ 3, . . . ,−n− 3,−n− 1}.

The invariants (tb, rot) determines U up to coarse equivalence and there exist |n|

distinct Legendrian unknots for all n ≤ −1.

2. Let U be an exceptional unknot in an overtwisted contact structure (S3, ξ) which is

determined by d3(ξ) = 1/2 up to isotopy. Then the invariants of U lie in the range

(tb(U), rot(U)) ∈ {(n,±(n− 1)) | n ∈ N}.

Legendrian unknot U with these pair of invariants exist and U is determined by these

Thurston-Bennequin invariants and rotation numbers.

Proof. Consider a Legendrian unknot U in (S3, ξstd) or an exceptional unknot U in an

overtwisted S3. Now, the 3-sphere S3 can be thought of as a decomposition of two solid

tori, i.e. S3 = N1 ∪ N2, with N1 is the standard neighborhood of U . Let µi, λi denote the

meridian and longitude of the solid tori Ni, i = 1, 2. We assume that ∂N1 is a convex torus
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with two dividing curves of slope sl1 =
1

tb
, where tb := tb(U) is the Thurston-Bennequin

invariant of U . Gluing map of two solid tori is defined by the identifications µ1 = λ2 and

λ1 = µ2.

By assumption, the contact structure on N2 is tight for each case. By using the gluing map,

we see that the boundary ∂N2 is a convex torus with two dividing curves of slope tb. The

Legendrian unknot U is determined by the total number of tight contact structures on N2 up

to coarse equivalence. To find the total number of tight contact structures on N2, we need

Theorem 2.16.15. Let N be a solid torus that has a convex boundary ∂N , and the boundary

∂N has two dividing curves of slope −p
q
< −1. Then, N has

|(r0 + 1) · · · (rk−1 + 1)rk|,

number of tight contact structures by Honda [28] and Giroux [27] by Theorem 2.16.15. Here

for i = 0, . . . , k, ri < −1 and r0, r1, . . . , rk are the coefficients of the continued fraction

expansion of −p
q

; for slope −1 there is a unique tight contact structure.

Now, let U be a Legendrian unknot with tight complement, and having the

Thurston-Bennequin invariant tb(U) = tb < 0. Then, the complement of U is a tight solid

torus N2 with convex boundary ∂N2 having two dividing curves of slope sl2 = tb < 0.

The continued fraction expansion of sl2 is sl2 = tb = |r0| = |tb|. By Theorem 2.16.15,

there exist |tb| different tight contact structures on N2. This means that, there are at most |tb|

different Legendrian unknots with tb < 0. We can explicitly find such Legendrian unknots.

For example, there is at most one |tb| = | − 1| = 1, Legendrian unknot U with tb = −1.

Such an unknot is given in Figure 3.2.

There are at most two, |tb| = | − 2| = 2, Legendrian unknot U with tb = −2. Such unknots

are explicitly given in Figure 3.3.

Note that the Legendrian unknots in Figure 3.3 are stabilizations of the Legendrian unknot in

Figure 3.2. Each tight contact structure on the complement of a Legendrian unknot U with
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Figure 3.2 Legendrian unknot with tb = −1 and rot = 0

Figure 3.3 (a) Legendrian unknot with tb = −2 and rot = 1, and (b) Legendrian unknot with
tb = −2 and rot = −1

tb < 0 corresponds to the |tb| realizations of a Legendrian unknot with Thurston-Bennequin

invariant equals to tb in (S3, ξstd) where we obtain each realization as a stabilization of the

Legendrian unknot with tb = −1 and rot = 0. There are at most |tb| different Legendrian

unknots with tb < 0, and we explicitly find |tb| different such knots. Therefore, there are

exactly |tb| different Legendrian unknots with tb < 0.

Now, let U be a Legendrian unknot with the Thurston-Bennequin invariant tb(U) = tb = 0.

Then the complement ofU is a solid torusN2 with convex boundary ∂N2 having two dividing

curves of slope sl2 = tb = 0. Note that when the slope sl2 = tb = 0 on ∂N2, the contact

structure on the solid torus N2 would be overtwisted, so this case does not occur when the

Legendrian unknot is in (S3, ξstd) or it is an exceptional unknot in an overtwisted S3.

Now, let U be a Legendrian unknot with tight complement and having the
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Thurston-Bennequin invariant tb(U) = tb > 0. Then the complement of U is a tight solid

torus N2. The solid torus N2 has convex boundary ∂N2. On the convex boundary ∂N2, there

are two dividing curves of slope sl2 = tb > 0. When the slope sl2 = tb > 0, note that we can

not use the classification results of Honda [28] and Giroux [27], namely Theorem 2.16.15.

Since, to use the theorem, the slope of the dividing curve on the convex boundary must be

less than or equal to −1. Therefore, we have to modify N2 so that the dividing curves have

slope ≤ −1. To modify, we replace λ2 by λ′2 = λ2 +mµ2, then we have:

µ2 + tb · λ2 = µ2 + tb · (λ′2 −m · µ2)

= µ2 + tb · λ′2 −m · tb · µ2

= (1−m · tb)µ2 + tb · λ′2.

That changes the slope sl2 = tb > 0 to sl′2 =
tb

1−m · tb
.

For the slope tb = 1, we can take m = 2:

µ2 + λ2 = µ2 + (λ′2 − 2µ2)

= −µ2 + λ′2

which changes the slope sl2 = 1 to sl′2 = −1

For this slope sl′2 = −1 by Theorem 2.16.15 N2 has a unique tight contact structure.

Now for slope tb = 2, take λ′2 = λ2 + µ2:

µ2 + 2 · λ2 = µ2 + 2 · (λ′2 − µ2)

= µ2 + 2 · λ′2 − 2 · µ2

= (1− 2) · µ2 + 2 · λ′2

= −1 · µ2 + 2 · λ′2.

53



Hence, this replacement changes the slope sl2 = 2 to sl′2 = −2, then by the formula in

Theorem 2.16.15, sl′2 = −2 = [−2], N2 has only two tight contact structure.

Similarly, for sl2 = tb = 3, the new slope is sl′2 = −3

2
= −2− 1

−2
= [−2,−2].

For sl2 = tb = 4, the new slope is

sl′2 = −4

3
= −2− 2

−3
= −2−

1

−
3

2

= −2−
1

−2−
1

−2

= [−2,−2,−2]

For sl2 = tb = 5, the new slope is

sl′2 = −5

4
= −2− 3

−4
= −2−

1

−2−
2

−3

= −2−
1

−2−
1

−
3

2

= −2−
1

−2−
1

−2−
1

−2

= [−2,−2,−2,−2]

...

For sl2 = tb = n, sl′2 = − n

n− 1
= −2−

1

−2−
1

−2−
1

. . . − 2−
1

−2

= [−2,−2, . . . ,−2]

By Theorem 2.16.15, since sl′2 = − n

n− 1
= [−2,−2, . . . ,−2], the total number of tight

contact structures on solid torus N2 is equal to |(−2+1)(−2+1) · · · (−2)| = 2. This means
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that there are at most two Legendrian unknots with a given tb > 0. In Proposition 4.1 of [31]

on page 174, two distinct exceptional Legendrian unknots with a given tb > 0 have been

described explicitly. Therefore, there are exactly two Legendrian unknots that corresponds

to the stated invariants in the theorem.

3.3.2 Legendrian Hopf Links in Contact 3-Sphere S3

Now, consider a Legendrian Hopf link L0 ∪ L1 in a contact 3-sphere S3. We will examine

the classification of Legendrian Hopf links having tight, minimally twisting complement in

contact 3-sphere S3 in detail.

Let the Thurston-Bennequin invariant of L0 be tb(L0) = tb0 and the Thurston-Bennequin

invariant of L1 be tb(L1) = tb1. We decompose S3 into two solid tori and a minimally

twisting, thickened torus T 2 × [0, 1] where solid tori N0, N1 are tubular neighborhoods of L0

and L1 respectively. Hence,

S3 = N0 ∪ T 2 × I ∪N1.

By standard Legendrian neighborhood theorem [28], we can assume that the boundary of

a tubular neighborhood of L0 is a convex torus with two dividing curves of slope sl0 =
1

tb(L0)
=

1

tb0
. Similarly, the boundary of a tubular neighborhood of L1 is a convex torus

with two dividing curves of slope sl1 =
1

tb(L1)
=

1

tb1
.

Now, let us determine the slopes of dividing curves on the boundary of T 2 × I . T 2 × {0}

has two dividing curves with slope sl0 =
1

tb0
. To find the slope of the dividing curves on

T 2 × {1}, we will use the gluing map

0 1

1 0

 .
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The slope of the dividing curves on the boundary of N1 is sl1 =
1

tb1
. The slope sl1 =

1

tb1
curve is the (tb1, 1)-curve, that is tb1µ1 + λ1-curve. After we apply the gluing map:

0 1

1 0

 ·

tb1
1

 =

 1

tb1

 ,

we get (1, tb1)-curve on T 2 × {1} which is a 1µ1 + tb1λ1 curve, so that it has slope
tb1
1

.

Therefore, the slope of the dividing curve on T 2 × {1} is sl1 = tb1.

In conclusion, the complement of Hopf link L0∪L1, with the Thurston-Bennequin invariants

tb(Li) = tbi, i = 0, 1 is a minimally twisting T 2 × I where the slope of the dividing curves

on T 2 × {0} is sl0 =
1

tb0
and the slope of the dividing curves on T 2 × {1} is sl1 = tb1.

Proposition 3.3.2. [11] Let L0 ∪ L1 be a Legendrian Hopf link in the contact 3-sphere S3

with the Thurston-Bennequin invariants tb(Li) = tbi, i = 0, 1. Then the number of tight

minimally twisting contact structures Tightmin
cs on the complement T 2× I where the slope of

the dividing curve on T 2 × {0} is sl0 =
1

tb0
and the slope of the dividing curve on T 2 × {1}

is sl1 = tb1 is given as:

(1a) If tb0 = tb1 = −1, there is a unique tight contact structure up to diffeomorphism.

(1b) If tb0, tb1 < 0, then we have Tightmin
cs = |tb0 · tb1| (except the case tb0 = tb1 = −1).

(2a) If tb0 < 0 and tb1 ≥ 2, we have Tightmin
cs = 2 · |tb0 − 1|.

(2b) If tb0 < 0 and tb1 = 1, then Tightmin
cs = |tb0 − 2|.

(3a) If tb0 = tb1 = 1, there is a unique tight contact structure up to diffeomorphism.

(3b) If tb0 = 2 and tb1 = 1, then Tightmin
cs = 2.

(3c) If tb0 = 3 and tb1 = 1, then Tightmin
cs = 3.

(3d) If tb0 = 2 and tb1 = 2, then Tightmin
cs = 4.

56



(3e) If tb0 ≥ 4 and tb1 = 1, then Tightmin
cs = 4

(3f) If tb0 ≥ 3 and tb1 = 2, then Tightmin
cs = 6.

(3g) For all tb0 ≥ tb1 ≥ 3, we have Tightmin
cs = 8.

(4) For all tb1 ∈ Z and tb0 = 0, we have Tightmin
cs = 2.

Proof. By the Theorem 2.16.17 (Giroux & Honda [27][28]), we know how to compute the

number of tight, minimally twisting contact structures on T 2 × I when the slope of the

dividing curves of T 2 × {0} is sl0 = −1 and when the slope of the dividing curves of

T 2 × {1} is sl1 < −1. By the Theorem 2.16.17, the number of tight, minimally twisting

contact structure on T 2 × I can be calculated using the continued fraction expansion of the

slope sl1 < −1:

sl1 = r0 −
1

r1 −
1

r2 −
1

. . . −
1

rk

= [r0, r1, . . . , rk],

where ri < −1, i = 0, . . . , k. By the formula in the Theorem 2.16.17, the number of tight,

minimally twisting contact structure on T 2 × I when s0 = −1 and s1 < −1 is:

Tightmin
cs = |(r0 + 1)(r1 + 1)(rk−1 + 1)rk|. (2)

In our case, the slope of the dividing curves on T 2 × {0} is sl0 =
1

tb0
and the slope of the

dividing curves on T 2 × {1} is sl1 = tb1. To use the formula in the Theorem 2.16.17, we

need to arrange the slope of the dividing curves on T 2 × {0} to be −1 and the slope of the

dividing curves on T 2×{1} to be less than −1. In order to do that, we will replace the given

T 2× I by a diffeomorphic T 2× I having proper slopes where such an operation corresponds

to applying an element of SL(2,Z).
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For example, assume L0 has tb0 = −2 and L1 has tb1 = −3. Now, the slope of the dividing

curves on T 2 × {0} is sl0 =
1

tb0
= −1

2
and it is a (−2, 1)-curve, that is −2µ0 + λ0-curve or−2

1

-curve and the slope of the dividing curves on T 2 × {1} is sl1 = tb1 = −3 which is

a (1,−3) curve, that is µ1 − 3λ1-curve or

 1

−3

-curve.

Now, we apply an element

 0 1

−1 −3

 ∈ SL(2,Z) to this T 2× I to obtain a diffeomorphic

T 2 × I so that we can use the formula in Theorem 2.16.17. After applying

 0 1

−1 −3

 on

T 2 × {0}, the (−2, 1)-curve becomes

 0 1

−1 −3


−2

1

 =

 1

2− 3

 =

 1

−1


the (1,−1)-curve, that is a µ0 − λ0-curve which has slope sl′0 = −1.

Now, on T 2 × {1}, the (1,−3)-curve becomes

 0 1

−1 −3


 1

−3

 =

 −3

−1 + 9

 =

−3

8


the (−3, 8)-curve, that is a −3µ1 + 8λ1-curve which has slope sl′1 = −8

3
.

Since, the slope of the dividing curves on T 2 ×{0} is sl′0 = −1 and the slope of the dividing

curves on T 2 ×{1} is sl′1 = −8

3
after the transformation, now, we can use the formula in the

Theorem 2.16.17. First, we find the continued fraction expansion of sl′1 = −8

3
.

sl′1 = −8

3
= −3− 1

−3
= [−3,−3].
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Then, by the formula

Tightmin
cs = |(−3 + 1)(−3)| = 6.

That is the number of tight, minimally twisting contact structures on the complement of

L0 ∪ L1 with Thurston-Bennequin invariants tb(L0) = tb0 = −2 and tb(L1) = tb1 = −3 is

equal to 6.

Now, we will explicitly find the transformations for each case of the proof, and we will

compute the number of tight contact structures in each case in detail.

Case (1a): Assume that tb0 = −1 and tb1 = −1. Then, the slope of the dividing curves on

T 2 × {0} is sl0 =
1

tb0
=

1

−1
= −1 and the slope of the dividing curves on T 2 × {1} is

sl1 = tb1 = −1. Then, by the Theorem 2.16.18 there is a unique tight, minimally twisting

contact structure on this T 2 × I .

Case (1b): Assume that tb0 < 0 and tb1 < 0, tb0 ̸= −1 and tb1 ̸= −1. Then, the slope of

the dividing curves on T 2 × {0} is sl0 =
1

tb0
< 0 and the slope of the dividing curves on

T 2 × {1} is sl1 = tb1 < 0. In this case, we use the transformation

 0 1

−1 tb0 − 1

 .

The slope sl0 =
1

tb0
-curve is a (tb0, 1)-curve, after applying the transformation it becomes

 0 1

−1 tb0 − 1


tb0

1

 =

 1

−1


the (1,−1)-curve that is µ0 − λ0-curve which has slope sl′0 = −1.
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The slope sl1 = tb1-curve is a (1, tb1)-curve, after applying the transformation it becomes

 0 1

−1 tb0 − 1


 1

tb1

 =

 tb1

tb0tb1 − tb1 − 1


the (tb1, tb0tb1 − tb1 − 1)-curve that is tb1µ1 + (tb0tb1 − tb1 − 1)λ1-curve which has slope

sl′1 =
tb0tb1 − tb1 − 1

tb1
= tb0 − 1− 1

tb1
.

Then, when tb1 ≤ −2, the continued fraction expansion of

sl′1 = tb0 − 1− 1

tb1
= [tb0 − 1, tb1].

According to the Theorem 2.16.17, the number of tight, minimally twisting contact structures

on this T 2 × I equals to Tightmin
cs = |(tb0 − 1 + 1)(tb1)| = |tb0tb1|, by (2).

On the other hand, when tb1 = −1 and tb0 ≤ −2, we have the slope

sl′1 = tb0 − 1− 1

tb1
= tb0 − 1− 1

−1
= tb0 − 1 + 1 = tb0

which has the continued fraction expansion sl′1 = tb0 = [tb0]. In this case, according to the

Theorem 2.16.17, we have Tightmin
cs = |tb0| tight, minimally twisting contact structures on

T 2 × I .

Case (2a): Assume that tb0 < 0 and tb1 ≥ 2. Then, the slope of the dividing curves on

T 2×{0} is sl0 =
1

tb0
< 0 and the slope of the dividing curves on T 2×{1} is sl1 = tb1 ≥ 2.

In this case, we apply the same transformation as in (1a) :

 0 1

−1 tb0 − 1

 .
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The slope sl0 =
1

tb0
-curve is a (tb0, 1)-curve, after applying the transformation it becomes

 0 1

−1 tb0 − 1


tb0

1

 =

 1

−1


the (1,−1)-curve that is µ0 − λ0-curve which has slope sl′0 = −1.

The slope sl1 = tb1-curve is a (1, tb1)-curve, after applying the transformation it becomes

 0 1

−1 tb0 − 1


 1

tb1

 =

 tb1

tb0tb1 − tb1 − 1


the (tb1, tb0tb1− tb1−1)-curve that is tb1µ1+(tb0tb1− tb1−1)λ1-curve which has the slope

sl′1 =
tb0tb1 − tb1 − 1

tb1
= tb0 −

tb1 + 1

tb1
.

Since tb0 < 0 and tb1 ≥ 2, then the slope sl′1 = tb0 −
tb1 + 1

tb1
< −1. Now we need to find

the continued fraction expansion of sl′1. We know that −tb1 + 1

tb1
has the continued fraction

expansion

−tb1 + 1

tb1
= −2−

1

−2−
1

−2−
1

. . . − 2−
1

−2

= [−2,−2, . . . ,−2︸ ︷︷ ︸
tb1

].
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Therefore, the continued fraction expansion of sl′1 is

sl′1 = tb0 −
tb1 + 1

tb1
= tb0 − 2−

1

−2−
1

−2−
1

. . . − 2−
1

−2

= [tb0 − 2,−2,−2, . . . ,−2︸ ︷︷ ︸
tb1−1

].

According to the Theorem 2.16.17, the number of tight, minimally twisting contact structures

on this T 2 × I equals to Tightmin
cs = |(tb0 − 2 + 1)tb1| = 2|tb0 − 1|, by 2.

(2b) Assume that tb0 < 0 and tb1 = 1. Then, the slope of the dividing curves on T 2 × {0}

is sl0 =
1

tb0
< 0 and the slope of the dividing curves on T 2 × {1} is sl1 = tb1 = 1. In this

case, we apply the same transformation as in (1a) :

 0 1

−1 tb0 − 1

 .

The slope sl0 =
1

tb0
-curve is a (tb0, 1)-curve, after applying the transformation it becomes

 0 1

−1 tb0 − 1


tb0

1

 =

 1

−1


the (1,−1)-curve that is µ0 − λ0-curve which has slope sl′0 = −1.

The slope sl1 = tb1 = 1-curve is a (1, 1)-curve, after applying the transformation it becomes

 0 1

−1 tb0 − 1


1

1

 =

 1

tb0 − 2
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the (1, tb0 − 2)-curve that is µ1 + (tb0 − 2)λ1-curve which has slope

sl′1 = tb0 − 2.

Since tb0 < 0, sl′1 = tb0 − 2 < −1 , now we can use the Theorem 2.16.17. The continued

fraction expansion of sl′1 = tb0−2 = [tb0−2]. According to the Theorem 2.16.17, the number

of tight, minimally twisting contact structures on this T 2× I equals to Tightmin
cs = |tb0− 2|,

by (2).

Case (3a): Assume that tb0 = 1, tb1 = 1. Then, the slope of the dividing curves on T 2×{0}

is sl0 =
1

tb0
= 1 and the slope of the dividing curves on T 2 × {1} is sl1 = tb1 = 1. In this

case, we apply the transformation:  1 0

−2 1

 .

The slope sl0 =
1

tb0
= 1-curve is a (1, 1)-curve, after applying the transformation it becomes

 1 0

−2 1


1

1

 =

 1

−1


the (1,−1)-curve that is µ0 − λ0-curve which has slope sl′0 = −1.

The slope sl1 = tb1 = 1-curve is a (1, 1)-curve, after applying the transformation it becomes

 1 0

−2 1


1

1

 =

 1

−1


the (1,−1)-curve that is µ1 − λ1-curve which has slope sl′1 = −1.

Since sl′0 = sl′1 = −1, by the Theorem 2.16.18, there is a unique tight, minimally twisting

contact structure on this T 2 × I .
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Case (3b): Assume that tb0 = 2, tb1 = 1. Then, the slope of the dividing curves on T 2×{0}

is sl0 =
1

tb0
=

1

2
and the slope of the dividing curves on T 2 × {1} is sl1 = tb1 = 1. In this

case, we apply the transformation:  2 −3

−3 5

 .

The slope sl0 =
1

tb0
=

1

2
-curve is a (2, 1)-curve, after applying the transformation it becomes

 2 −3

−3 5


2

1

 =

 1

−1


the (1,−1)-curve that is µ0 − λ0-curve which has slope sl′0 = −1.

The slope sl1 = tb1 = 1-curve is a (1, 1)-curve, after applying the transformation it becomes

 2 −3

−3 5


1

1

 =

−1

2


the (−1, 2)-curve that is −µ1 + 2λ1-curve which has slope sl′1 = −2.

Since sl′1 = −2 < −1, now we can use the Theorem 2.16.17. The continued fraction

expansion of sl′1 = −2 = [−2]. According to the Theorem 2.16.17, the number of tight,

minimally twisting contact structures on this T 2× I equals to Tightmin
cs = |−2| = 2, by (2).

Case (3c): Assume that tb0 = 3, tb1 = 1. Then, the slope of the dividing curves on T 2×{0}

is sl0 =
1

tb0
=

1

3
and the slope of the dividing curves on T 2 × {1} is sl1 = tb1 = 1. In this

case, we apply the transformation:  1 −2

−2 5

 .
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The slope sl0 =
1

tb0
=

1

3
-curve is a (3, 1)-curve, after applying the transformation it becomes

 1 −2

−2 5


3

1

 =

 1

−1


the (1,−1)-curve that is µ0 − λ0-curve which has slope sl′0 = −1.

The slope sl1 = tb1 = 1-curve is a (1, 1)-curve, after applying the transformation it becomes

 1 −2

−2 5


1

1

 =

−1

3


the (−1, 3)-curve that is −µ1 + 3λ1-curve which has slope sl′1 = −3.

Since sl′1 = −3 < −1, now we can use the Theorem 2.16.17. The continued fraction

expansion of sl′1 = −3 = [−3]. According to the Theorem 2.16.17, the number of tight,

minimally twisting contact structures on this T 2× I equals to Tightmin
cs = |−3| = 3, by (2).

Case (3d): Assume that tb0 = 2, tb1 = 2. Then, the slope of the dividing curves on T 2×{0}

is sl0 =
1

tb0
=

1

2
and the slope of the dividing curves on T 2 × {1} is sl1 = tb1 = 2. In this

case, we apply the transformation:  1 −1

−2 3

 .

The slope sl0 =
1

tb0
=

1

2
-curve is a (2, 1)-curve, after applying the transformation it becomes

 1 −1

−2 3


2

1

 =

 1

−1


the (1,−1)-curve that is µ0 − λ0-curve which has slope sl′0 = −1.
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The slope sl1 = tb1 = 2-curve is a (1, 2)-curve, after applying the transformation it becomes

 1 −1

−2 3


1

2

 =

−1

4


the (−1, 4)-curve that is −µ1 + 4λ1-curve which has slope sl′1 = −4.

Since sl′1 = −4 < −1, now we can use the Theorem 2.16.17. The continued fraction

expansion of sl′1 = −4 = [−4]. According to the Theorem 2.16.17, the number of tight,

minimally twisting contact structures on this T 2× I equals to Tightmin
cs = |−4| = 4, by (2).

Case (3e) Assume that tb0 ≥ 4, tb1 = 1. Then, the slope of the dividing curves on T 2 × {0}

is sl0 =
1

tb0
and the slope of the dividing curves on T 2 × {1} is sl1 = tb1 = 1. In this case,

we apply the transformation:  1 1− tb0

−2 −1 + 2tb0

 .

The slope sl0 =
1

tb0
-curve is a (tb0, 1)-curve, after applying the transformation it becomes

 1 1− tb0

−2 −1 + 2tb0


tb0

1

 =

 tb0 + 1− tb0

−2tb0 − 1 + 2tb0

 =

 1

−1


the (1,−1)-curve that is µ0 − λ0-curve which has slope sl′0 = −1.

The slope sl1 = tb1 = 1-curve is a (1, 1)-curve, after applying the transformation it becomes

 1 1− tb0

−2 −1 + 2tb0


1

1

 =

 1 + 1− tb0

−2− 1 + 2tb0

 =

 2− tb0

−3 + 2tb0


the (2 − tb0,−3 + 2tb0)-curve that is (2 − tb0)µ1 + (−3 + 2tb0)λ1-curve which has slope

sl′1 =
−3 + 2tb0
2− tb0

. Note that 2− tb0 ̸= 0 since tb0 ≥ 4.
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The slope sl′1 can be written as sl′1 =
−3 + 2tb0
2− tb0

= −3 +
tb0 − 3

tb0 − 2
= −3−

1

−
tb0 − 2

tb0 − 3

.

Note also that, for tb ≥ 4, the slope sl′1 < −1, now we can use the Theorem 2.16.17. To use

the theorem, we need to find the continued fraction expansion of sl′1.

For example, for tb0 = 4, we have −tb0 − 2

tb0 − 3
= −2

1
= [−2].

For tb0 = 5, we have −tb0 − 2

tb0 − 3
= −3

2
= −2− 1

−2
= [−2,−2].

For tb0 = 6, we have −tb0 − 2

tb0 − 3
= −4

3
= −2−

1

−2−
1

−2

= [−2,−2,−2], and so on.

Note that we have −tb0 − 2

tb0 − 3
= −2−

1

−2−
1

−2−
1

. . . − 2−
1

−2

= [−2,−2, . . . ,−2︸ ︷︷ ︸
tb0−3

].

By using this, we can compute the continued fraction expansion of sl′1 as:

sl′1 = −3−
1

−
tb0 − 2

tb0 − 3

= −3−
1

−2−
1

−2−
1

. . . − 2−
1

−2

= [−3,−2,−2, . . . ,−2︸ ︷︷ ︸
tb0−3

].

The continued fraction expansion of sl′1 = [−3,−2,−2, . . . ,−2︸ ︷︷ ︸
tb0−3

]. According to the

Theorem 2.16.17, the number of tight, minimally twisting contact structures on this T 2 × I
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equals to

Tightmin
cs = |(−3 + 1)(−2 + 1) · · · (−2 + 1)(−2)| = |(−2)(−2)| = 4.

Case (3f): Assume that tb0 ≥ 3, tb1 = 2. Then, the slope of the dividing curves on T 2×{0}

is sl0 =
1

tb0
and the slope of the dividing curves on T 2 × {1} is sl1 = tb1 = 2. In this case,

we apply the transformation:  1 1− tb0

−2 −1 + 2tb0

 .

The slope sl0 =
1

tb0
-curve is a (tb0, 1)-curve, after applying the transformation it becomes

 1 1− tb0

−2 −1 + 2tb0


tb0

1

 =

 1

−1


the (1,−1)-curve that is µ0 − λ0-curve which has slope sl′0 = −1.

The slope sl1 = tb1 = 2-curve is a (1, 2)-curve, after applying the transformation it becomes

 1 1− tb0

−2 −1 + 2tb0


1

2

 =

 1 + 2− 2tb0

−2− 2 + 4tb0

 =

 3− 2tb0

−4 + 4tb0


the (3− 2tb0,−4 + 4tb0)-curve that is (3− 2tb0)µ1 + (−4 + 4tb0)λ1-curve which has slope

sl′1 =
−4 + 4tb0
3− 2tb0

= −3 +
5− 2tb0
2tb0 − 3

= −3−
1

−
2tb0 − 3

5− 2tb0

.

Note that for tb0 ≥ 3, the slope sl′1 < −1, so now we can use the Theorem 2.16.17. To use

the theorem, we need to find the continued fraction expansion of sl′1.
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For example, for tb0 = 3, we have −2tb0 − 3

5− 2tb0
= −3 = [−3].

For tb0 = 4, we have −2tb0 − 3

5− 2tb0
= −5

3
= −2− 1

−3
= [−2,−3].

For tb0 = 5, we have −2tb0 − 3

5− 2tb0
= −7

5
= −2− 1

−
5

3

= −2− 1

−2−
1

−3

= [−2,−2,−3].

For tb0 = 6, we have −2tb0 − 3

5− 2tb0
= −9

7
= −2 − 1

−
7

5

= −2 − 1

−2−
1

−2−
1

−3

=

[−2,−2,−2,−3], and so on.

Note that we have −2tb0 − 3

5− 2tb0
= −2−

1

−2−
1

−2−
1

. . . − 2−
1

−3

= [−2,−2, . . . ,−2︸ ︷︷ ︸
tb0−3

,−3].

By using this, we can compute the continued fraction expansion of sl′1 as

sl′1 = −3− 1

−
2tb0 − 3

5− 2tb0

= −3−
1

−2−
1

−2−
1

. . . − 2−
1

−3

= [−3,−2,−2, . . . ,−2︸ ︷︷ ︸
tb0−3

,−3].

The continued fraction expansion of sl′1 = [−3,−2,−2, . . . ,−2︸ ︷︷ ︸
tb0−3

,−3]. According to the

Theorem 2.16.17, the number of tight, minimally twisting contact structures on this T 2 × I

equals to

Tightmin
cs = |(−3 + 1)(−2 + 1) · · · (−2 + 1)(−3)| = |(−2)(−3)| = 6.
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Case (3g): Assume that tb0 ≥ tb1 ≥ 3. Then, the slope of dividing curves on T 2 × {0} is

sl0 =
1

tb0
and the slope of the dividing curves on T 2 × {1} is sl1 = tb1. In this case, we use

the transformation  1 1− tb0

−2 −1 + 2tb0

 .

The slope sl0 =
1

tb0
-curve is a (tb0, 1)-curve, after applying the transformation it becomes

 1 1− tb0

−2 −1 + 2tb0


tb0

1

 =

 1

−1


the (1,−1)-curve that is µ0 − λ0-curve which has slope sl′0 = −1.

The slope sl1 = tb1-curve is a (1, tb1)-curve, after applying the transformation it becomes

 1 1− tb0

−2 −1 + 2tb0


 1

tb1

 =

 1 + tb1 − tb0tb1

−2− tb1 + 2tb0tb1


the (1 + tb1 − tb0tb1,−2− tb1 + 2tb0tb1)-curve that is (1 + tb1 − tb0tb1)µ1 + (−2− tb1 +

2tb0tb1)λ1-curve which has slope

sl′1 =
−2− tb1 + 2tb0tb1
1 + tb1 − tb0tb1

.

Note that for tb0 ≥ 3, tb1 ≥ 3, the slope sl′1 < −1, now we can use the Theorem 2.16.17. To

use the theorem, we need to find the continued fraction expansion of sl′1.

For example, for tb0 = tb1 = 3, we have

sl′1 =
−2− 3 + 18

1 + 3− 9
= −13

5
= −3− 2

5
= −3−

1

−
5

2

= −3−
1

−3−
1

−2

= [−3,−3,−2].
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For tb0 = 3 and tb1 = 4, we have

sl′1 = −18

7
= −3− 3

7
= −3−

1

−
7

−3

= −3−
1

−3−
2

−3

= −3−
1

−3−
1

−
3

−2

= −3−
1

−3−
1

−2−
1

−2

= [−3,−3,−2,−2].

For tb0 = 3 and tb1 = 5, we have

sl′1 = −23

9
= −3−

4

−9
= −3−

1

−
9

−4

= −3−
1

−3−
3

−4

= −3−
1

−3−
1

4

−3

= −3−
1

−3−
1

−2−
2

−3

= −3−
1

−3−
1

−2−
1

−
3

−2

= −3−
1

−3−
1

−2−
1

−2−
1

−2

= [−3,−3,−2,−2,−2].

For tb0 = 3 and tb1 = 6, we have

sl′1 = −28

11
= −3−

5

−11
= −3−

1

−
11

−5

= −3−
1

−3−
4

−5

= −3−
1

−3−
1

−
5

−4
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= −3−
1

−3−
1

−2−
3

−4

= −3−
1

−3−
1

−2−
1

−
4

−3

= −3−
1

−3−
1

−2−
1

−2−
2

−3

= −3−
1

−3−
1

−2−
1

−2−
1

−
3

−2

= −3−
1

−3−
1

−2−
1

−2−
1

−2−
1

−2

= [−3,−3,−2,−2,−2,−2],

and so on.

For tb0 = 4 and tb1 = 5, we have

sl′1 = −
33

14
= −3− 9

−14
= −3−

1

−
14

−9

= −3−
1

−2−
4

−9

= −3−
1

−2−
1

−
9

−4

= −3−
1

−2−
1

−3−
3

−4

= −3−
1

−2−
1

−3−
1

−
4

−3

= −3−
1

−2−
1

−3−
1

−2−
2

−3
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= −3−
1

−2−
1

−3−
1

−2−
1

−
3

−2

= −3−
1

−2−
1

−3−
1

−2−
1

−2−
1

−2

= [−3,−2,−3,−2,−2,−2].

For tb0 = 4 and tb1 = 6, we have

sl′1 = −40

17
= −3− 11

−17
= −3−

1

−
17

−11

= −3−
1

−2−
5

−11

= −3−
1

−2−
1

−
11

−5

= −3−
1

−2−
1

−3−
4

−5

= −3−
1

−2−
1

−3−
1

−
5

−4

= −3−
1

−2−
1

−3−
1

−2−
3

−4

= −3−
1

−2−
1

−3−
1

−2−
1

−
4

−3

= −3−
1

−2−
1

−3−
1

−2−
1

−2−
2

−3
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= −3−
1

−2−
1

−3−
1

−2−
1

−2−
1

−
3

−2

= −3−
1

−2−
1

−3−
1

−2−
1

−2−
1

−2−
1

−2

= [−3,−2,−3,−2,−2,−2,−2].

For tb0 = 5 and tb1 = 6, we have

sl′1 = −52

23
= −3− 17

−23
= −3−

1

−
23

−17

= −3−
1

−2−
11

−17

= −3−
1

−2−
1

−
17

−11

= −3−
1

−2−
1

−2−
5

−11

= −3−
1

−2−
1

−2−
1

−
11

−5

= −3−
1

−2−
1

−2−
1

−3−
4

−5

= −3−
1

−2−
1

−2−
1

−3−
1

−
5

−4

= −3−
1

−2−
1

−2−
1

−3−
1

−2−
3

−4
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= −3−
1

−2−
1

−2−
1

−3−
1

−2−
1

−
4

−3

= −3−
1

−2−
1

−2−
1

−3−
1

−2−
1

−2−
2

−3

= −3−
1

−2−
1

−2−
1

−3−
1

−2−
1

−2−
1

−
3

−2

= −3−
1

−2−
1

−2−
1

−3−
1

−2−
1

−2−
1

−2−
1

−2

= [−3,−2,−2,−3,−2,−2,−2,−2].
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For tb0 = 6 and tb1 = 7, we have

sl′1 = −75

34
= −3− 27

−34
= −3−

1

−
34

−27

= −3−
1

−2−
20

−27

= −3−
1

−2−
1

−
27

−20

= −3−
1

−2−
1

−2−
13

−20

= −3−
1

−2−
1

−2−
1

−
20

−13

= −3−
1

−2−
1

−2−
1

−2−
6

−13

= −3−
1

−2−
1

−2−
1

−2−
1

−
13

−6

= −3−
1

−2−
1

−2−
1

−2−
1

−3−
5

−6
...

= −3−
1

−2−
1

−2−
1

−2−
1

−3−
1

−2−
1

−2−
1

−2−
1

−2−
1

−2
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= [−3,−2,−2,−2,−3,−2,−2,−2,−2,−2]

For tb0 = 7 and tb1 = 8, we have

sl′1 = −102

47
= −3− 39

−47
= −3−

1

−
47

−39

= −3−
1

−2−
31

−39

= −3−
1

−2−
1

−
39

−31

= −3−
1

−2−
1

−2−
23

−31

= −3−
1

−2−
1

−2−
1

−
31

−23

= −3−
1

−2−
1

−2−
1

−2−
15

−23
...

= −3−
1

−2−
1

−2−
1

−2−
1

−2−
1

−3−
6

−7

= · · ·

77



· · · = −3−
1

−2−
1

−2−
1

−2−
1

−2−
1

−3−
1

−2−
5

−6
...

= −3−
1

−2−
1

−2−
1

−2−
1

−2−
1

−3−
1

−2−
1

−2−
1

−2−
1

−2−
1

−2−
1

−2

= [−3,−2,−2,−2,−2,−3,−2,−2,−2,−2,−2,−2],
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and so on. Note that we have seen the pattern

sl′1 =
−2− tb1 + 2tb0tb1
1 + tb1 − tb0tb1

= −3−
1

−2−
1

. . . − 3−
1

−2−
1

−2−
1

. . . − 2−
1

−2

= [−3,−2,−2, . . . ,−2︸ ︷︷ ︸
tb0−3

,−3,−2,−2, . . . ,−2︸ ︷︷ ︸
tb1−2

].

The continued fraction expansion of sl′1 = [−3,−2,−2, . . . ,−2︸ ︷︷ ︸
tb0−3

,−3,−2,−2, . . . ,−2︸ ︷︷ ︸
tb1−2

].

According to the Theorem 2.16.17, the number of tight, minimally twisting contact structures

on this T 2 × I equals to

Tightmin
cs = |(−3 + 1) (−2 + 1) · · · (−2 + 1)︸ ︷︷ ︸

tb0−3

(−3 + 1) (−2 + 1) · · · (−2 + 1)︸ ︷︷ ︸
tb1−1

(−2)|

= |(−2)(−2)(−2)| = 8.

Case (4a): Assume that tb0 = 0 and tb1 > 0. Then, the slope of dividing curves on T 2×{0}

is sl0 =
1

tb0
=

1

0
and the slope of the dividing curves on T 2 × {1} is sl1 = tb1. In this case,

we use the transformation  0 1

−1 −1

 .
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The slope sl0 =
1

tb0
=

1

0
-curve is a (0, 1)-curve, after applying the transformation it becomes

 0 1

−1 −1


0

1

 =

 1

−1


the (1,−1)-curve that is µ0 − λ0-curve which has slope sl′0 = −1.

The slope sl1 = tb1-curve is a (1, tb1)-curve, after applying the transformation it becomes

 0 1

−1 −1


 1

tb11

 =

 tb1

−1− tb1



the (tb1,−1− tb1)-curve that is tb1µ1+(−1− tb1)λ1-curve which has slope sl′1 = −tb1 + 1

tb1
.

Since tb1 > 0, then the slope sl′1 = −tb1 + 1

tb1
< −1. Now we need to find the continued

fraction expansion of sl′1. We know that −tb1 + 1

tb1
has continued fraction expansion

sl′1 = −tb1 + 1

tb1
= −2−

1

−2−
1

−2−
1

. . . − 2−
1

−2

= [−2,−2, . . . ,−2︸ ︷︷ ︸
tb1

].

According to the Theorem 2.16.17, the number of tight, minimally twisting contact structures

on this T 2 × I equal to

Tightmin
cs = |(−2 + 1)(−2 + 1) · · · (−2 + 1)(−2)| = | − 2| = 2.

Case (4b): Assume that tb0 = 0 and tb1 < 0. Then, the slope of dividing curves on T 2×{0}

is sl0 =
1

tb0
=

1

0
and the slope of the dividing curves on T 2 × {1} is sl1 = tb1. In this case,
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we use the transformation −tb1 + 1 1

tb1 − 2 −1

 .

The slope sl0 =
1

tb0
=

1

0
-curve is a (0, 1)-curve, after applying the transformation it becomes

−tb1 + 1 1

tb1 − 2 −1


0

1

 =

 1

−1


the (1,−1)-curve that is µ0 − λ0-curve which has slope sl′0 = −1.

The slope sl1 = tb1-curve is a (1, tb1)-curve, after applying the transformation it becomes

−tb1 + 1 1

tb1 − 2 −1


 1

tb1

 =

 1

−2


the (1,−2)-curve that is µ1 − 2λ1-curve which has slope sl′1 = −2.

Since sl′1 = −2 < −1, now we can use the Theorem 2.16.17. The continued fraction

expansion of sl′1 = −2 = [−2]. According to the Theorem 2.16.17, the number of tight,

minimally twisting contact structures on this T 2 × I equal to Tightmin
cs = | − 2| = 2 by (2).

Case (4c): Assume that tb0 = 0 and tb1 = 0. Then, the slope of dividing curves on T 2×{0}

is sl0 =
1

tb0
=

1

0
and the slope of the dividing curves on T 2 × {1} is sl1 = tb1 = 0. In this

case, we use the transformation  1 1

−2 −1

 .
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The slope sl0 =
1

tb0
=

1

0
-curve is a (0, 1)-curve, after applying the transformation it becomes

 1 1

−2 −1


0

1

 =

 1

−1


the (1,−1)-curve that is µ0 − λ0-curve which has slope sl′0 = −1.

The slope sl1 = tb1 = 0-curve is a (1, 0)-curve, after applying the transformation it becomes

 1 1

−2 −1


1

0

 =

 1

−2


the (1,−2)-curve that is µ1 − 2λ1-curve which has slope sl′1 = −2.

Since sl′1 = −2 < −1, now we can use the Theorem 2.16.17. The continued fraction

expansion of sl′1 = −2 = [−2]. According to the Theorem 2.16.17, the number of tight,

minimally twisting contact structures on this T 2 × I equal to Tightmin
cs = | − 2| = 2 by

(2).

Now, with the help of Proposition 3.3.2, we are ready to discuss the classification of Hopf

links in the contact 3-sphere S3.

Proof of Theorem 3.2.7 in the case of Legendrian Hopf links with tight, minimally twisting

complements.

Assume that H = L0 ∪ L1 is a Legendrian Hopf link in a contact 3-sphere with the

Thurston-Bennequin invariants tb(L0) = tb0 and tb(L1) = tb1. Also, assume that the

complement of H = L0 ∪ L1 in S3 is a tight, minimally twisting T 2 × I . From the

discussion at the beginning of the Section 3.2.2., we know that T 2 × I has two convex

boundary components. One of them is T 2×{0} with two dividing curves of slope sl0 =
1

tb0
.

The second boundary component is T 2 × {1} with two dividing curves of slope sl1 = tb1.

82



Case (1) Now, assume that tb0 = tb1 = −1, then by Proposition 3.3.2 (1a) there is a unique

tight contact structure on the complement T 2 × I . This means that there is at most one

Legendrian Hopf link H = L0 ∪ L1 with tight, minimally twisting complement and with

tb0 = tb1 = −1. We can explicitly find such a Legendrian Hopf link in standard tight

(S3, ξstd) which is given in Figure 3.4.

Figure 3.4 Legendrian Hopf link H = L0∪L1 with tb(L0) = tb(L1) = −1, rot(L0) = rot(L1) = 0

Since there is at most one such Legendrian Hopf link, and we find the Hopf link explicitly

which is given in Figure 3.4, there is exactly one H = L0∪L1 with tight, minimally twisting

complement and with tb(L0) = tb(L1) = −1.

Now, assume that tb0 < 0 and tb1 < 0 except tb0 = −1 and tb1 = −1. Then, by

Proposition 3.3.2 (1b), there are |tb0tb1| contact structures on the complement T 2 × I . This

means that there are at most |tb0tb1| many Legendrian Hopf link H = L0 ∪ L1, with tight,

minimally twisting complement having tb0 < 0 and tb1 < 0. We can find such Hopf links

explicitly. For example, tb0 = −1 and tb1 = −2, there are at most two such Legendrian Hopf

links. Two Legendrian Hopf links with corresponding invariants are given in Figure 3.5.

Therefore, there are exactly two Legendrian Hopf links with tb0 = −1 and tb1 = −2 having

tight, minimally twisting complements.

Let us now look at the first example we examined in the proof of Proposition 3.3.2 (1b) on

the page 56. That is, let us look at Legendrian Hopf link H = L0 ∪ L1 with tb0 = −2 and

tb1 = −3. Then, in this case, by Proposition 3.3.2 (1b), there are |tb0tb1| = |(−2)(−3)| = 6

contact structures on the complement T 2 × I . This means that there are at most 6 such
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Figure 3.5 (a) Legendrian Hopf link with tb0 = −1, rot0 = 0 and tb1 = −2, rot1 = 1 and
(b) Legendrian Hopf link with tb0 = −1, rot0 = 0 and tb1 = −2, rot1 = −1

Legendrian Hopf links. Now, in Figure 3.6 and Figure 3.7, we present such Legendrian Hopf

links explicitly.

Figure 3.6 (a) Legendrian Hopf link with tb0 = −2, rot0 = 1 and tb1 = −3, rot1 = 2,
(b) Legendrian Hopf link with tb0 = −2, rot0 = 1 and tb1 = −3, rot1 = 0,
(c) Legendrian Hopf link with tb0 = −2, rot0 = 1 and tb1 = −3, rot1 = −2.

There are at most 6 Legendrian Hopf links having tb0 = −2 and tb1 = −3 with tight,

minimally twisting complement, and we present these 6 Legendrian Hopf links explicitly

above in the Figure 3.6 and the Figure 3.7. Therefore, there are exactly |tb0tb1| = 6

Legendrian Hopf links with given invariants.

Now, let us prove the general case. For tb0 < 0 and tb1 < 0 by Proposition 3.3.2 (1b) we

know that there are at most |tb0tb1| many Legendrian Hopf links with given invariants and

with tight, minimally twisting complements. The |tb0tb1| explicit Legendrian Hopf links are

in standard tight contact 3-sphere (S3, ξstd) which come from stabilization of Legendrian
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Figure 3.7 (a) Legendrian Hopf link with tb0 = −2, rot0 = −1 and tb1 = −3, rot1 = 2,
(b) Legendrian Hopf link with tb0 = −2, rot0 = −1 and tb1 = −3, rot1 = 0,
(c) Legendrian Hopf link with tb0 = −2, rot0 = −1 and tb1 = −3, rot1 = −2.

Hopf link H = L0 ∪ L1 with tb0 = tb1 = −1 in Figure 3.4. Note that all Legendrian Hopf

links with tb0 < 0 and tb1 < 0 are in tight contact 3-sphere S3.

Since there are at most |tb0tb1| such Legendrian Hopf links with tb0 < 0 and tb1 < 0

and since we explicitly find |tb0tb1| such Legendrian Hopf links, there are exactly |tb0tb1|

Legendrian Hopf links with the given invariants.

Case (2a) Now, assume that tb0 < 0 and tb1 ≥ 2, then by Proposition 3.3.2 (2a) there are

2|tb0−1| tight contact structures on the complement T 2×I . This means that there are at most

2|tb0 − 1| many Legendrian Hopf links having tb0 < 0 and tb1 ≥ 2 with tight, minimally

twisting complement. Such Legendrian Hopf link diagrams are explicitly given in Figure 7

of the paper [11] on page 1435. Therefore, there are exactly 2|t0 − 1| many such Legendrian

Hopf links.

Note that constructing explicit examples of Hopf links in this case as well as in the remaining

cases of the proof requires the Dehn surgery theory and the contact surgery theory. Studying

the surgery theory-related constructions is future work planned as the continuation of these

studies.

Case (2b) Now, assume that tb0 < 0 and tb1 = 1, then by Proposition 3.3.2 (2b) there are

|tb0 − 2| tight contact structures on the complement T 2 × I . This means that there are at

most |tb0− 2| many Legendrian Hopf links having tb0 < 0 and tb1 = 1 with tight, minimally
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twisting complement. Such Legendrian Hopf link diagrams are explicitly given in Figure 8

of the paper [11] on page 1437. Therefore, there are exactly |tb0 − 2| many such Legendrian

Hopf links.

Case (3a) Now, assume that tb0 = tb1 = 1, then by Proposition 3.3.2 (3a) there is a unique

tight contact structure on the complement T 2 × I . This means that there is at most one

Legendrian Hopf link H = L0 ∪ L1 with tight, minimally twisting complement and with

tb0 = tb1 = 1. Explicit example is also given in Figure 8 of the paper [11] on page 1437 as

in previous case (2b) above. In this case, L1 is just a parallel copy of L0. Therefore, there is

a unique exceptional Legendrian Hopf link with tb0 = tb1 = 1.

Case (3b) Now, assume that tb0 = 2 and tb1 = 1, then by Proposition 3.3.2 (3b) there are

two tight contact structures on the complement T 2 × I . This means that there are at most

two many Legendrian Hopf links having tb0 = 2 and tb1 = 1 with tight, minimally twisting

complement. Such explicit two Legendrian Hopf links are described in Section 7.4 of the

paper [11] on page 1451. Therefore, there are exactly two many such Legendrian Hopf links.

Now, assume that tb0 = 3 and tb1 = 1, then by Proposition 3.3.2 (3c) there are three

tight contact structures on the complement T 2 × I . This means that there are at most three

many Legendrian Hopf links having tb0 = 3 and tb1 = 1 with tight, minimally twisting

complement. Such Legendrian Hopf link diagrams are explicitly given in Figure 9 of the

paper [11] on page 1438. Therefore, there are exactly three many such Legendrian Hopf

links.

Now, assume that tb0 = 2 and tb1 = 2, then by Proposition 3.3.2 (3d) there are four

tight contact structures on the complement T 2 × I . This means that there are at most four

many Legendrian Hopf links having tb0 = 2 and tb1 = 2 with tight, minimally twisting

complement. Such Legendrian Hopf link diagrams are explicitly given in Figure 10 of the

paper [11] on page 1438. Therefore, there are exactly four many such Legendrian Hopf links.

Case (3c) Now, assume that tb0 ≥ 4 and tb1 = 1, then by Proposition 3.3.2 (3e) there are

four tight contact structures on the complement T 2 × I . This means that there are at most
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four many Legendrian Hopf links having tb0 ≥ 4 and tb1 = 1 with tight, minimally twisting

complement. Such Legendrian Hopf link diagrams are explicitly given in Figure 11 of the

paper [11] on page 1439. Therefore, there are exactly four many such Legendrian Hopf links.

Now, assume that tb0 ≥ 3 and tb1 = 2, then by Proposition 3.3.2 (3f) there are six

tight contact structures on the complement T 2 × I . This means that there are at most six

many Legendrian Hopf links having tb0 ≥ 3 and tb1 = 2 with tight, minimally twisting

complement. Such Legendrian Hopf link diagrams are explicitly given in Figure 12 of the

paper [11] on page 1440. Therefore, there are exactly six many such Legendrian Hopf links.

Case (3d) Now, assume that tb0 ≥ 3 and tb1 ≥ 3, then by Proposition 3.3.2 (3g) there are

eight tight contact structures on the complement T 2 × I . This means that there are at most

eight many Legendrian Hopf links having tb0 ≥ 3 and tb1 ≥ 2 with tight, minimally twisting

complement. Such Legendrian Hopf link diagrams are explicitly given in Figure 13 of the

paper [11] on page 1441. Therefore, there are exactly eight many such Legendrian Hopf

links.

Case (4) Now, assume that tb0 = 0 and tb1 ∈ Z, then by Proposition 3.3.2 (4) there are

two tight contact structures on the complement T 2 × I . This means that there are at most

two many Legendrian Hopf links having tb0 = 0 and tb1 ∈ Z with tight, minimally twisting

complement. Such Legendrian Hopf link diagrams are explicitly given in Figure 14 of the

paper [11] on page 1442. Therefore, there are exactly two many such Legendrian Hopf

links.

4. CONCLUSION

In contact topology, distinguishing Legendrian knots and links by their classical invariants is

an important problem. In this thesis, we studied the classification of Legendrian knots and

links by their classical invariants. We look into the classification of Legendrian unknots and

the classification of Legendrian Hopf links in detail in the standard tight contact 3-sphere S3.
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Moreover, the classification of exceptional Legendrian unknots and exceptional Legendrian

Hopf links in the overtwisted contact 3-sphere S3 are studied.

It has been observed that the classification of Legendrian unknots in tight contact structures or

overtwisted contact structures is done with similar techniques. In both cases, it is necessary

to know the classification of tight contact structures on the solid torus S1 × D2, which is

the complement of the neighborhood of the Legendrian unknot in S3. As mentioned in

Theorem 2.16.15, the classification of tight contact structures on solid torus was done by

Giroux [27] and Honda [28]. Since the classification of tight contact structures on the

complement of the Legendrian unknot is known, these knots can be classified. However,

when the knot type changes its complement also changes, so it may be difficult to classify.

In the Hopf links case, classification is done similarly. The Hopf link is a union of

two unknots. Since we are working in contact 3-sphere S3, the complement of the two

unknots that are components of the Hopf link is T 2 × I . Therefore, it is necessary to

know the classification of tight contact structures on T 2 × I . The classification of tight

contact structures on T 2 × I was made by Giroux [27] and Honda [28], as mentioned in

Theorem 2.16.17. Since the classification of tight contact structures of the complement of the

Legendrian Hopf links is known, these links can be classified. Note that, constructing explicit

diagrams of Legendrian unknots and Legendrian Hopf links requires the Dehn surgery theory

and the contact surgery theory. Studying the surgery theory-related constructions is future

work planned as the continuation of this thesis.

If the number of tight contact structures on the 3-manifold in the complement of a given

Legendrian knot or link is computed, an upper bound can be found for this Legendrian knot

or link, with this technique. Surgery theory is needed to draw explicit diagrams of this

Legendrian knot or link.

There are open problems in the classification of Legendrian knots and links. The following

open problems will be studied in future works.

Open Problem 1: Find the explicit diagrams of Legendrian rational unknots in arbitrary lens
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spaces L(p, q) by using Dehn surgery theory and contact surgery theory.

Open Problem 2: The classification of Legendrian Whitehead link in contact 3-sphere S3.
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