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Recent studies have shown that today's embedded systems require not only real-time ability but 

also general functionality. In order to provide these two functionalities on same system, many 

researches, techniques and frameworks have been developed. Integrating multiple operating 

systems on a Multi-core processor is one of the most favorite approaches for system designers. 

However, in this heterogeneous approach, failure in one of the operating systems can cause the 

whole system to come down. Moreover, in recent years many scheduling techniques such as 

external and partition-based scheduling have been developed to provide real-time ability for 

general purpose systems in single operating system without using heterogeneous approach. 

This thesis introduces Multi-scheduling method for Multi-core hardware platforms without 

running heterogeneous operating systems concurrently. In this technique, there are two 

schedulers in single operating system. One of them is for real-time applications and the other is 

for general or non-real-time applications. In heterogeneous operating systems approach, a real 

time operating system services real-time functionality such as low interrupt latency while a 

versatile operating system processes IT applications. Unfortunately, Real-time and IT 
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applications are isolated and run on different operating system environments. This may cause 

some problems in system design and Inter-Process-Communication (IPC). In Multi-scheduling 

approach, Real-time and IT applications run in the same operating system environment so the 

implementation and maintenance of the system become easier.  

We implemented our work on Linux, widely used general purpose operating system for 

embedded and industrial systems. By modifying Symmetric-Multiprocessing (SMP) technique 

in Linux, two schedulers are enabled to run on same kernel and each of them runs on different 

CPU cores. Our proposed technique is tested by real-time de-facto test tools and programs 

accepted all over the world. The most important characteristic of a real-time application such as 

low interrupt latency and responsiveness were benchmarked. The results show that Multi-

scheduling technique can be profitable to bring the real-time functionality to general operating 

system as in heterogeneous approach. 

 

 

Keywords: Multi-core, Multi-Scheduling, Embedded Systems, Real-time, Scheduling, 

Operating System, Symmetric Multi-processing, Linux 
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Son yıllarda yapılan çalışmalar ve ortaya çıkan ihtiyaçlar günümüz gömülü sistemlerinin hem 

gerçek zamanlama yeteneğine hem de genel yeteneklere aynı anda ihtiyaç duyduğunu 

göstermektedir. Bu iki yeteneği aynı sistem üzerinde gerçekleştirebilmek için birçok 

araştırmalar, çalışma altyapıları ve farklı teknikler geliştirilmiştir. Çok çekirdekli işlemciler 

üzerinde birden fazla ve farklı işletim sistemlerinin bir arada çalışmasını sağlayan yaklaşım 

sistem geliştiriciler arasında en yaygın olanıdır. Yine de heterojen yaklaşımda işletim 

sistemlerinden bir tanesinde meydana gelecek kritik bir hata tüm sistemin çalışmasını 

engelleyebilir. Bu yaklaşımın dışında, son zamanlarda harici ve parça tabanlı olmak üzere farklı 

görev zamanlayıcı teknikleri genel işletim sistemlerine gerçek zamanlama yeteneğini heterojen 

yaklaşım kullanmadan kazandırmak amaçlı geliştirilmiştir. 

Bu tez çalışmasında çok çekirdekli donanımlarda heterojen işletim sistemleri çalıştırmayan 

Çoklu görev zamanlama (Multi-scheduling) ismini verdiğimiz yöntem sunulmaktadır.  Bu 

yöntemde bir işletim sistem içerisinde iki farklı görev zamanlayıcı farklı işlemci çekirdekleri 
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üzerinde çalıştırılmaktadır. Görev zamanlayıcılardan bir tanesi gerçek zamanlı görevler, diğerİ 

ise genel ya da gerçek zamanlı olmayan görevler içindir. Heterojen sistemlerde işletim 

sistemlerinden bir tanesi düşük kesilme gecikmesi gibi gerçek zamanlama yetenekleri 

sunarken, diğer genel amaçlı işletim sistemi de genel amaçlı görevlerde kullanılmaktadır. Ne 

yazık ki heterojen yaklaşımda gerçek zamanlı ve genel görevler birbirlerinden ayrılmış farklı 

işletim sistemlerinde çalıştığından sistem tasarımda ve görevler arası iletişimde bazı sorunlara 

ve zorluklara sebep olmaktadır. Bu çalışmada sunulan çoklu görev zamanlayıcı yönteminde 

gerçek zamanlı ve genel görevler aynı işletim sisteminde dolayısıyla aynı çevrede çalıştığından 

bütün sistemin bakımı ve geliştirimi daha kolay olmaktadır. 

Bu çalışma gömülü sistemlerde ve endüstride birçok kullanım alanına sahip olmasından ve iyi 

belgelenmesinden dolayı Linux işletim sistemi üzerinde gerçekleştirilmiştir. Linux işletim 

sisteminin Simetrik çoklu işleme (Symmetric-Multiprocessing) özelliğinin olduğu bazı 

kesimler değiştirilerek iki farklı görev zamanlayıcının aynı işletim sistemi üzerinde farklı 

çekirdeklerde çalışması sağlanmıştır. Ayrıca kullanıcılar için bu tekniği yöneten bir de 

uygulama hazırlanmıştır. 

Çalışmada geliştirilen yöntem gerçek zamanlı uygulamaların ihtiyaçlarını baz alan ve dünya 

genelinde kabul görmüş test araçları ve uygulamaları kullanılarak değerlendirilmiş ve 

yorumlanmıştır. Özellikle kesilme gecikmelerinde gözlemlenen yöntemin kullanılmadığı 

standart sistemlere göre yaklaşık iki katı iyileştirme ve sistemin ani olaylara daha kararlı cevap 

vermesi sunduğumuz yöntemin faydalı ve kullanışlı olabileceğini ortaya koymaktadır. 

 

 

Anahtar Sözcükler: Çok çekirdekli işlemciler, Çoklu görev zamanlama, Gömülü sistemler, 

Gerçek zamanlama, Görev zamanlayıcı, İşetim sistemi, Simetrik çoklu işleme, Linux 

 

 



v 

 

ACKNOWLEDGEMENT 

First and foremost, I have to thank my research supervisor Assist. Prof. Dr. Kayhan M. İmre. 

Without their assistance and dedicated involvement in every step throughout the process, this 

thesis would have never been accomplished. I would like to thank him very much for his 

support and understanding over these past four years. I want to thank to Dr. Ahmet Burak Can 

and Dr. Ersin Eroğlu for their material and moral support since my undergraduate years. I feel 

lucky to be one of their graduate students, possibly benefiting from their teaching skills one of 

the most, and thank them one more time for the opportunities they have provided me.  

Second, I am very grateful to all of my workmates in Aselsan, specifically Alper Yıldırım and 

Alaadin Köroğlu for their help and insights. I also would like to thank Çağlar Kılcıoğlu, 

Mehmet Emre Şahin and Ozan Küsmen for sharing his studies and ideas with me generously. I 

am also thankful to Canan Balcı Göbekli and Ayşen Balbaş Bulu for feeding us with their 

cakes, muffins and cookies during studies and workings in the lab, Ali İbrahim Bostancıoğlu 

for being a good roommate and workmate and his special encouragements, Ahmet Orunç and 

Tuğser Kutlu for their technical support about hardware, Yaşar Kalay for sharing his endless 

and priceless ideas especially about nature with me. 

I am grateful to my current directors Cemal Kırlılar and Ali Büke for showing tolerance during 

the period of writing this thesis. 

I am also appreciative of the support from my company, Aselsan, for its encouragement and 

financial support to study the Master of Science degree while working. 

I also would like to thank all members of Linux Kernel mailing list, specifically to Steven 

Rostedt, for sharing their ideas with me, which helped me very much in solving problems 

related with this thesis. 

I am also thankful to Mehmet Akif Akkuş and Ahmet İlhan Ayşan, for being a perfect 

colleague and friend, helping me any time when I became boring and dispirited by riding a 

bike. He also advised and helped me to study Master of Science in Hacettepe University. 

Most importantly, none of this could have happened without my parents, Emine Yaşar and 

Fikret Yaşar. And, of course, special thanks for my brother, Mustafa Kemal Yaşar, and my 

sister-in-law, Çiğdem Yaşar, especially for their endless dessert support; baklava. It would be 

an understatement to say that, as a family, we have experienced some ups and downs in the 

past. Every time I was ready to quit, they did not let me and I am forever grateful. This 

dissertation stands as a testament to their unconditional love and encouragement. 

 

 



vi 

 

CONTENTS 

Page 

ABSTRACT .................................................................................................................................. İ 

ÖZET .......................................................................................................................................... İİİ 

ACKNOWLEDGEMENT ........................................................................................................... V 

CONTENTS ............................................................................................................................... Vİ 

LIST OF TABLES .................................................................................................................. Vİİİ 

LIST OF LISTINGS ................................................................................................................... İX 

LIST OF FIGURES .................................................................................................................... İX 

LIST OF SYMBOLS AND ABBREVIATIONS ....................................................................... Xİ 

1. INTRODUCTION ................................................................................................................. 1 

2. RELATED WORK ............................................................................................................... 3 

3. BACKGROUND ................................................................................................................... 5 

3.1. Real Time Systems ............................................................................................................ 5 

3.2. Real Time Operating Systems (RTOS)? ...................................................................... 7 

3.2.1. Monolithic kernel vs. Microkernel ......................................................................... 8 

3.2.2. RTOS vs. General OS ............................................................................................. 9 

3.3. Importance of Scheduling .......................................................................................... 11 

3.4. Real-time Scheduling Algorithms .............................................................................. 12 

3.4.1. Rate Monotonic (RM) Algorithm ......................................................................... 14 

3.4.2. Earliest Deadline First (EDF) Algorithm ............................................................. 14 

3.5. Widely Used RTOSes ................................................................................................ 14 

3.5.1. VxWorks ............................................................................................................... 14 

3.5.2. QNX Neutrino RTOS ........................................................................................... 14 

3.5.3. FreeRTOS ............................................................................................................. 15 

3.5.4. Windows CE ......................................................................................................... 15 

3.5.5. Linux for Real-time .............................................................................................. 15 

3.6. Embedded Systems and Multi-core Processors ......................................................... 17 

3.6.1. ARM Architecture ................................................................................................ 18 

3.7. Asymmetric-multiprocessing (AMP) and Symmetric-multiprocessing (SMP) ......... 19 



vii 

 

4. MULTI-SCHEDULING TECHNIQUE ............................................................................. 21 

4.1. Multi-scheduling Overview ............................................................................................. 21 

4.1.1. Problem in Heterogeneous Systems ........................................................................... 22 

4.2. Linux SMP and Booting .................................................................................................. 24 

4.3. Secondary Startup Kernel ................................................................................................ 26 

4.4. Scheduling Structures in Multi-scheduling ..................................................................... 28 

4.4.1. Scheduling Policy of a Task....................................................................................... 30 

4.5. Real-Time Task Creation................................................................................................. 30 

4.6. Load-balancing ................................................................................................................ 33 

4.7. Other Extensions for Multi-scheduling ........................................................................... 36 

4.7.1. Support in Userspace ................................................................................................. 37 

4.8. Standard Linux Kernel API Functions used in Multi-scheduling .............................. 37 

5. DEVELOPMENT ENVIRONMENT ................................................................................. 39 

5.1. Target and Host Platform ................................................................................................ 39 

5.2. Target Platform ................................................................................................................ 40 

5.2.1. Pandaboard ES Architecture ...................................................................................... 41 

5.2.2. OMAP4460 Processor ............................................................................................... 42 

5.3. Cross-Compilation and Toolchain ................................................................................... 44 

5.3.1. Toolchain components ............................................................................................... 45 

5.3.1.1. Binutils ................................................................................................................. 45 

5.3.1.2. Compilers ............................................................................................................. 45 

5.3.1.3. C library ................................................................................................................ 45 

5.3.2. CodeSourcery Toolchain ........................................................................................... 46 

5.3.3. Downloading and Installing Toolchain ...................................................................... 46 

6. DEVELOPMENT OF MULTI-SCHEDULING IN LINUX KERNEL ............................. 48 

6.1. Why Linux Kernel? ......................................................................................................... 48 

6.2. Linux Kernel Source Tree ............................................................................................... 48 

6.3. Patching ........................................................................................................................... 49 

6.3.1. Patching the Linux Kernel ......................................................................................... 50 

6.4. Linux Kernel Configuration ............................................................................................ 50 

6.4.1. Configuration for Multi-scheduling ........................................................................... 51 



viii 

 

6.5. Compiling the Kernel ...................................................................................................... 54 

6.6. Running the compiled Kernel image ............................................................................... 55 

7. PERFORMANCE ANALYSIS OF THE MULTI-SCHEDULING TECHNIQUE ........... 58 

7.1. Real-time Characteristics to Evaluate ............................................................................. 58 

7.1.1. Responsiveness .......................................................................................................... 58 

7.1.2. Latencies .................................................................................................................... 59 

7.1.3. Eliminating the Surprises ........................................................................................... 59 

7.2. Test Results ..................................................................................................................... 59 

7.2.1. Cyclictest .................................................................................................................... 60 

7.2.1.1. CPU Stress Level 0 ............................................................................................... 61 

7.2.1.2. Raising CPU Stress Level .................................................................................... 62 

7.2.2. Responsiveness and Eliminating the Surprises .......................................................... 64 

8. CONCLUSION, DISCUSSION AND FUTURE WORK .................................................. 66 

BIBLIOGRAPHY ...................................................................................................................... 68 

APPENDIX A ............................................................................................................................ 71 

APPENDIX B ............................................................................................................................. 74 

APPENDIX C ............................................................................................................................. 76 

APPENDIX D ............................................................................................................................ 78 

CURRICULUM VITAE ............................................................................................................ 79 

 

 

LIST OF TABLES 

Page 

Table 5.1. Pandaboard Hardware specifications table ................................................................ 41 

Table 5.2. OMAP4460 processor features ................................................................................. 44 

Table 6.1. Multi-scheduling patches .......................................................................................... 49 

Table 7.1. Latency results in CPU stress level 0 ........................................................................ 62 

Table 7.2. cyclictest Latency results in different CPU stress levels ........................................... 63 

 

 

 



ix 

 

LIST OF LISTINGS 

Page 

Listing 4.1. Multi-scheduling secondary_startup_kernel code changes ..................................... 26 

Listing 4.2. Task creation patch to Linux kernel ........................................................................ 33 

Listing 6.1. Linux kernel configuration over command-line...................................................... 50 

Listing 6.2. Content of .config file ............................................................................................. 54 

Listing 6.3. Compiling Linux kernel .......................................................................................... 55 

Listing 6.4. Generating bootable Linux kernel image ................................................................ 55 

Listing 6.5. Linux kernel boot logs on Pandaboard ES .............................................................. 57 

Listing 7.1. cyclictest pseudocode .............................................................................................. 60 

Listing 7.2. CPU stress level 20% for 120 seconds .................................................................... 62 

 

 

LIST OF FIGURES 

Page 

Figure 3.1. Cost Function associated with hard Real-time Systems ............................................ 6 

Figure 3.2. Cost function of soft Real-time systems .................................................................... 7 

Figure 3.3. Gain function of firm Real-time systems ................................................................... 7 

Figure 3.4. Monolithic kernel vs. Microkernel Architectures ...................................................... 9 

Figure 3.5. Preemptive task and non-Preemptive task ............................................................... 11 

Figure 3.6. The basic attributes of an rt-task .............................................................................. 13 

Figure 3.7. Classification of real-time scheduling algorithms.................................................... 13 

Figure 3.8. Nanokernel and Microkernel architectures .............................................................. 16 

Figure 3.9. Example hardware block diagram of an embedded system ..................................... 17 

Figure 3.10. AMP Multi-core System Structure......................................................................... 19 

Figure 3.11. SMP Multi-core System Structure ......................................................................... 20 

Figure 4.1. Multi-scheduling overview ...................................................................................... 23 

Figure 4.2. Linux kernel boot sequence ..................................................................................... 24 

Figure 4.3. Linux SMP Boot sequence ....................................................................................... 25 

Figure 4.4. Multi-scheduling enabled Linux SMP on the main memory ................................... 28 

Figure 4.5. Scheduling structures and relationships used in Multi-scheduling .......................... 29 



x 

 

Figure 4.6. Real-time or non-real-time task creation flow in Multi-scheduling......................... 31 

Figure 4.7. Load-balancing mechanism in Multi-scheduling ..................................................... 35 

Figure 4.8. Isolation of real-time and non-real-time environments in Multi-scheduling ........... 37 

Figure 5.1. Target and Host platforms on Development environment ....................................... 40 

Figure 5.2. Architectural Block Diagram of Pandaboard ES [31].............................................. 41 

Figure 5.3. Top Real View of Pandaboard ES [31] .................................................................... 42 

Figure 6.1. Linux Kernel Configuration Menu........................................................................... 51 

Figure 6.2. SMP kernel feature not enabled ............................................................................... 52 

Figure 6.3. SMP enabled and Multi-scheduling support appears ............................................... 52 

Figure 6.4. Multi-scheduling is enabled and CPU1 is chosen as rt-core automatically ............. 53 

Figure 6.5. Rt-core selection in a quad-core processor .............................................................. 53 

Figure 7.1. Comparison of Interrupt Latency results of Multi-scheduling patches over CPU 

workload .............................................................................................................................. 63 

Figure 7.2. gpio-toggle test in the standard Linux Kernel .......................................................... 64 

Figure 7.3. gpio-toggle test in Multi-scheduling enabled Linux Kernel .................................... 65 

 

 

 

 

 

 

 

 

 

 

 

file:///C:/Users/ayasar/Docs/Master_of_Science/thesis/Tez_v2.docx%23_Toc393810284


xi 

 

LIST OF SYMBOLS AND ABBREVIATIONS 

Symbols 

µs    microsecond 

 

Abbreviations 

RT    Real-Time 

OS    Operating System 

RTOS    Real-Time Operating System 

AMP    Asymmetric Multi-processing 

SMP    Symmetric Multi-processing 

rt-task    Real-time task 

non-rt-task   Non Real-time task 

rt-core    Real-time CPU core 

Msched   Multi-scheduling 

IPC    Inter-process Communication 

MPI    Message Passing Interface 

SoC    System on a Chip 

CPU    Central Processing Unit 

API    Application Programming Interface 

GCC    GNU Compiler Collection 

CFS    Completely Fair Scheduling 

EDF    Earliest Deadline First 

 

 



1 

 

1. INTRODUCTION 

In the last decade, the processor manufacturers place multiple processor cores in a single chip 

called System on Chip (SoC) to speed up the computation, to improve the performance and to 

reduce the cost. These processors may be composed of two or more independent cores based 

on symmetric or asymmetric multiprocessing architectures [1]. In addition to desktop or server 

PCs, multi-core processors are used in embedded systems for performance and economic 

reasons. 

A typical embedded system is dedicated to perform functions such as real-time data control 

and digital signal processing. Unsurprisingly, embedded systems also require general non-real-

time functionality as well as real-time (RT) functionality. Combination of these two 

functionalities is one of the most challenging problems for embedded and RT system 

developers. In order to overcome this problem, processor manufacturers usually produce 

heterogeneous multi-core processors [1], [2]. In heterogeneous processors, each core runs a 

different type of operating system (OS) to perform required functionality. For example, in a 

dual-core processor, a real-time operating system (RTOS) runs on one core, and a versatile or 

general purpose OS runs on the other. Memory and peripherals are isolated by hardware, or a 

low-level software called hypervisor. On the other hand, in homogenous processors, each core 

runs the same OS code, and share the main memory, peripherals and other resources [2].  

Migration from single-core to multi-core processor brings a discussion about how to manage 

OS code over the cores in SoC. There are two suggested modes; asymmetric-multiprocessing 

(AMP) and symmetric-multiprocessing (SMP). In AMP mode, each core has its own copy of 

OS kernel code, and the codes are generally different from each other (heterogeneous OSes). 

On the contrary, in SMP mode, the same kernel code runs on each core synchronously 

(homogenous OSes). SMP OS dynamically balances the work between processor cores, and 

controls the resource sharing, e.g., main memory, between the cores [3], [4]. 

Despite the fact that the heterogeneous OSes in AMP mode are difficult and costly to 

maintain, they are widely used in embedded RT systems [1], [5]. The reason behind this fact is 

that reserving the processor time for RT tasks in SMP mode is not trivial. In AMP mode, one 

or more cores run a RTOS in which RT application get the total control of the core(s) easily. 

The RTOS has a special scheduler, e.g., EDF scheduler, to meet strict timing constraints [6], 
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[7]. On the other hand, a general purpose OS has a scheduler, e.g., CFS, which gives tasks a 

fair share of a CPU’s time. 

It is essential that a RT system must respond actions or produce results within predefined 

timeframes [7]. In a RTOS, a task must gain immediate access to the processor to produce a 

timely response to an interrupt or action [2], [4], [7]. Therefore, processor should be waiting in 

idle state for the most of its time. Although the processing speed is important for the quality of 

a RT system, it is not the primary purpose of an RT system. The primary purpose of an RTOS 

is to eliminate the surprises [4]. In other words; RTOS must provide a solid infrastructure to 

guarantee the response time of a task. However, in a general purpose OS, time for the 

completion of a task is unpredictable and may diverge [8]. 

In this work, we propose a new technique called Multi-scheduling for SMP multi-core 

embedded processors to enable to run RT tasks along with the general purpose non-real-time 

tasks. We have implemented our approach in Linux since it is the most widely used OS in 

embedded systems. In our approach, there are two schedulers running in a single OS 

environment. After booting on SMP system, one or more cores, selected in kernel 

configuration, change their scheduling policy to an appropriate RT scheduler. Therefore, RT 

tasks and general tasks are run on separate cores. We have measured the interrupt latencies 

and average task completion times of the multi-scheduling policy on a system containing an 

ARM Cortex-A9 dual-core processor. We have also carried out the same measurements for the 

standard kernel on the same hardware. Our results show that multi-scheduling technique can 

be used to bring RT functionality to SMP homogenous multi-core processors. 

The remainder of this paper is organized as follows: Chapter 2 reviews related works; Chapter 

3 gives necessary information as background; Chapter 4 introduces the Multi-scheduling 

technique, and then its implementation on Linux will be detailed in Chapter 5 and 6; Chapter 7 

identifies the benchmark and comparison results; and finally conclusions and future works are 

drawn in Chapter 8. 
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2. RELATED WORK 

Heterogeneous operating systems are widely used in embedded systems to integrate real-time 

and non-real-time functionality together. Low-level software called hypervisor is used to 

partition the hardware resources between OSes [9]. Moreover, physical partitioning techniques 

have been developed to run RTOS and general OS simultaneously on same system [1], [10]. 

However, the physical partitioning techniques require hardware modifications on SoC to 

control the access lists to resources. 

Linux is widely used OS in not only servers and desktops but also embedded systems. 

However, it suffers from lack of hard RT functionality. Although it is originally developed as 

general purpose OS, several RT infrastructures have been adopted to Linux kernel in recent 

years [3], [11], [12]. The RT-patch provides several modifications such as low latency support 

and preemption into the standard Linux kernel to yield hard RT support [4], [13]. Nowadays, 

the standard Linux also can be used in RT application but it provides soft RT infrastructure 

[2], [3]. Researchers in [13] made first experimental analysis of RT performance of the 

standard Linux primitives on multi-core platforms. 

In the recent years, numerous scheduling methods have been suggested for homogenous multi-

core processors. Authors in [14] implemented a hybrid scheduling method to make the 

parallelism by partitioning an application into some parallel tasks. In [6] and [14], the authors 

implement a task splitting semi-partitioned scheduler for multi-core embedded systems. They 

show that semi-partitioned scheduling has better performance and low overhead than other 

partition-based scheduling methods. Moreover, authors in [16] have developed a loadable RT 

scheduler suite to enable multi-core platforms to run different scheduling algorithms 

simultaneously. In [7], the researchers propose a new technique to support to run soft real-time 

periodic tasks in high performance asymmetric multi-core platforms that are running Linux. In 

a different work, a new real-time scheduling method for multi-core platforms that runs threads 

of a multi-threaded real-time task on different cores synchronously is developed in [17]. In the 

approach proposed in [8], real-time tasks are grouped in clusters. A task’s cluster cannot be 

changed later and tasks are scheduled with their own cluster by using EDF scheduling 

algorithm. This hybrid approach enables large-scale multi-core platforms with hierarchical 

shared caches to run real-time tasks. 
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The proposed work in this thesis is a kernel-level approach to bring real-time functionalities to 

a general operating system such as Linux. Rt-patch [4] is also a kernel-level method that 

provides necessary timing features and modifications for the standart Linux kernel. Rt-patch 

provides lower latency in mutual exclusion mechanism such as spinlock and a better 

preemption in task scheduling. Multi-scheduling method is also implemented in kernel level 

like rt-patch, but it creates two isolated environment in kernel space for rt and non-rt tasks. On 

the other hand, rt-patch is able to run all tasks in same environment thanks to its highly 

reliable timing extensions and lower latency feature. 

The work in [1] also targets same problem, running real-time and general tasks together. An 

hardware isolation layer that seperates rt and non-rt environments is proposed. We have been 

inspired from this work and decided to implement this work in kernel level with software. 

To sum up, there are some methods and techniques to similar our proposed Multi-scheduling 

technique to provide both real-time and general functionalities. Our target is to show the fact 

that Multi-scheduling technique can be evaluated as a new technique to isolate real-time and 

non-real-time partitions or environments in same operating system. 
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3. BACKGROUND 

The proposal scheduling technique presented in this thesis involves the integration of various 

hardware and software components. This chapter deals with the basic background knowledge 

required for a clear understanding of the Multi-scheduling technique details. The topics 

covered in this section are quite complex, and it is not possible to cover all details. Therefore, 

only brief summaries of the topics are presented. Firstly, we will brief what real-time and real-

time systems are. Secondly, RTOS and its differences between general OSes will be 

explained. Following that, importance of scheduling in real-time and most known scheduling 

algorithms for RT systems will be summarized. Famous RTOSes will be briefed in Section 

3.5. Then, we will cover embedded systems and multi-core requirements in Section 3.6. 

Finally, the chapter ends with a discussion between asymmetric and symmetric processor 

architectures. 

3.1. Real Time Systems 

In Computer Science, Real-time means a time period that a computer system must produce a 

result or respond in. In other words, it can be considered as a deadline that a result or respond 

must be produced [4], [7]. In the real world, the goal of a real-time system is to have a 

physical effect within a given time period. A real-time system consists of two main 

components; computer and environment. Computer system interacts with its environment to 

get information and responds the environment according to collected data from outside. 

Sensors are used to sense and collect data from environment in real-time embedded systems. 

The computer or controlling mechanism processes the data and produces a respond to outside. 

For example, a thermostat has a temperature sensor that senses the environment and a 

processor that controls an output device such as cooler. Any change in temperature of the 

environment is processed and cooler is managed if necessary. In some real-time systems, 

unexpected changes or unforeseen events may occur and it must be dealt with immediately for 

example in defense critical or medical devices. In this situation, computer system of real-time 

system must demand necessary timings of the task handling the critical events [7]. According 

to the type of real-time system, not demanding or insufficient in timing constraints can cause 

different cost-level results. A failed timing result leads to severe problems for safety critical 

real-time systems. For some systems, failed result is negligible or meeting necessary timings 
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are not so critical. To sum up, an rt-task that needs timing features in a real-time system must 

be handled carefully. In other words, a real-time system must provide accurate and sufficient 

timing features for rt-tasks. These timing properties are very related with task scheduling in a 

real-time system [7]. 

In real-time concept, the correctness of the result that is produced for an event is not only 

consequence. Respond time to an event or meeting necessary timings is also important. If the 

timings are not met, the system can be considered as unsuccessful. The fact that a real-time 

system must provide highly reliable timing features for rt-tasks increases the system’s 

predictability. The higher predictability a real-time system has, the more possible to meet 

timings [12].  

Real-time systems can be separated into 3 groups according to the criticality of the application 

area which the real-time system serves in [7], [18]. 

 Hard real-time system; if the system fails to meet the deadline even once then the 

system is considered to be failed. In other words, not meeting the deadline causes to 

potential loss of life or big economic damage. These systems are considered to be 

safety or mission critical. A cost function associated with hard real-time systems is 

depicted in Figure 3.1. 

 

Figure 3.1. Cost Function associated with hard Real-time Systems 

 Soft real-time system is the system that not meeting the deadline can be tolerable but 

not preferred. There will be no vital results if one or more deadlines are missed or met. 

However, the results are considered as worthless when it is produced after its deadline. 

This causes to increase the cost of the system as figured in Figure 3.2 below for 

example Audio or video stream processes. 
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Figure 3.2. Cost function of soft Real-time systems 

 Firm real-time system; the respond is obsolete if the deadline is missed. For example, a 

fore-casting system is a good example of Firm real-time systems where meeting 

deadline is desired but not critical or vital. Producing a result before deadline is a gain 

and provides to reduce the cost as depicted in Figure 3.3. 

 

Figure 3.3. Gain function of firm Real-time systems 

3.2. Real Time Operating Systems (RTOS)? 

An operating system is a computer program that is responsible for managing and sharing 

hardware resources or components of a computer and provides services to user applications to 

run on the computer. The most important object of an OS is to run application or tasks with 

providing them for the resources such as memory and CPU fairly. On the other hand, A RTOS 

is a special OS provides the tasks with not only the services that an OS provides but also a 

very exact timing constraints and high reliability [2]. In other words, a RTOS is an OS that 

obey the Real-time requirements such as meeting deadline that mentioned on previous section. 

A RTOS must guarantee to not to exceed a maximum time for every critical or urgent process. 

OS calls and interrupt handling can be given as some examples of these operations. These are 

time-bounded operations and not meeting required timings of these operations can cause 

critical problems. In practice, RTOSes are generally grouped in 2 categories [7]; hard and soft. 
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For example, failure or not meeting the timings of an anti-brake system, known as ABS, of a 

car can cause catastrophic results or maybe deaths. Therefore, a hard real-time system is 

needed; you need assurance as the system designer that no single operation will exceed certain 

timing constraints. On the other hand, small failures or latencies in timings of a VOIP 

transceiver device can be negligible or does not cause fatal problems. For this case, a soft 

RTOS may suffice [7], [17]. 

The most important point is that a RTOS must provide rt-tasks with high consistent timing as 

much as possible. Consequently, RTOSes have some opportunities such as task prioritization 

or different scheduling algorithms or policies to make the system to meet desired [7], [18]. On 

the other side, the most popular operating systems which are used in personal computers; for 

example Windows, are called general-purpose operating systems. Operating systems like 

Windows are designed to maintain user responsiveness with many programs and services 

running fairly, while RTOSes are designed to run safety and mission critical applications 

reliably and with determined timing constraints. 

3.2.1. Monolithic kernel vs. Microkernel 

Kernel is the most important and central part of the modern operating systems. It consists of 

the fundamental properties such as scheduling, process management and device drivers of an 

operating system. Operating systems are separated into two groups according to their kernel's 

structure; monolithic kernel and microkernel in Figure 3.4. 

Monolithic kernel is a single large process running in a single address space. All kernel 

services and threads exist and execute in kernel address space and it provides to invoke 

functions directly. If one of the services or threads is crashed, it causes the whole system to 

come down [19]. In order to add some features or fix a problem in kernel, the whole kernel 

source code must be recompiled. It lacks of extensibility and maintainability. However, 

operating system designers have developed kernel module feature to add or remove kernel 

parts online without compiling the whole source code. Linux and UNIX are good examples for 

monolithic kernel based Oss. 
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Figure 3.4. Monolithic kernel vs. Microkernel Architectures 

The kernel is divided into separate threads, known as servers in Microkernel approach. All 

servers are isolated from each other and run in different memory address spaces. Moreover, 

these servers can execute in kernel-space or userspace. Message passing interfaces (MPI) or 

Inter-process Communication (IPC) are used to communicate between services in 

microkernels. Servers uses IPC messages or signals to call other services to carry out chained 

jobs [19]. However, these messaging between services cause to decrease operating system 

performance and this is the most considering disadvantage in this approach. One of the most 

important advantages of this approach is that if one of the servers in OS fails, other servers can 

continue to work. Mac OS X and Windows NT are good examples for Microkernel based 

OSes. 

3.2.2. RTOS vs. General OS 

General operating systems such as Microsoft Windows are designed to run tasks that do not 

need very precise timing constraints. They are suitable for normal use or daily applications 

such as document editing, games and internet browsers. These applications are not critical to 

respond actions or events and being late may not cause fatal results. On the other hand, some 

applications require precise timing constraints to respond to an action or produce a result 

before a deadline. Especially in medical and military areas, applications can need very reliable 
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timing properties to run. Consequently, using a general OS in such situations is not a good 

idea because a general OS cannot provide necessary timing features for a critical task. In this 

section, the major differences between a RTOS and a general OS will be explained.  

Real-time operating systems are featured operating systems with reliable timing properties to 

provide an environment for real-time tasks. In order to satisfy timings, some components of 

operating systems must be enhanced such as latencies and scheduling mechanism. Latency is 

the period between the time when an event is occurred and the time when it is being handled. 

There are mainly two important types of latencies for RTOSes; scheduling latency and 

interrupt latency. Scheduling latency is the time between an rt-task needs to be woken up and 

the time it actually gains to control and run. It occurs in context-switching of the tasks when a 

higher priority task is scheduled or the current task relinquishes the processor. The less the 

scheduling latency is, the much more time remains to meet the deadline for an rt-task. 

Interrupt latency, on the other hand, is the time elapsed between an event occurred and when it 

is actually handled or processed. Interrupt latency is the most important latency to reduce for 

real-time systems [18], [20].  

The other main difference is in scheduling mechanism. RTOSes have generally more 

deterministic scheduler algorithm than general OSes have. Determinism of a scheduler means 

that a task always has an opportunity to switch to CPU, in other words, RTOS provides 

execution for a task when it needs to run. General OSes share the CPU time between tasks 

fairly. On the other hand, RTOSes can not only share equal time slots between tasks but also 

delivers the CPU on event occurring, in other words they can have event-driven scheduling 

method. 

To sum up, RTOSes does not have to have better performance than other general-purpose 

OSes [4], [7], [20]. It is one of the common misconceptions in Real-time concept. Focus of a 

general/regular OS is providing high computing , but a RTOS generally tries to respond events 

as much as possible [20]. OSes are designed to run general applications such as games and 

document editing, while embedded and critical tasks are run in RTOSes.  
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3.3.  Importance of Scheduling 

Scheduler is one of the operating system’s kernel functions that run the tasks or processes in 

order according to its algorithm. When the processor is free or a task yields the processor or 

finishes, the scheduler chooses one of tasks from the task list and switches it to the processor. 

Scheduler can be considered as the engine of an OS. For this reason, it is the most basic and 

important part of an OS [7], [19]. 

Schedulers can be separated into two groups; preemptive and non-preemptive (cooperative). In 

preemptive scheduling, tasks can be suspended periodically, then the scheduler chooses new 

task to gain the processor. For example, imagine that there are 4 tasks in the task list of an OS 

and time period is 100ms. Every task will run at least 100ms in every 400ms cycles. On the 

other hand, tasks themselves decide to relinquish the processor when they finish. For example, 

tasks call sched_yield() system function to release the processor in Linux. This invocation will 

suspend the current task and yields the processor to other tasks in task queue. In spite of the 

easiness in implementation, cooperative scheduler is not suitable for RTOSes due to its lack of 

interrupts in scheduling. In other words, deadlines have to be met in real-time systems so rt-

tasks must gain the processor to finish critical operations before the deadline. It cannot wait 

other tasks to yield the processor. 

 

Figure 3.5. Preemptive task and non-Preemptive task 

 

Due to the requirement for high resolution timing and time constraints, rt-tasks must be 

scheduled or behaved demandingly [1]. Consequently, the scheduler needs to have some 
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special features to handle rt-tasks. The following objectives should be considered in 

scheduling a real-time system; 

 Providing timing constraints and meeting the deadlines of the tasks 

 Speed context switches in process/task changing 

 Preventing concurrent access to shared resources, devices/peripherals 

 Fast respond to soft/hard interrupts 

 CPU is kept in idle as much as possible. It means that CPU should be ready to run an 

immediate task. This provides fast responsiveness and it is preferred in real-time 

systems [7]. 

To sum up, the scheduler or scheduling algorithm is the most fundamental and important part 

of a RTOS. The scheduling algorithm should be chosen according to required timing 

properties of rt-tasks running in the system. In the next section, we will discuss the most 

known and used scheduling algorithms for real-time systems and basic properties of a real-

time scheduling algorithm will be given. 

3.4. Real-time Scheduling Algorithms 

The most important and imperative goal for scheduling in RTOSes is providing reliable timing 

features to complete tasks before deadlines and preventing to access to same shared resource, 

a hardware component or a device simultaneously as mentioned in previous section [18], [21]. 

There are some decisions that a RTOS has to enable to run rt-tasks to meet their timing 

requirements. The set of these decisions are composed in the scheduling algorithm. Many of 

real-time scheduling algorithms need timing features of tasks such as total duration and 

remaining time to finish. Real-time scheduling algorithms should behave according to rt-task 

properties. Each task occurring in a real-time system has some timing properties in Figure 3.6. 

These timing properties can be valuable for scheduling algorithm to choose the task which 

should be scheduled or gain the processor on a real-time system. The timing properties of a 

task are given in the following list; 
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Figure 3.6. The basic attributes of an rt-task [18] 

 Release time (or ready time): It is the time that task is ready to go or run. 

 Deadline: The last time that the task must finish before. 

 Start time: Actual time that the task is being processed. 

 Execution time: It is total amount of time that task is being processed or switched to 

processor. 

 Completion time: It is time that the processing of task is finished. 

 Response time: Time between release time and completion time. It is a very important 

timing constraint for an rt-task. Environment deals with the response time and tests for 

real-time systems measure this duration for performance evaluations. 

The scheduling algorithms for real-time systems can be grouped according to the number of 

cores in the processor; uniprocessor or multiprocessor, or runtime decisions; on-line or off-

line; or task priority; static or dynamic, as figured in Figure 3.7. In this section, the most 

known and used algorithms will be explained briefly. 

 

Figure 3.7. Classification of real-time scheduling algorithms [7] 
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3.4.1. Rate Monotonic (RM) Algorithm 

Rate Monotonic is a fixed priority algorithm. In this approach, the higher priority a task has, 

the more CPU usage it gets. The scheduler using this algorithm always gives the processor to 

task having highest priority. Unique priorities are assigned to tasks at release time with respect 

to the cycle duration of the job and the task having shorter cycle duration or little jobs to get 

the higher priority. It is a preemptive and has deterministic guarantees for respond times. See 

[7] for detailed explanation and example about RM algorithm. 

3.4.2. Earliest Deadline First (EDF) Algorithm 

Dynamic priority algorithm is the most used and important for Real-time systems. The priority 

of a task can be changed while it is running. Contrary to Rate Monotonic algorithm, Earliest 

Deadline First (EDF) algorithm is based on priority changing. The priority of a task is 

inversely proportional to its deadline, that is, if a task’s deadline is approaching, its priority 

also increases. In the same deadline of one or more tasks exception, priorities are delivered 

randomly. See [22] for detailed explanation and example about EDF algorithm. 

3.5. Widely Used RTOSes 

There are many different RTOSes provided by not only microprocessor manufacturers but also 

critical software companies in the community. In this section, we will cover the most widely 

known and used RTOSes briefly. 

3.5.1. VxWorks 

Wind River’s VxWorks is one of the most popular RTOSes widely used in robotics, 

communications, avionics, flight simulation and other critical control applications. It provides 

reliability and scalability with multi-core support, including AMP and SMP operating system 

configurations [23]. 

3.5.2.  QNX Neutrino RTOS 

QNX software is preferred to develop solutions for life-critical systems such as air traffic 

control, surgical equipment and automobiles. It provides multi-tasking, preemptive 

scheduling, multi-threading and fast context-switching in a very small scalable size. 
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Furthermore, POSIX Standard API is also delivered for application developers. It is based 

upon on microkernel architecture and message-based inter-process communication [24]. 

3.5.3.  FreeRTOS 

FreeRTOS is a popular RTOS for embedded devices, being ported to many microcontrollers. 

It is distributed under the GPL. It is designed to be small and simple. The kernel is more 

readable and easy to port and it is only written in C. It provides multiple threading, mutexes, 

semaphores and software timers. Moreover, tick-less option is provided for low-power 

applications. OS scheduler is configurable for both preemptive and cooperative. 

3.5.4.  Windows CE 

Windows CE is maintained by Microsoft and designed for mobile phone applications. Its real-

time performance is not good enough to compare with other commercial or free RTOSs. In 

addition to this, because of being not POSIX compliant is not widely used in Real-time 

systems. It is designed for real-time developers familiar with Windows operating systems. 

3.5.5.  Linux for Real-time 

Linux is a UNIX-like general purpose monolithic operating system kernel and distributed 

under GPL. It is most widely used operating system on the world in many areas such as 

servers, work-stations, personal computers and mobile phones. Thanks to being developed and 

maintained by a big community all over the world, it supports many CPU architecture and 

devices. This makes the Linux kernel widely used OS [12]. 

Many Linux kernel developers have suggested real-time enhancement modifications for the 

last decade. These modifications to provide the real-time responsiveness for the standard 

Linux kernel can be grouped in three basic approaches.  Each of them is distributed as patches 

to the standard kernel. 

 Micro-kernel Approach: In this approach, a new software layer is added between 

hardware and operating system. This additional software layer is called micro-kernel 

and responsible for all real-time tasks and operations such as interrupt handling, real-

time scheduling and highly precise timing. This micro-kernel runs the real general 
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purpose operating system as normal task and dispatches all non-real-time operations to 

it in Figure 3.8 (b).  

 Nanokernel approach is an alternative software layer and it can run more than one 

operating system simultaneously in Figure 3.8 (a). It only dispatches the interrupts. 

RTLinux and Xenomai are the most popular examples of this approach. RTLinux is 

based on micro-kernel approach, while Xenomai is based on nanokernel approach [4], 

[12]. 

  

Figure 3.8. Nanokernel and Microkernel architectures 

 Kernel-level approach: Implementing kernel extensions is the second approach. Real-

time extensions such as high resolution timers, preemptive scheduling policies and 

high respond interrupt handling mechanism are added to the standard Linux kernel 

source code. The RT-patch maintained by RedHat Inc. and licensed GPL is the best 

and known real-time kernel-level extension for the standard Linux. Kernel-level 

approach is very popular and many real-time developers create and add their own 

extensions to the standard kernel. It is easy and more efficient way to bring real-time 

ability into the kernel. 

Our work is a kernel-level approach. We have created some patches for the scheduling of the 

standard Linux kernel to handle real-time tasks and threads specially. We will explain it in 

details in later sections. 
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3.6.  Embedded Systems and Multi-core Processors 

An embedded system is a device with a microprocessor that is dedicated to specific tasks for 

special purpose. An embedded system is composed of one or more microcontrollers that is 

configured or programmed to perform for special tasks. In contrast to general-purpose 

systems, embedded systems processes special tasks according to the application area [1], [25]. 

In the hardware design of an embedded system, there may be some peripheral devices 

depending on the application that embedded system runs. For example, if the embedded 

system is needed to perform audio operations, there will be an audio codec microchip to 

perform codec conversion processes. These peripheral devices may be one or more in an 

embedded system, it depends on the application. In figure 2.1, the hardware block diagram of 

a typical embedded system is shown. In the center, there is a microcontroller generally a 

System on Chip (SoC) and other peripherals or components are connected to it via system 

buses such as SPI and I
2
C [26]. 

A system on a chip or system on chip (SoC or SOC) is an integrated circuit (IC) that consists 

of all components such as USB, I
2
C, DMA and MMU of a computer system inside a same 

single packaged chip [27]. SoCs are generally used in the area of embedded systems. 

 

Figure 3.9. Example hardware block diagram of an embedded system [26] 
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Many embedded systems in the real world acquire real-time properties to operate. In other 

words, many of the real-time systems are embedded systems. A real-time system guarantees a 

worst case maximum time to complete an operation or response to an action. Embedded 

systems are dedicated to operate specific tasks and these are generally real-time tasks that need 

time constraints and precise timing. Execution of a periodic task that many embedded systems 

provide is one of the requirements of a real-time system. 

Application areas of embedded systems are rapidly growing and their functionality and ability 

are rising up. Unsurprisingly, many embedded systems need not only real-time control 

functionality and precise timing features but also general IT functions for running non real-

time applications such as database management and networking. Combination of these two 

functionalities is one of the most challenging problems for embedded and RT system 

developers. In order to overcome this problem, multi-core processors which have one or more 

CPU core in same SoC are begun to use in embedded systems. Moreover, processor 

manufacturers, nowadays, produce heterogeneous and homogenous multi-core processors to 

solve this problem. In heterogeneous processors, each core can run a different type of 

operating system to perform required functionality. For example, in a dual-core processor, a 

RTOS runs on one core, and a versatile or general purpose OS runs on the other. On the other 

hand, each core runs the same OS code, and share the main memory, peripherals and other 

resources in homogenous multi-core processors. 

3.6.1. ARM Architecture 

Advance RISC Machine (ARM) is the leader company in providing of 16/32-bit embedded 

RISC microprocessor design solutions. The company sells its high-performance, low-cost, 

power-efficient designs of their processors, peripherals and system-chip to other electronic 

component manufacturers such as Texas Instruments and Freescale. The Company, best 

known for its processor designs, does not produce physical integrated circuits (IC). ARM 

grant license of core to different silicon vendors like ATMEL, Texas Instruments, Samsung 

etc. ARM-based microprocessors are used in many areas such as handhelds, mobile phones, 

automation, robotics and consumer electronics [11], [28].  



19 

 

3.7.  Asymmetric-multiprocessing (AMP) and Symmetric-multiprocessing (SMP) 

Migration from single-core to multi-core processor brings a discussion about how to manage 

OS code over the cores in SoC. There are two suggested modes; asymmetric-multiprocessing 

(AMP) and symmetric-multiprocessing (SMP). In AMP mode, each core has its own copy of 

OS kernel code, and the codes are generally different from each other (heterogeneous OSes). 

On the contrary, in SMP mode, the same kernel code runs on each core synchronously 

(homogenous OSes). SMP OS dynamically balances the work between processor cores, and 

controls the resource sharing, e.g., main memory, between the cores. System developers 

choose appropriate form of multi-processing approach according to their application 

requirements.  

 

Figure 3.10. AMP Multi-core System Structure [29] 

In AMP systems, each core can run not only same type OS image but also different type OS 

image. Therefore, in heterogeneous OSes approach where each core can run different OS 
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images simultaneously, processors that have AMP support are preferred [29]. In a 

homogeneous environment, the cores in the processor should be grouped to run different OS 

images efficiently in Figure 3.10.  

 

Figure 3.11. SMP Multi-core System Structure [29] 

Sharing hardware resources or components in a multi-core processor can be hard to do. 

Especially in AMP systems where each core runs different type of OS kernel image and 

unawares of other OSes. SMP solves many of the issues in allocating and sharing resources by 

running same copy of an OS in all processor cores [29]. In SMP systems, all resources are 

managed and controlled from only same software that decides to give a resource to a task 

running in one of the cores without awareness and any input from user. SMP systems can 

allocate or share all resources rather than a CPU core to a specific task a shown in Figure 3.11. 
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4. MULTI-SCHEDULING TECHNIQUE 

Multi-scheduling technique, proposed in this thesis, is a kernel-level approach to bring real-

time functionality to the standard Linux kernel. Multi-scheduling is developed for SMP 

operating systems (OS), where each core runs the same kernel code synchronously as if the 

system has a single-core processor [29]. 

Most of the modern OSes support the SMP system. In SMP systems, one of the cores, 

generally CPU core-0 called primary-core is responsible for initialization of the hardware and 

all subsystems at boot time. After successful initialization, the same kernel code is copied to 

the other cores, called secondary-cores, on the SoC. Then, the tasks are assigned to cores to be 

run and load-balancing mechanism balances the work on the cores running the same 

scheduling policy. Briefly, multi-scheduling technique enables the OS to run different 

scheduling policies on different CPU cores of the processor. 

In this chapter, an overview of the Multi-scheduling is given in Section 4.1. On the following 

sections, implementation details of Multi-scheduling technique in the Linux kernel will be 

explained. In some of the sections followed, we will brief about Linux kernel framework and 

functions used in the modification. 

4.1.  Multi-scheduling Overview 

In many embedded systems, real-time tasks (rt-task) and non-real-time tasks are required to be 

run together. The process scheduler of an OS where rt-tasks running have to care the deadline 

of the processes [7]. These time sharing operations are in the concern of the scheduling 

algorithm. For example, in a RT scheduling algorithm, if the deadline of an rt-task is set to 10 

nanoseconds, the scheduler must allow the task to run the critical operation in 10 nanoseconds 

before the deadline arrives. On the other hand, in general purpose OSes, it is not so critical to 

give the processor time to non-rt-tasks. Consequently, same scheduler system or scheduling 

algorithm cannot be use in both RTOS and general purpose OS. This causes to use real-time 

system designers to use heterogeneous operating systems approach where generally two 

different type of operating systems run. One of them is a RTOS for rt-tasks and the other is 

general purpose OS for general tasks or non-real-time tasks. However, this approach causes 

problems in maintenance and reliability of the system. They will be detailed in later sections. 
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Multi-scheduling technique is proposed to overcome these problems. It provides real-time 

system designers to run different schedulers in the same OS environment. Therefore, there is 

no need to run and strive at developing on different type of OSes. Topics covered in this 

chapter are about fundamentals of the Multi-scheduling technique. 

4.1.1. Problem in Heterogeneous Systems 

Multi-scheduling technique is developed for SMP based operating systems. The main problem 

is running different type of operating systems for rt and non-rt tasks in a computer system. 

This not only causes the system developers to spend much more time on different OS 

environments and APIs but also hardens the communication between rt and non-rt tasks. 

Although working with heterogeneous systems is hard to maintain, it is the most suitable way 

to bring real-time and general IT functionalities together. Multi-scheduling technique is 

designed to be an alternative way to do that. Thanks to this technique, system developers deal 

with only one operating system that supports necessary functionalities for rt and non-rt tasks. 

Moreover, both of them run in the same operating system so there is no need to find out an 

IPC mechanism between different operating systems. In this section, Multi-scheduling 

technique will be explained in details. Some explanations are based on the Linux kernel and 

the reader will be warned about that. 

Most of the modern OSes support the SMP system. In SMP systems, one of the cores, 

generally CPU core-0 called primary-core is responsible for initialization of the hardware and 

all subsystems at boot time. After successful initialization, the same kernel code is copied to 

the other cores, called secondary-cores, on the SoC. Then, the tasks are assigned to cores to be 

run and load-balancing mechanism balances the work on the cores running the same 

scheduling policy while online. This feature is special to Linux kernel. Other operating 

systems which support SMP use different methods to balance the work on CPU cores. 
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Figure 4.1. Multi-scheduling overview 

Linux kernel is composed of threads a.k.a. kernel threads such as interrupt handlers and kernel 

services. They are also handled by the system scheduler, running periodically depended on the 

CPU architecture and triggered by the CPU timer. In a multi-core platform, each CPU is 

triggered by its timer and runs the same scheduler code. For SMP systems, all kernel threads 

share the same context in the main memory. Therefore, additional synchronization codes, i.e., 

spinlocks, are used to provide consistency between multiple threads. All tasks stored in the 

memory are handled by schedulers in CPUs synchronically.  In Multi-scheduling technique, 

the shared context is copied and modified for one or more of the secondary-cores. We called 

these cores rt-cores where RT tasks will be handled on. Rt-cores will change its scheduling 

policy for RT task scheduling in their copied context. Moreover, load-balancing mechanism 

which balances the work between cores does not interfere with rt-cores; in other words, these 

cores are isolated from the other cores. For example, in Figure 4.1, CPU core-0 of a dual-core 

embedded system initializes and configures the hardware, and then, the core-1 runs a 

secondary startup code to initiate itself. In this secondary startup code for core-1, the 

scheduling policy of the second kernel image is changed to an RT scheduler and the load-

balancing mechanism becomes aware of this. These procedures will be explained detail in next 

sections of this chapter. 

In the following sections, the modifications to the standard Linux kernel for Multi-scheduling 

support will be covered. In each section, the most important modifications and additions to the 

standard kernel functions will be explained with code snippets, flowchart and figures. In this 

work, all modifications are applied to Linux Kernel version 3.4.  
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4.2.  Linux SMP and Booting 

As mentioned in previous sections, the primary-core or primary CPU, generally core-0, is 

responsible for booting in the standard Linux kernel on a multi-core processor. Once the 

power is enabled for the system, bootloader which is the first software running detects the 

Linux kernel and loads it to a known address on the main memory (RAM). Then, the Linux 

kernel is compressed itself and begins the initialization. All of these works are done by 

primary CPU and many of the SMP operating systems are booted by the primary-core. 

Every necessary initialization are executed in start_kernel() function located in init/main.c file 

in the standard Linux kernel source code and it is executed by primary core. The most 

important part of this function is the invocation of sched_init() method residing in 

kernel/sched/core.c file. In this method, the settings of the scheduler such as choosing the 

scheduling policy are held. After all initializations are done, kernel_init() function is called. 

This function initiates the SMP feature and call smp_prepare_cpus() function where 

secondary_startup_kernel code is executed by each secondary core. Lastly, this function 

invokes init_post() method to run the first userspace task in Linux kernel so the system starts 

to service. Both kernel_init() and init_post() functions are located in init/main.c source file. 

These invocations in initialization are figured in Figure 4.2 with Linux kernel source file 

names. 

 

Figure 4.2. Linux kernel boot sequence 

Main parts of the Linux kernel are initialized by the primary-core such as timers, scheduler 

and process management. Other cores, secondary-cores, run in idle while the main 



25 

 

initialization is in progress. When it is done, the kernel running on the primary-core signals 

secondary-cores to run a special minimal code called smp_secondary_init() to be initialized. In 

this function, related CPU core is just prepared to get tasks. In Figure 4.3, SMP initialization is 

figured on a quad-core processor. While primary CPU carries out the initialization processes, 

secondary cores executes NOP (No OPeration) code and waits. When the basic kernel setup is 

finished, secondary cores are signaled to execute secondary_start_kernel() function. This 

function is the secondary CPU boot entry. It is executed by each secondary CPU separately 

and some special setup and initialization are held. After successful execution, corresponding 

secondary CPU is switched to idle state and waits for task execution. In this stage, CPUs are 

added to possible_cpus list which available CPUs to run a task are kept in the kernel. 

 

Figure 4.3. Linux SMP Boot sequence 

As you see, CPU 0 takes all of the initialization jobs alone and secondary CPUs are just 

prepared to run tasks. The functions about SMP in Linux kernel will be worked out in details 

later. After all of these initialization works, every CPU core is get a task from task list of the 
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scheduler and processes it. Each CPU is triggered by its own timer periodically. This leads to 

run the timer interrupt routine which is addressed in CPU interrupt vector map according to 

CPU architecture. In this interrupt routine, operating system scheduler function is invoked by 

corresponding CPU to decide which the task will be switched on the task list. From this 

workflow, it is deduced that every CPU core runs the kernel scheduler function specially to 

switch between tasks. Every CPU core run the same kernel image and works with shared 

kernel data structures such as tasklist where all task data structures are stored. In order to 

prevent conflictions in seeking these shared data structures, mutex and semaphore based 

mechanisms, explained in details later, such as spin_lock() are used in Linux kernel [19], [28].  

4.3.  Secondary Startup Kernel 

In our proposed approach, one or more of the secondary-cores runs a modified 

secondary_startup_kernel() code which enables to change some parts of the main kernel 

image. In multi-scheduling technique, one or more CPU cores are separated to run and 

schedule rt-tasks only. These CPUs are called as rt-cpus or rt-cores. On boot time of the Linux 

kernel, all CPU cores are initialized and run secondary_startup_kernel() function. However, 

rt-cores are not push to possible_cpus list. This is the main idea to separate rt-cores from other 

CPU cores. Consequently, the scheduler and load-balancing mechanism become not to be 

aware of them. This isolation method is added to secondary_startup_kernel() function as it is 

shown in green colored code in Listing 4.1. 

asmlinkage void __cpuinit secondary_start_kernel(void) 

{ 
     struct mm_struct *mm = &init_mm; 
     unsigned int cpu = smp_processor_id(); 
     printk("CPU%u: Booted secondary processor\n", cpu); 

     ... 

     /* Do not give the rt-cores to scheduler */ 

     if (!is_rt_core(cpu)) { 

        set_cpu_online(cpu, true); 
     } 

     ... 
     if (is_rt_core(cpu)) { 

        cpu_idle(); 
     } 
} 

Listing 4.1. Multi-scheduling secondary_startup_kernel code changes 
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Other Linux kernel functions used in this modification for Multi-scheduling are listed and 

explained below; 

Function smp_processor_id 

Prototype notrace unsigned int debug_smp_processor_id(void); 

Description Returns the CPU number on which the code is executed right now 

File lib/smp_processor_id.c 

 

Function cpu_idle 

Prototype void cpu_idle(void); 

Description 
It is an infinite loop used to wait the executed CPU in idle state. It also 

makes the CPU possible for scheduling.  

File arch/<arch = arm>/kernel/process.c 

 

In standard SMP Linux, all kernel threads share the same memory context, in other words; 

every kernel data structures and variables are unique for all threads. However, the same kernel 

image is copied for all CPU cores and stored in different part of the main memory (RAM). For 

example in Figure 4.4, the copied kernel images are shown in different part of the main 

memory for a quad-core microprocessor. Each CPU core fetches its kernel instructions from 

its own memory partition. On the other hand, the kernel variables and data are shared and 

concurrent access can cause failures. Therefore, some software lock mechanisms such as 

mutex are used to prevent concurrent access in standard Linux SMP. For example, access to 

the tasklist data structure which the tasks are stored in is encapsulated with Linux kernel 

special locks; spinlock. Spinlock is a mutex-like mechanism that prevents the thread which is 

trying to get it if it is acquired by another thread before. It is widely used in Linux kernel to 

prevent problems that occurs in concurrent access to same resource. If a thread needs to access 

to a hardware or software resource that is protected by a spinlock, it must gain the spinlock at 

first. And, if the resource is in use by another thread, spinlock keeps it waiting. In Multi-

scheduling, spinlocks are used to control to access some shared kernel data structures like 

CPU runqueues. 
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Figure 4.4. Multi-scheduling enabled Linux SMP on the main memory 

The modifications in secondary startup kernel code provide to isolate rt-core to be used for all 

tasks in the system. is_rt_core(int cpu) function checks whether the given CPU is a separated 

CPU core for rt-task or not. Rt-cores are selected in kernel configuration which will be 

discussed later. 

4.4.  Scheduling Structures in Multi-scheduling 

Multi-scheduling technique does not provide a new scheduler algorithm, it provides to run 

different type of schedulers in same system instead of running different type of operating 

systems. In standard Linux kernel, Completely Fair Scheduler (CFS) is the default scheduler 

for all tasks. The Completely Fair Scheduler (CFS) is added to Linux kernel in version 2.6.23 

to provide fair sharing of CPU resources between tasks [4] and it is default scheduling 

policy/algorithm.  

In Linux, processes are scheduled for execution from a doubly-linked list of processes, called 

the runqueues (rqs). See [19], for rq data structure details. This data structure is unique for 
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each CPU cores. As you can see from the code snippet of this structure, some valuable 

information’s such as number of switching between tasks, number of running tasks and the 

next runnable task are also stored. One of the most important data stored in this structure is 

load_weight. This information is used in load-balancing mechanism which will be discussed 

later. This runqueue structure holds the task structures running on corresponding CPU core. 

Every task is stored with a task data structure task_struct in the Linux kernel. It keeps all 

information such as memory context, priority and allowed CPUs to run on about a task. 

cpus_allowed data field in task structure is important for the implementation of Multi-

scheduling technique. In Figure 4.5, all of these structures and its relationships are given. 

 

Figure 4.5. Scheduling structures and relationships used in Multi-scheduling 

Some extra information like allowed CPU numbers are added to these task related structures in 

Linux kernel. Because of belonging to each CPU core privately, CPU type, rt-core or non-rt-

core, is stored in struct rq. Moreover, cpus_allowed list is modified in struct task_struct to 

determine CPUs in which a task will run. 
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4.4.1. Scheduling Policy of a Task 

Each task has a scheduler class which shows the scheduler algorithm or policy is used in 

scheduling the task. In the standard Linux kernel, there are three type of scheduling policies. 

SCHED_FIFO is a First-In, First-Out real-time scheduler policy. In this policy, when a task is 

assigned to a CPU, it is being executed until a new higher-priority task arrives. The task with 

highest priority always gains the CPU usage and does not relinquish it. The other policy is 

SCHED_RR, Round Robin real-time scheduler. This policy shares the CPU with same time 

duration between tasks. For example, if there are 4 tasks with same priority and execution 

duration is defined as 100ms, each task will gain the CPU control for 100ms in each 400ms 

loops. However, tasks generally have different priorities in practice. In this situation, the 

higher priority a task has, the more CPU time it gains by this policy. Shortly, this policy 

guarantees to share CPU usage between tasks fairly. SCHED_OTHER or SCHED_CFS is 

conventional, time-shared and default scheduler policy. It is also known as SCHED_CFS. 

Linux scheduler supports three different types of scheduling algorithms and it can be chosen 

and configured in the kernel configuration. 

4.5.  Real-Time Task Creation 

Task creation request usually comes from userspace via system calls to Linux kernel. Linux 

provides fork() and execv() system calls to create new tasks on the system form userspace. 

fork() function invokes do_fork() kernel function which performs error checking and initial 

setup for the fork in process management. In this function, new task is copied from its caller 

task and it is ready to schedule. wake_up_new_task() call inserts new task to a runqueue to be 

scheduled. The process creation order is showed in Figure 4.6. 
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Figure 4.6. Real-time or non-real-time task creation flow in Multi-scheduling 

Scheduling policy of new task is same with its parent and init program is the first and parent of 

all tasks in Linux. In standard Linux, all tasks have the same scheduling policy SCHED_CFS 

or SCHED_NORMAL by default. In Multi-scheduling technique, process creation is done by 

a special application. We have implemented a task-assigner utility to assign tasks either to RT 

or non-RT partition. The utility runs a task first and then changes its scheduling policy to 

SCHED_RR if the task is for RT partition; otherwise the policy is set to SCHED_NORMALs 

for non-RT tasks. The RT tasks are assigned to rt-cores, and the rest assigned to the other 

cores. In addition to forking the task structure and changing the task’s scheduling policy, the 

task-assigner updates the allowed core(s) list for the task. Therefore, the tasks assigned to RT 
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partition are scheduled by the RT scheduler in the kernel space. See the Appendix A for more 

details about task-assigner application.  

In kernel side, some modifications are done in wake_up_new_task() function executed when a 

new task is created. If a task is an rt-task; in other words, it is created by task-assigner as rt-

task, it will be put on a runqueue of one of the rt-cores. New wake_up_new_task() function is 

given in Listing 4.2. The coded highlighted with green color checks the task type; rt or non-rt. 

The scheduling policy of rt-tasks is set to SCHED_FIFO or SCHED_RR policy, and 

SCHED_CFS for non-rt-tasks by task-assigner application. In kernel level, appropriate 

wakeup CPU which executes the task for the first time. 

void wake_up_new_task(struct task_struct *p) 

{ 

 unsigned long flags; 

 struct rq *rq; 

 

 raw_spin_lock_irqsave(&p->pi_lock, flags); 

#ifdef CONFIG_SMP 

 /* 

  * Fork balancing, do it here and not earlier because: 

  *  - cpus_allowed can change in the fork path 

  *  - any selected cpu disappear through hotplug 

  */ 

     cpumask_t mask; 

 if (p->sched_class == SCHED_RR ||  

          p->sched_class == SCHED_FIFO){ 

       set_task_cpu(p,select_task_rq(p, 

               SD_MULTI_SCHEDULING, 0)); 

 

            cpus_clear(mask); 

            cpu_set(get_rt_cores(), mask); 

      } 

      else { 

      set_task_cpu(p,select_task_rq(p,SD_BALANCE_FORK,0)); 

 

          cpus_clear(mask); 

          cpu_set(get_non_rt_cores(), mask); 

      } 

      p->cpus_allowed = mask; 



33 

 

#endif 

 rq = __task_rq_lock(p); 

 activate_task(rq, p, 0); 

 p->on_rq = 1; 

 trace_sched_wakeup_new(p, true); 

 check_preempt_curr(rq, p, WF_FORK); 

#ifdef CONFIG_SMP 

 if (p->sched_class->task_woken) 

  p->sched_class->task_woken(rq, p); 

#endif 

 task_rq_unlock(rq, p, &flags); 

} 

Listing 4.2. Task creation patch to Linux kernel 

In Multi-scheduling technique, all new tasks are created and switched to non-rt-cores which 

are responsible to execute non-rt task regardless of being rt or non-rt task. In 

wake_up_new_task() function, if newly created task is an rt-task, it is assigned to one of the rt-

cores. This dispatching is implemented in this function as shown in code Listing 4.2. In 

standard Linux kernel, every task has a field named cpus_allowed and it represents the cpus 

which the task can be executed on. Multi-scheduling technique uses this feature to separate 

tasks between CPU cores. See the next section to get more information about the functions 

used in the task creation process.  

4.6.  Load-balancing 

In SMP based operating systems, it is desired that each CPU's work should be the same. In 

order to provide this fairness, there is a load-balancing mechanism to balance the total jobs 

between the CPUs on the system. In Linux kernel, the balancing is done by a kernel thread 

called load_balance. This thread, invoked by the scheduler in process operations such as task 

creation new process creation, senses and calculates the jobs on the CPUs and move the jobs 

or tasks between CPUs' runqueues to balance the total work [19].  

To isolate rt and non-rt tasks in the same operating system, one of the important modifications 

in kernel-space have been applied to Linux load-balancing mechanism working on the 

runqueues to balance the tasks between CPU cores on the system. The load balancing 

mechanism for rt-cores does not interfere with the corresponding mechanism for the cores 
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reserved for non-real-time tasks. Consequently, the whole environment is partitioned into two 

separate environments; RT and non-RT. The tasks are also split into two groups, and each task 

runs on a corresponding core depending on its type whether it is RT or non-RT.  

load_balance() function checks given CPU's workload whether there is an imbalance with 

other CPUs' workload or not. If there exists, It can move some tasks to other CPU's run 

queues. In Multi-scheduling technique, this function is needed to be modified. It must balance 

total real-time work between rt-cores and non real-time work between non rt-cores as it is 

shown in the flowchart diagram with some code details in Figure 4.7. 
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Figure 4.7. Load-balancing mechanism in Multi-scheduling 
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4.7.  Other Extensions for Multi-scheduling 

Multi-scheduling technique is developed for Linux. It is initialized and started to run in the 

boot process. The boot process of embedded systems is different from desktop or server PCs. 

When the power button is pressed, a small boot-loader software finds the OS image and loads 

it to the main memory and then OS initialization process begins. In the Linux SMP 

environment, core-0 is primary-core for initialization. When the secondary cores execute 

special secondary initialization kernel code, each secondary core prepares its specific 

resources such as MMU and caches, and then they wait for task processing in idle state while 

executing the idle process with PID 0. There is no need to reinitialize all resources in system 

because they have already been configured by primary-core. Consequently, each core on the 

system has its own environment containing a scheduling policy triggered by a timer specific to 

the core.  

We have carried out some modifications to the Linux operating system in both user-space and 

kernel-space. In kernel-space, secondary_start_kernel() code has been modified to run a 

different scheduling policy for RT functionality. First of all, rt-cores are selected in kernel 

configuration for multi-scheduling and the selected core list is stored to allow tasks to run on 

them later. In secondary_start_kernel(), the shared context is copied for rt-cores and the rt-

cores re-initialize the scheduling mechanism. Each rt-core changes its scheduling policy to 

SCHED_RR or SCHED_FAIR policies, defined in the Linux Kernel for RT applications, 

rather than SCHED_OTHER, aka CFS (Completely Fair Scheduling) default policy in Linux. 

In Linux, each core has its own task queue (runqueue) for keeping the task to be run on that 

core. The other modifications in kernel-space have been applied to Linux load-balancing 

mechanism working on the runqueues to balance the tasks between CPU cores on the system. 

The load balancing mechanism for rt-cores does not interfere with the corresponding 

mechanism for the cores reserved for non-real-time tasks. Consequently, the whole 

environment is partitioned into two separate environments; RT and non-RT. The tasks are also 

split into two groups, and each task runs on a corresponding core depending on its type 

whether it is RT or non-RT. This is depicted in Figure 4.8 below.  
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Figure 4.8. Isolation of real-time and non-real-time environments in Multi-scheduling 

4.7.1. Support in Userspace 

Apart from these modifications in kernel-space, some additions more are needed in user-space 

for Multi-scheduling. We have implemented a task-assigner utility to assign tasks either to RT 

or non-RT partition. The utility runs a task first and then changes its scheduling policy to 

SCHED_RR if the task is for RT partition; otherwise the policy is set to SCHED_FIFO for 

non-RT tasks. The RT tasks are assigned to rt-cores, and the rest assigned to the other cores. In 

addition to forking the task structure and changing the task’s scheduling policy, the task-

assigner updates the allowed core(s) list for the task. Therefore, the tasks assigned to RT 

partition are scheduled by the RT scheduler in the kernel space. 

4.8.  Standard Linux Kernel API Functions used in Multi-scheduling 

Multi-scheduling uses the API that Linux kernel provides to develop kernel level 

implementations. In this section, the most important API functions which are used in the 

implementation of the Multi-scheduling technique will be explained.  

Function set_task_cpu 

Prototype void set_task_cpu(struct task_struct *p, unsigned int new_cpu); 

Description Assigns a task to a CPU. Task is linked to the chosen CPU's runqueue and 
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executed on it. 

File kernel/sched/core.c 

 

Function select_task_rq 

Prototype int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags); 

Description 

Finds and return CPU which is appropriate for the execution of given task. 

sd_flags parameter defines the CPU selection settings or sched domains. 

This flag is used in load-balancing to find the CPU. For example, if this 

flag is set to SD_BALANCE_WAKE sched domain, this task needs to be 

scheduled on wakes. 

File kernel/sched/core.c 

 

Function __cpu_clear 

Prototype static inline void __cpu_clear(int cpu, volatile cpumask_t *dstp) 

Description 
It gets a cpumask_t data which holds the runnable CPU numbers of a task 

and clears the given CPU from the task's allowed run CPU list. 

File include/linux/cpumask.h 

 

Function __cpu_set 

Prototype static inline void __cpu_set(int cpu, volatile cpumask_t *dstp) 

Description 
It gets a cpumask_t data which holds the runnable CPU numbers of a task 

and sets the given CPU to the task's allowed run CPU list. 

File include/linux/cpumask.h 

 

In this chapter, we have covered the implementation details of Multi-scheduling technique in 

the standard Linux Kernel. In the next chapter, test and development environment will be 

covered. 

 

 

 

 

 

 

http://lxr.free-electrons.com/ident?v=3.4;i=SD_BALANCE_WAKE
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5. DEVELOPMENT ENVIRONMENT 

In this chapter, hardware and software development environment for this thesis work will be 

covered. Development environment will be explained in the view of two main aspects; target 

and host. Target is the platform that development is done for; and host is the platform that 

development is done on. At first, we will talk about the hardware platform that is used as 

target platform to develop and test Multi-scheduling technique on. Then, host platform and 

connections with target will be detailed. After the hardware is detailed, software components 

of the development environment will be covered. Firstly, we will explain what cross-

compiling and toolchain are, and then Linux kernel compilation and configuration will be 

shown. Lastly, our patch-test loop will be presented. 

5.1.  Target and Host Platform 

In Embedded Systems, target platform is the embedded hardware board for that the 

developments are done. On the other hand, host is the platform where the development such as 

compilation and configuration for target platform are carried out. Multi-scheduling technique 

is developed for Linux and embedded systems [30]. For this reason, the main development 

platform is Embedded Linux systems. In Figure 5.1, target and host systems and connections 

between them are shown. There are two connections between host and target system; Ethernet 

and serial port (UART). Ethernet is mainly used for downloading the generated code to target; 

and the serial or RS232 connection is for debugging and observing the behavior of the target 

system. In order to communicate or send commands to target board via RS232 or UART 

interface, serial terminal program is needed. The most widely used serial terminal applications 

are GtkTerm and Minicom and they are available on all desktop Linux distributions. On the 

other hand, Host platform's operating system is Ubuntu version 12.04 LTS, a widely used 

Linux distribution. 
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Figure 5.1. Target and Host platforms on Development environment 

5.2.  Target Platform 

In this thesis work, our target platform is Pandaboard ES, widely used embedded Linux 

development board. In this section, the main features and specifications of this board will be 

covered. Pandaboard ES is a low-cost embedded development board that provides many I/O 

and media features and powered by Texas Instrument’s OMAP4460 microprocessor. See 

Table 5.1 for a listing of the Pandaboard ES features.  

Feature 

Processor OMAP4460 

Memory (RAM) Elpida 8Gb LPDDR2 (EDB8064B1PB-8D-F) 

PMIC TI (TWL6030 Power Management Companion IC) 

DEBUG 
14-pin JTAG GPIO Pins 

UART via DB-9 connector LEDs 

PCB 
4.5” x 4.0” (114.3 x 101.6 

mm) 
8 layers 

Indicators 3 LEDs (two user-controlled, one overvoltage indicator) 

HS USB 2.0 OTG Port 
Mini-AB USB connector, sourced from OMAP USB 

Transceiver 

HS USB Host Port Four USB HS Ports, up to 500mA current out on each, two to 

Audio Connectors 3.5mm, L+R out 3.5mm, Stereo In 

SD/MMC Connector 6 in 1 SD/MMC/SDIO 4/8 bit support, Dual voltage 
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User Interface 
1-User defined button Reset Button 

SYSBOOT3 switch 

Video DVI-D or HDMI 
Optional user provided plug-

in 

Display Power Connector USB Power 

Table 5.1. Pandaboard Hardware specifications table [31] 

5.2.1. Pandaboard ES Architecture 

Shown in Figure 5.2 is the Architectural Block Diagram of the OMAP4460 Pandaboard ES. 

The Platform also includes connectors that can be used for additional functionality and/or 

expansion purposes. These connectors are not populated on the platform, but can be installed 

by the user. They are indicated by the blue blocks in Figure 5.2. 

 

Figure 5.2. Architectural Block Diagram of Pandaboard ES [31] 
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Figure 5.3. Top Real View of Pandaboard ES [31] 

5.2.2. OMAP4460 Processor 

Microprocessor of the target platform is the main part for Multi-scheduling technique because 

all execution of tasks and scheduling are handled in it. Therefore, the microprocessor of target 

board will be covered only in this section. OMAP4460 processor is the main component of 

Pandaboard ES. OMAP4460 is based on enhanced TI’s OMAP architecture and uses 45-nm 

technology. For more and detailed information, see the OMAP4460 Technical Reference 

Manual (TRM) [31]. 

The device supports the following functions: 
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The device is composed of the following subsystems: 

 Cortex™-A9 microprocessor unit (MPU) subsystem, including two ARM® Cortex-A9 

 cores capable of operation at 1.2GHz 

 Digital signal processor (DSP) subsystem 

 Image and video accelerator high-definition (IVA-HD) subsystem 

 Cortex™-M3 MPU subsystem, including two ARM Cortex-M3 microprocessors 

 Display subsystem 

 Audio back-end (ABE) subsystem 

 Imaging subsystem (ISS), consisting of image signal processor (ISP) and still image 

coprocessor (SIMCOP) block 

 2D/3D graphic accelerator (SGX) subsystem 

The device supports high-level operating systems (OSs) such as: 

 Windows™ CE, WinMobile™ 

 Symbian OS™ 

 Linux® 

 Palm OS™ 

Video processing features 

 Streaming video up to full high definition (HD) (1920 × 1080 p, 30 fps) 

 2-dimensional (2D)/3-dimensional (3D) mobile gaming 

 Video conferencing 

 High-resolution still image (up to 16 Mp) 

Other features 

 On-chip memory 

 External memory interfaces 

 Memory management 
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 Level 3 (L3) and level 4 (L4) interconnects 

 System and connecting peripherals 

Table 5.2. OMAP4460 processor features [31] 

5.3.  Cross-Compilation and Toolchain 

In computer science, compiling is the converting a source code written in a computer language 

such as C and JAVA into executable or binary code for target machine. A special program 

called Compiler is designed to make this conversion. The computer where the compiler runs 

and source code resides on is called the host, and the computer where the compiled or 

generated executable program runs on is called the target. If the host and target machine are in 

same type, the compiling is called native compilation and the compiler is called native-

compiler. On the other hand, if they are different in type, the compiling is called cross-

compiling and the compiler is called cross-compiler. For example, if the host machine's 

architecture is x86 and the target is x86 again, native-compiler is used to generate executable 

program and it runs on all x86 targets. If the host is x86 machine and target is an ARM-

architecture machine, cross-compiler will be used and generated program cannot run on the 

x86 host [30]. 

In embedded systems, cross-compiling method is used not only to generate applications 

running in embedded but also to compile the embedded operating system image. The reason of 

cross-compiling is that an embedded system has limited resources such as low CPU power and 

memory for compiling. Target naturally has limited hardware resources to make heavy 

compilation jobs. Therefore, these processor bounded jobs should be done in a different 

computer that has high power processor or host pc. However, host pc and target have in 

different CPU architecture types so compiled binary in a host pc, powered by x86-based 

processor generally, will not work in target. In order to overcome this problem, cross-

development toolchains are developed to enable the host pc to compile or generate binary for 

computers having different type CPU architecture, for example target with ARM powered 

CPU.  
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Embedded microprocessor manufacturers provide cross-development toolchain that includes 

all necessary compilers, debug tools and libraries. Moreover, many featured toolchains can be 

found in the Linux community.  

5.3.1. Toolchain components 

A toolchain is composed of binary tools, compilers, libraries and some header files to generate 

executable images. From now on, we will use toolchain instead of cross-compiler toolchain. 

5.3.1.1. Binutils 

Binary utilities are the first component of a toolchain. They can run on host pc and produce or 

modify executable binaries for target. They are used to analyze or strip the generated binary as 

well as debugging and building it. The most important utilities are explained below; 

 as, the assembler, converts assembly code to binary 

 ld, the linker, links object code with libraries 

The other tools can be given as objcopy, objdump, nm, readelf, strip, and so on.  

5.3.1.2. Compilers 

The most important and major part of a toolchain is the compiler. GNU Compiler Collection, 

shortly GCC, is the most widely used compiler collection. It supports C++, Java, Fortran, 

Objective-C, Ada as well as C. Moreover, it is designed to support many different CPU 

architectures [32]. 

5.3.1.3. C library 

C library consists of traditional necessary functions used to develop userspace applications. It 

interfaces with the kernel via system calls [32]. For example, the actual implementation of 

printf(), widely used function in userspace application development, is in C library. For 

Embedded Linux, there are many C Library options according to size and POSIX compliant: 

 glibc is the C library from the GNU project. 

 Embedded GLIBC (EGLIBC) is embedded variant of the GNU C Library (GLIBC). It 

is optimized in size and supports for cross-compiling toolchains. 

 uclibc is an alternate C library, which features a much smaller footprint.  

http://en.wikipedia.org/wiki/Glibc
http://www.eglibc.org/home
http://www.gnu.org/software/libc/
http://en.wikipedia.org/wiki/Uclibc
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5.3.2. CodeSourcery Toolchain 

Toolchain selection is one the most important task before the development. There are many 

ways and choices to select a toolchain such as toolchain with board support package (BSP) 

provided by microprocessor manufacturer and prebuilt toolchains in the community. In other 

way, toolchain can be produced from source code according to special needs and 

configurations. It is also known as building a toolchain on your own. However, this can be a 

real pain. The easiest solution is using a prebuilt toolchain, because it has supposedly been 

tested by the vendor [30].  

CodeSourcery is one the most widely used toolchain in Embedded Linux community. It 

develops Sourcery G++, an Eclipse based Integrated Development Environment (IDE) that 

incorporates the GNU Toolchain (gcc, gdb, etc.) for cross development for numerous target 

architectures. CodeSourcery provides a lite version for ARM, Coldfire, MIPS, SuperH and 

Power architectures. The toolchains are always very up to date. CodeSourcery contributes 

enhancements it makes to the GNU Toolchain upstream continually, making it the single 

largest (by patch count) corporate contributor [32]. 

In this thesis, CodeSourcery toolchain is used to compile and build Linux kernel with Multi-

scheduling technique and any other userspace extensions. In the next section, downloading 

and installing of CodeSourcery toolchain to the host platform will be covered. 

5.3.3. Downloading and Installing Toolchain 

CodeSourcery ARM Compiler should be used for building different kernel distribution and 

software releases on ARM architecture platforms. CodeSourcery toolchain 2010-q1 release is 

used. Downloading and installing the toolchain to the host pc is explained step-by-step below. 

 Download tarball from the link and untar to an appropriate directory in the host pc 

kadir@kadirpc:~$ wget -c 

http://www.codesourcery.com/sgpp/lite/arm/portal/package6488/

public/arm-none-linux-gnueabi/arm-2010q1-202-arm-none-linux-

gnueabi-i686-pc-linux-gnu.tar.bz2 

http://www.codesourcery.com/gnu_toolchains/sgpp/
http://en.wikipedia.org/wiki/Eclipse_IDE
http://en.wikipedia.org/wiki/Integrated_development_environment
http://en.wikipedia.org/wiki/GNU_toolchain
http://www.codesourcery.com/
http://www.codesourcery.com/gnu_toolchains/arm
http://www.codesourcery.com/gnu_toolchains/coldfire
http://www.codesourcery.com/gnu_toolchains/mips
http://www.codesourcery.com/gnu_toolchains/sgpp/lite/superh
http://www.codesourcery.com/gnu_toolchains/power
http://www.codesourcery.com/
http://en.wikipedia.org/wiki/GNU_toolchain
http://www.codesourcery.com/sgpp/lite/arm/portal/package6488/public/arm-none-linux-gnueabi/arm-2010q1-202-arm-none-linux-gnueabi-i686-pc-linux-gnu.tar.bz2
http://www.codesourcery.com/sgpp/lite/arm/portal/package6488/public/arm-none-linux-gnueabi/arm-2010q1-202-arm-none-linux-gnueabi-i686-pc-linux-gnu.tar.bz2
http://www.codesourcery.com/sgpp/lite/arm/portal/package6488/public/arm-none-linux-gnueabi/arm-2010q1-202-arm-none-linux-gnueabi-i686-pc-linux-gnu.tar.bz2
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kadir@kadirpc:~$ mkdir -p ${HOME}/opt 

kadir@kadirpc:~$ tar -C ${HOME}/opt -jxf arm-2009q1-203-arm-

none-linux-gnueabi-i686-pc-linux-gnu.tar.bz2 

 After the extraction is complete, the new location is needed to be added to your PATH 

persistently. In your home directory type: 

kadir@kadirpc:~$ gedit /home/kadir/.bashrc 

 Add the following lines to the bottom of the file: 

export PATH=/<toolchain_folder>/bin:$PATH 

export CROSS_COMPILE=”arm-none-linux-gnueabi-“ 

 Then the ARM toolchain is ready to use from command-line. And on the last line the 

used GCC version for the cross-compiler can be checked. 

kadir@kadirpc:~$ arm-none-linux-gnueabi-gcc -v 

Using built-in specs. 

Target: arm-none-linux-gnueabi 

Configured with:/home/kadir/2010q1-release-linux-

lite/src/gcc-4.4-2010q1/configure --build=i686-pc-linux-gnu – 

... 

Thread model: posix 

gcc version 4.4.1 (Sourcery G++ Lite 2010q1-202) 
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6. DEVELOPMENT OF MULTI-SCHEDULING IN LINUX KERNEL 

6.1.  Why Linux Kernel? 

Our proposal Multi-scheduling technique is an extension for a SMP-featured operating system. 

It enables to run rt and non-rt tasks without using heterogeneous operating systems. In this 

thesis, we have implemented Multi-scheduling in the standard Linux kernel version 3.4.67, the 

most stable version when the project is started to develop. Linux is the most widely used and 

well documented operating system especially in embedded systems. However, the standard 

Linux lacks of hard real-time features and functionalities. Many frameworks and techniques 

have been developed to provide hard real-time ability for Linux by its wide community [12].  

Heterogeneous operating systems is the most widely used approach to provide both hard real-

time and general functionalities in the same system and the Linux kernel is the most preferred 

general operating system in this approach. However, maintaining two different operating 

systems in same hardware and difficulties in IPC make heavy weather of developing the 

system. Multi-scheduling technique is developed as an alternative to bring real-time ability to 

general operating system. For the reasons mentioned before, Linux is chosen for the 

development and implementation of the Multi-scheduling technique.  

Linux kernel supports many of the CPU architectures and peripheral devices. It is written in C 

and provides well documented framework to make developments in kernel level. In the 

following sections, Linux kernel sources and building/compiling methods will be covered. 

6.2.  Linux Kernel Source Tree 

The Linux kernel is a Unix-like operating system kernel used by a variety of operating 

systems based on it, which are usually in the form of Linux distributions. Linux kernel project 

is a good example of free and open source software and released under the GNU General 

Public License version 2 (GPLv2) and it is developed by contributors worldwide. At the top of 

the source code, there are directories containing different sub-systems which are listed; 

arch subdirectory is made up of the architecture specific kernel codes. There are sub-

directories for each CPU architecture type. 

http://en.wikipedia.org/wiki/Unix-like
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Kernel_(computing)
http://en.wikipedia.org/wiki/Linux_distribution
http://en.wikipedia.org/wiki/Free_and_open_source_software
http://en.wikipedia.org/wiki/GNU_General_Public_License
http://en.wikipedia.org/wiki/GNU_General_Public_License
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include directory is composed of header files that are necessary to build/compile kernel source 

code.  

init contains the initialization procedures for the kernel 

mm contains all of the memory management code. Physical/Logical address conversion is 

done in the code relays here. 

drivers contains as all functions to manage or control I/O devices. All devices are divided into 

classes. For example, keyboard and mouse are classed into input sub-directory 

ipc directory contains the kernel inter-process communications code. 

modules directory holds built modules. 

fs contains supported file systems codes. In each sub-directory, supported file system types for 

example ext4 and ubifs are included. 

kernel contains the main kernel code or is the heart of source code. Many of the modifications 

for Multi-scheduling are implemented under this directory. 

net contains network frameworks and implementations such as TCP/IP and IPv6. 

lib is library directory that holds many useful functions and methods used in the codes in other 

kernel directories. 

scripts directory contains the scripts to configure or build kernel. 

6.3.  Patching 

In Computer science, a patch is a collection of changes line-by-line in a source code. Instead 

of releasing whole source code version by version, releasing only the changes or differences 

between versions is more effective and easier. Our proposal technique is also prepared as a 

patch to the standard Linux kernel.  We have prepared two patches and applied the Linux 

Kernel version 3.4.67. One of the patches called Msched-P1 runs RT tasks with SCHED_RR 

scheduling policy and the other called Msched-P2 runs them with general Linux scheduling 

policy SCHED_OTHER in Table 6.1. 

Msched-P1 Msched_P2 

SCHED_RR scheduling policy SCHED_OTHER or SCHED_CFS scheduling policy 

Table 6.1. Multi-scheduling patches 
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6.3.1. Patching the Linux Kernel 

Patch command is used to apply patches to source code. It is shown below that multi-

scheduling patches, Msched-P1 and Msched-P2, are applied to the standard Linux kernel. 

kadir@kadirpc:~$ patch -p1 < Msched_P1.patch 

 

6.4.  Linux Kernel Configuration 

In this section, configuration of the Linux kernel according to the Multi-scheduling technique 

will be covered. Linux kernel has a special configuration environment. Source code can be 

configured and compiled for many types of CPU architectures and machines.  

Firstly, development embedded board, Pandaboard ES, must be defined and selected in the 

configuration. Thanks to the Pandaboard and opensource community, the board's hardware is 

defined in the standard Linux source code. It is ready to use. In Listing 6.1, in the top directory 

of the source code, configuration for the compiler is created according to a given board name 

predefined in source code. It generates a .config file in the top of the source code directory and 

contains some definitions or variables for the compiler.  

kadir@kadirpc:~$  make omap2plus_defconfig 

kadir@kadirpc:~$  make menuconfig 

Listing 6.1. Linux kernel configuration over command-line 

In Listing 6.1, Linux kernel configuration over the command-line interface is shown. In the 

root or top directory of the kernel source code, a configuration menu can be opened by typing 

the make menuconfig command. The make menuconfig command will launch a text-based user 

interface with default configuration options as shown in the Figure 6.1. This user interface, 

developed by using ncurses, helps to configure the Linux kernel by selecting many software 

components dependent to hardware such as CPU architectures, device drivers and memory 

utilizations. After the configuration is done, .config file is saved to the top directory 

automatically. 
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6.4.1. Configuration for Multi-scheduling 

Multi-scheduling technique is also added to the Linux kernel configuration pages. Msched-P1 

and Msched-P2 patches create a configuration page for real-time CPU selection under the 

Kernel Features category in Figure 6.1. As mentioned before, Multi-scheduling is dependent 

to SMP feature of an operating system. Therefore, in Linux kernel, SMP feature must be 

enabled first, as shown in Figure 6.2. After enabling the SMP, Multi-scheduling technique 

configuration line appears in Figure 6.3. 

 

Figure 6.1. Linux Kernel Configuration Menu 
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Figure 6.2. SMP kernel feature not enabled 

 

Figure 6.3. SMP enabled and Multi-scheduling support appears 

In Figure 6.4, Multi-scheduling support is added to the configuration and CPU1 is chosen as 

real-time core automatically. Multi-scheduling patches to the configuration detects the number 

of the CPUs of the system by reading the configuration field CONFIG_NR_CPUS in .config 
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file and chooses appropriate CPU or CPUs for real-time. In dual-core processor, because of 

being a primary CPU, CPU0 is left and CPU1 is chosen as rt-core but it is changeable. The 

user can select the real-time CPUs manually; for example in Figure 6.5. 

 

Figure 6.4. Multi-scheduling is enabled and CPU1 is chosen as rt-core automatically 

 

Figure 6.5. Rt-core selection in a quad-core processor 
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After the Multi-scheduling support is enabled, the configuration is saved .config file to be 

given to the compiler. In Listing 6.2, some important fields, which are relevant with the jobs 

done above, are shown. 

kadir@kadirpc:~$  cat .config 

.... 

# 

# Kernel Features 

# 

CONFIG_TICK_ONESHOT=y 

CONFIG_NO_HZ=y 

CONFIG_HIGH_RES_TIMERS=y 

CONFIG_GENERIC_CLOCKEVENTS_BUILD=y 

CONFIG_HAVE_SMP=y 

CONFIG_MULTI_SCHEDULING=y 

# CONFIG_MSCHED_RT_CORE_CPU0 is not set 

# CONFIG_MSCHED_RT_CORE_CPU1 is not set 

CONFIG_MSCHED_RT_CORE_CPU2=y 

# CONFIG_MSCHED_RT_CORE_CPU3 is not set 

CONFIG_SMP=y 

CONFIG_SMP_ON_UP=y 

.... 

CONFIG_NR_CPUS=4 

.... 

Listing 6.2. Content of .config file 

6.5.  Compiling the Kernel 

In Chapter 4, development environment including cross-compiling tools is presented. In this 

section, the compilation process of the Multi-scheduling enabled Linux kernel will be shown. 

In previous section, the source code is configured and ready to compile or build. In Listing 

6.3, the given command “make ARCH=arm” compiles the source code according to the 

configuration (stored in .config file in the top directory) for ARM architecture. The generated 

file is a compressed image of the kernel called zImage as shown in the Listing 6.3. 

kadir@kadirpc:~$  make ARCH=arm 

  CHK     include/linux/version.h 
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  CC      init/main.o 

  CHK     include/generated/compile.h 

  CC      init/version.o 

  .... 

  LD      vmlinux 

  SYSMAP  System.map 

  SYSMAP  .tmp_System.map 

  OBJCOPY arch/arm/boot/Image 

  Kernel: arch/arm/boot/Image is ready 

  GZIP    arch/arm/boot/compressed/piggy.gzip 

  AS      arch/arm/boot/compressed/piggy.gzip.o 

  LD      arch/arm/boot/compressed/vmlinux 

  OBJCOPY arch/arm/boot/zImage 

  Kernel: arch/arm/boot/zImage is ready 

Listing 6.3. Compiling Linux kernel 

The generated kernel image can be loaded to main memory and triggered to run by a boot-

loader. In this thesis, the U-Boot is used as boot-loader, so the generated image must be 

converted to uImage which includes U-Boot headers in addition to zImage, as shown in 

Listing 6.4. For more information, see [33]. 

kadir@kadirpc:~$  make ARCH=arm uImage 

… 

UIMAGE  arch/arm/boot/uImage 

Image Name:   Linux-3.4.67-gef651f0-dirty 

Created:      Sat Jun 21 21:11:26 2014 

Image Type:   ARM Linux Kernel Image (uncompressed) 

Data Size:    3682472 Bytes = 3596.16 kB = 3.51 MB 

Load Address: 80008000 

Entry Point:  80008000 

  Image arch/arm/boot/uImage is ready 

Listing 6.4. Generating bootable Linux kernel image 

6.6.  Running the compiled Kernel image 

In the development environment of this thesis work, the host and target platforms are 

connected over the Ethernet. The generated kernel image is sent to the target via TFTP 

protocol. U-Boot boot-loader searches for a tftp server over the Ethernet and tries to fetch the 
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uImage from the tftp server. Therefore, a tftp server is needed in the host. U-Boot fetches the 

uImage from the server and loads it to predefined address in the main memory, and then runs 

it. Then, the controls are passed to the Linux kernel. In Listing 6.5, kernel boot messages are 

shown. 

UBoot> TFTP from server 192.168.2.1; our IP address is 

192.168.2.2 

Filename 'uImage'. 

Load address: 0x82000000 

Loading:#######################################################

############################################################### 

###############################################################

## ########################################################### 

done 

Bytes transferred = 3723832 (38d238 hex) 

## Booting kernel from Legacy Image at 82000000 ... 

   Image Name:   Linux-3.4.67-gef651f0-dirty 

   Image Type:   ARM Linux Kernel Image (uncompressed) 

   Data Size:    3723768 Bytes = 3.6 MiB 

   Load Address: 80008000 

   Entry Point:  80008000 

   Verifying Checksum ... OK 

   Loading Kernel Image ... OK 

OK 

 

Starting kernel ... 

 

Uncompressing Linux... done, booting the kernel. 

[0.000000] Booting Linux on physical CPU 0 

[0.000000] Linux version 3.4.67-gef651f0-dirty (kadir@kadirpc) 

(gcc version 4.4.1 (Sourcery G++ Lite 2010q1-202) ) #3 SMP Tue 

Apr 8 13:40:55 EEST 2014 

[0.000000] CPU: ARMv7 Processor [412fc09a] revision 10 (ARMv7), 

cr=10c53c7d 

[0.000000] CPU: PIPT / VIPT nonaliasing data cache, VIPT 

aliasing instruction cache 

[0.000017] Machine: OMAP4 Panda board 

[0.000017] Truncating RAM at 80000000-bfffffff to -af7fffff 

(vmalloc region overlap). 
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[0.000103] Memory policy: ECC disabled, Data cache writealloc 

[0.000119] OMAP4460 ES1.0 

[0.000179] PERCPU: Embedded 8 pages/cpu @c126a000 s11520 r8192 

d13056 u32768 

[0.000208] Built 1 zonelists in Zone order, mobility grouping 

on.  Total pages: 192784 

[0.000234] Kernel command line: 

ip=192.168.2.2:192.168.2.1:192.168.2.1:255.255.255.0:kadirpc:et

h0:off console=ttyO2,115200n8 root=/dev/nfs rw 

nfsroot=192.168.2.1:/home/kadir/garage/tez/pandanfs 

... 

Listing 6.5. Linux kernel boot logs on Pandaboard ES 

In first part of the output log of Linux kernel booting, kernel decompresses itself to the 

different part of the memory. Then, kernel checks its processor and architecture type for valid, 

and then creates initial memory page tables to store kernel structures and data. Following that, 

kernel enables the processor’s memory management unit (MMU) to process physical/logical 

address conversion. Then, execution jumps to the start of the kernel’s main components, 

start_kernel() in kernel/main.c. In this function, all of the initializations are carried out and 

init, first userspace program, is executed lastly as mentioned in previous chapters. 
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7. PERFORMANCE ANALYSIS OF THE MULTI-SCHEDULING 

TECHNIQUE 

This chapter presents the Real-time performance and analysis techniques in the state of the art 

firstly, and then explains the most useful and well known tools in Linux community for the 

Real-time performance analyzing. Lastly, the result and discussions will be given about the 

performance and test results of our proposed technique. 

7.1.  Real-time Characteristics to Evaluate 

The main purpose of an RTOS is to provide a predictable and deterministic environment for 

the tasks. As discussed in Chapter 3, Real-time system does not mean a high speed system to 

produce responds to actions it increases the quality of the system. The aim of a RTOS is 

eliminating the surprises and meeting the deadlines [4], [34]. In this section, the characteristics 

and main features expecting from a RTOS will be explained. 

7.1.1. Responsiveness 

A Real-time task generally has a deadline to finish or produce a result to an action and the 

respond must meet the deadline. Therefore, a real-time task must be switched to processor to 

be executed enough to meet the deadline. This depends on the real-time responsiveness of a 

RTOS [35]. A real-time task must be run to produce a respond as much as possible. A RTOS 

should give the control to a real-time task that needs to be executed as early as possible to 

increases its responsiveness. There are two main ways to increase the responsiveness. One of 

them is the fact that the real-time system is kept on idle state as much as possible. The other is 

reducing or minimizing the operating system's inner latencies. If the number of tasks is 

increasing in real-time system where rt-tasks and non-rt-tasks run on same environment, CPU 

idleness reduces and it causes to decrease the responsiveness [35]. 

Multi-scheduling technique provides a special and isolated hardware and software 

environment for rt-tasks. Rt-tasks are always scheduled to the rt-cores. Therefore, the real-

time partition of the system is not affected by general stuff. In the next sections of this chapter, 

the measurement techniques and tools of responsiveness will be covered. 
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7.1.2. Latencies 

Latency is the period between the time when an event is occurred and the time when it is being 

handled. There are mainly two important types of latencies for RTOSes; scheduling latency 

and interrupt latency. Scheduling latency is the time between an rt-task needs to be woken up 

and the time it actually gains to control and run. It occurs in context-switching of the tasks 

when a higher priority task is scheduled or the current task relinquishes the processor. The less 

the scheduling latency is, the much more time remains to meet the deadline for an rt-task [36]. 

Therefore, it directly affects the real-time performance.  

Interrupt latency, on the other hand, is the time elapsed between an event occurred and when it 

is actually handled or processed. Interrupt latency is the most important latency to reduce for 

real-time systems [36], [37]. The reason is the fact that a real-time task generally runs when a 

hardware event occurred such as button press, or a scheduled timer event. In each situation, an 

interrupt service routine or function is invoked to handle the event. In Linux, interrupts are 

also run as a kernel thread or task. Therefore, a new task structure is created for each interrupt 

registration and the related thread is switched to a CPU on an event occurring. 

7.1.3. Eliminating the Surprises 

One of the most important features of a RTOS is to respond same timing results to events [34]. 

In other words, the time needed to respond does not change dramatically. It must be robust to 

catch the same and best timings. For example, if respond time to an event is 200 ms for an rt-

task, the same time must be caught in the next occurring of the same event. There must be no 

surprises in a RTOS. It actually depends on the other tasks and jobs on the system. The 

number and load of tasks can change in a general operating system so it causes the differences 

in the respond time to same event.  

Thanks to Multi-scheduling technique, all real-time jobs and load are isolated and do not 

affected by the load of general processes. This provides to decrease the surprises. 

7.2.  Test Results 

RT performance of Multi-scheduling technique is tested on Pandaboard widely used in 

embedded community as reference design as discussed earlier. It has a dual-core ARM cortex-

A9 powered by TI’s OMAP4460 microprocessor as discussed in Chapter 5. Therefore, one of 
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the CPUs runs rt-tasks and the other is for general tasks and general OS operations. We have 

prepared two patches and applied the Linux Kernel version 3.4. One of the patches called 

Msched-P1 runs rt-tasks with SCHED_RR scheduling policy and the other called Msched-P2 

runs with general Linux scheduling policy SCHED_OTHER or SCHED_CFS. The standard 

Linux kernel is used as reference to compare the results and observe the improvements. 

7.2.1. Cyclictest 

Cyclictest are the most widely and frequently used real-time metric in Linux [38]. The core 

concept of Cyclictest is to calculate the average latency of response to a stimulus or interrupt. 

Cyclictest has many parameters and options to detect and calculate latencies for an operating 

system. For Multi-scheduling, we deal with only interrupt latency. Because of having many 

unrelated options, we simplified the source code to test the latency by using hardware timer 

interrupts via Linux high-resolution timer API. The pseudocode of our modified real-time test 

program called rttest is given in Listing 7.1. Rttest program tests the interrupt latency over 

high-resolution timers and scheduling latency. See the Appendix A for the whole source code. 

clock_gettime((&now)) 

next = now + par->interval 

 

while (!shutdown) { 

    clock_gettime((&start)) 

    clock_nanosleep((&next)) 

    clock_gettime((&stop)) 

 

    diff = calcdiff(start, stop)     

    # update stat-> min, max, total latency, cycles 

    # update the histogram data and calculate average 

    next += interval 

} 

Listing 7.1. cyclictest pseudocode 

Latencies can be varied according to the work load in the system. Therefore, the standard 

Linux, Msched-P1 and Msched-P2 are tested on different CPU load levels. We developed a 

cpustress program to load fake jobs to CPUs. It a shell script and mainly used cpulimit 

application, widely used in Linux to stress CPU. See the Appendix D.1 for cpustress script. In 



61 

 

this latency test, CPU stress level are changed step-by-step and observe the latencies of each 

type of kernel in the latency test. 

First, test results and program outputs are given for CPU stress level 0 as an example. Then, 

CPU stress level is raised by 20% for each step.  

7.2.1.1.CPU Stress Level 0 

For standard Linux, the average interrupt latency is 79 µs. 

target # /root/rttest  

Clock resolution (ns): 1 

Measurement, please wait 1 minute... 

Samples: 331275 

Min latency: 52 us 

Max latency: 815 us 

Average latency: 84 us 

target #  

 

 For Multi-scheduling MSched_P1 patch, the average latency is 35 µs. 

 

For Multi-scheduling MSched_P2 patch, the average latency is 37 µs. 

 

 

target # task-assigner -r /root/rttest   

Clock resolution (ns): 1 

Measurement, please wait 1 minute... 

Samples: 427399 

Min latency: 22 us 

Max latency: 83 us 

Average latency: 44 us 

target # task-assigner -r /root/rttest  

Clock resolution (ns): 1 

Measurement, please wait 1 minute... 

Samples: 428455 

Min latency: 22 us 

Max latency: 83 us 

Average latency: 46 us 
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All results for CPU stress level = 0 are given in Table 7.1. 

 
Standard Linux 

Kernel 
Msched_P1 Msched_P2 

Average Latency (µs) 87 34 37 

Table 7.1. Latency results in CPU stress level 0 

7.2.1.2.Raising CPU Stress Level 

At the second stage of Latency test, CPU stress level is increased 20% for each step. Cpustress 

tool is used to load work on CPUs shown in Listing 7.2 as example. For detailed usage of 

cpustress tool, see Appendix D.1.  

target # cpustress.sh  20 120 

--------------------------------------------------------- 

CPU load script. 

--------------------------------------------------------- 

Date: Tue Jun 24 15:43:50 EEST 2014 

--------------------------------------------------------- 

Host: kadirdev 

Number of CPU cores: 4. 

CPU load per core: 20%. 

CPU load duration: 120 seconds. 

--------------------------------------------------------- 

This script will run for 122 seconds. 

--------------------------------------------------------- 

[2014-06-24--15:43:50] => Creating 

CPU_Load_kadirdev__20140624_154350.log. 

[2014-06-24--15:43:50] => Starting stress for 2 seconds. 

Time left: 00:00:00         

[2014-06-24--15:43:53] => Running 20% CPU load for 120 

seconds. 

Time left: 00:00:00         

[2014-06-24--15:45:54] => Log data saved in 

CPU_Load_kadirdev__20140624_154350.log. 

[2014-06-24--15:45:54] => This is the end! 

---------------------------------------------------------

target # 

 

Listing 7.2. CPU stress level 20% for 120 seconds 
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The all results for each CPU stress level step are given in Table 7.2. As seen in the results, 

increasing in the CPU load does not affect the average latencies in both Multi-scheduling 

patches. On the other hand, it has dramatically increased with respect to CPU load in the 

standard Linux kernel. In Figure 7.1, Comparison results of Multi-scheduling patches in 

different CPU stress levels are given. This result says that using a Real-time scheduling 

algorithm such as EDF and RR instead of a normal algorithm like CFS provides a better 

performance, lower latency, in Multi-scheduling technique. 

CPU Stress Level 

(%) 

Standard Linux Kernel 

(µs) 

Msched_P1 

(µs) 

Msched_P2 

(µs) 

20 84 44 46 

40 3382 43 47 

60 6570 43 47 

80 10370 44 47 

100 14706 46 48 

Table 7.2. cyclictest Latency results in different CPU stress levels 

 

Figure 7.1. Comparison of Interrupt Latency results of Multi-scheduling patches over CPU 

workload 
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7.2.2. Responsiveness and Eliminating the Surprises 

In this section, responsiveness and stability of the system to the actions are tested. Real-time 

applications generally wait for a signal or interrupt from outside as mentioned before. 

Handling these trigging actions should be as soon as possible for good responsiveness of Real-

time system. Moreover, respond and execution times of a task to a trigging event/interrupt 

must be determined. In other words, the timings of a real-time task must not change 

dramatically. 

In order to observe the responsiveness to hardware interrupts and changes in timings of a real-

time task, gpio-toggle test program is developed. Gpio-toggle program toggles a GPIO pin on 

the board and estimates the duration. It raises a GPIO pin on development board, Pandaboard, 

and executes some mathematical commands as a work, and then pulls down the pin. See 

Appendix C for more information and source code of this test. 

 

Figure 7.2. gpio-toggle test in the standard Linux Kernel 
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Figure 7.3. gpio-toggle test in Multi-scheduling enabled Linux Kernel 

 

In this test, we compared the standard Linux kernel and Msched_P1 only on same CPU stress 

level. In Figure 7.2, the duration of toggling in the standard Linux is not stable. Time for the 

toggling changes in some cases as you can see on the falling edge of the output signal. On the 

other hand, in Figure 7.3, the duration for GPIO toggling in Multi-scheduling technique is 

more stable and shorter about two times than the Standard Linux. As we mentioned before, the 

stabilization of processing a task in any case is more important for RT systems. This toggling 

test shows that the processing time of RT tasks is more stable in Multi-scheduling technique 

than the Linux kernel. 
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8. CONCLUSION, DISCUSSION AND FUTURE WORK 

In this thesis, we proposed a new approach Multi-scheduling to run RT and non-RT tasks in a 

single operating system or in the same environment. It is based on the partition of the cores in 

the multi-core processor into two groups, and two different environments are maintained for 

RT and non-RT tasks. Multi-scheduling technique only separates the cores on the system not 

the other resources such as main memory, USBs, GPIOs and other controllers. In order to 

provide a better RT and non-RT environment partition in the single OS, all resources on the 

system must be separated. For example, if a RT task and a non-RT task want to use the same 

resource, e.g., USB0, on the same time, it will reduce the overall performance and may cause 

the deadlocks. The current Multi-scheduling technique does not separate the other resources. 

In this work, we just want to show that creating two different environments may provide both 

RT and IT functionalities in the single OS. For future work, partitioning entire system with all 

resources is considered. 

Multi-scheduling technique is designed for SMP systems and because of being widely used in 

embedded systems and well documented we decided to implement it in Linux kernel as a 

kernel-level real-time approach. Moreover, Linux community provides many tools and 

programs to test and observe real-time performance of the system. Our test platform, 

Pandaboard, is one of the most widely used evaluation board in the world. It has dual-core 

microprocessor, and it is suitable to test our proposal technique on it. 

Our tests are based on most important real-time characteristic of a real-time task. We 

compared Multi-scheduling enabled Linux kernel and the standard Linux kernel. The interrupt 

latency and stability results have shown that Multi-scheduling technique can be a good 

approach to provide RT functionality for general OSes without using heterogeneous OSes. On 

the contrary of heterogeneous approach, a single OS environment is used for all tasks. This 

provides two main advantages to system developers. One of them is inter-process 

communication between RT and non-RT tasks. The other and more important advantage is 

about the system development and maintenance. In heterogeneous approach, system 

developers configure two different OSes; a general OS and a RTOS. A Failure in one of the 

heterogeneous OSes causes the whole system come down. Moreover, developers spend more 

time to learn different OS environments. This may increases the costs for production.  
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There are some userspace applications are developed during this work. Task-assigner 

application is used to create new tasks for Multi-scheduling enabled systems. In addition, a 

CPU stress application which compels CPU in given work levels by loading heavy jobs. 

As a consequence, Multi-scheduling is a valuable technique to provide RT functionality for 

general purpose operating systems. It provides nearly two times better latency performance 

and is more robust for surprises. It may be considered as one of the most major approaches for 

Real-time systems in multi-core embedded systems. For future work, we want to extend 

Multi-scheduling technique to cover all resources in the system. Moreover, we will provide 

tools to control the Multi-scheduling from userspace easily. 
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Appendix A 

Task-assigner Application Details 

In Multi-scheduling technique, kernel-space must know the task is an rt-task or non-rt-task. 

For this reason, a userspace application is needed to create and manage the task creation 

operations. It will sign the task with rt or non-rt by using the sched_policy. If a task will be 

executed in Real-time domain, the sched_policy of the task will be SCHED_FIFO or 

SCHED_RR, if it is a normal or general task, its sched_policy will be SCHED_NORMAL. 

Task-assigner application does this stuff and it is the userspace extension of Multi-scheduling 

technique. It uses the system calls provided by libc. The usage and code of the application is 

given below. 

A.1. Task-assigner Source Code 

/* 

Task-assigner application for Multi-scheduling 

*/ 

 

#include <stdio.h> 

#include <stdlib.h> 

#include <sched.h> 

 

static const struct { 

 int policy; 

 char name[sizeof("SCHED_OTHER")]; 

} policies[] = { 

 {SCHED_OTHER, "SCHED_OTHER"}, 

 {SCHED_FIFO, "SCHED_FIFO"}, 

 {SCHED_RR, "SCHED_RR"} 

}; 

 

static void show_min_max(int pol) 

{ 

 const char *fmt = "%s min/max priority\t: %u/%u\n"; 

 int max, min; 

 

 max = sched_get_priority_max(pol); 

 min = sched_get_priority_min(pol); 

 if ((max|min) < 0) 

  fmt = "%s not supported\n"; 

 printf(fmt, policies[pol].name, min, max); 

} 

 

void perror_msg_and_die(char *msg) 

{ 

      printf(stderr,”%s”, msg, (int)pid); 

             exit(EXIT_FAILURE); 



72 

 

} 

 

#define OPT_m (1<<0) 

#define OPT_p (1<<1) 

#define OPT_r (1<<2) 

#define OPT_f (1<<3) 

#define OPT_o (1<<4) 

 

int main(int argc, char **argv) 

{ 

 pid_t pid = 0; 

 unsigned opt; 

 struct sched_param sp; 

 char *pid_str; 

 char *priority = priority; /* for compiler */ 

 const char *current_new; 

 int policy = SCHED_RR; 

 

 opt = getopt32(argv, "+mprfo"); 

 if (opt & OPT_m) { /* print min/max and exit */ 

  show_min_max(SCHED_FIFO); 

  show_min_max(SCHED_RR); 

  show_min_max(SCHED_OTHER); 

  fflush_stdout_and_exit(EXIT_SUCCESS); 

 } 

 if (opt & OPT_r) 

  policy = SCHED_RR; 

 if (opt & OPT_f) 

  policy = SCHED_FIFO; 

 if (opt & OPT_o) 

  policy = SCHED_OTHER; 

 

 argv += optind; 

 if (!argv[0]) 

  bb_show_usage(); 

 if (opt & OPT_p) { 

  pid_str = *argv++; 

  if (*argv) {  

   priority = pid_str; 

   pid_str = *argv; 

  } 

  // else 

  pid = xatoul_range(pid_str, 1,((unsigned)(pid_t)ULONG_MAX)>>1); 

 } else { 

  priority = *argv++; 

  if (!*argv) 

   bb_show_usage(); 

 } 

 

 current_new = "current\0new"; 

 if (opt & OPT_p) { 

  int pol; 

 print_rt_info: 

  pol = sched_getscheduler(pid); 

  if (pol < 0) 

       perror_msg_and_die("cant get policy”); 
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  printf("pid %d's %s scheduling policy: %s\n", 

    pid, current_new, policies[pol].name); 

  if (sched_getparam(pid, &sp)) 

       perror_msg_and_die("cant get attributes”); 

 

  printf("pid %d's %s scheduling priority: %d\n", 

    (int)pid, current_new, sp.sched_priority); 

  if (!*argv) { 

   /* Either it was just "-p <pid>", 

    * or it was "-p <priority> <pid>" and we came here 

    * for the second time (see goto below) */ 

   return EXIT_SUCCESS; 

  } 

  *argv = NULL; 

  current_new += 8; 

 } 

  

sp.sched_priority=xstrtou_range(priority,0,policy!=SCHED_OTHER?1:0,99); 

 

 if (sched_setscheduler(pid, policy, &sp) < 0) 

  perror_msg_and_die("cant set scheduler”); 

 

 return 0; 

} 

 

The most important system call used in task-assigner is sched_setscheduler() function: 

 sched_setscheduler 

Function 
int sched_setscheduler(pid_t pid, int policy, const struct sched_param 

*param) 

Description 
Sets the scheduling policy and parameters of a task given its PID (Process 

ID) 

 

A.2. Task-assigner Usage and Examples 

 Run given program as a real-time task (-r) 

 

 Move the program given by PID (Process ID) to real-time partition 

 

 Run given program as normal task 

target # task-assigner -r <program> <args..> 

target # task-assigner –r -p <PID> 

target # task-assigner <program> <args..> 
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Appendix B 

B.1. Rttest Source Code 

/* Small program to test high-resolution timers 

 * and scheduling latency in Unix / Linux 

 */ 

 

#include <stdlib.h> 

#include <stdio.h> 

#include <string.h> 

#include <time.h> 

#include <math.h> 

#include <errno.h> 

#include <sys/types.h> 

#include <sys/stat.h> 

#include <fcntl.h> 

#include <sys/mman.h> 

 

#define MAX(a,b) (((a) > (b)) ? (a) : (b)) 

#define MIN(a,b) (((a) < (b)) ? (a) : (b)) 

 

unsigned long long int timespec_diff(struct timespec *t2, struct timespec 

*t1) 

{ 

 /* Computes the time difference between 2 timespecs */ 

  

 return(t2->tv_sec-t1->tv_sec)*1000000000ULL+t2->tv_nsec-t1->tv_nsec; 

} 

 

void timespec_add_ns(struct timespec *ts, unsigned ns) 

{ 

 ts->tv_nsec += ns; 

 if (ts->tv_nsec >= 1000000000) { 

  ts->tv_nsec -= 1000000000; 

  ts->tv_sec++; 

 } 

} 

 

int main (int argc, char **argv) 

{ 

 struct timespec start_time, time1, time2; 

 unsigned long long int jitter; 

 unsigned long long int min_jit = 999999999999999ULL; 

 unsigned long long int max_jit = 0ULL; 

 unsigned long long sum_jit = 0ULL; 

 unsigned samples = 0; 

 int samps[200]; 

 

 mlockall(MCL_CURRENT | MCL_FUTURE); 

 

 /* Display clock resolution */ 

 clock_getres(CLOCK_MONOTONIC, &time1); 

 printf("Clock resolution (ns): %lu\n", time1.tv_nsec); 
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 /* Initialize the timer that will be used in nanosleep(), */ 

 /* to a value of 100 us      */ 

 

 printf("Measurement, please wait 1 minute...\n"); 

 fflush(stdout); 

 clock_gettime(CLOCK_MONOTONIC, &start_time); 

 

 do { 

  /* Get the date before sleeping */ 

  clock_gettime(CLOCK_MONOTONIC, &time1); 

 

  /* Compute the wake-up date */ 

  timespec_add_ns(&time1, 100000); 

 

  /* Sleep */ 

  clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME, &time1, NULL); 

   

  /* Get the wake-up date */ 

  clock_gettime(CLOCK_MONOTONIC, &time2); 

 

  /* skip the first second for warmup */ 

  if (samples >= 1) { 

   /* Compute the sleep time */ 

   jitter = timespec_diff(&time2, &time1); 

   min_jit = MIN(min_jit, jitter); 

   max_jit = MAX(max_jit, jitter);  

   sum_jit += jitter; 

   samps[samples-1] = jitter/1000; 

  } 

  ++samples; 

 } while (timespec_diff(&time2, &start_time) < 60000000000ULL); 

 

 /* Display sleeping statistics */ 

 printf ("Samples: %u\n", --samples); 

 printf ("Min latency: %llu us\n", min_jit / 1000); 

 printf ("Max latency: %llu us\n", max_jit / 1000); 

 printf ("Average latency: %llu us\n", (sum_jit / samples) / 1000); 

 

 exit(EXIT_SUCCESS); 

} 

 

 

B.2. Rttest Usage 

 

 

target # rttest 
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Appendix C 

C.1. Gpio-toggle Source Code 

/* compile using  "arm-linux-gcc gpio-toggle.c -lrt –Wall –o gpio-toggle"  

*/ 

#include <stdlib.h> 

#include <stdio.h> 

#include <time.h> 

#include <math.h> 

#include <sched.h> 

#include <sys/io.h> 

#include <unistd.h> 

 

#include <sys/types.h> 

#include <sys/stat.h> 

#include <fcntl.h> 

#include <string.h> 

 

#define NSEC_PER_SEC    1000000000 

#define GPIO32_DIRECTION    "/sys/class/gpio/gpio32/direction" 

#define GPIO32_VALUE     "/sys/class/gpio/gpio32/value" 

#define GPIO_EXPORT  "/sys/class/gpio/export" 

 

/* using clock_nanosleep of librt */ 

extern int clock_nanosleep(clockid_t __clock_id, int __flags, 

      __const struct timespec *__req, 

      struct timespec *__rem); 

 

static inline void tsnorm(struct timespec *ts) { 

    while (ts->tv_nsec >= NSEC_PER_SEC) { 

        ts->tv_nsec -= NSEC_PER_SEC; 

        ts->tv_sec++; 

    } 

} 

 

double stress(char *argv) { 

   int i, len=10; 

   double sum = 0; 

 

   if (argv != NULL) 

 len = atoi(argv); 

 

   for (i=1; i<len; i++) { 

 sum += pow(i, i); 

   } 

   return sum; 

} 

 

int main( int argc, char** argv ) 

{ 

 struct timespec t; 

 struct sched_param param; 

 int interval=50000;  // 50000ns = 50us, cycle duration = 100us 
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 int fd; 

 char zero_string[] = "0"; 

 char one_string[] = "1"; 

 char buffer[32]; 

 unsigned char value = 0; 

 

 // GPIO_32, pin 18 of J6.  

 if ((fd = open(GPIO_EXPORT, O_WRONLY | O_NDELAY, 0)) == 0) { 

     printf("Error: Can't open gpio export.\n"); 

     exit(1); 

 }    

 strcpy( buffer, "32" ); 

 write( fd, buffer, strlen(buffer) ); 

 close(fd); 

 printf("Added GPIO 32.\n"); 

 

 

      if ((fd = open(GPIO32_DIRECTION, O_WRONLY | O_NDELAY, 0)) == 0) { 

           printf("Error: Can't open gpio direction.\n"); 

           exit(1); 

      } 

      strcpy( buffer, "out" ); 

      write( fd, buffer, strlen(buffer) ); 

      close(fd); 

      printf("Direction set to out.\n"); 

 

      if ((fd = open(GPIO32_VALUE, O_WRONLY | O_NDELAY, 0)) == 0) { 

          printf("Error: Can't open gpio value.\n"); 

          exit(1); 

      }    

      printf("Value opened for writing.\n"); 

 

 write( fd, one_string, 1 ); 

 int ret = stress(argv[1]); 

     //printf("...value set to 1...\n"); 

 write( fd, zero_string, 1 ); 

     //printf("...value set to 0...\n"); 

 return ret; 

} 

 

 

C.2. Gpio-toggle Usage 

 

 

 

target # gpio-toggle 
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Appendix D 

D.1. Cpustress script 

CPU load script generates a desired CPU load and forces it per each core on machines running 

Linux. It requires stress and cpulimit to be installed on the target machine. It depends on 

cpulimit utility program. 

 

D.2. SAR Commandline Tool 

Sar collects, reports, or saves system activity information. It is used to investigate CPU 

activities per core. The command below prints the idleness, load and other activities on each 

CPU core. 

 

D.3. CPU Affinity (cpus_allowed) 

Thanks to /proc filesystem, we can observe on which CPU core a task is running currently. For 

example, the command output below says that the task can run only CPU1. 

 

 

target # ./cpuload.sh [load in percent] [duration in seconds] 

target # ./cpuload.sh 25 10 

target # sar –P ALL <interval> <count> 

target # sar -P ALL 1 3 

Linux 3.4.67-gef651f0-dirty (kadir) 01/01/00 _armv7l_ (2 CPU) 

02:08:54  CPU  %user  %nice %system  %iowait  %steal     %idle 

02:08:55  all   0.00   0.00    0.50     0.00    0.00     99.50 

02:08:55    0   0.00   0.00    1.00     0.00    0.00     99.00 

02:08:55    1   0.00   0.00    0.00     0.00    0.00    100.00 

target # cat /proc/<task’s PID>/status | grep –i cpus 

Cpus_allowed : 2 

Cpus_allowed_list: 1 
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