

ÇOK ÇEKİRDEKLİ GÖMÜLÜ İŞLEMCİLER ÜZERİNDE GERÇEK

ZAMANLI SİSTEMLER İÇİN ÇOKLU GÖREV ZAMANLAYICI

TEKNİĞİ

MULTI-SCHEDULING TECHNIQUE FOR REAL-TIME SYSTEMS

ON EMBEDDED MULTI-CORE PROCESSORS

ABDULKADİR YAŞAR

Assist. Prof. Dr. Kayhan M. İmre

Supervisor

Submitted to Institute of Sciences of Hacettepe University

as a Partial Fulfillment to the Requirements

for the Award of the Degree of Master of Science

in Computer Engineering

2014

This work named “Multi-Scheduling Technique For Real-Time Systems On Embedded Multi-

Core Processors” by Abdulkadir Yaşar has been approved as a thesis for the Degree of Master

of Science in Computer Engineering by the below mentioned Examining Committee Members.

Assoc. Prof. Dr. Ali Ziya ALKAR

Head ……………..………………

Assist. Prof. Dr. Kayhan M. İMRE

Supervisor ……………..………………

Assist. Prof. Dr. Ahmet Burak CAN

Member ……………..………………

Assist. Prof. Dr. Sevil Şen AKAGÜNDÜZ

Member ……………..………………

Assist. Prof. Dr. Murat AYDOS

Member ……………..………………

This thesis has been approved as a thesis for the Degree of Master of Science in Computer

Engineering by Board of Directors of the Institute for Graduate Studies in Science and

Engineering.

Prof. Dr. Fatma SEVİN DÜZ

Director of the Institute of

Graduate Studies in Science

DEDICATED

To

My deceased uncle

Kadir Yaşar

Never seen and met with him but I know him very well from his

memories he left behind

I grow up with his adventures, stories and books

His leadership and farsightedness inspired me

I am very proud of carrying his name..

ETHICS

In this thesis study, prepared in accordance with the spelling rules of Institute of

Graduate Studies in Science of Hacettepe University,

I declare that

 all the information and documents have been obtained in the base of the

academic rules

 all audio-visual and written information and results have been presented

according to the rules of scientific ethics

 in case of using others Works, related studies have been cited in accordance

with the scientific standards

 all cited studies have been fully referenced

 I did not do any distortion in the data set

 And any part of this thesis has not been presented as another thesis study at

this or any other university.

25/06/2014

ABDULKADİR YAŞAR

i

ABSTRACT

MULTI-SCHEDULING TECHNIQUE FOR REAL-TIME SYSTEMS

ON EMBEDDED MULTI-CORE PROCESSORS

Abdulkadir YAŞAR

Master of Science in Department of Computer Engineering

Supervisor: Assist. Prof. Dr. Kayhan M. IMRE

July 2014, 77 pages

Recent studies have shown that today's embedded systems require not only real-time ability but

also general functionality. In order to provide these two functionalities on same system, many

researches, techniques and frameworks have been developed. Integrating multiple operating

systems on a Multi-core processor is one of the most favorite approaches for system designers.

However, in this heterogeneous approach, failure in one of the operating systems can cause the

whole system to come down. Moreover, in recent years many scheduling techniques such as

external and partition-based scheduling have been developed to provide real-time ability for

general purpose systems in single operating system without using heterogeneous approach.

This thesis introduces Multi-scheduling method for Multi-core hardware platforms without

running heterogeneous operating systems concurrently. In this technique, there are two

schedulers in single operating system. One of them is for real-time applications and the other is

for general or non-real-time applications. In heterogeneous operating systems approach, a real

time operating system services real-time functionality such as low interrupt latency while a

versatile operating system processes IT applications. Unfortunately, Real-time and IT

ii

applications are isolated and run on different operating system environments. This may cause

some problems in system design and Inter-Process-Communication (IPC). In Multi-scheduling

approach, Real-time and IT applications run in the same operating system environment so the

implementation and maintenance of the system become easier.

We implemented our work on Linux, widely used general purpose operating system for

embedded and industrial systems. By modifying Symmetric-Multiprocessing (SMP) technique

in Linux, two schedulers are enabled to run on same kernel and each of them runs on different

CPU cores. Our proposed technique is tested by real-time de-facto test tools and programs

accepted all over the world. The most important characteristic of a real-time application such as

low interrupt latency and responsiveness were benchmarked. The results show that Multi-

scheduling technique can be profitable to bring the real-time functionality to general operating

system as in heterogeneous approach.

Keywords: Multi-core, Multi-Scheduling, Embedded Systems, Real-time, Scheduling,

Operating System, Symmetric Multi-processing, Linux

iii

ÖZET

ÇOK ÇEKİRDEKLİ GÖMÜLÜ İŞLEMCİLER ÜZERİNDE GERÇEK

ZAMANLI SİSTEMLER İÇİN ÇOKLU GÖREV ZAMANLAYICI

TEKNİĞİ

Abdulkadir Yaşar

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Danışmanı: Yrd. Doç. Dr. Kayhan M. İMRE

Temmuz 2014, 77 sayfa

Son yıllarda yapılan çalışmalar ve ortaya çıkan ihtiyaçlar günümüz gömülü sistemlerinin hem

gerçek zamanlama yeteneğine hem de genel yeteneklere aynı anda ihtiyaç duyduğunu

göstermektedir. Bu iki yeteneği aynı sistem üzerinde gerçekleştirebilmek için birçok

araştırmalar, çalışma altyapıları ve farklı teknikler geliştirilmiştir. Çok çekirdekli işlemciler

üzerinde birden fazla ve farklı işletim sistemlerinin bir arada çalışmasını sağlayan yaklaşım

sistem geliştiriciler arasında en yaygın olanıdır. Yine de heterojen yaklaşımda işletim

sistemlerinden bir tanesinde meydana gelecek kritik bir hata tüm sistemin çalışmasını

engelleyebilir. Bu yaklaşımın dışında, son zamanlarda harici ve parça tabanlı olmak üzere farklı

görev zamanlayıcı teknikleri genel işletim sistemlerine gerçek zamanlama yeteneğini heterojen

yaklaşım kullanmadan kazandırmak amaçlı geliştirilmiştir.

Bu tez çalışmasında çok çekirdekli donanımlarda heterojen işletim sistemleri çalıştırmayan

Çoklu görev zamanlama (Multi-scheduling) ismini verdiğimiz yöntem sunulmaktadır. Bu

yöntemde bir işletim sistem içerisinde iki farklı görev zamanlayıcı farklı işlemci çekirdekleri

iv

üzerinde çalıştırılmaktadır. Görev zamanlayıcılardan bir tanesi gerçek zamanlı görevler, diğerİ

ise genel ya da gerçek zamanlı olmayan görevler içindir. Heterojen sistemlerde işletim

sistemlerinden bir tanesi düşük kesilme gecikmesi gibi gerçek zamanlama yetenekleri

sunarken, diğer genel amaçlı işletim sistemi de genel amaçlı görevlerde kullanılmaktadır. Ne

yazık ki heterojen yaklaşımda gerçek zamanlı ve genel görevler birbirlerinden ayrılmış farklı

işletim sistemlerinde çalıştığından sistem tasarımda ve görevler arası iletişimde bazı sorunlara

ve zorluklara sebep olmaktadır. Bu çalışmada sunulan çoklu görev zamanlayıcı yönteminde

gerçek zamanlı ve genel görevler aynı işletim sisteminde dolayısıyla aynı çevrede çalıştığından

bütün sistemin bakımı ve geliştirimi daha kolay olmaktadır.

Bu çalışma gömülü sistemlerde ve endüstride birçok kullanım alanına sahip olmasından ve iyi

belgelenmesinden dolayı Linux işletim sistemi üzerinde gerçekleştirilmiştir. Linux işletim

sisteminin Simetrik çoklu işleme (Symmetric-Multiprocessing) özelliğinin olduğu bazı

kesimler değiştirilerek iki farklı görev zamanlayıcının aynı işletim sistemi üzerinde farklı

çekirdeklerde çalışması sağlanmıştır. Ayrıca kullanıcılar için bu tekniği yöneten bir de

uygulama hazırlanmıştır.

Çalışmada geliştirilen yöntem gerçek zamanlı uygulamaların ihtiyaçlarını baz alan ve dünya

genelinde kabul görmüş test araçları ve uygulamaları kullanılarak değerlendirilmiş ve

yorumlanmıştır. Özellikle kesilme gecikmelerinde gözlemlenen yöntemin kullanılmadığı

standart sistemlere göre yaklaşık iki katı iyileştirme ve sistemin ani olaylara daha kararlı cevap

vermesi sunduğumuz yöntemin faydalı ve kullanışlı olabileceğini ortaya koymaktadır.

Anahtar Sözcükler: Çok çekirdekli işlemciler, Çoklu görev zamanlama, Gömülü sistemler,

Gerçek zamanlama, Görev zamanlayıcı, İşetim sistemi, Simetrik çoklu işleme, Linux

v

ACKNOWLEDGEMENT

First and foremost, I have to thank my research supervisor Assist. Prof. Dr. Kayhan M. İmre.

Without their assistance and dedicated involvement in every step throughout the process, this

thesis would have never been accomplished. I would like to thank him very much for his

support and understanding over these past four years. I want to thank to Dr. Ahmet Burak Can

and Dr. Ersin Eroğlu for their material and moral support since my undergraduate years. I feel

lucky to be one of their graduate students, possibly benefiting from their teaching skills one of

the most, and thank them one more time for the opportunities they have provided me.

Second, I am very grateful to all of my workmates in Aselsan, specifically Alper Yıldırım and

Alaadin Köroğlu for their help and insights. I also would like to thank Çağlar Kılcıoğlu,

Mehmet Emre Şahin and Ozan Küsmen for sharing his studies and ideas with me generously. I

am also thankful to Canan Balcı Göbekli and Ayşen Balbaş Bulu for feeding us with their

cakes, muffins and cookies during studies and workings in the lab, Ali İbrahim Bostancıoğlu

for being a good roommate and workmate and his special encouragements, Ahmet Orunç and

Tuğser Kutlu for their technical support about hardware, Yaşar Kalay for sharing his endless

and priceless ideas especially about nature with me.

I am grateful to my current directors Cemal Kırlılar and Ali Büke for showing tolerance during

the period of writing this thesis.

I am also appreciative of the support from my company, Aselsan, for its encouragement and

financial support to study the Master of Science degree while working.

I also would like to thank all members of Linux Kernel mailing list, specifically to Steven

Rostedt, for sharing their ideas with me, which helped me very much in solving problems

related with this thesis.

I am also thankful to Mehmet Akif Akkuş and Ahmet İlhan Ayşan, for being a perfect

colleague and friend, helping me any time when I became boring and dispirited by riding a

bike. He also advised and helped me to study Master of Science in Hacettepe University.

Most importantly, none of this could have happened without my parents, Emine Yaşar and

Fikret Yaşar. And, of course, special thanks for my brother, Mustafa Kemal Yaşar, and my

sister-in-law, Çiğdem Yaşar, especially for their endless dessert support; baklava. It would be

an understatement to say that, as a family, we have experienced some ups and downs in the

past. Every time I was ready to quit, they did not let me and I am forever grateful. This

dissertation stands as a testament to their unconditional love and encouragement.

vi

CONTENTS

Page

ABSTRACT .. İ

ÖZET .. İİİ

ACKNOWLEDGEMENT ... V

CONTENTS ... Vİ

LIST OF TABLES .. Vİİİ

LIST OF LISTINGS ... İX

LIST OF FIGURES .. İX

LIST OF SYMBOLS AND ABBREVIATIONS ... Xİ

1. INTRODUCTION ... 1

2. RELATED WORK ... 3

3. BACKGROUND ... 5

3.1. Real Time Systems .. 5

3.2. Real Time Operating Systems (RTOS)? .. 7

3.2.1. Monolithic kernel vs. Microkernel ... 8

3.2.2. RTOS vs. General OS ... 9

3.3. Importance of Scheduling .. 11

3.4. Real-time Scheduling Algorithms .. 12

3.4.1. Rate Monotonic (RM) Algorithm ... 14

3.4.2. Earliest Deadline First (EDF) Algorithm ... 14

3.5. Widely Used RTOSes .. 14

3.5.1. VxWorks ... 14

3.5.2. QNX Neutrino RTOS ... 14

3.5.3. FreeRTOS ... 15

3.5.4. Windows CE ... 15

3.5.5. Linux for Real-time .. 15

3.6. Embedded Systems and Multi-core Processors ... 17

3.6.1. ARM Architecture .. 18

3.7. Asymmetric-multiprocessing (AMP) and Symmetric-multiprocessing (SMP) 19

vii

4. MULTI-SCHEDULING TECHNIQUE ... 21

4.1. Multi-scheduling Overview ... 21

4.1.1. Problem in Heterogeneous Systems ... 22

4.2. Linux SMP and Booting .. 24

4.3. Secondary Startup Kernel .. 26

4.4. Scheduling Structures in Multi-scheduling ... 28

4.4.1. Scheduling Policy of a Task... 30

4.5. Real-Time Task Creation... 30

4.6. Load-balancing .. 33

4.7. Other Extensions for Multi-scheduling ... 36

4.7.1. Support in Userspace ... 37

4.8. Standard Linux Kernel API Functions used in Multi-scheduling 37

5. DEVELOPMENT ENVIRONMENT ... 39

5.1. Target and Host Platform .. 39

5.2. Target Platform .. 40

5.2.1. Pandaboard ES Architecture .. 41

5.2.2. OMAP4460 Processor ... 42

5.3. Cross-Compilation and Toolchain ... 44

5.3.1. Toolchain components ... 45

5.3.1.1. Binutils ... 45

5.3.1.2. Compilers ... 45

5.3.1.3. C library .. 45

5.3.2. CodeSourcery Toolchain ... 46

5.3.3. Downloading and Installing Toolchain .. 46

6. DEVELOPMENT OF MULTI-SCHEDULING IN LINUX KERNEL 48

6.1. Why Linux Kernel? ... 48

6.2. Linux Kernel Source Tree ... 48

6.3. Patching ... 49

6.3.1. Patching the Linux Kernel ... 50

6.4. Linux Kernel Configuration .. 50

6.4.1. Configuration for Multi-scheduling ... 51

viii

6.5. Compiling the Kernel .. 54

6.6. Running the compiled Kernel image ... 55

7. PERFORMANCE ANALYSIS OF THE MULTI-SCHEDULING TECHNIQUE 58

7.1. Real-time Characteristics to Evaluate ... 58

7.1.1. Responsiveness .. 58

7.1.2. Latencies .. 59

7.1.3. Eliminating the Surprises ... 59

7.2. Test Results ... 59

7.2.1. Cyclictest .. 60

7.2.1.1. CPU Stress Level 0 ... 61

7.2.1.2. Raising CPU Stress Level .. 62

7.2.2. Responsiveness and Eliminating the Surprises .. 64

8. CONCLUSION, DISCUSSION AND FUTURE WORK .. 66

BIBLIOGRAPHY .. 68

APPENDIX A .. 71

APPENDIX B ... 74

APPENDIX C ... 76

APPENDIX D .. 78

CURRICULUM VITAE .. 79

LIST OF TABLES

Page

Table 5.1. Pandaboard Hardware specifications table .. 41

Table 5.2. OMAP4460 processor features ... 44

Table 6.1. Multi-scheduling patches .. 49

Table 7.1. Latency results in CPU stress level 0 .. 62

Table 7.2. cyclictest Latency results in different CPU stress levels ... 63

ix

LIST OF LISTINGS

Page

Listing 4.1. Multi-scheduling secondary_startup_kernel code changes 26

Listing 4.2. Task creation patch to Linux kernel .. 33

Listing 6.1. Linux kernel configuration over command-line.. 50

Listing 6.2. Content of .config file ... 54

Listing 6.3. Compiling Linux kernel .. 55

Listing 6.4. Generating bootable Linux kernel image .. 55

Listing 6.5. Linux kernel boot logs on Pandaboard ES .. 57

Listing 7.1. cyclictest pseudocode .. 60

Listing 7.2. CPU stress level 20% for 120 seconds .. 62

LIST OF FIGURES

Page

Figure 3.1. Cost Function associated with hard Real-time Systems .. 6

Figure 3.2. Cost function of soft Real-time systems .. 7

Figure 3.3. Gain function of firm Real-time systems ... 7

Figure 3.4. Monolithic kernel vs. Microkernel Architectures .. 9

Figure 3.5. Preemptive task and non-Preemptive task ... 11

Figure 3.6. The basic attributes of an rt-task .. 13

Figure 3.7. Classification of real-time scheduling algorithms.. 13

Figure 3.8. Nanokernel and Microkernel architectures .. 16

Figure 3.9. Example hardware block diagram of an embedded system 17

Figure 3.10. AMP Multi-core System Structure... 19

Figure 3.11. SMP Multi-core System Structure ... 20

Figure 4.1. Multi-scheduling overview .. 23

Figure 4.2. Linux kernel boot sequence ... 24

Figure 4.3. Linux SMP Boot sequence ... 25

Figure 4.4. Multi-scheduling enabled Linux SMP on the main memory 28

Figure 4.5. Scheduling structures and relationships used in Multi-scheduling 29

x

Figure 4.6. Real-time or non-real-time task creation flow in Multi-scheduling......................... 31

Figure 4.7. Load-balancing mechanism in Multi-scheduling ... 35

Figure 4.8. Isolation of real-time and non-real-time environments in Multi-scheduling 37

Figure 5.1. Target and Host platforms on Development environment 40

Figure 5.2. Architectural Block Diagram of Pandaboard ES [31].. 41

Figure 5.3. Top Real View of Pandaboard ES [31] .. 42

Figure 6.1. Linux Kernel Configuration Menu... 51

Figure 6.2. SMP kernel feature not enabled ... 52

Figure 6.3. SMP enabled and Multi-scheduling support appears ... 52

Figure 6.4. Multi-scheduling is enabled and CPU1 is chosen as rt-core automatically 53

Figure 6.5. Rt-core selection in a quad-core processor .. 53

Figure 7.1. Comparison of Interrupt Latency results of Multi-scheduling patches over CPU

workload .. 63

Figure 7.2. gpio-toggle test in the standard Linux Kernel .. 64

Figure 7.3. gpio-toggle test in Multi-scheduling enabled Linux Kernel 65

file:///C:/Users/ayasar/Docs/Master_of_Science/thesis/Tez_v2.docx%23_Toc393810284

xi

LIST OF SYMBOLS AND ABBREVIATIONS

Symbols

µs microsecond

Abbreviations

RT Real-Time

OS Operating System

RTOS Real-Time Operating System

AMP Asymmetric Multi-processing

SMP Symmetric Multi-processing

rt-task Real-time task

non-rt-task Non Real-time task

rt-core Real-time CPU core

Msched Multi-scheduling

IPC Inter-process Communication

MPI Message Passing Interface

SoC System on a Chip

CPU Central Processing Unit

API Application Programming Interface

GCC GNU Compiler Collection

CFS Completely Fair Scheduling

EDF Earliest Deadline First

1

1. INTRODUCTION

In the last decade, the processor manufacturers place multiple processor cores in a single chip

called System on Chip (SoC) to speed up the computation, to improve the performance and to

reduce the cost. These processors may be composed of two or more independent cores based

on symmetric or asymmetric multiprocessing architectures [1]. In addition to desktop or server

PCs, multi-core processors are used in embedded systems for performance and economic

reasons.

A typical embedded system is dedicated to perform functions such as real-time data control

and digital signal processing. Unsurprisingly, embedded systems also require general non-real-

time functionality as well as real-time (RT) functionality. Combination of these two

functionalities is one of the most challenging problems for embedded and RT system

developers. In order to overcome this problem, processor manufacturers usually produce

heterogeneous multi-core processors [1], [2]. In heterogeneous processors, each core runs a

different type of operating system (OS) to perform required functionality. For example, in a

dual-core processor, a real-time operating system (RTOS) runs on one core, and a versatile or

general purpose OS runs on the other. Memory and peripherals are isolated by hardware, or a

low-level software called hypervisor. On the other hand, in homogenous processors, each core

runs the same OS code, and share the main memory, peripherals and other resources [2].

Migration from single-core to multi-core processor brings a discussion about how to manage

OS code over the cores in SoC. There are two suggested modes; asymmetric-multiprocessing

(AMP) and symmetric-multiprocessing (SMP). In AMP mode, each core has its own copy of

OS kernel code, and the codes are generally different from each other (heterogeneous OSes).

On the contrary, in SMP mode, the same kernel code runs on each core synchronously

(homogenous OSes). SMP OS dynamically balances the work between processor cores, and

controls the resource sharing, e.g., main memory, between the cores [3], [4].

Despite the fact that the heterogeneous OSes in AMP mode are difficult and costly to

maintain, they are widely used in embedded RT systems [1], [5]. The reason behind this fact is

that reserving the processor time for RT tasks in SMP mode is not trivial. In AMP mode, one

or more cores run a RTOS in which RT application get the total control of the core(s) easily.

The RTOS has a special scheduler, e.g., EDF scheduler, to meet strict timing constraints [6],

2

[7]. On the other hand, a general purpose OS has a scheduler, e.g., CFS, which gives tasks a

fair share of a CPU’s time.

It is essential that a RT system must respond actions or produce results within predefined

timeframes [7]. In a RTOS, a task must gain immediate access to the processor to produce a

timely response to an interrupt or action [2], [4], [7]. Therefore, processor should be waiting in

idle state for the most of its time. Although the processing speed is important for the quality of

a RT system, it is not the primary purpose of an RT system. The primary purpose of an RTOS

is to eliminate the surprises [4]. In other words; RTOS must provide a solid infrastructure to

guarantee the response time of a task. However, in a general purpose OS, time for the

completion of a task is unpredictable and may diverge [8].

In this work, we propose a new technique called Multi-scheduling for SMP multi-core

embedded processors to enable to run RT tasks along with the general purpose non-real-time

tasks. We have implemented our approach in Linux since it is the most widely used OS in

embedded systems. In our approach, there are two schedulers running in a single OS

environment. After booting on SMP system, one or more cores, selected in kernel

configuration, change their scheduling policy to an appropriate RT scheduler. Therefore, RT

tasks and general tasks are run on separate cores. We have measured the interrupt latencies

and average task completion times of the multi-scheduling policy on a system containing an

ARM Cortex-A9 dual-core processor. We have also carried out the same measurements for the

standard kernel on the same hardware. Our results show that multi-scheduling technique can

be used to bring RT functionality to SMP homogenous multi-core processors.

The remainder of this paper is organized as follows: Chapter 2 reviews related works; Chapter

3 gives necessary information as background; Chapter 4 introduces the Multi-scheduling

technique, and then its implementation on Linux will be detailed in Chapter 5 and 6; Chapter 7

identifies the benchmark and comparison results; and finally conclusions and future works are

drawn in Chapter 8.

3

2. RELATED WORK

Heterogeneous operating systems are widely used in embedded systems to integrate real-time

and non-real-time functionality together. Low-level software called hypervisor is used to

partition the hardware resources between OSes [9]. Moreover, physical partitioning techniques

have been developed to run RTOS and general OS simultaneously on same system [1], [10].

However, the physical partitioning techniques require hardware modifications on SoC to

control the access lists to resources.

Linux is widely used OS in not only servers and desktops but also embedded systems.

However, it suffers from lack of hard RT functionality. Although it is originally developed as

general purpose OS, several RT infrastructures have been adopted to Linux kernel in recent

years [3], [11], [12]. The RT-patch provides several modifications such as low latency support

and preemption into the standard Linux kernel to yield hard RT support [4], [13]. Nowadays,

the standard Linux also can be used in RT application but it provides soft RT infrastructure

[2], [3]. Researchers in [13] made first experimental analysis of RT performance of the

standard Linux primitives on multi-core platforms.

In the recent years, numerous scheduling methods have been suggested for homogenous multi-

core processors. Authors in [14] implemented a hybrid scheduling method to make the

parallelism by partitioning an application into some parallel tasks. In [6] and [14], the authors

implement a task splitting semi-partitioned scheduler for multi-core embedded systems. They

show that semi-partitioned scheduling has better performance and low overhead than other

partition-based scheduling methods. Moreover, authors in [16] have developed a loadable RT

scheduler suite to enable multi-core platforms to run different scheduling algorithms

simultaneously. In [7], the researchers propose a new technique to support to run soft real-time

periodic tasks in high performance asymmetric multi-core platforms that are running Linux. In

a different work, a new real-time scheduling method for multi-core platforms that runs threads

of a multi-threaded real-time task on different cores synchronously is developed in [17]. In the

approach proposed in [8], real-time tasks are grouped in clusters. A task’s cluster cannot be

changed later and tasks are scheduled with their own cluster by using EDF scheduling

algorithm. This hybrid approach enables large-scale multi-core platforms with hierarchical

shared caches to run real-time tasks.

4

The proposed work in this thesis is a kernel-level approach to bring real-time functionalities to

a general operating system such as Linux. Rt-patch [4] is also a kernel-level method that

provides necessary timing features and modifications for the standart Linux kernel. Rt-patch

provides lower latency in mutual exclusion mechanism such as spinlock and a better

preemption in task scheduling. Multi-scheduling method is also implemented in kernel level

like rt-patch, but it creates two isolated environment in kernel space for rt and non-rt tasks. On

the other hand, rt-patch is able to run all tasks in same environment thanks to its highly

reliable timing extensions and lower latency feature.

The work in [1] also targets same problem, running real-time and general tasks together. An

hardware isolation layer that seperates rt and non-rt environments is proposed. We have been

inspired from this work and decided to implement this work in kernel level with software.

To sum up, there are some methods and techniques to similar our proposed Multi-scheduling

technique to provide both real-time and general functionalities. Our target is to show the fact

that Multi-scheduling technique can be evaluated as a new technique to isolate real-time and

non-real-time partitions or environments in same operating system.

5

3. BACKGROUND

The proposal scheduling technique presented in this thesis involves the integration of various

hardware and software components. This chapter deals with the basic background knowledge

required for a clear understanding of the Multi-scheduling technique details. The topics

covered in this section are quite complex, and it is not possible to cover all details. Therefore,

only brief summaries of the topics are presented. Firstly, we will brief what real-time and real-

time systems are. Secondly, RTOS and its differences between general OSes will be

explained. Following that, importance of scheduling in real-time and most known scheduling

algorithms for RT systems will be summarized. Famous RTOSes will be briefed in Section

3.5. Then, we will cover embedded systems and multi-core requirements in Section 3.6.

Finally, the chapter ends with a discussion between asymmetric and symmetric processor

architectures.

3.1. Real Time Systems

In Computer Science, Real-time means a time period that a computer system must produce a

result or respond in. In other words, it can be considered as a deadline that a result or respond

must be produced [4], [7]. In the real world, the goal of a real-time system is to have a

physical effect within a given time period. A real-time system consists of two main

components; computer and environment. Computer system interacts with its environment to

get information and responds the environment according to collected data from outside.

Sensors are used to sense and collect data from environment in real-time embedded systems.

The computer or controlling mechanism processes the data and produces a respond to outside.

For example, a thermostat has a temperature sensor that senses the environment and a

processor that controls an output device such as cooler. Any change in temperature of the

environment is processed and cooler is managed if necessary. In some real-time systems,

unexpected changes or unforeseen events may occur and it must be dealt with immediately for

example in defense critical or medical devices. In this situation, computer system of real-time

system must demand necessary timings of the task handling the critical events [7]. According

to the type of real-time system, not demanding or insufficient in timing constraints can cause

different cost-level results. A failed timing result leads to severe problems for safety critical

real-time systems. For some systems, failed result is negligible or meeting necessary timings

6

are not so critical. To sum up, an rt-task that needs timing features in a real-time system must

be handled carefully. In other words, a real-time system must provide accurate and sufficient

timing features for rt-tasks. These timing properties are very related with task scheduling in a

real-time system [7].

In real-time concept, the correctness of the result that is produced for an event is not only

consequence. Respond time to an event or meeting necessary timings is also important. If the

timings are not met, the system can be considered as unsuccessful. The fact that a real-time

system must provide highly reliable timing features for rt-tasks increases the system’s

predictability. The higher predictability a real-time system has, the more possible to meet

timings [12].

Real-time systems can be separated into 3 groups according to the criticality of the application

area which the real-time system serves in [7], [18].

 Hard real-time system; if the system fails to meet the deadline even once then the

system is considered to be failed. In other words, not meeting the deadline causes to

potential loss of life or big economic damage. These systems are considered to be

safety or mission critical. A cost function associated with hard real-time systems is

depicted in Figure 3.1.

Figure 3.1. Cost Function associated with hard Real-time Systems

 Soft real-time system is the system that not meeting the deadline can be tolerable but

not preferred. There will be no vital results if one or more deadlines are missed or met.

However, the results are considered as worthless when it is produced after its deadline.

This causes to increase the cost of the system as figured in Figure 3.2 below for

example Audio or video stream processes.

7

Figure 3.2. Cost function of soft Real-time systems

 Firm real-time system; the respond is obsolete if the deadline is missed. For example, a

fore-casting system is a good example of Firm real-time systems where meeting

deadline is desired but not critical or vital. Producing a result before deadline is a gain

and provides to reduce the cost as depicted in Figure 3.3.

Figure 3.3. Gain function of firm Real-time systems

3.2. Real Time Operating Systems (RTOS)?

An operating system is a computer program that is responsible for managing and sharing

hardware resources or components of a computer and provides services to user applications to

run on the computer. The most important object of an OS is to run application or tasks with

providing them for the resources such as memory and CPU fairly. On the other hand, A RTOS

is a special OS provides the tasks with not only the services that an OS provides but also a

very exact timing constraints and high reliability [2]. In other words, a RTOS is an OS that

obey the Real-time requirements such as meeting deadline that mentioned on previous section.

A RTOS must guarantee to not to exceed a maximum time for every critical or urgent process.

OS calls and interrupt handling can be given as some examples of these operations. These are

time-bounded operations and not meeting required timings of these operations can cause

critical problems. In practice, RTOSes are generally grouped in 2 categories [7]; hard and soft.

8

For example, failure or not meeting the timings of an anti-brake system, known as ABS, of a

car can cause catastrophic results or maybe deaths. Therefore, a hard real-time system is

needed; you need assurance as the system designer that no single operation will exceed certain

timing constraints. On the other hand, small failures or latencies in timings of a VOIP

transceiver device can be negligible or does not cause fatal problems. For this case, a soft

RTOS may suffice [7], [17].

The most important point is that a RTOS must provide rt-tasks with high consistent timing as

much as possible. Consequently, RTOSes have some opportunities such as task prioritization

or different scheduling algorithms or policies to make the system to meet desired [7], [18]. On

the other side, the most popular operating systems which are used in personal computers; for

example Windows, are called general-purpose operating systems. Operating systems like

Windows are designed to maintain user responsiveness with many programs and services

running fairly, while RTOSes are designed to run safety and mission critical applications

reliably and with determined timing constraints.

3.2.1. Monolithic kernel vs. Microkernel

Kernel is the most important and central part of the modern operating systems. It consists of

the fundamental properties such as scheduling, process management and device drivers of an

operating system. Operating systems are separated into two groups according to their kernel's

structure; monolithic kernel and microkernel in Figure 3.4.

Monolithic kernel is a single large process running in a single address space. All kernel

services and threads exist and execute in kernel address space and it provides to invoke

functions directly. If one of the services or threads is crashed, it causes the whole system to

come down [19]. In order to add some features or fix a problem in kernel, the whole kernel

source code must be recompiled. It lacks of extensibility and maintainability. However,

operating system designers have developed kernel module feature to add or remove kernel

parts online without compiling the whole source code. Linux and UNIX are good examples for

monolithic kernel based Oss.

9

Figure 3.4. Monolithic kernel vs. Microkernel Architectures

The kernel is divided into separate threads, known as servers in Microkernel approach. All

servers are isolated from each other and run in different memory address spaces. Moreover,

these servers can execute in kernel-space or userspace. Message passing interfaces (MPI) or

Inter-process Communication (IPC) are used to communicate between services in

microkernels. Servers uses IPC messages or signals to call other services to carry out chained

jobs [19]. However, these messaging between services cause to decrease operating system

performance and this is the most considering disadvantage in this approach. One of the most

important advantages of this approach is that if one of the servers in OS fails, other servers can

continue to work. Mac OS X and Windows NT are good examples for Microkernel based

OSes.

3.2.2. RTOS vs. General OS

General operating systems such as Microsoft Windows are designed to run tasks that do not

need very precise timing constraints. They are suitable for normal use or daily applications

such as document editing, games and internet browsers. These applications are not critical to

respond actions or events and being late may not cause fatal results. On the other hand, some

applications require precise timing constraints to respond to an action or produce a result

before a deadline. Especially in medical and military areas, applications can need very reliable

10

timing properties to run. Consequently, using a general OS in such situations is not a good

idea because a general OS cannot provide necessary timing features for a critical task. In this

section, the major differences between a RTOS and a general OS will be explained.

Real-time operating systems are featured operating systems with reliable timing properties to

provide an environment for real-time tasks. In order to satisfy timings, some components of

operating systems must be enhanced such as latencies and scheduling mechanism. Latency is

the period between the time when an event is occurred and the time when it is being handled.

There are mainly two important types of latencies for RTOSes; scheduling latency and

interrupt latency. Scheduling latency is the time between an rt-task needs to be woken up and

the time it actually gains to control and run. It occurs in context-switching of the tasks when a

higher priority task is scheduled or the current task relinquishes the processor. The less the

scheduling latency is, the much more time remains to meet the deadline for an rt-task.

Interrupt latency, on the other hand, is the time elapsed between an event occurred and when it

is actually handled or processed. Interrupt latency is the most important latency to reduce for

real-time systems [18], [20].

The other main difference is in scheduling mechanism. RTOSes have generally more

deterministic scheduler algorithm than general OSes have. Determinism of a scheduler means

that a task always has an opportunity to switch to CPU, in other words, RTOS provides

execution for a task when it needs to run. General OSes share the CPU time between tasks

fairly. On the other hand, RTOSes can not only share equal time slots between tasks but also

delivers the CPU on event occurring, in other words they can have event-driven scheduling

method.

To sum up, RTOSes does not have to have better performance than other general-purpose

OSes [4], [7], [20]. It is one of the common misconceptions in Real-time concept. Focus of a

general/regular OS is providing high computing , but a RTOS generally tries to respond events

as much as possible [20]. OSes are designed to run general applications such as games and

document editing, while embedded and critical tasks are run in RTOSes.

11

3.3. Importance of Scheduling

Scheduler is one of the operating system’s kernel functions that run the tasks or processes in

order according to its algorithm. When the processor is free or a task yields the processor or

finishes, the scheduler chooses one of tasks from the task list and switches it to the processor.

Scheduler can be considered as the engine of an OS. For this reason, it is the most basic and

important part of an OS [7], [19].

Schedulers can be separated into two groups; preemptive and non-preemptive (cooperative). In

preemptive scheduling, tasks can be suspended periodically, then the scheduler chooses new

task to gain the processor. For example, imagine that there are 4 tasks in the task list of an OS

and time period is 100ms. Every task will run at least 100ms in every 400ms cycles. On the

other hand, tasks themselves decide to relinquish the processor when they finish. For example,

tasks call sched_yield() system function to release the processor in Linux. This invocation will

suspend the current task and yields the processor to other tasks in task queue. In spite of the

easiness in implementation, cooperative scheduler is not suitable for RTOSes due to its lack of

interrupts in scheduling. In other words, deadlines have to be met in real-time systems so rt-

tasks must gain the processor to finish critical operations before the deadline. It cannot wait

other tasks to yield the processor.

Figure 3.5. Preemptive task and non-Preemptive task

Due to the requirement for high resolution timing and time constraints, rt-tasks must be

scheduled or behaved demandingly [1]. Consequently, the scheduler needs to have some

12

special features to handle rt-tasks. The following objectives should be considered in

scheduling a real-time system;

 Providing timing constraints and meeting the deadlines of the tasks

 Speed context switches in process/task changing

 Preventing concurrent access to shared resources, devices/peripherals

 Fast respond to soft/hard interrupts

 CPU is kept in idle as much as possible. It means that CPU should be ready to run an

immediate task. This provides fast responsiveness and it is preferred in real-time

systems [7].

To sum up, the scheduler or scheduling algorithm is the most fundamental and important part

of a RTOS. The scheduling algorithm should be chosen according to required timing

properties of rt-tasks running in the system. In the next section, we will discuss the most

known and used scheduling algorithms for real-time systems and basic properties of a real-

time scheduling algorithm will be given.

3.4. Real-time Scheduling Algorithms

The most important and imperative goal for scheduling in RTOSes is providing reliable timing

features to complete tasks before deadlines and preventing to access to same shared resource,

a hardware component or a device simultaneously as mentioned in previous section [18], [21].

There are some decisions that a RTOS has to enable to run rt-tasks to meet their timing

requirements. The set of these decisions are composed in the scheduling algorithm. Many of

real-time scheduling algorithms need timing features of tasks such as total duration and

remaining time to finish. Real-time scheduling algorithms should behave according to rt-task

properties. Each task occurring in a real-time system has some timing properties in Figure 3.6.

These timing properties can be valuable for scheduling algorithm to choose the task which

should be scheduled or gain the processor on a real-time system. The timing properties of a

task are given in the following list;

13

Figure 3.6. The basic attributes of an rt-task [18]

 Release time (or ready time): It is the time that task is ready to go or run.

 Deadline: The last time that the task must finish before.

 Start time: Actual time that the task is being processed.

 Execution time: It is total amount of time that task is being processed or switched to

processor.

 Completion time: It is time that the processing of task is finished.

 Response time: Time between release time and completion time. It is a very important

timing constraint for an rt-task. Environment deals with the response time and tests for

real-time systems measure this duration for performance evaluations.

The scheduling algorithms for real-time systems can be grouped according to the number of

cores in the processor; uniprocessor or multiprocessor, or runtime decisions; on-line or off-

line; or task priority; static or dynamic, as figured in Figure 3.7. In this section, the most

known and used algorithms will be explained briefly.

Figure 3.7. Classification of real-time scheduling algorithms [7]

14

3.4.1. Rate Monotonic (RM) Algorithm

Rate Monotonic is a fixed priority algorithm. In this approach, the higher priority a task has,

the more CPU usage it gets. The scheduler using this algorithm always gives the processor to

task having highest priority. Unique priorities are assigned to tasks at release time with respect

to the cycle duration of the job and the task having shorter cycle duration or little jobs to get

the higher priority. It is a preemptive and has deterministic guarantees for respond times. See

[7] for detailed explanation and example about RM algorithm.

3.4.2. Earliest Deadline First (EDF) Algorithm

Dynamic priority algorithm is the most used and important for Real-time systems. The priority

of a task can be changed while it is running. Contrary to Rate Monotonic algorithm, Earliest

Deadline First (EDF) algorithm is based on priority changing. The priority of a task is

inversely proportional to its deadline, that is, if a task’s deadline is approaching, its priority

also increases. In the same deadline of one or more tasks exception, priorities are delivered

randomly. See [22] for detailed explanation and example about EDF algorithm.

3.5. Widely Used RTOSes

There are many different RTOSes provided by not only microprocessor manufacturers but also

critical software companies in the community. In this section, we will cover the most widely

known and used RTOSes briefly.

3.5.1. VxWorks

Wind River’s VxWorks is one of the most popular RTOSes widely used in robotics,

communications, avionics, flight simulation and other critical control applications. It provides

reliability and scalability with multi-core support, including AMP and SMP operating system

configurations [23].

3.5.2. QNX Neutrino RTOS

QNX software is preferred to develop solutions for life-critical systems such as air traffic

control, surgical equipment and automobiles. It provides multi-tasking, preemptive

scheduling, multi-threading and fast context-switching in a very small scalable size.

15

Furthermore, POSIX Standard API is also delivered for application developers. It is based

upon on microkernel architecture and message-based inter-process communication [24].

3.5.3. FreeRTOS

FreeRTOS is a popular RTOS for embedded devices, being ported to many microcontrollers.

It is distributed under the GPL. It is designed to be small and simple. The kernel is more

readable and easy to port and it is only written in C. It provides multiple threading, mutexes,

semaphores and software timers. Moreover, tick-less option is provided for low-power

applications. OS scheduler is configurable for both preemptive and cooperative.

3.5.4. Windows CE

Windows CE is maintained by Microsoft and designed for mobile phone applications. Its real-

time performance is not good enough to compare with other commercial or free RTOSs. In

addition to this, because of being not POSIX compliant is not widely used in Real-time

systems. It is designed for real-time developers familiar with Windows operating systems.

3.5.5. Linux for Real-time

Linux is a UNIX-like general purpose monolithic operating system kernel and distributed

under GPL. It is most widely used operating system on the world in many areas such as

servers, work-stations, personal computers and mobile phones. Thanks to being developed and

maintained by a big community all over the world, it supports many CPU architecture and

devices. This makes the Linux kernel widely used OS [12].

Many Linux kernel developers have suggested real-time enhancement modifications for the

last decade. These modifications to provide the real-time responsiveness for the standard

Linux kernel can be grouped in three basic approaches. Each of them is distributed as patches

to the standard kernel.

 Micro-kernel Approach: In this approach, a new software layer is added between

hardware and operating system. This additional software layer is called micro-kernel

and responsible for all real-time tasks and operations such as interrupt handling, real-

time scheduling and highly precise timing. This micro-kernel runs the real general

16

purpose operating system as normal task and dispatches all non-real-time operations to

it in Figure 3.8 (b).

 Nanokernel approach is an alternative software layer and it can run more than one

operating system simultaneously in Figure 3.8 (a). It only dispatches the interrupts.

RTLinux and Xenomai are the most popular examples of this approach. RTLinux is

based on micro-kernel approach, while Xenomai is based on nanokernel approach [4],

[12].

Figure 3.8. Nanokernel and Microkernel architectures

 Kernel-level approach: Implementing kernel extensions is the second approach. Real-

time extensions such as high resolution timers, preemptive scheduling policies and

high respond interrupt handling mechanism are added to the standard Linux kernel

source code. The RT-patch maintained by RedHat Inc. and licensed GPL is the best

and known real-time kernel-level extension for the standard Linux. Kernel-level

approach is very popular and many real-time developers create and add their own

extensions to the standard kernel. It is easy and more efficient way to bring real-time

ability into the kernel.

Our work is a kernel-level approach. We have created some patches for the scheduling of the

standard Linux kernel to handle real-time tasks and threads specially. We will explain it in

details in later sections.

17

3.6. Embedded Systems and Multi-core Processors

An embedded system is a device with a microprocessor that is dedicated to specific tasks for

special purpose. An embedded system is composed of one or more microcontrollers that is

configured or programmed to perform for special tasks. In contrast to general-purpose

systems, embedded systems processes special tasks according to the application area [1], [25].

In the hardware design of an embedded system, there may be some peripheral devices

depending on the application that embedded system runs. For example, if the embedded

system is needed to perform audio operations, there will be an audio codec microchip to

perform codec conversion processes. These peripheral devices may be one or more in an

embedded system, it depends on the application. In figure 2.1, the hardware block diagram of

a typical embedded system is shown. In the center, there is a microcontroller generally a

System on Chip (SoC) and other peripherals or components are connected to it via system

buses such as SPI and I
2
C [26].

A system on a chip or system on chip (SoC or SOC) is an integrated circuit (IC) that consists

of all components such as USB, I
2
C, DMA and MMU of a computer system inside a same

single packaged chip [27]. SoCs are generally used in the area of embedded systems.

Figure 3.9. Example hardware block diagram of an embedded system [26]

18

Many embedded systems in the real world acquire real-time properties to operate. In other

words, many of the real-time systems are embedded systems. A real-time system guarantees a

worst case maximum time to complete an operation or response to an action. Embedded

systems are dedicated to operate specific tasks and these are generally real-time tasks that need

time constraints and precise timing. Execution of a periodic task that many embedded systems

provide is one of the requirements of a real-time system.

Application areas of embedded systems are rapidly growing and their functionality and ability

are rising up. Unsurprisingly, many embedded systems need not only real-time control

functionality and precise timing features but also general IT functions for running non real-

time applications such as database management and networking. Combination of these two

functionalities is one of the most challenging problems for embedded and RT system

developers. In order to overcome this problem, multi-core processors which have one or more

CPU core in same SoC are begun to use in embedded systems. Moreover, processor

manufacturers, nowadays, produce heterogeneous and homogenous multi-core processors to

solve this problem. In heterogeneous processors, each core can run a different type of

operating system to perform required functionality. For example, in a dual-core processor, a

RTOS runs on one core, and a versatile or general purpose OS runs on the other. On the other

hand, each core runs the same OS code, and share the main memory, peripherals and other

resources in homogenous multi-core processors.

3.6.1. ARM Architecture

Advance RISC Machine (ARM) is the leader company in providing of 16/32-bit embedded

RISC microprocessor design solutions. The company sells its high-performance, low-cost,

power-efficient designs of their processors, peripherals and system-chip to other electronic

component manufacturers such as Texas Instruments and Freescale. The Company, best

known for its processor designs, does not produce physical integrated circuits (IC). ARM

grant license of core to different silicon vendors like ATMEL, Texas Instruments, Samsung

etc. ARM-based microprocessors are used in many areas such as handhelds, mobile phones,

automation, robotics and consumer electronics [11], [28].

19

3.7. Asymmetric-multiprocessing (AMP) and Symmetric-multiprocessing (SMP)

Migration from single-core to multi-core processor brings a discussion about how to manage

OS code over the cores in SoC. There are two suggested modes; asymmetric-multiprocessing

(AMP) and symmetric-multiprocessing (SMP). In AMP mode, each core has its own copy of

OS kernel code, and the codes are generally different from each other (heterogeneous OSes).

On the contrary, in SMP mode, the same kernel code runs on each core synchronously

(homogenous OSes). SMP OS dynamically balances the work between processor cores, and

controls the resource sharing, e.g., main memory, between the cores. System developers

choose appropriate form of multi-processing approach according to their application

requirements.

Figure 3.10. AMP Multi-core System Structure [29]

In AMP systems, each core can run not only same type OS image but also different type OS

image. Therefore, in heterogeneous OSes approach where each core can run different OS

20

images simultaneously, processors that have AMP support are preferred [29]. In a

homogeneous environment, the cores in the processor should be grouped to run different OS

images efficiently in Figure 3.10.

Figure 3.11. SMP Multi-core System Structure [29]

Sharing hardware resources or components in a multi-core processor can be hard to do.

Especially in AMP systems where each core runs different type of OS kernel image and

unawares of other OSes. SMP solves many of the issues in allocating and sharing resources by

running same copy of an OS in all processor cores [29]. In SMP systems, all resources are

managed and controlled from only same software that decides to give a resource to a task

running in one of the cores without awareness and any input from user. SMP systems can

allocate or share all resources rather than a CPU core to a specific task a shown in Figure 3.11.

21

4. MULTI-SCHEDULING TECHNIQUE

Multi-scheduling technique, proposed in this thesis, is a kernel-level approach to bring real-

time functionality to the standard Linux kernel. Multi-scheduling is developed for SMP

operating systems (OS), where each core runs the same kernel code synchronously as if the

system has a single-core processor [29].

Most of the modern OSes support the SMP system. In SMP systems, one of the cores,

generally CPU core-0 called primary-core is responsible for initialization of the hardware and

all subsystems at boot time. After successful initialization, the same kernel code is copied to

the other cores, called secondary-cores, on the SoC. Then, the tasks are assigned to cores to be

run and load-balancing mechanism balances the work on the cores running the same

scheduling policy. Briefly, multi-scheduling technique enables the OS to run different

scheduling policies on different CPU cores of the processor.

In this chapter, an overview of the Multi-scheduling is given in Section 4.1. On the following

sections, implementation details of Multi-scheduling technique in the Linux kernel will be

explained. In some of the sections followed, we will brief about Linux kernel framework and

functions used in the modification.

4.1. Multi-scheduling Overview

In many embedded systems, real-time tasks (rt-task) and non-real-time tasks are required to be

run together. The process scheduler of an OS where rt-tasks running have to care the deadline

of the processes [7]. These time sharing operations are in the concern of the scheduling

algorithm. For example, in a RT scheduling algorithm, if the deadline of an rt-task is set to 10

nanoseconds, the scheduler must allow the task to run the critical operation in 10 nanoseconds

before the deadline arrives. On the other hand, in general purpose OSes, it is not so critical to

give the processor time to non-rt-tasks. Consequently, same scheduler system or scheduling

algorithm cannot be use in both RTOS and general purpose OS. This causes to use real-time

system designers to use heterogeneous operating systems approach where generally two

different type of operating systems run. One of them is a RTOS for rt-tasks and the other is

general purpose OS for general tasks or non-real-time tasks. However, this approach causes

problems in maintenance and reliability of the system. They will be detailed in later sections.

22

Multi-scheduling technique is proposed to overcome these problems. It provides real-time

system designers to run different schedulers in the same OS environment. Therefore, there is

no need to run and strive at developing on different type of OSes. Topics covered in this

chapter are about fundamentals of the Multi-scheduling technique.

4.1.1. Problem in Heterogeneous Systems

Multi-scheduling technique is developed for SMP based operating systems. The main problem

is running different type of operating systems for rt and non-rt tasks in a computer system.

This not only causes the system developers to spend much more time on different OS

environments and APIs but also hardens the communication between rt and non-rt tasks.

Although working with heterogeneous systems is hard to maintain, it is the most suitable way

to bring real-time and general IT functionalities together. Multi-scheduling technique is

designed to be an alternative way to do that. Thanks to this technique, system developers deal

with only one operating system that supports necessary functionalities for rt and non-rt tasks.

Moreover, both of them run in the same operating system so there is no need to find out an

IPC mechanism between different operating systems. In this section, Multi-scheduling

technique will be explained in details. Some explanations are based on the Linux kernel and

the reader will be warned about that.

Most of the modern OSes support the SMP system. In SMP systems, one of the cores,

generally CPU core-0 called primary-core is responsible for initialization of the hardware and

all subsystems at boot time. After successful initialization, the same kernel code is copied to

the other cores, called secondary-cores, on the SoC. Then, the tasks are assigned to cores to be

run and load-balancing mechanism balances the work on the cores running the same

scheduling policy while online. This feature is special to Linux kernel. Other operating

systems which support SMP use different methods to balance the work on CPU cores.

23

Figure 4.1. Multi-scheduling overview

Linux kernel is composed of threads a.k.a. kernel threads such as interrupt handlers and kernel

services. They are also handled by the system scheduler, running periodically depended on the

CPU architecture and triggered by the CPU timer. In a multi-core platform, each CPU is

triggered by its timer and runs the same scheduler code. For SMP systems, all kernel threads

share the same context in the main memory. Therefore, additional synchronization codes, i.e.,

spinlocks, are used to provide consistency between multiple threads. All tasks stored in the

memory are handled by schedulers in CPUs synchronically. In Multi-scheduling technique,

the shared context is copied and modified for one or more of the secondary-cores. We called

these cores rt-cores where RT tasks will be handled on. Rt-cores will change its scheduling

policy for RT task scheduling in their copied context. Moreover, load-balancing mechanism

which balances the work between cores does not interfere with rt-cores; in other words, these

cores are isolated from the other cores. For example, in Figure 4.1, CPU core-0 of a dual-core

embedded system initializes and configures the hardware, and then, the core-1 runs a

secondary startup code to initiate itself. In this secondary startup code for core-1, the

scheduling policy of the second kernel image is changed to an RT scheduler and the load-

balancing mechanism becomes aware of this. These procedures will be explained detail in next

sections of this chapter.

In the following sections, the modifications to the standard Linux kernel for Multi-scheduling

support will be covered. In each section, the most important modifications and additions to the

standard kernel functions will be explained with code snippets, flowchart and figures. In this

work, all modifications are applied to Linux Kernel version 3.4.

24

4.2. Linux SMP and Booting

As mentioned in previous sections, the primary-core or primary CPU, generally core-0, is

responsible for booting in the standard Linux kernel on a multi-core processor. Once the

power is enabled for the system, bootloader which is the first software running detects the

Linux kernel and loads it to a known address on the main memory (RAM). Then, the Linux

kernel is compressed itself and begins the initialization. All of these works are done by

primary CPU and many of the SMP operating systems are booted by the primary-core.

Every necessary initialization are executed in start_kernel() function located in init/main.c file

in the standard Linux kernel source code and it is executed by primary core. The most

important part of this function is the invocation of sched_init() method residing in

kernel/sched/core.c file. In this method, the settings of the scheduler such as choosing the

scheduling policy are held. After all initializations are done, kernel_init() function is called.

This function initiates the SMP feature and call smp_prepare_cpus() function where

secondary_startup_kernel code is executed by each secondary core. Lastly, this function

invokes init_post() method to run the first userspace task in Linux kernel so the system starts

to service. Both kernel_init() and init_post() functions are located in init/main.c source file.

These invocations in initialization are figured in Figure 4.2 with Linux kernel source file

names.

Figure 4.2. Linux kernel boot sequence

Main parts of the Linux kernel are initialized by the primary-core such as timers, scheduler

and process management. Other cores, secondary-cores, run in idle while the main

25

initialization is in progress. When it is done, the kernel running on the primary-core signals

secondary-cores to run a special minimal code called smp_secondary_init() to be initialized. In

this function, related CPU core is just prepared to get tasks. In Figure 4.3, SMP initialization is

figured on a quad-core processor. While primary CPU carries out the initialization processes,

secondary cores executes NOP (No OPeration) code and waits. When the basic kernel setup is

finished, secondary cores are signaled to execute secondary_start_kernel() function. This

function is the secondary CPU boot entry. It is executed by each secondary CPU separately

and some special setup and initialization are held. After successful execution, corresponding

secondary CPU is switched to idle state and waits for task execution. In this stage, CPUs are

added to possible_cpus list which available CPUs to run a task are kept in the kernel.

Figure 4.3. Linux SMP Boot sequence

As you see, CPU 0 takes all of the initialization jobs alone and secondary CPUs are just

prepared to run tasks. The functions about SMP in Linux kernel will be worked out in details

later. After all of these initialization works, every CPU core is get a task from task list of the

26

scheduler and processes it. Each CPU is triggered by its own timer periodically. This leads to

run the timer interrupt routine which is addressed in CPU interrupt vector map according to

CPU architecture. In this interrupt routine, operating system scheduler function is invoked by

corresponding CPU to decide which the task will be switched on the task list. From this

workflow, it is deduced that every CPU core runs the kernel scheduler function specially to

switch between tasks. Every CPU core run the same kernel image and works with shared

kernel data structures such as tasklist where all task data structures are stored. In order to

prevent conflictions in seeking these shared data structures, mutex and semaphore based

mechanisms, explained in details later, such as spin_lock() are used in Linux kernel [19], [28].

4.3. Secondary Startup Kernel

In our proposed approach, one or more of the secondary-cores runs a modified

secondary_startup_kernel() code which enables to change some parts of the main kernel

image. In multi-scheduling technique, one or more CPU cores are separated to run and

schedule rt-tasks only. These CPUs are called as rt-cpus or rt-cores. On boot time of the Linux

kernel, all CPU cores are initialized and run secondary_startup_kernel() function. However,

rt-cores are not push to possible_cpus list. This is the main idea to separate rt-cores from other

CPU cores. Consequently, the scheduler and load-balancing mechanism become not to be

aware of them. This isolation method is added to secondary_startup_kernel() function as it is

shown in green colored code in Listing 4.1.

asmlinkage void __cpuinit secondary_start_kernel(void)

{
 struct mm_struct *mm = &init_mm;
 unsigned int cpu = smp_processor_id();
 printk("CPU%u: Booted secondary processor\n", cpu);

 ...

 /* Do not give the rt-cores to scheduler */

 if (!is_rt_core(cpu)) {

 set_cpu_online(cpu, true);
 }

 ...
 if (is_rt_core(cpu)) {

 cpu_idle();
 }
}

Listing 4.1. Multi-scheduling secondary_startup_kernel code changes

27

Other Linux kernel functions used in this modification for Multi-scheduling are listed and

explained below;

Function smp_processor_id

Prototype notrace unsigned int debug_smp_processor_id(void);

Description Returns the CPU number on which the code is executed right now

File lib/smp_processor_id.c

Function cpu_idle

Prototype void cpu_idle(void);

Description
It is an infinite loop used to wait the executed CPU in idle state. It also

makes the CPU possible for scheduling.

File arch/<arch = arm>/kernel/process.c

In standard SMP Linux, all kernel threads share the same memory context, in other words;

every kernel data structures and variables are unique for all threads. However, the same kernel

image is copied for all CPU cores and stored in different part of the main memory (RAM). For

example in Figure 4.4, the copied kernel images are shown in different part of the main

memory for a quad-core microprocessor. Each CPU core fetches its kernel instructions from

its own memory partition. On the other hand, the kernel variables and data are shared and

concurrent access can cause failures. Therefore, some software lock mechanisms such as

mutex are used to prevent concurrent access in standard Linux SMP. For example, access to

the tasklist data structure which the tasks are stored in is encapsulated with Linux kernel

special locks; spinlock. Spinlock is a mutex-like mechanism that prevents the thread which is

trying to get it if it is acquired by another thread before. It is widely used in Linux kernel to

prevent problems that occurs in concurrent access to same resource. If a thread needs to access

to a hardware or software resource that is protected by a spinlock, it must gain the spinlock at

first. And, if the resource is in use by another thread, spinlock keeps it waiting. In Multi-

scheduling, spinlocks are used to control to access some shared kernel data structures like

CPU runqueues.

28

Figure 4.4. Multi-scheduling enabled Linux SMP on the main memory

The modifications in secondary startup kernel code provide to isolate rt-core to be used for all

tasks in the system. is_rt_core(int cpu) function checks whether the given CPU is a separated

CPU core for rt-task or not. Rt-cores are selected in kernel configuration which will be

discussed later.

4.4. Scheduling Structures in Multi-scheduling

Multi-scheduling technique does not provide a new scheduler algorithm, it provides to run

different type of schedulers in same system instead of running different type of operating

systems. In standard Linux kernel, Completely Fair Scheduler (CFS) is the default scheduler

for all tasks. The Completely Fair Scheduler (CFS) is added to Linux kernel in version 2.6.23

to provide fair sharing of CPU resources between tasks [4] and it is default scheduling

policy/algorithm.

In Linux, processes are scheduled for execution from a doubly-linked list of processes, called

the runqueues (rqs). See [19], for rq data structure details. This data structure is unique for

29

each CPU cores. As you can see from the code snippet of this structure, some valuable

information’s such as number of switching between tasks, number of running tasks and the

next runnable task are also stored. One of the most important data stored in this structure is

load_weight. This information is used in load-balancing mechanism which will be discussed

later. This runqueue structure holds the task structures running on corresponding CPU core.

Every task is stored with a task data structure task_struct in the Linux kernel. It keeps all

information such as memory context, priority and allowed CPUs to run on about a task.

cpus_allowed data field in task structure is important for the implementation of Multi-

scheduling technique. In Figure 4.5, all of these structures and its relationships are given.

Figure 4.5. Scheduling structures and relationships used in Multi-scheduling

Some extra information like allowed CPU numbers are added to these task related structures in

Linux kernel. Because of belonging to each CPU core privately, CPU type, rt-core or non-rt-

core, is stored in struct rq. Moreover, cpus_allowed list is modified in struct task_struct to

determine CPUs in which a task will run.

30

4.4.1. Scheduling Policy of a Task

Each task has a scheduler class which shows the scheduler algorithm or policy is used in

scheduling the task. In the standard Linux kernel, there are three type of scheduling policies.

SCHED_FIFO is a First-In, First-Out real-time scheduler policy. In this policy, when a task is

assigned to a CPU, it is being executed until a new higher-priority task arrives. The task with

highest priority always gains the CPU usage and does not relinquish it. The other policy is

SCHED_RR, Round Robin real-time scheduler. This policy shares the CPU with same time

duration between tasks. For example, if there are 4 tasks with same priority and execution

duration is defined as 100ms, each task will gain the CPU control for 100ms in each 400ms

loops. However, tasks generally have different priorities in practice. In this situation, the

higher priority a task has, the more CPU time it gains by this policy. Shortly, this policy

guarantees to share CPU usage between tasks fairly. SCHED_OTHER or SCHED_CFS is

conventional, time-shared and default scheduler policy. It is also known as SCHED_CFS.

Linux scheduler supports three different types of scheduling algorithms and it can be chosen

and configured in the kernel configuration.

4.5. Real-Time Task Creation

Task creation request usually comes from userspace via system calls to Linux kernel. Linux

provides fork() and execv() system calls to create new tasks on the system form userspace.

fork() function invokes do_fork() kernel function which performs error checking and initial

setup for the fork in process management. In this function, new task is copied from its caller

task and it is ready to schedule. wake_up_new_task() call inserts new task to a runqueue to be

scheduled. The process creation order is showed in Figure 4.6.

31

Figure 4.6. Real-time or non-real-time task creation flow in Multi-scheduling

Scheduling policy of new task is same with its parent and init program is the first and parent of

all tasks in Linux. In standard Linux, all tasks have the same scheduling policy SCHED_CFS

or SCHED_NORMAL by default. In Multi-scheduling technique, process creation is done by

a special application. We have implemented a task-assigner utility to assign tasks either to RT

or non-RT partition. The utility runs a task first and then changes its scheduling policy to

SCHED_RR if the task is for RT partition; otherwise the policy is set to SCHED_NORMALs

for non-RT tasks. The RT tasks are assigned to rt-cores, and the rest assigned to the other

cores. In addition to forking the task structure and changing the task’s scheduling policy, the

task-assigner updates the allowed core(s) list for the task. Therefore, the tasks assigned to RT

32

partition are scheduled by the RT scheduler in the kernel space. See the Appendix A for more

details about task-assigner application.

In kernel side, some modifications are done in wake_up_new_task() function executed when a

new task is created. If a task is an rt-task; in other words, it is created by task-assigner as rt-

task, it will be put on a runqueue of one of the rt-cores. New wake_up_new_task() function is

given in Listing 4.2. The coded highlighted with green color checks the task type; rt or non-rt.

The scheduling policy of rt-tasks is set to SCHED_FIFO or SCHED_RR policy, and

SCHED_CFS for non-rt-tasks by task-assigner application. In kernel level, appropriate

wakeup CPU which executes the task for the first time.

void wake_up_new_task(struct task_struct *p)

{

 unsigned long flags;

 struct rq *rq;

 raw_spin_lock_irqsave(&p->pi_lock, flags);

#ifdef CONFIG_SMP

 /*

 * Fork balancing, do it here and not earlier because:

 * - cpus_allowed can change in the fork path

 * - any selected cpu disappear through hotplug

 */

 cpumask_t mask;

 if (p->sched_class == SCHED_RR ||

 p->sched_class == SCHED_FIFO){

 set_task_cpu(p,select_task_rq(p,

 SD_MULTI_SCHEDULING, 0));

 cpus_clear(mask);

 cpu_set(get_rt_cores(), mask);

 }

 else {

 set_task_cpu(p,select_task_rq(p,SD_BALANCE_FORK,0));

 cpus_clear(mask);

 cpu_set(get_non_rt_cores(), mask);

 }

 p->cpus_allowed = mask;

33

#endif

 rq = __task_rq_lock(p);

 activate_task(rq, p, 0);

 p->on_rq = 1;

 trace_sched_wakeup_new(p, true);

 check_preempt_curr(rq, p, WF_FORK);

#ifdef CONFIG_SMP

 if (p->sched_class->task_woken)

 p->sched_class->task_woken(rq, p);

#endif

 task_rq_unlock(rq, p, &flags);

}

Listing 4.2. Task creation patch to Linux kernel

In Multi-scheduling technique, all new tasks are created and switched to non-rt-cores which

are responsible to execute non-rt task regardless of being rt or non-rt task. In

wake_up_new_task() function, if newly created task is an rt-task, it is assigned to one of the rt-

cores. This dispatching is implemented in this function as shown in code Listing 4.2. In

standard Linux kernel, every task has a field named cpus_allowed and it represents the cpus

which the task can be executed on. Multi-scheduling technique uses this feature to separate

tasks between CPU cores. See the next section to get more information about the functions

used in the task creation process.

4.6. Load-balancing

In SMP based operating systems, it is desired that each CPU's work should be the same. In

order to provide this fairness, there is a load-balancing mechanism to balance the total jobs

between the CPUs on the system. In Linux kernel, the balancing is done by a kernel thread

called load_balance. This thread, invoked by the scheduler in process operations such as task

creation new process creation, senses and calculates the jobs on the CPUs and move the jobs

or tasks between CPUs' runqueues to balance the total work [19].

To isolate rt and non-rt tasks in the same operating system, one of the important modifications

in kernel-space have been applied to Linux load-balancing mechanism working on the

runqueues to balance the tasks between CPU cores on the system. The load balancing

mechanism for rt-cores does not interfere with the corresponding mechanism for the cores

34

reserved for non-real-time tasks. Consequently, the whole environment is partitioned into two

separate environments; RT and non-RT. The tasks are also split into two groups, and each task

runs on a corresponding core depending on its type whether it is RT or non-RT.

load_balance() function checks given CPU's workload whether there is an imbalance with

other CPUs' workload or not. If there exists, It can move some tasks to other CPU's run

queues. In Multi-scheduling technique, this function is needed to be modified. It must balance

total real-time work between rt-cores and non real-time work between non rt-cores as it is

shown in the flowchart diagram with some code details in Figure 4.7.

35

Figure 4.7. Load-balancing mechanism in Multi-scheduling

36

4.7. Other Extensions for Multi-scheduling

Multi-scheduling technique is developed for Linux. It is initialized and started to run in the

boot process. The boot process of embedded systems is different from desktop or server PCs.

When the power button is pressed, a small boot-loader software finds the OS image and loads

it to the main memory and then OS initialization process begins. In the Linux SMP

environment, core-0 is primary-core for initialization. When the secondary cores execute

special secondary initialization kernel code, each secondary core prepares its specific

resources such as MMU and caches, and then they wait for task processing in idle state while

executing the idle process with PID 0. There is no need to reinitialize all resources in system

because they have already been configured by primary-core. Consequently, each core on the

system has its own environment containing a scheduling policy triggered by a timer specific to

the core.

We have carried out some modifications to the Linux operating system in both user-space and

kernel-space. In kernel-space, secondary_start_kernel() code has been modified to run a

different scheduling policy for RT functionality. First of all, rt-cores are selected in kernel

configuration for multi-scheduling and the selected core list is stored to allow tasks to run on

them later. In secondary_start_kernel(), the shared context is copied for rt-cores and the rt-

cores re-initialize the scheduling mechanism. Each rt-core changes its scheduling policy to

SCHED_RR or SCHED_FAIR policies, defined in the Linux Kernel for RT applications,

rather than SCHED_OTHER, aka CFS (Completely Fair Scheduling) default policy in Linux.

In Linux, each core has its own task queue (runqueue) for keeping the task to be run on that

core. The other modifications in kernel-space have been applied to Linux load-balancing

mechanism working on the runqueues to balance the tasks between CPU cores on the system.

The load balancing mechanism for rt-cores does not interfere with the corresponding

mechanism for the cores reserved for non-real-time tasks. Consequently, the whole

environment is partitioned into two separate environments; RT and non-RT. The tasks are also

split into two groups, and each task runs on a corresponding core depending on its type

whether it is RT or non-RT. This is depicted in Figure 4.8 below.

37

Figure 4.8. Isolation of real-time and non-real-time environments in Multi-scheduling

4.7.1. Support in Userspace

Apart from these modifications in kernel-space, some additions more are needed in user-space

for Multi-scheduling. We have implemented a task-assigner utility to assign tasks either to RT

or non-RT partition. The utility runs a task first and then changes its scheduling policy to

SCHED_RR if the task is for RT partition; otherwise the policy is set to SCHED_FIFO for

non-RT tasks. The RT tasks are assigned to rt-cores, and the rest assigned to the other cores. In

addition to forking the task structure and changing the task’s scheduling policy, the task-

assigner updates the allowed core(s) list for the task. Therefore, the tasks assigned to RT

partition are scheduled by the RT scheduler in the kernel space.

4.8. Standard Linux Kernel API Functions used in Multi-scheduling

Multi-scheduling uses the API that Linux kernel provides to develop kernel level

implementations. In this section, the most important API functions which are used in the

implementation of the Multi-scheduling technique will be explained.

Function set_task_cpu

Prototype void set_task_cpu(struct task_struct *p, unsigned int new_cpu);

Description Assigns a task to a CPU. Task is linked to the chosen CPU's runqueue and

38

executed on it.

File kernel/sched/core.c

Function select_task_rq

Prototype int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags);

Description

Finds and return CPU which is appropriate for the execution of given task.

sd_flags parameter defines the CPU selection settings or sched domains.

This flag is used in load-balancing to find the CPU. For example, if this

flag is set to SD_BALANCE_WAKE sched domain, this task needs to be

scheduled on wakes.

File kernel/sched/core.c

Function __cpu_clear

Prototype static inline void __cpu_clear(int cpu, volatile cpumask_t *dstp)

Description
It gets a cpumask_t data which holds the runnable CPU numbers of a task

and clears the given CPU from the task's allowed run CPU list.

File include/linux/cpumask.h

Function __cpu_set

Prototype static inline void __cpu_set(int cpu, volatile cpumask_t *dstp)

Description
It gets a cpumask_t data which holds the runnable CPU numbers of a task

and sets the given CPU to the task's allowed run CPU list.

File include/linux/cpumask.h

In this chapter, we have covered the implementation details of Multi-scheduling technique in

the standard Linux Kernel. In the next chapter, test and development environment will be

covered.

http://lxr.free-electrons.com/ident?v=3.4;i=SD_BALANCE_WAKE

39

5. DEVELOPMENT ENVIRONMENT

In this chapter, hardware and software development environment for this thesis work will be

covered. Development environment will be explained in the view of two main aspects; target

and host. Target is the platform that development is done for; and host is the platform that

development is done on. At first, we will talk about the hardware platform that is used as

target platform to develop and test Multi-scheduling technique on. Then, host platform and

connections with target will be detailed. After the hardware is detailed, software components

of the development environment will be covered. Firstly, we will explain what cross-

compiling and toolchain are, and then Linux kernel compilation and configuration will be

shown. Lastly, our patch-test loop will be presented.

5.1. Target and Host Platform

In Embedded Systems, target platform is the embedded hardware board for that the

developments are done. On the other hand, host is the platform where the development such as

compilation and configuration for target platform are carried out. Multi-scheduling technique

is developed for Linux and embedded systems [30]. For this reason, the main development

platform is Embedded Linux systems. In Figure 5.1, target and host systems and connections

between them are shown. There are two connections between host and target system; Ethernet

and serial port (UART). Ethernet is mainly used for downloading the generated code to target;

and the serial or RS232 connection is for debugging and observing the behavior of the target

system. In order to communicate or send commands to target board via RS232 or UART

interface, serial terminal program is needed. The most widely used serial terminal applications

are GtkTerm and Minicom and they are available on all desktop Linux distributions. On the

other hand, Host platform's operating system is Ubuntu version 12.04 LTS, a widely used

Linux distribution.

40

Figure 5.1. Target and Host platforms on Development environment

5.2. Target Platform

In this thesis work, our target platform is Pandaboard ES, widely used embedded Linux

development board. In this section, the main features and specifications of this board will be

covered. Pandaboard ES is a low-cost embedded development board that provides many I/O

and media features and powered by Texas Instrument’s OMAP4460 microprocessor. See

Table 5.1 for a listing of the Pandaboard ES features.

Feature

Processor OMAP4460

Memory (RAM) Elpida 8Gb LPDDR2 (EDB8064B1PB-8D-F)

PMIC TI (TWL6030 Power Management Companion IC)

DEBUG
14-pin JTAG GPIO Pins

UART via DB-9 connector LEDs

PCB
4.5” x 4.0” (114.3 x 101.6

mm)
8 layers

Indicators 3 LEDs (two user-controlled, one overvoltage indicator)

HS USB 2.0 OTG Port
Mini-AB USB connector, sourced from OMAP USB

Transceiver

HS USB Host Port Four USB HS Ports, up to 500mA current out on each, two to

Audio Connectors 3.5mm, L+R out 3.5mm, Stereo In

SD/MMC Connector 6 in 1 SD/MMC/SDIO 4/8 bit support, Dual voltage

41

User Interface
1-User defined button Reset Button

SYSBOOT3 switch

Video DVI-D or HDMI
Optional user provided plug-

in

Display Power Connector USB Power

Table 5.1. Pandaboard Hardware specifications table [31]

5.2.1. Pandaboard ES Architecture

Shown in Figure 5.2 is the Architectural Block Diagram of the OMAP4460 Pandaboard ES.

The Platform also includes connectors that can be used for additional functionality and/or

expansion purposes. These connectors are not populated on the platform, but can be installed

by the user. They are indicated by the blue blocks in Figure 5.2.

Figure 5.2. Architectural Block Diagram of Pandaboard ES [31]

42

Figure 5.3. Top Real View of Pandaboard ES [31]

5.2.2. OMAP4460 Processor

Microprocessor of the target platform is the main part for Multi-scheduling technique because

all execution of tasks and scheduling are handled in it. Therefore, the microprocessor of target

board will be covered only in this section. OMAP4460 processor is the main component of

Pandaboard ES. OMAP4460 is based on enhanced TI’s OMAP architecture and uses 45-nm

technology. For more and detailed information, see the OMAP4460 Technical Reference

Manual (TRM) [31].

The device supports the following functions:

43

The device is composed of the following subsystems:

 Cortex™-A9 microprocessor unit (MPU) subsystem, including two ARM® Cortex-A9

 cores capable of operation at 1.2GHz

 Digital signal processor (DSP) subsystem

 Image and video accelerator high-definition (IVA-HD) subsystem

 Cortex™-M3 MPU subsystem, including two ARM Cortex-M3 microprocessors

 Display subsystem

 Audio back-end (ABE) subsystem

 Imaging subsystem (ISS), consisting of image signal processor (ISP) and still image

coprocessor (SIMCOP) block

 2D/3D graphic accelerator (SGX) subsystem

The device supports high-level operating systems (OSs) such as:

 Windows™ CE, WinMobile™

 Symbian OS™

 Linux®

 Palm OS™

Video processing features

 Streaming video up to full high definition (HD) (1920 × 1080 p, 30 fps)

 2-dimensional (2D)/3-dimensional (3D) mobile gaming

 Video conferencing

 High-resolution still image (up to 16 Mp)

Other features

 On-chip memory

 External memory interfaces

 Memory management

44

 Level 3 (L3) and level 4 (L4) interconnects

 System and connecting peripherals

Table 5.2. OMAP4460 processor features [31]

5.3. Cross-Compilation and Toolchain

In computer science, compiling is the converting a source code written in a computer language

such as C and JAVA into executable or binary code for target machine. A special program

called Compiler is designed to make this conversion. The computer where the compiler runs

and source code resides on is called the host, and the computer where the compiled or

generated executable program runs on is called the target. If the host and target machine are in

same type, the compiling is called native compilation and the compiler is called native-

compiler. On the other hand, if they are different in type, the compiling is called cross-

compiling and the compiler is called cross-compiler. For example, if the host machine's

architecture is x86 and the target is x86 again, native-compiler is used to generate executable

program and it runs on all x86 targets. If the host is x86 machine and target is an ARM-

architecture machine, cross-compiler will be used and generated program cannot run on the

x86 host [30].

In embedded systems, cross-compiling method is used not only to generate applications

running in embedded but also to compile the embedded operating system image. The reason of

cross-compiling is that an embedded system has limited resources such as low CPU power and

memory for compiling. Target naturally has limited hardware resources to make heavy

compilation jobs. Therefore, these processor bounded jobs should be done in a different

computer that has high power processor or host pc. However, host pc and target have in

different CPU architecture types so compiled binary in a host pc, powered by x86-based

processor generally, will not work in target. In order to overcome this problem, cross-

development toolchains are developed to enable the host pc to compile or generate binary for

computers having different type CPU architecture, for example target with ARM powered

CPU.

45

Embedded microprocessor manufacturers provide cross-development toolchain that includes

all necessary compilers, debug tools and libraries. Moreover, many featured toolchains can be

found in the Linux community.

5.3.1. Toolchain components

A toolchain is composed of binary tools, compilers, libraries and some header files to generate

executable images. From now on, we will use toolchain instead of cross-compiler toolchain.

5.3.1.1. Binutils

Binary utilities are the first component of a toolchain. They can run on host pc and produce or

modify executable binaries for target. They are used to analyze or strip the generated binary as

well as debugging and building it. The most important utilities are explained below;

 as, the assembler, converts assembly code to binary

 ld, the linker, links object code with libraries

The other tools can be given as objcopy, objdump, nm, readelf, strip, and so on.

5.3.1.2. Compilers

The most important and major part of a toolchain is the compiler. GNU Compiler Collection,

shortly GCC, is the most widely used compiler collection. It supports C++, Java, Fortran,

Objective-C, Ada as well as C. Moreover, it is designed to support many different CPU

architectures [32].

5.3.1.3. C library

C library consists of traditional necessary functions used to develop userspace applications. It

interfaces with the kernel via system calls [32]. For example, the actual implementation of

printf(), widely used function in userspace application development, is in C library. For

Embedded Linux, there are many C Library options according to size and POSIX compliant:

 glibc is the C library from the GNU project.

 Embedded GLIBC (EGLIBC) is embedded variant of the GNU C Library (GLIBC). It

is optimized in size and supports for cross-compiling toolchains.

 uclibc is an alternate C library, which features a much smaller footprint.

http://en.wikipedia.org/wiki/Glibc
http://www.eglibc.org/home
http://www.gnu.org/software/libc/
http://en.wikipedia.org/wiki/Uclibc

46

5.3.2. CodeSourcery Toolchain

Toolchain selection is one the most important task before the development. There are many

ways and choices to select a toolchain such as toolchain with board support package (BSP)

provided by microprocessor manufacturer and prebuilt toolchains in the community. In other

way, toolchain can be produced from source code according to special needs and

configurations. It is also known as building a toolchain on your own. However, this can be a

real pain. The easiest solution is using a prebuilt toolchain, because it has supposedly been

tested by the vendor [30].

CodeSourcery is one the most widely used toolchain in Embedded Linux community. It

develops Sourcery G++, an Eclipse based Integrated Development Environment (IDE) that

incorporates the GNU Toolchain (gcc, gdb, etc.) for cross development for numerous target

architectures. CodeSourcery provides a lite version for ARM, Coldfire, MIPS, SuperH and

Power architectures. The toolchains are always very up to date. CodeSourcery contributes

enhancements it makes to the GNU Toolchain upstream continually, making it the single

largest (by patch count) corporate contributor [32].

In this thesis, CodeSourcery toolchain is used to compile and build Linux kernel with Multi-

scheduling technique and any other userspace extensions. In the next section, downloading

and installing of CodeSourcery toolchain to the host platform will be covered.

5.3.3. Downloading and Installing Toolchain

CodeSourcery ARM Compiler should be used for building different kernel distribution and

software releases on ARM architecture platforms. CodeSourcery toolchain 2010-q1 release is

used. Downloading and installing the toolchain to the host pc is explained step-by-step below.

 Download tarball from the link and untar to an appropriate directory in the host pc

kadir@kadirpc:~$ wget -c

http://www.codesourcery.com/sgpp/lite/arm/portal/package6488/

public/arm-none-linux-gnueabi/arm-2010q1-202-arm-none-linux-

gnueabi-i686-pc-linux-gnu.tar.bz2

http://www.codesourcery.com/gnu_toolchains/sgpp/
http://en.wikipedia.org/wiki/Eclipse_IDE
http://en.wikipedia.org/wiki/Integrated_development_environment
http://en.wikipedia.org/wiki/GNU_toolchain
http://www.codesourcery.com/
http://www.codesourcery.com/gnu_toolchains/arm
http://www.codesourcery.com/gnu_toolchains/coldfire
http://www.codesourcery.com/gnu_toolchains/mips
http://www.codesourcery.com/gnu_toolchains/sgpp/lite/superh
http://www.codesourcery.com/gnu_toolchains/power
http://www.codesourcery.com/
http://en.wikipedia.org/wiki/GNU_toolchain
http://www.codesourcery.com/sgpp/lite/arm/portal/package6488/public/arm-none-linux-gnueabi/arm-2010q1-202-arm-none-linux-gnueabi-i686-pc-linux-gnu.tar.bz2
http://www.codesourcery.com/sgpp/lite/arm/portal/package6488/public/arm-none-linux-gnueabi/arm-2010q1-202-arm-none-linux-gnueabi-i686-pc-linux-gnu.tar.bz2
http://www.codesourcery.com/sgpp/lite/arm/portal/package6488/public/arm-none-linux-gnueabi/arm-2010q1-202-arm-none-linux-gnueabi-i686-pc-linux-gnu.tar.bz2

47

kadir@kadirpc:~$ mkdir -p ${HOME}/opt

kadir@kadirpc:~$ tar -C ${HOME}/opt -jxf arm-2009q1-203-arm-

none-linux-gnueabi-i686-pc-linux-gnu.tar.bz2

 After the extraction is complete, the new location is needed to be added to your PATH

persistently. In your home directory type:

kadir@kadirpc:~$ gedit /home/kadir/.bashrc

 Add the following lines to the bottom of the file:

export PATH=/<toolchain_folder>/bin:$PATH

export CROSS_COMPILE=”arm-none-linux-gnueabi-“

 Then the ARM toolchain is ready to use from command-line. And on the last line the

used GCC version for the cross-compiler can be checked.

kadir@kadirpc:~$ arm-none-linux-gnueabi-gcc -v

Using built-in specs.

Target: arm-none-linux-gnueabi

Configured with:/home/kadir/2010q1-release-linux-

lite/src/gcc-4.4-2010q1/configure --build=i686-pc-linux-gnu –

...

Thread model: posix

gcc version 4.4.1 (Sourcery G++ Lite 2010q1-202)

48

6. DEVELOPMENT OF MULTI-SCHEDULING IN LINUX KERNEL

6.1. Why Linux Kernel?

Our proposal Multi-scheduling technique is an extension for a SMP-featured operating system.

It enables to run rt and non-rt tasks without using heterogeneous operating systems. In this

thesis, we have implemented Multi-scheduling in the standard Linux kernel version 3.4.67, the

most stable version when the project is started to develop. Linux is the most widely used and

well documented operating system especially in embedded systems. However, the standard

Linux lacks of hard real-time features and functionalities. Many frameworks and techniques

have been developed to provide hard real-time ability for Linux by its wide community [12].

Heterogeneous operating systems is the most widely used approach to provide both hard real-

time and general functionalities in the same system and the Linux kernel is the most preferred

general operating system in this approach. However, maintaining two different operating

systems in same hardware and difficulties in IPC make heavy weather of developing the

system. Multi-scheduling technique is developed as an alternative to bring real-time ability to

general operating system. For the reasons mentioned before, Linux is chosen for the

development and implementation of the Multi-scheduling technique.

Linux kernel supports many of the CPU architectures and peripheral devices. It is written in C

and provides well documented framework to make developments in kernel level. In the

following sections, Linux kernel sources and building/compiling methods will be covered.

6.2. Linux Kernel Source Tree

The Linux kernel is a Unix-like operating system kernel used by a variety of operating

systems based on it, which are usually in the form of Linux distributions. Linux kernel project

is a good example of free and open source software and released under the GNU General

Public License version 2 (GPLv2) and it is developed by contributors worldwide. At the top of

the source code, there are directories containing different sub-systems which are listed;

arch subdirectory is made up of the architecture specific kernel codes. There are sub-

directories for each CPU architecture type.

http://en.wikipedia.org/wiki/Unix-like
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Kernel_(computing)
http://en.wikipedia.org/wiki/Linux_distribution
http://en.wikipedia.org/wiki/Free_and_open_source_software
http://en.wikipedia.org/wiki/GNU_General_Public_License
http://en.wikipedia.org/wiki/GNU_General_Public_License

49

include directory is composed of header files that are necessary to build/compile kernel source

code.

init contains the initialization procedures for the kernel

mm contains all of the memory management code. Physical/Logical address conversion is

done in the code relays here.

drivers contains as all functions to manage or control I/O devices. All devices are divided into

classes. For example, keyboard and mouse are classed into input sub-directory

ipc directory contains the kernel inter-process communications code.

modules directory holds built modules.

fs contains supported file systems codes. In each sub-directory, supported file system types for

example ext4 and ubifs are included.

kernel contains the main kernel code or is the heart of source code. Many of the modifications

for Multi-scheduling are implemented under this directory.

net contains network frameworks and implementations such as TCP/IP and IPv6.

lib is library directory that holds many useful functions and methods used in the codes in other

kernel directories.

scripts directory contains the scripts to configure or build kernel.

6.3. Patching

In Computer science, a patch is a collection of changes line-by-line in a source code. Instead

of releasing whole source code version by version, releasing only the changes or differences

between versions is more effective and easier. Our proposal technique is also prepared as a

patch to the standard Linux kernel. We have prepared two patches and applied the Linux

Kernel version 3.4.67. One of the patches called Msched-P1 runs RT tasks with SCHED_RR

scheduling policy and the other called Msched-P2 runs them with general Linux scheduling

policy SCHED_OTHER in Table 6.1.

Msched-P1 Msched_P2

SCHED_RR scheduling policy SCHED_OTHER or SCHED_CFS scheduling policy

Table 6.1. Multi-scheduling patches

50

6.3.1. Patching the Linux Kernel

Patch command is used to apply patches to source code. It is shown below that multi-

scheduling patches, Msched-P1 and Msched-P2, are applied to the standard Linux kernel.

kadir@kadirpc:~$ patch -p1 < Msched_P1.patch

6.4. Linux Kernel Configuration

In this section, configuration of the Linux kernel according to the Multi-scheduling technique

will be covered. Linux kernel has a special configuration environment. Source code can be

configured and compiled for many types of CPU architectures and machines.

Firstly, development embedded board, Pandaboard ES, must be defined and selected in the

configuration. Thanks to the Pandaboard and opensource community, the board's hardware is

defined in the standard Linux source code. It is ready to use. In Listing 6.1, in the top directory

of the source code, configuration for the compiler is created according to a given board name

predefined in source code. It generates a .config file in the top of the source code directory and

contains some definitions or variables for the compiler.

kadir@kadirpc:~$ make omap2plus_defconfig

kadir@kadirpc:~$ make menuconfig

Listing 6.1. Linux kernel configuration over command-line

In Listing 6.1, Linux kernel configuration over the command-line interface is shown. In the

root or top directory of the kernel source code, a configuration menu can be opened by typing

the make menuconfig command. The make menuconfig command will launch a text-based user

interface with default configuration options as shown in the Figure 6.1. This user interface,

developed by using ncurses, helps to configure the Linux kernel by selecting many software

components dependent to hardware such as CPU architectures, device drivers and memory

utilizations. After the configuration is done, .config file is saved to the top directory

automatically.

51

6.4.1. Configuration for Multi-scheduling

Multi-scheduling technique is also added to the Linux kernel configuration pages. Msched-P1

and Msched-P2 patches create a configuration page for real-time CPU selection under the

Kernel Features category in Figure 6.1. As mentioned before, Multi-scheduling is dependent

to SMP feature of an operating system. Therefore, in Linux kernel, SMP feature must be

enabled first, as shown in Figure 6.2. After enabling the SMP, Multi-scheduling technique

configuration line appears in Figure 6.3.

Figure 6.1. Linux Kernel Configuration Menu

52

Figure 6.2. SMP kernel feature not enabled

Figure 6.3. SMP enabled and Multi-scheduling support appears

In Figure 6.4, Multi-scheduling support is added to the configuration and CPU1 is chosen as

real-time core automatically. Multi-scheduling patches to the configuration detects the number

of the CPUs of the system by reading the configuration field CONFIG_NR_CPUS in .config

53

file and chooses appropriate CPU or CPUs for real-time. In dual-core processor, because of

being a primary CPU, CPU0 is left and CPU1 is chosen as rt-core but it is changeable. The

user can select the real-time CPUs manually; for example in Figure 6.5.

Figure 6.4. Multi-scheduling is enabled and CPU1 is chosen as rt-core automatically

Figure 6.5. Rt-core selection in a quad-core processor

54

After the Multi-scheduling support is enabled, the configuration is saved .config file to be

given to the compiler. In Listing 6.2, some important fields, which are relevant with the jobs

done above, are shown.

kadir@kadirpc:~$ cat .config

....

Kernel Features

CONFIG_TICK_ONESHOT=y

CONFIG_NO_HZ=y

CONFIG_HIGH_RES_TIMERS=y

CONFIG_GENERIC_CLOCKEVENTS_BUILD=y

CONFIG_HAVE_SMP=y

CONFIG_MULTI_SCHEDULING=y

CONFIG_MSCHED_RT_CORE_CPU0 is not set

CONFIG_MSCHED_RT_CORE_CPU1 is not set

CONFIG_MSCHED_RT_CORE_CPU2=y

CONFIG_MSCHED_RT_CORE_CPU3 is not set

CONFIG_SMP=y

CONFIG_SMP_ON_UP=y

....

CONFIG_NR_CPUS=4

....

Listing 6.2. Content of .config file

6.5. Compiling the Kernel

In Chapter 4, development environment including cross-compiling tools is presented. In this

section, the compilation process of the Multi-scheduling enabled Linux kernel will be shown.

In previous section, the source code is configured and ready to compile or build. In Listing

6.3, the given command “make ARCH=arm” compiles the source code according to the

configuration (stored in .config file in the top directory) for ARM architecture. The generated

file is a compressed image of the kernel called zImage as shown in the Listing 6.3.

kadir@kadirpc:~$ make ARCH=arm

 CHK include/linux/version.h

55

 CC init/main.o

 CHK include/generated/compile.h

 CC init/version.o

 LD vmlinux

 SYSMAP System.map

 SYSMAP .tmp_System.map

 OBJCOPY arch/arm/boot/Image

 Kernel: arch/arm/boot/Image is ready

 GZIP arch/arm/boot/compressed/piggy.gzip

 AS arch/arm/boot/compressed/piggy.gzip.o

 LD arch/arm/boot/compressed/vmlinux

 OBJCOPY arch/arm/boot/zImage

 Kernel: arch/arm/boot/zImage is ready

Listing 6.3. Compiling Linux kernel

The generated kernel image can be loaded to main memory and triggered to run by a boot-

loader. In this thesis, the U-Boot is used as boot-loader, so the generated image must be

converted to uImage which includes U-Boot headers in addition to zImage, as shown in

Listing 6.4. For more information, see [33].

kadir@kadirpc:~$ make ARCH=arm uImage

…

UIMAGE arch/arm/boot/uImage

Image Name: Linux-3.4.67-gef651f0-dirty

Created: Sat Jun 21 21:11:26 2014

Image Type: ARM Linux Kernel Image (uncompressed)

Data Size: 3682472 Bytes = 3596.16 kB = 3.51 MB

Load Address: 80008000

Entry Point: 80008000

 Image arch/arm/boot/uImage is ready

Listing 6.4. Generating bootable Linux kernel image

6.6. Running the compiled Kernel image

In the development environment of this thesis work, the host and target platforms are

connected over the Ethernet. The generated kernel image is sent to the target via TFTP

protocol. U-Boot boot-loader searches for a tftp server over the Ethernet and tries to fetch the

56

uImage from the tftp server. Therefore, a tftp server is needed in the host. U-Boot fetches the

uImage from the server and loads it to predefined address in the main memory, and then runs

it. Then, the controls are passed to the Linux kernel. In Listing 6.5, kernel boot messages are

shown.

UBoot> TFTP from server 192.168.2.1; our IP address is

192.168.2.2

Filename 'uImage'.

Load address: 0x82000000

Loading:###

###

done

Bytes transferred = 3723832 (38d238 hex)

Booting kernel from Legacy Image at 82000000 ...

 Image Name: Linux-3.4.67-gef651f0-dirty

 Image Type: ARM Linux Kernel Image (uncompressed)

 Data Size: 3723768 Bytes = 3.6 MiB

 Load Address: 80008000

 Entry Point: 80008000

 Verifying Checksum ... OK

 Loading Kernel Image ... OK

OK

Starting kernel ...

Uncompressing Linux... done, booting the kernel.

[0.000000] Booting Linux on physical CPU 0

[0.000000] Linux version 3.4.67-gef651f0-dirty (kadir@kadirpc)

(gcc version 4.4.1 (Sourcery G++ Lite 2010q1-202)) #3 SMP Tue

Apr 8 13:40:55 EEST 2014

[0.000000] CPU: ARMv7 Processor [412fc09a] revision 10 (ARMv7),

cr=10c53c7d

[0.000000] CPU: PIPT / VIPT nonaliasing data cache, VIPT

aliasing instruction cache

[0.000017] Machine: OMAP4 Panda board

[0.000017] Truncating RAM at 80000000-bfffffff to -af7fffff

(vmalloc region overlap).

57

[0.000103] Memory policy: ECC disabled, Data cache writealloc

[0.000119] OMAP4460 ES1.0

[0.000179] PERCPU: Embedded 8 pages/cpu @c126a000 s11520 r8192

d13056 u32768

[0.000208] Built 1 zonelists in Zone order, mobility grouping

on. Total pages: 192784

[0.000234] Kernel command line:

ip=192.168.2.2:192.168.2.1:192.168.2.1:255.255.255.0:kadirpc:et

h0:off console=ttyO2,115200n8 root=/dev/nfs rw

nfsroot=192.168.2.1:/home/kadir/garage/tez/pandanfs

...

Listing 6.5. Linux kernel boot logs on Pandaboard ES

In first part of the output log of Linux kernel booting, kernel decompresses itself to the

different part of the memory. Then, kernel checks its processor and architecture type for valid,

and then creates initial memory page tables to store kernel structures and data. Following that,

kernel enables the processor’s memory management unit (MMU) to process physical/logical

address conversion. Then, execution jumps to the start of the kernel’s main components,

start_kernel() in kernel/main.c. In this function, all of the initializations are carried out and

init, first userspace program, is executed lastly as mentioned in previous chapters.

58

7. PERFORMANCE ANALYSIS OF THE MULTI-SCHEDULING

TECHNIQUE

This chapter presents the Real-time performance and analysis techniques in the state of the art

firstly, and then explains the most useful and well known tools in Linux community for the

Real-time performance analyzing. Lastly, the result and discussions will be given about the

performance and test results of our proposed technique.

7.1. Real-time Characteristics to Evaluate

The main purpose of an RTOS is to provide a predictable and deterministic environment for

the tasks. As discussed in Chapter 3, Real-time system does not mean a high speed system to

produce responds to actions it increases the quality of the system. The aim of a RTOS is

eliminating the surprises and meeting the deadlines [4], [34]. In this section, the characteristics

and main features expecting from a RTOS will be explained.

7.1.1. Responsiveness

A Real-time task generally has a deadline to finish or produce a result to an action and the

respond must meet the deadline. Therefore, a real-time task must be switched to processor to

be executed enough to meet the deadline. This depends on the real-time responsiveness of a

RTOS [35]. A real-time task must be run to produce a respond as much as possible. A RTOS

should give the control to a real-time task that needs to be executed as early as possible to

increases its responsiveness. There are two main ways to increase the responsiveness. One of

them is the fact that the real-time system is kept on idle state as much as possible. The other is

reducing or minimizing the operating system's inner latencies. If the number of tasks is

increasing in real-time system where rt-tasks and non-rt-tasks run on same environment, CPU

idleness reduces and it causes to decrease the responsiveness [35].

Multi-scheduling technique provides a special and isolated hardware and software

environment for rt-tasks. Rt-tasks are always scheduled to the rt-cores. Therefore, the real-

time partition of the system is not affected by general stuff. In the next sections of this chapter,

the measurement techniques and tools of responsiveness will be covered.

59

7.1.2. Latencies

Latency is the period between the time when an event is occurred and the time when it is being

handled. There are mainly two important types of latencies for RTOSes; scheduling latency

and interrupt latency. Scheduling latency is the time between an rt-task needs to be woken up

and the time it actually gains to control and run. It occurs in context-switching of the tasks

when a higher priority task is scheduled or the current task relinquishes the processor. The less

the scheduling latency is, the much more time remains to meet the deadline for an rt-task [36].

Therefore, it directly affects the real-time performance.

Interrupt latency, on the other hand, is the time elapsed between an event occurred and when it

is actually handled or processed. Interrupt latency is the most important latency to reduce for

real-time systems [36], [37]. The reason is the fact that a real-time task generally runs when a

hardware event occurred such as button press, or a scheduled timer event. In each situation, an

interrupt service routine or function is invoked to handle the event. In Linux, interrupts are

also run as a kernel thread or task. Therefore, a new task structure is created for each interrupt

registration and the related thread is switched to a CPU on an event occurring.

7.1.3. Eliminating the Surprises

One of the most important features of a RTOS is to respond same timing results to events [34].

In other words, the time needed to respond does not change dramatically. It must be robust to

catch the same and best timings. For example, if respond time to an event is 200 ms for an rt-

task, the same time must be caught in the next occurring of the same event. There must be no

surprises in a RTOS. It actually depends on the other tasks and jobs on the system. The

number and load of tasks can change in a general operating system so it causes the differences

in the respond time to same event.

Thanks to Multi-scheduling technique, all real-time jobs and load are isolated and do not

affected by the load of general processes. This provides to decrease the surprises.

7.2. Test Results

RT performance of Multi-scheduling technique is tested on Pandaboard widely used in

embedded community as reference design as discussed earlier. It has a dual-core ARM cortex-

A9 powered by TI’s OMAP4460 microprocessor as discussed in Chapter 5. Therefore, one of

60

the CPUs runs rt-tasks and the other is for general tasks and general OS operations. We have

prepared two patches and applied the Linux Kernel version 3.4. One of the patches called

Msched-P1 runs rt-tasks with SCHED_RR scheduling policy and the other called Msched-P2

runs with general Linux scheduling policy SCHED_OTHER or SCHED_CFS. The standard

Linux kernel is used as reference to compare the results and observe the improvements.

7.2.1. Cyclictest

Cyclictest are the most widely and frequently used real-time metric in Linux [38]. The core

concept of Cyclictest is to calculate the average latency of response to a stimulus or interrupt.

Cyclictest has many parameters and options to detect and calculate latencies for an operating

system. For Multi-scheduling, we deal with only interrupt latency. Because of having many

unrelated options, we simplified the source code to test the latency by using hardware timer

interrupts via Linux high-resolution timer API. The pseudocode of our modified real-time test

program called rttest is given in Listing 7.1. Rttest program tests the interrupt latency over

high-resolution timers and scheduling latency. See the Appendix A for the whole source code.

clock_gettime((&now))

next = now + par->interval

while (!shutdown) {

 clock_gettime((&start))

 clock_nanosleep((&next))

 clock_gettime((&stop))

 diff = calcdiff(start, stop)

 # update stat-> min, max, total latency, cycles

 # update the histogram data and calculate average

 next += interval

}

Listing 7.1. cyclictest pseudocode

Latencies can be varied according to the work load in the system. Therefore, the standard

Linux, Msched-P1 and Msched-P2 are tested on different CPU load levels. We developed a

cpustress program to load fake jobs to CPUs. It a shell script and mainly used cpulimit

application, widely used in Linux to stress CPU. See the Appendix D.1 for cpustress script. In

61

this latency test, CPU stress level are changed step-by-step and observe the latencies of each

type of kernel in the latency test.

First, test results and program outputs are given for CPU stress level 0 as an example. Then,

CPU stress level is raised by 20% for each step.

7.2.1.1.CPU Stress Level 0

For standard Linux, the average interrupt latency is 79 µs.

target # /root/rttest

Clock resolution (ns): 1

Measurement, please wait 1 minute...

Samples: 331275

Min latency: 52 us

Max latency: 815 us

Average latency: 84 us

target #

 For Multi-scheduling MSched_P1 patch, the average latency is 35 µs.

For Multi-scheduling MSched_P2 patch, the average latency is 37 µs.

target # task-assigner -r /root/rttest

Clock resolution (ns): 1

Measurement, please wait 1 minute...

Samples: 427399

Min latency: 22 us

Max latency: 83 us

Average latency: 44 us

target # task-assigner -r /root/rttest

Clock resolution (ns): 1

Measurement, please wait 1 minute...

Samples: 428455

Min latency: 22 us

Max latency: 83 us

Average latency: 46 us

62

All results for CPU stress level = 0 are given in Table 7.1.

Standard Linux

Kernel
Msched_P1 Msched_P2

Average Latency (µs) 87 34 37

Table 7.1. Latency results in CPU stress level 0

7.2.1.2.Raising CPU Stress Level

At the second stage of Latency test, CPU stress level is increased 20% for each step. Cpustress

tool is used to load work on CPUs shown in Listing 7.2 as example. For detailed usage of

cpustress tool, see Appendix D.1.

target # cpustress.sh 20 120

CPU load script.

Date: Tue Jun 24 15:43:50 EEST 2014

Host: kadirdev

Number of CPU cores: 4.

CPU load per core: 20%.

CPU load duration: 120 seconds.

This script will run for 122 seconds.

[2014-06-24--15:43:50] => Creating

CPU_Load_kadirdev__20140624_154350.log.

[2014-06-24--15:43:50] => Starting stress for 2 seconds.

Time left: 00:00:00

[2014-06-24--15:43:53] => Running 20% CPU load for 120

seconds.

Time left: 00:00:00

[2014-06-24--15:45:54] => Log data saved in

CPU_Load_kadirdev__20140624_154350.log.

[2014-06-24--15:45:54] => This is the end!

target #

Listing 7.2. CPU stress level 20% for 120 seconds

63

The all results for each CPU stress level step are given in Table 7.2. As seen in the results,

increasing in the CPU load does not affect the average latencies in both Multi-scheduling

patches. On the other hand, it has dramatically increased with respect to CPU load in the

standard Linux kernel. In Figure 7.1, Comparison results of Multi-scheduling patches in

different CPU stress levels are given. This result says that using a Real-time scheduling

algorithm such as EDF and RR instead of a normal algorithm like CFS provides a better

performance, lower latency, in Multi-scheduling technique.

CPU Stress Level

(%)

Standard Linux Kernel

(µs)

Msched_P1

(µs)

Msched_P2

(µs)

20 84 44 46

40 3382 43 47

60 6570 43 47

80 10370 44 47

100 14706 46 48

Table 7.2. cyclictest Latency results in different CPU stress levels

Figure 7.1. Comparison of Interrupt Latency results of Multi-scheduling patches over CPU

workload

40

41

42

43

44

45

46

47

48

49

0 20 40 60 80 100

A
v
g
.
In

te
rr

u
p
t

L
at

en
cy

 (
µ

s)

Msched-P2

Msched-P1

CPU workload (%)

64

7.2.2. Responsiveness and Eliminating the Surprises

In this section, responsiveness and stability of the system to the actions are tested. Real-time

applications generally wait for a signal or interrupt from outside as mentioned before.

Handling these trigging actions should be as soon as possible for good responsiveness of Real-

time system. Moreover, respond and execution times of a task to a trigging event/interrupt

must be determined. In other words, the timings of a real-time task must not change

dramatically.

In order to observe the responsiveness to hardware interrupts and changes in timings of a real-

time task, gpio-toggle test program is developed. Gpio-toggle program toggles a GPIO pin on

the board and estimates the duration. It raises a GPIO pin on development board, Pandaboard,

and executes some mathematical commands as a work, and then pulls down the pin. See

Appendix C for more information and source code of this test.

Figure 7.2. gpio-toggle test in the standard Linux Kernel

65

Figure 7.3. gpio-toggle test in Multi-scheduling enabled Linux Kernel

In this test, we compared the standard Linux kernel and Msched_P1 only on same CPU stress

level. In Figure 7.2, the duration of toggling in the standard Linux is not stable. Time for the

toggling changes in some cases as you can see on the falling edge of the output signal. On the

other hand, in Figure 7.3, the duration for GPIO toggling in Multi-scheduling technique is

more stable and shorter about two times than the Standard Linux. As we mentioned before, the

stabilization of processing a task in any case is more important for RT systems. This toggling

test shows that the processing time of RT tasks is more stable in Multi-scheduling technique

than the Linux kernel.

66

8. CONCLUSION, DISCUSSION AND FUTURE WORK

In this thesis, we proposed a new approach Multi-scheduling to run RT and non-RT tasks in a

single operating system or in the same environment. It is based on the partition of the cores in

the multi-core processor into two groups, and two different environments are maintained for

RT and non-RT tasks. Multi-scheduling technique only separates the cores on the system not

the other resources such as main memory, USBs, GPIOs and other controllers. In order to

provide a better RT and non-RT environment partition in the single OS, all resources on the

system must be separated. For example, if a RT task and a non-RT task want to use the same

resource, e.g., USB0, on the same time, it will reduce the overall performance and may cause

the deadlocks. The current Multi-scheduling technique does not separate the other resources.

In this work, we just want to show that creating two different environments may provide both

RT and IT functionalities in the single OS. For future work, partitioning entire system with all

resources is considered.

Multi-scheduling technique is designed for SMP systems and because of being widely used in

embedded systems and well documented we decided to implement it in Linux kernel as a

kernel-level real-time approach. Moreover, Linux community provides many tools and

programs to test and observe real-time performance of the system. Our test platform,

Pandaboard, is one of the most widely used evaluation board in the world. It has dual-core

microprocessor, and it is suitable to test our proposal technique on it.

Our tests are based on most important real-time characteristic of a real-time task. We

compared Multi-scheduling enabled Linux kernel and the standard Linux kernel. The interrupt

latency and stability results have shown that Multi-scheduling technique can be a good

approach to provide RT functionality for general OSes without using heterogeneous OSes. On

the contrary of heterogeneous approach, a single OS environment is used for all tasks. This

provides two main advantages to system developers. One of them is inter-process

communication between RT and non-RT tasks. The other and more important advantage is

about the system development and maintenance. In heterogeneous approach, system

developers configure two different OSes; a general OS and a RTOS. A Failure in one of the

heterogeneous OSes causes the whole system come down. Moreover, developers spend more

time to learn different OS environments. This may increases the costs for production.

67

There are some userspace applications are developed during this work. Task-assigner

application is used to create new tasks for Multi-scheduling enabled systems. In addition, a

CPU stress application which compels CPU in given work levels by loading heavy jobs.

As a consequence, Multi-scheduling is a valuable technique to provide RT functionality for

general purpose operating systems. It provides nearly two times better latency performance

and is more robust for surprises. It may be considered as one of the most major approaches for

Real-time systems in multi-core embedded systems. For future work, we want to extend

Multi-scheduling technique to cover all resources in the system. Moreover, we will provide

tools to control the Multi-scheduling from userspace easily.

68

BIBLIOGRAPHY

[1] T. Nojiri, Y. Kondo, N. Irie, M. Ito, H. Sasaki, R. Technology, and H. Maejima,

Domaın Partıtıonıng Technology For Embedded Multıcore, Journal of IEEE Computer

Society, 2009.

[2] H. Tomiyama, S. Honda, and H. Takada, Real-time operating systems for multicore

embedded systems, 2008 International SoC Designs Conference, pp. I–62–I–67, Nov.

2008.

[3] N. Vun, H. F. Hor, and J. W. Chao, Real-time enhancements for embedded Linux,

Proc. Inernational Conference of Parallel and Distributed Systems - ICPADS, pp. 737–

740, Dec. 2008.

[4] S. Rostedt and D. Hart, Internals of the RT Patch, Proceedings of Linux Symposium,

2007.

[5] P. Kohout, B. Ganesh, and B. Jacob, Hardware support for real-time operating systems,

Hardware/software codesign Systems, pp. 45–51, 2003.

[6] Y. Zhang, N. Guan, Y. Xiao, and W. Yi, Implementation and empirical comparison of

partitioning-based multi-core scheduling, Industrial Embedded Systems, pp. 1–8, 2011.

[7] A. Mohammadi and S. Akl, Scheduling algorithms for real-time systems, Sch. Comput.

Queen’s Univ. Tech. , 2005.

[8] P. Regnier, G. Lima, and L. Barreto, Evaluation of interrupt handling timeliness in real-

time Linux operating systems, ACM Special Interest Group on Operating Systems

(SIGOPS) Oper. Syst. Rev., vol. 42, no. 6, p. 52, Oct. 2008.

[9] K. Song and L. Yan, Improvement of real-time performance of Linux 2.6 kernel for

embedded application, IFCSTA 2009 Proc. - 2009 Int. Forum Computer-Science and

Applications, vol. 2, pp. 71–74, 2009.

[10] I. H. Say, A Reconfıgurable Computıng Platform For Real Tıme Embedded, no.

September, 2011.

[11] C. Y. Bi, Y. P. Liu, and R. F. Wang, Research of key technologies for embedded Linux

based on ARM, ICCASM 2010 - 2010 International Conference on Computer

Application System Modeling, vol. 8, no. Iccasm, pp. 373–378, 2010.

[12] F. Proctor, Introduction to Linux for Real-Time Control, pp. 1–78, 2002.

69

[13] Y. Zhang, C. Gill, and C. Lu, Real-Time Performance and Middleware for

Multiprocessor and Multicore Linux Platforms, 2009 15th IEEE International

Conference on Embedded and Real-Time Computing Systems and Applications, no. 1,

pp. 437–446, Aug. 2009.

[14] P. Tan, Task Scheduling of Real-time Systems on Multi-Core Architectures, 2009

Second International Symposium on Electronic Commerce and Security, pp. 190–193,

2009.

[15] M. Shekhar, A. Sarkar, H. Ramaprasad, and F. Mueller, Semi-Partitioned Hard-Real-

Time Scheduling under Locked Cache Migration in Multicore Systems, 2012 24th

Euromicro on Conference Real-Time Systems, pp. 331–340, Jul. 2012.

[16] S. Kato, R. Rajkumar, and Y. Ishikawa, A loadable real-time scheduler suite for

multicore platforms, 2009.

[17] J. Anderson and J. Calandrino, Parallel Real-Time Task Scheduling on Multicore

Platforms, 2006 27th IEEE International Real-Time Systems Symposium, pp. 89–100,

2006.

[18] F. Lindh, T. Otnes, and J. Wennerstrom, Scheduling algorithms for real-time systems,

Sch. Comput. Queen’s Univ. Tech. , 2005.

[19] R. Love, Linux Kernel Development, 3rd Edition. 2010, p. 441.

[20] National Instruments, What is a Real-Time Operating System (RTOS)?, Available:

http://www.ni.com/white-paper/3938/en/. (Jun, 2014).

[21] J. H. Anderson, J. M. Calandrino, and U. C. Devi, Real-Time Scheduling on Multicore

Platforms, 12th IEEE Real-Time and Embedded Technology and Applications

(RTAS'06) Symposium, pp. 179–190, 2006.

[22] D. Faggioli and F. Checconi, An EDF scheduling class for the Linux kernel, Real-Time

Linux, 2009.

[23] Wind River VxWorks Platforms 6 . 9, Wind River Documents, 2014.

[24] B. R. Krten, QNX Neutrino, 2009.

[25] D. Yun, S. Kim, and S. Ha, A parallel simulation technique for multicore embedded

systems and its performance analysis, IEEE Transactions on Computer-Aided Design

Of Integrated Cırcuits And Systems, vol. 31, no. 1, pp. 121–131, 2012.

70

[26] Sreekrishnan Venkiteswaran, Essential Linux Device Drivers [Hardcover]. Prentice

Hall; 1 edition, 2008, p. 744.

[27] R. Rajesvari, G. Manoj, and A. P. M, System-on-Chip (SoC) for Telecommand

System Design, vol. 2, no. 3, 2013.

[28] J. He, Y. Li, W. Zhang, F. Fang, and H. Xu, Real-Time Optimization and Application

of the Embedded ARM-Linux Scheduling Policy, 2011 International Conference on

Information Technology, Computer Engineering and Management Sciences, pp. 134–

138, Sep. 2011.

[29] K. Advantages, Running AMP , SMP or BMP Mode for Multicore Embedded Systems

QNX Software Systems, 2012.

[30] C. Hallinan, Embedded Linux Primer: A Practical Real-World Approach, Prentice Hall;

2 edition, 2010, p. 656.

[31] Pandaboard.org, Pandaboard ES Hardware System Reference Manual, 2013.

[32] Elinux, Toolchains, 2012, Available: http://elinux.org/Toolchains. (Jun, 2014).

[33] Denx Software, UBoot Bootloader, 2014, Available:

http://www.denx.de/wiki/view/DULG/UBoot. (Jun, 2014).

[34] R. Gumzej and W. Halang, Performance Metrics for Real-time Systems, Life-cycle of

Real-time Systems, 2010.

[35] N. Ward, Evaluating real-time responsiveness in dialog, in InterSpeech, pp. 9–10, 2006.

[36] S. Rostedt and R. Hat, Finding Origins of Latencies Using Ftrace, 2009.

[37] N. Hillary, Measuring performance for real-time systems, Freescale Semiconducters

Report, Novemb., 2005.

[38] T. Knutsson, Performance evaluation of GNU/linux for real-time applications,

December, 2008.

71

Appendix A

Task-assigner Application Details

In Multi-scheduling technique, kernel-space must know the task is an rt-task or non-rt-task.

For this reason, a userspace application is needed to create and manage the task creation

operations. It will sign the task with rt or non-rt by using the sched_policy. If a task will be

executed in Real-time domain, the sched_policy of the task will be SCHED_FIFO or

SCHED_RR, if it is a normal or general task, its sched_policy will be SCHED_NORMAL.

Task-assigner application does this stuff and it is the userspace extension of Multi-scheduling

technique. It uses the system calls provided by libc. The usage and code of the application is

given below.

A.1. Task-assigner Source Code

/*

Task-assigner application for Multi-scheduling

*/

#include <stdio.h>

#include <stdlib.h>

#include <sched.h>

static const struct {

 int policy;

 char name[sizeof("SCHED_OTHER")];

} policies[] = {

 {SCHED_OTHER, "SCHED_OTHER"},

 {SCHED_FIFO, "SCHED_FIFO"},

 {SCHED_RR, "SCHED_RR"}

};

static void show_min_max(int pol)

{

 const char *fmt = "%s min/max priority\t: %u/%u\n";

 int max, min;

 max = sched_get_priority_max(pol);

 min = sched_get_priority_min(pol);

 if ((max|min) < 0)

 fmt = "%s not supported\n";

 printf(fmt, policies[pol].name, min, max);

}

void perror_msg_and_die(char *msg)

{

 printf(stderr,”%s”, msg, (int)pid);

 exit(EXIT_FAILURE);

72

}

#define OPT_m (1<<0)

#define OPT_p (1<<1)

#define OPT_r (1<<2)

#define OPT_f (1<<3)

#define OPT_o (1<<4)

int main(int argc, char **argv)

{

 pid_t pid = 0;

 unsigned opt;

 struct sched_param sp;

 char *pid_str;

 char *priority = priority; /* for compiler */

 const char *current_new;

 int policy = SCHED_RR;

 opt = getopt32(argv, "+mprfo");

 if (opt & OPT_m) { /* print min/max and exit */

 show_min_max(SCHED_FIFO);

 show_min_max(SCHED_RR);

 show_min_max(SCHED_OTHER);

 fflush_stdout_and_exit(EXIT_SUCCESS);

 }

 if (opt & OPT_r)

 policy = SCHED_RR;

 if (opt & OPT_f)

 policy = SCHED_FIFO;

 if (opt & OPT_o)

 policy = SCHED_OTHER;

 argv += optind;

 if (!argv[0])

 bb_show_usage();

 if (opt & OPT_p) {

 pid_str = *argv++;

 if (*argv) {

 priority = pid_str;

 pid_str = *argv;

 }

 // else

 pid = xatoul_range(pid_str, 1,((unsigned)(pid_t)ULONG_MAX)>>1);

 } else {

 priority = *argv++;

 if (!*argv)

 bb_show_usage();

 }

 current_new = "current\0new";

 if (opt & OPT_p) {

 int pol;

 print_rt_info:

 pol = sched_getscheduler(pid);

 if (pol < 0)

 perror_msg_and_die("cant get policy”);

73

 printf("pid %d's %s scheduling policy: %s\n",

 pid, current_new, policies[pol].name);

 if (sched_getparam(pid, &sp))

 perror_msg_and_die("cant get attributes”);

 printf("pid %d's %s scheduling priority: %d\n",

 (int)pid, current_new, sp.sched_priority);

 if (!*argv) {

 /* Either it was just "-p <pid>",

 * or it was "-p <priority> <pid>" and we came here

 * for the second time (see goto below) */

 return EXIT_SUCCESS;

 }

 *argv = NULL;

 current_new += 8;

 }

sp.sched_priority=xstrtou_range(priority,0,policy!=SCHED_OTHER?1:0,99);

 if (sched_setscheduler(pid, policy, &sp) < 0)

 perror_msg_and_die("cant set scheduler”);

 return 0;

}

The most important system call used in task-assigner is sched_setscheduler() function:

 sched_setscheduler

Function
int sched_setscheduler(pid_t pid, int policy, const struct sched_param

*param)

Description
Sets the scheduling policy and parameters of a task given its PID (Process

ID)

A.2. Task-assigner Usage and Examples

 Run given program as a real-time task (-r)

 Move the program given by PID (Process ID) to real-time partition

 Run given program as normal task

target # task-assigner -r <program> <args..>

target # task-assigner –r -p <PID>

target # task-assigner <program> <args..>

74

Appendix B

B.1. Rttest Source Code

/* Small program to test high-resolution timers

 * and scheduling latency in Unix / Linux

 */

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <time.h>

#include <math.h>

#include <errno.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <sys/mman.h>

#define MAX(a,b) (((a) > (b)) ? (a) : (b))

#define MIN(a,b) (((a) < (b)) ? (a) : (b))

unsigned long long int timespec_diff(struct timespec *t2, struct timespec

*t1)

{

 /* Computes the time difference between 2 timespecs */

 return(t2->tv_sec-t1->tv_sec)*1000000000ULL+t2->tv_nsec-t1->tv_nsec;

}

void timespec_add_ns(struct timespec *ts, unsigned ns)

{

 ts->tv_nsec += ns;

 if (ts->tv_nsec >= 1000000000) {

 ts->tv_nsec -= 1000000000;

 ts->tv_sec++;

 }

}

int main (int argc, char **argv)

{

 struct timespec start_time, time1, time2;

 unsigned long long int jitter;

 unsigned long long int min_jit = 999999999999999ULL;

 unsigned long long int max_jit = 0ULL;

 unsigned long long sum_jit = 0ULL;

 unsigned samples = 0;

 int samps[200];

 mlockall(MCL_CURRENT | MCL_FUTURE);

 /* Display clock resolution */

 clock_getres(CLOCK_MONOTONIC, &time1);

 printf("Clock resolution (ns): %lu\n", time1.tv_nsec);

75

 /* Initialize the timer that will be used in nanosleep(), */

 /* to a value of 100 us */

 printf("Measurement, please wait 1 minute...\n");

 fflush(stdout);

 clock_gettime(CLOCK_MONOTONIC, &start_time);

 do {

 /* Get the date before sleeping */

 clock_gettime(CLOCK_MONOTONIC, &time1);

 /* Compute the wake-up date */

 timespec_add_ns(&time1, 100000);

 /* Sleep */

 clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME, &time1, NULL);

 /* Get the wake-up date */

 clock_gettime(CLOCK_MONOTONIC, &time2);

 /* skip the first second for warmup */

 if (samples >= 1) {

 /* Compute the sleep time */

 jitter = timespec_diff(&time2, &time1);

 min_jit = MIN(min_jit, jitter);

 max_jit = MAX(max_jit, jitter);

 sum_jit += jitter;

 samps[samples-1] = jitter/1000;

 }

 ++samples;

 } while (timespec_diff(&time2, &start_time) < 60000000000ULL);

 /* Display sleeping statistics */

 printf ("Samples: %u\n", --samples);

 printf ("Min latency: %llu us\n", min_jit / 1000);

 printf ("Max latency: %llu us\n", max_jit / 1000);

 printf ("Average latency: %llu us\n", (sum_jit / samples) / 1000);

 exit(EXIT_SUCCESS);

}

B.2. Rttest Usage

target # rttest

76

Appendix C

C.1. Gpio-toggle Source Code

/* compile using "arm-linux-gcc gpio-toggle.c -lrt –Wall –o gpio-toggle"

*/

#include <stdlib.h>

#include <stdio.h>

#include <time.h>

#include <math.h>

#include <sched.h>

#include <sys/io.h>

#include <unistd.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <string.h>

#define NSEC_PER_SEC 1000000000

#define GPIO32_DIRECTION "/sys/class/gpio/gpio32/direction"

#define GPIO32_VALUE "/sys/class/gpio/gpio32/value"

#define GPIO_EXPORT "/sys/class/gpio/export"

/* using clock_nanosleep of librt */

extern int clock_nanosleep(clockid_t __clock_id, int __flags,

 __const struct timespec *__req,

 struct timespec *__rem);

static inline void tsnorm(struct timespec *ts) {

 while (ts->tv_nsec >= NSEC_PER_SEC) {

 ts->tv_nsec -= NSEC_PER_SEC;

 ts->tv_sec++;

 }

}

double stress(char *argv) {

 int i, len=10;

 double sum = 0;

 if (argv != NULL)

 len = atoi(argv);

 for (i=1; i<len; i++) {

 sum += pow(i, i);

 }

 return sum;

}

int main(int argc, char** argv)

{

 struct timespec t;

 struct sched_param param;

 int interval=50000; // 50000ns = 50us, cycle duration = 100us

77

 int fd;

 char zero_string[] = "0";

 char one_string[] = "1";

 char buffer[32];

 unsigned char value = 0;

 // GPIO_32, pin 18 of J6.

 if ((fd = open(GPIO_EXPORT, O_WRONLY | O_NDELAY, 0)) == 0) {

 printf("Error: Can't open gpio export.\n");

 exit(1);

 }

 strcpy(buffer, "32");

 write(fd, buffer, strlen(buffer));

 close(fd);

 printf("Added GPIO 32.\n");

 if ((fd = open(GPIO32_DIRECTION, O_WRONLY | O_NDELAY, 0)) == 0) {

 printf("Error: Can't open gpio direction.\n");

 exit(1);

 }

 strcpy(buffer, "out");

 write(fd, buffer, strlen(buffer));

 close(fd);

 printf("Direction set to out.\n");

 if ((fd = open(GPIO32_VALUE, O_WRONLY | O_NDELAY, 0)) == 0) {

 printf("Error: Can't open gpio value.\n");

 exit(1);

 }

 printf("Value opened for writing.\n");

 write(fd, one_string, 1);

 int ret = stress(argv[1]);

 //printf("...value set to 1...\n");

 write(fd, zero_string, 1);

 //printf("...value set to 0...\n");

 return ret;

}

C.2. Gpio-toggle Usage

target # gpio-toggle

78

Appendix D

D.1. Cpustress script

CPU load script generates a desired CPU load and forces it per each core on machines running

Linux. It requires stress and cpulimit to be installed on the target machine. It depends on

cpulimit utility program.

D.2. SAR Commandline Tool

Sar collects, reports, or saves system activity information. It is used to investigate CPU

activities per core. The command below prints the idleness, load and other activities on each

CPU core.

D.3. CPU Affinity (cpus_allowed)

Thanks to /proc filesystem, we can observe on which CPU core a task is running currently. For

example, the command output below says that the task can run only CPU1.

target # ./cpuload.sh [load in percent] [duration in seconds]

target # ./cpuload.sh 25 10

target # sar –P ALL <interval> <count>

target # sar -P ALL 1 3

Linux 3.4.67-gef651f0-dirty (kadir) 01/01/00 _armv7l_ (2 CPU)

02:08:54 CPU %user %nice %system %iowait %steal %idle

02:08:55 all 0.00 0.00 0.50 0.00 0.00 99.50

02:08:55 0 0.00 0.00 1.00 0.00 0.00 99.00

02:08:55 1 0.00 0.00 0.00 0.00 0.00 100.00

target # cat /proc/<task’s PID>/status | grep –i cpus

Cpus_allowed : 2

Cpus_allowed_list: 1

79

CURRICULUM VITAE

Credentials

Name, Surname: Abdulkadir Yaşar

Place of Birth: 29.04.1987

Marital Status: Not married

E-mail: kyasar07@gmail.com, ayasar@aselsan.com

Address: ODTU Teknokent, SATGEB-1 Bolgesi, Aselsan, Ankara/Turkey

Education

High School: Muratpaşa Lisesi, Antalya

BSc. : Computer Engineering, Hacettepe University

MSc. : Computer Engineering, Hacettepe University

Foreign Languages

English (Advanced)

Work Experience

Embedded System Designer for 3 years in Aselsan Inc., Ankara/Turkey

Areas of Experiences

Embedded and Real-time Systems, VOIP, Computer Vision, Internet of Things

Projects derivated from the thesis

-

Publications related with the thesis

A. Yasar, K. M. Imre, Multi-Scheduling Technique for Real-time Systems on Embedded

Multi-core Processors, International Conference on Advances in Computing, Electronics and

Electrical Technology - CEET 2014, 2-3 August 2014 (not published yet)

Meetings attended with a poster or a paper derivated from the thesis

-

	ABSTRACT
	ÖZET
	ACKNOWLEDGEMENT
	CONTENTS
	ABSTRACT i
	ÖZET iii
	ACKNOWLEDGEMENT v
	CONTENTS vi
	LIST OF TABLES viii
	LIST OF LISTINGS ix
	LIST OF FIGURES ix
	LIST OF SYMBOLS AND ABBREVIATIONS xi
	1. INTRODUCTION 1
	2. RELATED WORK 3
	3. BACKGROUND 5
	4. MULTI-SCHEDULING TECHNIQUE 21
	5. DEVELOPMENT ENVIRONMENT 39
	6. DEVELOPMENT OF MULTI-SCHEDULING IN LINUX KERNEL 48
	7. PERFORMANCE ANALYSIS OF THE MULTI-SCHEDULING TECHNIQUE 58
	8. CONCLUSION, DISCUSSION AND FUTURE WORK 66
	BIBLIOGRAPHY 68
	Appendix A 71
	Appendix B 74
	Appendix C 76
	Appendix D 78
	CURRICULUM VITAE 79

	LIST OF TABLES
	LIST OF LISTINGS
	LIST OF FIGURES
	LIST OF SYMBOLS AND ABBREVIATIONS
	1. INTRODUCTION
	2. RELATED WORK
	3. BACKGROUND
	3.1. Real Time Systems
	3.2. Real Time Operating Systems (RTOS)?
	3.2.1. Monolithic kernel vs. Microkernel
	3.2.2. RTOS vs. General OS

	3.3. Importance of Scheduling
	3.4. Real-time Scheduling Algorithms
	3.4.1. Rate Monotonic (RM) Algorithm
	3.4.2. Earliest Deadline First (EDF) Algorithm

	3.5. Widely Used RTOSes
	3.5.1. VxWorks
	3.5.2. QNX Neutrino RTOS
	3.5.3. FreeRTOS
	3.5.4. Windows CE
	3.5.5. Linux for Real-time

	3.6. Embedded Systems and Multi-core Processors
	3.6.1. ARM Architecture

	3.7. Asymmetric-multiprocessing (AMP) and Symmetric-multiprocessing (SMP)

	4. MULTI-SCHEDULING TECHNIQUE
	4.1. Multi-scheduling Overview
	4.1.1. Problem in Heterogeneous Systems

	4.2. Linux SMP and Booting
	4.3. Secondary Startup Kernel
	4.4. Scheduling Structures in Multi-scheduling
	4.4.1. Scheduling Policy of a Task

	4.5. Real-Time Task Creation
	4.6. Load-balancing
	4.7. Other Extensions for Multi-scheduling
	4.7.1. Support in Userspace
	4.8. Standard Linux Kernel API Functions used in Multi-scheduling

	5. DEVELOPMENT ENVIRONMENT
	5.1. Target and Host Platform
	5.2. Target Platform
	5.2.1. Pandaboard ES Architecture
	5.2.2. OMAP4460 Processor

	5.3. Cross-Compilation and Toolchain
	5.3.1. Toolchain components
	5.3.1.1. Binutils
	5.3.1.2. Compilers
	5.3.1.3. C library

	5.3.2. CodeSourcery Toolchain
	5.3.3. Downloading and Installing Toolchain

	6. DEVELOPMENT OF MULTI-SCHEDULING IN LINUX KERNEL
	6.1. Why Linux Kernel?
	6.2. Linux Kernel Source Tree
	6.3. Patching
	6.3.1. Patching the Linux Kernel

	6.4. Linux Kernel Configuration
	6.4.1. Configuration for Multi-scheduling

	6.5. Compiling the Kernel
	6.6. Running the compiled Kernel image

	7. PERFORMANCE ANALYSIS OF THE MULTI-SCHEDULING TECHNIQUE
	7.1. Real-time Characteristics to Evaluate
	7.1.1. Responsiveness
	7.1.2. Latencies
	7.1.3. Eliminating the Surprises

	7.2. Test Results
	7.2.1. Cyclictest
	7.2.1.1. CPU Stress Level 0
	7.2.1.2. Raising CPU Stress Level

	7.2.2. Responsiveness and Eliminating the Surprises

	8. CONCLUSION, DISCUSSION AND FUTURE WORK
	BIBLIOGRAPHY
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	CURRICULUM VITAE

