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In the age we live in, both passenger transportation and freight transportation are of great 

importance. Parking the vehicles when they reach the target point is challenging for both 

humans and automatic parking systems. Artificial intelligence-based methods are used 

for this task where traditional control methods are insufficient. A common strategy for 

solving this kind of problem is planning a trajectory using heuristic search algorithms and 

following that trajectory using traditional control methods. On the other hand, 

reinforcement learning algorithms are developing algorithms that can be used in solving 

this kind of problem. HER (Hindsight Experience Replay) method is a wrapper algorithm 

that increases unsuccessful attempts when used with reinforcement learning algorithms. 

In this thesis, Twin Delayed Policy Gradient (TD3), Deep Deterministic Policy Gradient 

(DDPG), Soft Actor-Critic (SAC) reinforcement learning algorithms are studied. The 

comparison of these algorithms, which have been compared with their raw form on 

different problems in the literature, with the HER algorithm in the autonomous parking 

problem has contributed to the literature. In the designed working environment, an 

artificial intelligence control system was designed with HER supported reinforcement 

learning methods on a vehicle model whose throttle and steering commands are 

constantly controlled in space. The designed control system controls the vehicle and 
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enables it to park at the target point. It has been shown by the studies that the studied 

reinforcement learning methods can solve the autonomous parking problem, and the 

algorithm performances are compared. Experiments have shown that the TD3 algorithm, 

which was launched as an improved version of the DDPG algorithm, could not perform 

better than the DDPG algorithm when used in the autonomous parking problem with 

HER. The most successful of the algorithms used in this study was the SAC algorithm. 

 
 
Keywords: reinforcement learning, HER, DDPG, TD3, SAC, dynamic control, actor-

critic 
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İçinde bulunduğumuz çağda gerek yolcu taşımacılığı gerekse yük taşımacılığı büyük 

önem taşımaktadır. Araçların hedef noktaya ulaştıklarında park etmeleri hem insanlar için 

hem otomatik park sistemleri için oldukça zorlayıcı bir görevdir. Geleneksel kontrol 

yöntemlerinin yetersiz kaldığı bu görev için yapay zekâ tabanlı yöntemlerden yardım 

alınmaktadır. Bu tarz problemlerin çözümü için yaygın olarak kullanılan yöntem sezgisel 

arama algoritmaları ile yol planlayıp geleneksel kontrol yöntemleri ile planlanan yolu 

takip etmektir. Diğer taraftan pekiştirmeli öğrenme algoritmaları gelişmekte olan ve bu 

tarz problemlerin çözümünde kullanılabilecek yapay zekâ algoritmalarıdır. HER (İng. 

Hindsight Experience Replay) yöntemi ise pekiştirmeli öğrenme algoritmaları ile 

kullanıldığında başarısız denemelerindeki performansı arttıran sarmal (İng. wrapper) 

algoritmadır. Bu tezde TD3 (İng. Twin Delayed Policy Gradient), DDPG (İng. Deep 

Deterministic Policy Gradient), SAC (İng. Soft Actor Critic) pekiştirmeli öğrenme 

algoritmaları çalışılmıştır. Literatürde ham halleri ile farklı problemler üzerinde 

kıyaslaması yapılmış bu algoritmaların HER algoritması ile otonom park probleminde 

kıyaslanması literatüre katkı sağlamıştır. Tasarlanan çalışma ortamında sürekli uzayda 
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(İng. continuous space) gaz ve direksiyon komutları kontrol edilen bir araç modeli 

üzerinde HER destekli pekiştirmeli öğrenme yöntemleri ile yapay zekâ kontrol sistemi 

tasarlanmıştır. Tasarlanan kontrol sistemi aracı kontrol ederek hedef noktaya park 

etmesini sağlamaktadır. Yapılan çalışmalarla kullanılan pekiştirmeli öğrenme 

yöntemlerinin otonom park problemini çözebileceği gösterilmiş ve algoritma 

performansları kıyaslanmıştır. Yapılan deneyler göstermiştir ki, DDPG algoritmasının 

geliştirilmiş versiyonu olarak lanse edilen TD3 algoritması HER ile otonom park 

probleminde kullanıldığında DDPG algoritmasından iyi bir performans 

sergileyememiştir. Bu çalışmada kullanılan algoritmaların en başarılısı SAC algoritması 

çıkmıştır. 

 

 

Anahtar Kelimeler: pekiştirmeli öğrenme, HER, DDPG, TD3, SAC, dinamik kontrol, 

aktör-kritik 
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1. INTRODUCTION 

 
1.1. Overview  

Transportation vehicles are one of the essential parts of our daily lives. They make our 

lives better but at some cost. In the 2019 year of Turkey, 418,488 traffic accidents 

happened, and 2,524 people died in these accidents. The root cause of these accidents is 

driver fault by 87% percentage[1]. Autonomous vehicles could improve the safety and 

comfort of transportation. Using safe autonomous vehicles could help us save thousands 

of lives in traffic accidents every year. Moreover, parking a vehicle is a complicated and 

stressful task for both humans and classical control systems. Safe autonomous parking 

vehicles will save people's time and effort. 

 

 Researchers have been studying driving assistance systems and autonomous self-driving 

systems for decades. Defense Advanced Research Projects Agency announced several 

autonomous vehicle development competitions in 2003. These competitions led a couple 

of successful autonomous vehicle technologies to appear. For example, Stanford's Junior 

team in 2007 DARPA urban challenge came up with a hybrid A* algorithm [2]. It was a 

significant improvement for vehicle navigation and control technology. 

 

On the other hand, individual research groups and companies like Tesla make progress 

upon neural network-based approaches. DeepPicar is an excellent example of CNN-based 

autonomous car controller design. They feed deep CNNs with images for controlling 

vehicle[3]. 

 
1.2. Motivation 

Reinforcement learning is an essential concept of today's world. However, some control 

problems are not solvable with traditional methods. Especially ones that require strategy 

and planning like parking a vehicle or playing a chess game.   
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Benchmarks show that different learning problems have different best reinforcement 

solutions. No algorithm shows the best performance in all the control problems [4]. In 

this work, we wondered the current best performing method on parking car controller 

problem. 

 

1.3. Aim of The Thesis 

The development of machine learning systems let various reinforcement learning 

algorithms and methods to be developed. It is seen that almost every dynamic control 

problem has a different best performance reinforcement learning solution. In the study 

performed within the scope of this thesis, a reinforcement learning based autonomous 

control system is designed, and a performance comparison of SAC, DDPG, and TD3 

methods based on the HER algorithm is made. 

 

In this direction, the aims and objectives of the thesis study are as follows.  

• Giving general information about machine learning methods categorization and 

their improvement over the years. 

• Giving general information about reinforcement learning and dynamic control 

systems. 

• Designing a reinforcement learning system as a dynamic control system. 

• Giving detailed information about TD3, DDPG, SAC, HER algorithms. 

• Describing parking simulation environment model. 

• Observing the relative performance of TD3, DDP, SAC algorithms with each 

other on the parking task. 

• Comparing parking task performances of TD3, DDPG, and SAC algorithms 

wrapped with HER. 

• Supporting autonomous control systems development by making decision-

making steps of researchers easier. 
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1.4. Thesis Structure 

This study consists of five chapters. The first chapter is the introduction, which aims to 

introduce the research field to the reader. The chapter includes a brief overview, 

motivation of the study, the aim of this thesis, and thesis structure. 

 

The second chapter is the background. This chapter explains the theoretical background 

of machine learning, reinforcement learning, and control theory. This background 

information is fundamental for understanding state of the art actor-critic algorithms, 

which will be given in the next chapter. 

 

The third chapter is the used reinforcement algorithms. In this chapter, DDPG, TD3, SAC, 

and HER algorithms are inspected.  

 

The environment used in this study is given in chapter four. Core equations that are 

needed to calculate the next state and reward are given in this chapter. 

 

The fifth chapter is the related works chapter. In this chapter related literature works are 

studied. 

 

The sixth chapter is the simulation results chapter. The chapter includes details and 

configurations of the experimental environment. 

 

Chapter six is the work done chapter. This chapter consists of experiment setup 

configuration and experiment flow. 

 

The last chapter is the conclusion and future work. Experiment results are discussed, and 

the conclusion of this work is given in this chapter. This chapter also includes possible 

future studies in this research area. 
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2. BACKGROUND 

 

Autonomous driving systems could be simplified into two parts: perceptron and planning. 

Perceptron part is about taking data from sensors and figuring out the environment's state 

and vehicle state like line detection and localization [5]. Planning, on the other hand, is 

about deciding maneuvers making plans, and controlling the vehicle. So instead of 

perceptron, this thesis work is about planning. 

 

2.1. Machine Learning 

When the exact solution to a problem is known, an algorithm is written that takes an input, 

processes it with a precisely defined way, and outputs the results. However, some tasks 

have no exact solution, so that it is not possible to write a precise algorithm. For example, 

a spam detection system has input as email and output as if it is spam mail or not. We do 

not know the process from input to output. Machine learning methods come to the rescue 

here. Machine learning is developing systems that try to find the best possible method 

that converts inputs to output using example data or past experiences. Machine learning 

methods highly rely on the theory of statistics and mathematical model.[6] 

 

 

Figure 1. Classification of machine learning systems 
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There are three main categories of machine learning systems: reinforcement learning, 

unsupervised learning, supervised learning as shown in Figure 1 [7]. Supervised learning 

systems take training data that consists of some input and output matches. Upon that 

training set, supervised learning systems build mathematical models to predict outputs of 

future inputs. Supervised learning systems are a good fit for regression and classification 

problems. Unsupervised learning systems on the other hand, take training data consisting 

of only inputs and try to find structures, patterns in data to detect commonalities are absent 

or not with future inputs. Finally, reinforcement learning algorithms make decisions that 

they made and improve their models upon that reward. This thesis work is about 

reinforcement learning systems. 
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2.2. Artificial Neural Networks 

Artificial neural networks are one of the most used machine learning system design 

methods today. ANNs simulate biological brains. The human biological brain has cells 

named neurons. These neurons are connected via axons, dendrites, and synapse 

mechanisms, as illustrated in Figure 2.[8] 

 

Figure 2. Biological neurons 

 

Artificial neural networks on the other hand, have computation units named neurons. 

Artificial neurons take inputs scaled with some weights, process them via activation 

function, and send results to output as shown in Figure 3. Learning tasks are accomplished 

by optimizing weights for the best output required for the given inputs. 

 

 

Figure 3. Artificial neuron 
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Artificial neurons come together and create layers. Layers come together and create an 

ANN. Three common types of neural network layers are the input layer, hidden layer, and 

output layer. The input layer is the layer that is the first stop of neural network data. It can 

be environment observations, pixels, etc., anything that is the input of a machine learning 

system. Hidden layers are layers that are between the input layers and output layer. A 

neural network could have many hidden layers or none. The output layer is the last layer 

before the output of the ANN, the output layer shows the current result of the learning 

system. As sampled, three-three-three-two feed-forward neural network architecture is 

given in Figure 4. 

 

 

Figure 4. Neural network architecture 

 
Neurons take the sum of weighted inputs 𝑤𝑤𝑗𝑗𝑗𝑗𝑙𝑙  where l is next layer j is next neuron k is 

current neuron count and passes into activation function a result of activation function 

determines the output of a neuron. ANNs could have biases that work as extra neurons 

without activation function just a constant. Equation (1) shows the output of a neuron. 

 

 

  

𝑎𝑎𝑗𝑗𝑙𝑙 = 𝜎𝜎 ��𝑤𝑤𝑗𝑗𝑗𝑗𝑙𝑙

𝑘𝑘

𝑎𝑎𝑘𝑘𝑙𝑙−1 +  𝑏𝑏𝑗𝑗𝑙𝑙� (1) 
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There exist different types of activation functions. Table 1 shows a couple of different 

activation functions used in ANNs. Feeding ANN with information into the input layer 

and then propagating through the output layer to get ANN output is called forward 

propagation. After doing forward propagation, the cost function gives the quality of a 

result. Sometimes referred as loss or objective function [9]. For inputs of 𝑥𝑥 and target of 

𝑦𝑦(𝑥𝑥) quadratic cost function is given in equation (2). 

 

𝐶𝐶 =  
1

2𝑛𝑛
�‖𝑦𝑦(𝑥𝑥) − 𝑎𝑎𝐿𝐿(𝑥𝑥)‖2
𝑥𝑥

 (2) 
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Table 1. Some activation functions used in neural networks 
 

Name Plot Function 

Identity 

 

𝑥𝑥 

Binary Step, Threshold 

 

�0   𝑖𝑖𝑖𝑖 𝑥𝑥 < 0
1   𝑖𝑖𝑖𝑖 𝑥𝑥 ≥ 0 

Sigmoid 

 

𝜎𝜎(𝑥𝑥) =  
1

1 +  𝑒𝑒−𝑥𝑥
 

Tanh 

 

tanh(𝑥𝑥) =  
𝑒𝑒𝑥𝑥 − 𝑒𝑒−𝑥𝑥

𝑒𝑒𝑥𝑥 + 𝑒𝑒−𝑥𝑥
 

ReLU 

 

�
0     𝑖𝑖𝑖𝑖 𝑥𝑥 ≤ 0
𝑥𝑥     𝑖𝑖𝑖𝑖 𝑥𝑥 > 0 

Softplus 

 

ln(1 + 𝑒𝑒𝑥𝑥) 
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There exist different types of learning algorithms. One of the most famous and 

fundamental one is the backpropagation algorithm. David E. et al. showed the power of 

the backpropagation algorithm in 1986 [10]. Since then, many improvements have been 

made and many more on the way.  

 

Backpropagation algorithm tries to minimize cost function by changing weights and 

biases in ANN using partial derivatives 𝜕𝜕𝜕𝜕 𝜕𝜕𝑤𝑤𝑗𝑗𝑗𝑗𝑙𝑙⁄  and 𝜕𝜕𝜕𝜕 𝜕𝜕𝑏𝑏𝑗𝑗𝑙𝑙⁄ . Error in the 𝑗𝑗𝑡𝑡ℎ neuron of 

𝑖𝑖𝑡𝑡ℎ layer is given in equation (3) where 𝑧𝑧𝑗𝑗𝑙𝑙  is the output of 𝑗𝑗𝑡𝑡ℎ neuron in 𝑙𝑙𝑡𝑡ℎ layer. 

𝛿𝛿𝑗𝑗𝑙𝑙 ≡  
𝜕𝜕𝜕𝜕
𝜕𝜕𝑧𝑧𝑗𝑗𝑙𝑙

 (3) 

 

The error of the output layer is given in equation (4). Where the first term measures the 

change rate of the cost function, the second term on the rights measures the change rate 

of the activation function. Because forward propagation gives 𝑧𝑧𝐿𝐿 equation (4) could be 

easily computed. Equation (4) is component wise representation; it is written as matrix 

form in equation (5) where ⨀  donates element wise product sometimes called as 

Hadamard product or Schur product [9]. ∇𝑎𝑎𝐶𝐶 on the other hand, means the change of C 

with respect to 𝑎𝑎, which means (𝑎𝑎𝐿𝐿 − 𝑦𝑦) thus gives us a fully matrix-based representation 

equation (6).  

 

𝛿𝛿𝑗𝑗𝐿𝐿 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝑎𝑎𝑗𝑗𝐿𝐿

𝜎𝜎′�𝑧𝑧𝑗𝑗𝐿𝐿� (4) 

𝛿𝛿𝐿𝐿 = ∇𝑎𝑎𝐶𝐶⨀𝜎𝜎′(𝑧𝑧𝐿𝐿) (5) 

𝛿𝛿𝐿𝐿 = (𝑎𝑎𝐿𝐿 − 𝑦𝑦)⨀𝜎𝜎′(𝑧𝑧𝐿𝐿) (6) 

 

The calculation formula of errors for hidden layers is given in equation (7). Where the 

first part of element wise product is the multiplication of weight matrix transform by 

error. The second part is the derivative of the transform function. Equations (6) and (7) 

are enough to compute the error in any layer in ANN. 
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𝛿𝛿𝑙𝑙 = ((𝑤𝑤𝑙𝑙+1)𝑇𝑇𝛿𝛿𝑙𝑙+1)⨀𝜎𝜎′(𝑧𝑧𝑙𝑙) (7) 

 
The rate of change in cost equations for bias and weights are given in equations (8) and 

(9). These equations show how to take partial derivatives. When the derivative of the 

activation function is small (𝜎𝜎′(𝑧𝑧) ≈ 0) ANN will learn slowly. Whenever this situation 

occurs, it is sad that neurons saturated, or weights stopped learning. 

 
 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑏𝑏𝑗𝑗𝑙𝑙

= 𝛿𝛿𝑗𝑗𝑙𝑙  𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝛿𝛿 (8) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤𝑗𝑗𝑗𝑗𝑙𝑙

= 𝑎𝑎𝑘𝑘𝑙𝑙−1𝛿𝛿𝑗𝑗𝑙𝑙  𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑎𝑎𝑖𝑖𝑖𝑖𝛿𝛿𝑜𝑜𝑜𝑜𝑜𝑜 (9) 

 
Backpropagation equations make it possible to compute the gradient of cost function 

efficiently. It computes errors starting from the last layer. After calculating errors, it is 

common to apply gradient-based learning algorithms like gradient descent or stochastic 

gradient descent for completing a learning task. Following pseudo code applies gradient 

descent with backpropagation given 𝑚𝑚 training examples. 

 

Algorithm 1: Backpropagation 

Step 1 Initialize weights 

Step 2 For each training data x, do the following steps: 

Step 3   Feed-forward 

Step 4   Compute output error with equation (6) 

Step 5   Back propagate error with equation (7) 

Step 6 
Update weights with gradient descent which means for weights 
apply rule 𝑤𝑤𝑙𝑙 → 𝑤𝑤𝑙𝑙 − 𝜂𝜂

𝑚𝑚
∑ 𝛿𝛿𝑥𝑥,𝑙𝑙(𝑎𝑎𝑥𝑥,𝑙𝑙−1)𝑇𝑇𝑥𝑥  and for biases apply 

𝑏𝑏𝑙𝑙 → 𝑏𝑏𝑙𝑙 − 𝜂𝜂
𝑚𝑚
∑ 𝛿𝛿𝑥𝑥,𝑙𝑙
𝑥𝑥  
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2.3. Classic Control Methods 

 
Wolfram Math World dictionary defines control theory as “the mathematical study of 

how to manipulate the parameters affecting the behavior of a system to produce the 

desired or optimal outcome”[11]. Design and analysis of automatic control systems are a 

fundamental part of today's engineering and science fields. Automatic control system 

applications include space-vehicle systems, temperature control, path follower systems, 

pressure control systems, etc.  

 

Control systems have two significant variables; controlled variable and manipulated 

variable or control signal. Control systems create control signals or manipulated variables 

to control target properties of the environment which is called a controlled variable. The 

control environment in which the control system is built is called plant. A plant could be 

an air conditioner, autonomous vehicle, cleaning robot, etc. A combination of different 

modules comes together and creates a system. Systems could be in biological, physical, 

electronic, software environments. Sometimes defects could occur on signals between 

components of a system. This situation is called disturbance or noise. Open-loop and 

closed-loop control systems are the two main categories of control systems. 

 

Control systems that take plant output and a reference signal to generate control signals 

are called feedback control systems or closed-loop control systems. As shown in Figure 

5 closed-loop control systems take the difference between input and feedback signal 

difference defined as actuating error and feed controller with that actuating error. 

 

 
 

Figure 5. Closed-Loop Control System Architecture 
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On the other hand, the output of the plant has no effect on controller action in open-loop 

control systems, as shown in Figure 6. The performance of open-loop control systems 

highly depends on controller configuration. 

 
Figure 6. Open-Loop Control System Architecture 

 

Traditional controllers like LQ controllers and PID controllers are not enough when the 

control problem includes strategic planning. The autonomous vehicle control task is one 

of the control tasks that need strategic planning. To solve this kind of strategic control 

problem, researchers have used a couple of different path planning algorithms and 

methods, mostly together with the path-following controllers. Recent developments on 

machine learning systems, especially in neural networks and reinforcement learning lead 

researchers and control system designers to use ANN-based methods. 
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2.4. Reinforcement Learning 

Learning systems that take rewards after their actions and shape following action 

decisions according to rewards is called reinforcement learning. Reinforcement learning 

systems that are affected by reward immediately on the following action are called trial 

and error search otherwise, it is called delayed reward [12]. Learning modules of 

reinforcement learning systems are called agents. Agents work like controllers in classic 

control systems. Moreover, plants in the classic control system are called environments 

in reinforcement learning literature. Learning agents sense the environment and take 

actions that affect the environment. Learning agents also have some target or goal to 

complete. Markov decision process builds up with these three-stage sensing the 

environment, acting, having a target.  

 

Reinforcement learning differs from both supervised learning and unsupervised learning. 

Supervised learning systems learn from prelabeled data where each of the data includes 

detailed situation information and decision to be made in that situation. After the learning 

phases, supervised learning systems try to generalize training situations so that it can label 

data that are not present in the training set. Supervised learning is an essential kind of 

machine learning method, but it is not suitable for interactive learning problems. 

Unsupervised learning methods, on the other hand, try to find some hidden groups in 

given unlabeled data. Reinforcement learning systems try to maximize reward instead of 

finding hidden structures. 

 

Reinforcement learning accommodates some challenges. The trade between exploitation 

and exploration is one of the fundamental challenges of reinforcement learning systems. 

Reinforcement agents must choose between exploiting an action that has been 

experienced before which has a relatively high reward and exploring an action that has 

not been explored yet, or it is known that it has relatively low reward but has potential for 

better action possibilities in the future. 

  



 

 15 

 

Reinforcement learning has highly related application fields in different disciplines of 

science and engineering. Integration of machine learning and artificial intelligence 

methods with fields like optimization theory, control theory, and statistics is a trend of 

the last couple of years which led researchers to create and improve reinforcement 

learning methods. One of the good examples of reinforcement learning application is 

solving a course of dimensionality problem in control theory with parameterized 

approximators. Moreover, reinforcement learning has a strong relation with neuroscience 

and psychology. Although most of the reinforcement learning algorithms are inspired by 

biological learning systems researchers in neuroscience, have also been taking advantage 

of reinforcement learning systems in their research [12]. 

 

Agent and environment are the two main elements of reinforcement learning. Besides 

these main elements, reinforcement learning systems also have four sub-elements: value 

function, policy, environment model, and reward signal. 

The policy function of reinforcement learning takes states as input and outputs an action 

idea to take for agents. Policies could be simple as lookup tables and could be complex 

as using ANNs.  

 

On the other hand, reward signals or reward functions define how close the reinforcement 

learning system is to the goal of the problem. Environment sends reward signal to learning 

agents, and agents try to maximize the total reward obtained. Reward signals show the 

immediate result of the last action. 

 

Thirdly value functions show the quality of actions like reward signals, but unlike reward 

signals, value functions show long-run qualities of actions. Value functions try to estimate 

the total amount of rewards that an agent could possibly get if that specific action is taken. 
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Some reinforcement learning systems have a model of the environment, which is a 

simulation of the environment. Environment models give insights to agents about how 

the environment will behave in given state and action pairs. Models help agents to create 

plans before making action decisions. Reinforcement learning methods that use 

environment modes and plans are called model-based methods. Model-based 

reinforcement algorithms have access to or learn the environment model. The main 

advantage of model-based algorithms is that agents can make plans of time. The main 

downside of the model is that usually, a good environment model is not available. 

Methods that do not use environments model are called model-free methods or trial and 

error learners. 
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2.5. Markov Decision Process  

MDPs formalize classical decision-making steps where rewards affect not only 

immediate actions but also future actions for better rewards in the long term. MDPs made 

it possible to make precise theoretical statements because MDPs are the mathematically 

idealized representation of reinforcement learning problems. MDPs have two main 

components; agents and environments which are continuously interacting with 

themselves. Agents make decisions and are responsible for the learning process. 

Everything other than the agent in the system is the environment. Agents send actions to 

the environment, and the environment returns state and reward to the agent as represented 

in Figure 7. 

 

 

Figure 7. Markov decision process interactions 

 
 
If the state, action, and rewards are in finite sets, it is called finite MDP. Finite MDPs 

have discrete 𝑆𝑆𝑡𝑡 and 𝑅𝑅𝑡𝑡  probability distributions depend upon immediately preceding 

state 𝑆𝑆𝑡𝑡−1 and action 𝐴𝐴𝑡𝑡−1. The dynamics of MDPs are shown in equation (10). 

 

 
𝑝𝑝(𝑠𝑠′, 𝑟𝑟 | 𝑠𝑠,𝑎𝑎)  ≐ Pr{𝑆𝑆𝑡𝑡 = 𝑠𝑠′,𝑅𝑅𝑡𝑡 = 𝑟𝑟 | 𝑆𝑆𝑡𝑡−1 = 𝑠𝑠,𝐴𝐴𝑡𝑡−1 = 𝑎𝑎} (10) 

� � 𝑝𝑝(𝑠𝑠′, 𝑟𝑟 | 𝑠𝑠,𝑎𝑎) = 1, ∀  𝑠𝑠 ∈ 𝑆𝑆,𝑎𝑎 ∈ 𝐴𝐴(𝑠𝑠) 
𝑟𝑟 𝜖𝜖 𝑅𝑅𝑠𝑠′𝜖𝜖 𝑆𝑆 

 (11) 
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States in the Markov decision process should include all past relative agent interaction 

information. If it does, it is called Markov property. From the four argument 𝑝𝑝 function 

given in equation (10) three argument state transition probabilities (12), two arguments 

expected rewards for state–action probabilities (13), three arguments expected rewards 

for state action next state (14) can be computed [12]. 

 
𝑝𝑝�𝑠𝑠′ � 𝑠𝑠, 𝑎𝑎)  ≐ 𝑃𝑃𝑃𝑃�𝑆𝑆𝑡𝑡 = 𝑠𝑠′ � 𝑆𝑆𝑡𝑡−1 = 𝑠𝑠,  𝐴𝐴𝑡𝑡−1 = 𝑎𝑎}  

(12) 

𝑟𝑟(𝑠𝑠,𝑎𝑎) ≐ 𝔼𝔼[𝑅𝑅𝑡𝑡 | 𝑆𝑆𝑡𝑡−1 = s, 𝐴𝐴𝑡𝑡−1 = 𝑎𝑎] = � 𝑟𝑟�𝑝𝑝(𝑠𝑠′, 𝑟𝑟 | 𝑠𝑠,𝑎𝑎) 
𝑠𝑠′𝜖𝜖𝜖𝜖𝑟𝑟𝑟𝑟 𝑅𝑅 

 
(13) 

𝑟𝑟(𝑠𝑠,𝑎𝑎, 𝑠𝑠′) ≐ 𝔼𝔼[𝑅𝑅𝑡𝑡 | 𝑆𝑆𝑡𝑡−1 = s, 𝐴𝐴𝑡𝑡−1 = 𝑎𝑎, 𝑆𝑆𝑡𝑡 = s′] = � 𝑟𝑟
𝑝𝑝(𝑠𝑠′, 𝑟𝑟 |𝑠𝑠,𝑎𝑎)
𝑝𝑝(𝑠𝑠′|𝑠𝑠,𝑎𝑎)

𝑟𝑟𝑟𝑟 𝑅𝑅 

 (14) 

 
 
As stated, the reinforcement learning agent tries to maximize total rewards. Generally, 

there exists an expected reward function which is denoted as 𝐺𝐺𝑡𝑡which is the sum of 

expected rewards R. Sometimes, reinforcement learning problems logically break into 

parts. These parts are called episodes, and these types of reinforcement learning tasks are 

called episodic tasks. Episodes have one or more starting states and one or more ending 

states. After the reinforcement learning agent gets into a terminal state next episode 

begins with one of the starting states. Some other reinforcement learning tasks do not 

logically break into parts. These types of tasks are called continuing reinforcement 

learning tasks. 

 

One of the popular approaches to calculating expected reward 𝐺𝐺𝑡𝑡 is to multiply rewards 

by some exponential constant 𝛾𝛾  which is called the discount rate. The discount rate 

determines the weights of future renature rewards between 0 and 1.  

 

𝐺𝐺𝑡𝑡 ≐ 𝑅𝑅𝑡𝑡+1 + 𝛾𝛾𝑅𝑅𝑡𝑡+2 +  𝛾𝛾2𝑅𝑅𝑡𝑡+3 + ⋯ =  �𝛾𝛾𝑘𝑘𝑅𝑅𝑡𝑡+𝑘𝑘+1

∞

𝑘𝑘=0

 
(15) 
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When the discount rate gets closer to zero, immediate rewards become more important. 

On the opposite side, when the discount rate gets closer to one, future rewards become 

more important. 

 
𝐺𝐺𝑡𝑡 ≐ 𝑅𝑅𝑡𝑡+1 + 𝛾𝛾𝑅𝑅𝑡𝑡+2 +  𝛾𝛾2𝑅𝑅𝑡𝑡+3 + ⋯ 

= 𝑅𝑅𝑡𝑡+1 + 𝛾𝛾(𝑅𝑅𝑡𝑡+2 +  𝛾𝛾1𝑅𝑅𝑡𝑡+3 + ⋯ ) 

= 𝑅𝑅𝑡𝑡+1 + 𝛾𝛾𝐺𝐺𝑡𝑡+1 
(16) 

 

Most of the reinforcement learning algorithms have functions called value function 𝑣𝑣. 

Value functions determine the quality of the state that the agent is currently in. Future 

rewards of reinforcement learning agents depend on agents' decisions. Agent decisions 

are determined by the function called policy function. Policy functions can be 

deterministic or stochastic. Deterministic policies are denoted by 𝜇𝜇. Stochastic policies 

are denoted by 𝜋𝜋. Value of a state 𝑠𝑠 under policy 𝜋𝜋 is given in equation (17) where 𝔼𝔼𝜋𝜋 is 

the expected value of the random variable when agents follow policy 𝜋𝜋 at time 𝑡𝑡. 

 

𝑣𝑣𝜋𝜋(𝑠𝑠) ≐ 𝔼𝔼𝜋𝜋�∑ 𝛾𝛾𝑘𝑘𝑅𝑅𝑡𝑡+𝑘𝑘+1∞
𝑘𝑘=0 �𝑆𝑆𝑡𝑡 = 𝑠𝑠�, ∀ 𝑠𝑠 ∈ 𝒮𝒮 

(17) 

 

Reinforcement learning algorithms usually need another function that will determine the 

quality of an action 𝑎𝑎 given state 𝑠𝑠 and policy 𝜋𝜋. This function is called the action-value 

function for policy 𝜋𝜋 and is represented in equation (18).  

 

𝑞𝑞𝜋𝜋(𝑠𝑠, 𝑎𝑎) ≐ 𝔼𝔼𝜋𝜋�∑ 𝛾𝛾𝑘𝑘𝑅𝑅𝑡𝑡+𝑘𝑘+1∞
𝑘𝑘=0 �𝑆𝑆𝑡𝑡 = 𝑠𝑠,𝐴𝐴𝑡𝑡 = 𝑎𝑎� 

(18) 
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The state-action pair sequence that the machine learning algorithm produces for a given 

scenario is called a trajectory. Trajectories are denoted by 𝜏𝜏.  

 

𝜏𝜏 = (𝑠𝑠0,𝑎𝑎0, 𝑠𝑠1,𝑎𝑎1, … ) 
(19) 

 

There exist one or more optimal ways to solve reinforcement learning tasks. The optimal 

policy function is represented as 𝜋𝜋∗ optimal state value function is represented as 𝑣𝑣∗ and 

optimal action-value function is denoted as 𝑞𝑞∗. 

 

𝑣𝑣∗(𝑠𝑠)  ≐ max 𝑣𝑣𝜋𝜋(𝑠𝑠)  
(20) 

𝑞𝑞∗(𝑠𝑠,𝑎𝑎)  ≐ max 𝑞𝑞𝜋𝜋(𝑠𝑠,𝑎𝑎)  
(21) 

 

Value functions in reinforcement learning satisfy a self-consistent recursive relationship. 

This recursive relationship shown in equations (22), (23), and (24) is called Bellman 

Equations founded by American mathematician Richard Bellman. Bellman equations are 

a mathematical representation of the idea that the value of a state is the expected reward 

for being there plus expected rewards for future actions from that state.   
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𝑣𝑣𝜋𝜋(𝑠𝑠) = 𝔼𝔼𝜋𝜋(𝐺𝐺𝑡𝑡|𝑆𝑆𝑡𝑡 = 𝑠𝑠) 

= 𝔼𝔼𝜋𝜋(𝑅𝑅𝑡𝑡+1 +  𝛾𝛾𝐺𝐺𝑡𝑡+1|𝑆𝑆𝑡𝑡 = 𝑠𝑠) 

= �𝜋𝜋(𝑎𝑎|𝑠𝑠)��𝑝𝑝(𝑠𝑠′, 𝑟𝑟 | 𝑠𝑠,𝑎𝑎)[𝑟𝑟 +  𝛾𝛾𝔼𝔼𝜋𝜋(𝐺𝐺𝑡𝑡+1|𝑆𝑆𝑡𝑡+1 = 𝑠𝑠′)]
𝑟𝑟𝑠𝑠′𝑎𝑎

 

= �𝜋𝜋(𝑎𝑎|𝑠𝑠)�𝑝𝑝(𝑠𝑠′, 𝑟𝑟 | 𝑠𝑠,𝑎𝑎)[𝑟𝑟 +  𝛾𝛾𝑣𝑣𝜋𝜋(𝑠𝑠′)]
𝑠𝑠′,𝑟𝑟𝑎𝑎

 

 

(22) 

𝑣𝑣∗(𝑠𝑠) = max 𝑞𝑞𝜋𝜋∗(𝑠𝑠,𝑎𝑎)  

= max
𝑎𝑎

𝔼𝔼𝜋𝜋∗(𝐺𝐺𝑡𝑡|𝑆𝑆𝑡𝑡 = 𝑠𝑠, 𝐴𝐴𝑡𝑡 = 𝑎𝑎) 

= max
𝑎𝑎

𝔼𝔼𝜋𝜋∗(𝑅𝑅𝑡𝑡+1 +  𝛾𝛾𝐺𝐺𝑡𝑡+1|𝑆𝑆𝑡𝑡 = 𝑠𝑠, 𝐴𝐴𝑡𝑡 = 𝑎𝑎) 

= max
𝑎𝑎

𝔼𝔼𝜋𝜋∗(𝑅𝑅𝑡𝑡+1 +  𝛾𝛾𝑣𝑣∗(𝑆𝑆𝑡𝑡+1)|𝑆𝑆𝑡𝑡 = 𝑠𝑠, 𝐴𝐴𝑡𝑡 = 𝑎𝑎) 

= max
𝑎𝑎

�𝑝𝑝(𝑠𝑠′, 𝑟𝑟 | 𝑠𝑠, 𝑎𝑎)[𝑟𝑟 +  𝛾𝛾𝑣𝑣∗(𝑠𝑠′)]
𝑠𝑠′,𝑟𝑟

 

 

(23) 

𝑞𝑞∗(𝑠𝑠,𝑎𝑎) = 𝔼𝔼�𝑅𝑅𝑡𝑡+1 + 𝛾𝛾max
𝑎𝑎′

𝑞𝑞∗(𝑆𝑆𝑡𝑡+1,𝑎𝑎′) �𝑆𝑆𝑡𝑡 = 𝑠𝑠,  𝐴𝐴𝑡𝑡 = 𝑎𝑎� 

= �𝑝𝑝(𝑠𝑠′, 𝑟𝑟 | 𝑠𝑠,𝑎𝑎)[𝑟𝑟 +  𝛾𝛾max
𝑎𝑎′

𝑞𝑞∗(𝑠𝑠′,𝑎𝑎′)]
𝑠𝑠′,𝑟𝑟

 

(24) 
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2.6. Deep Q Networks 

 Chris Watkins introduced Q-learning in 1989 [13], which was later proved by Watkins 

and Dayan in 1992 [14]. The idea behind Q learning is that if we store what to do in every 

state-action pair in a table called Q table and update that table according to Bellman 

Equation and temporal difference learning.[15]We would have a model-free 

reinforcement learning algorithm. 

 

 

Q learning stores expected reward at given state and action pairs which mean Q values. 

Q values are arbitrarily initialized by the programmer. At every time step Q table is 

updated by the rule given in equation (25). The α parameter in this expression is the step 

size or the learning rate, which determines the importance of recently acquired 

experience. When α gets closer to zero, algorithms learn slowly, stick with old 

experiences, or when α goes up to 1, the algorithm does not care about old information, 

and it tries to maximize the compatibility of new information. Similarly, the discount 

factor γ determines the importance of expected future rewards. If the discount factor γ 

gets closer to 0, the agent starts to consider only current rewards, and this will make the 

agent "myopic". Else if the discount factor γ goes up to 1, the agent starts to optimize long 

term expected reward. 

  

 

(25) 
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Algorithm 2: Q-Learning 

Step 1 Initialize Q table for all action-state pairs 

Step 2 For each episode, do the following steps: 

Step 3  do 

Step 4    Choose action A using policy derived from Q 
Step 5    Apply action A, observe reward S, and next state S' 

Step 6    Update Q table according to equation (25) 

Step 7    Assign S' to S 

Step 8  until the end of the episode 

Step 9 end for     
 

 

One of the prime problems with Q learning was the curse of dimensionality problem. 

When there exists high dimension, the state-space of Q learning becomes unable to scale. 

The computing power required increases exponentially. Main et al. find a method to solve 

the curse of dimensionality problem in Q-learning. The idea behind their algorithm was 

instead of Q tables to store expected values. They use ANN to guess future rewards. They 

took raw pixel outputs of Atari games and successfully applied their algorithm to couple 

of games in 2013. This method is called DQN [16]. They solved the curse of 

dimensionality problem by applying convolutional neural networks at the first layers of 

ANN structure. They also demonstrated experience replay buffer mechanism. 
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Figure 8. Screenshots of some Atari games that the DQN algorithm succeeded 

 
DQN imitates human behavior by allowing an agent to explore the environment and 

gather information. The agent collects data and puts it into a replay buffer in the training 

process. DQN architecture concept is illustrated in Figure 9. [17] 

 

 

Figure 9. DQN algorithm architecture 
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During the exploration of the environment, the agent collects data to be used in improving 

Q-network. The agent acts randomly at the beginning of the training process to build a 

complete general picture of Q value relations. Randomly acting agents get insufficient 

overtime. To solve this inefficiency agent looks at Q-network to decide how to act. This 

approach is called the epsilon-greedy method, which just means changing the decision 

mechanism of the agent between random and Q policy using a probability donated by 𝜖𝜖 

(epsilon). 

 

 
 
DQN algorithm has inspirations of supervised learning in its core. The goal of DQN is to 

approximate complex, nonlinear Q function with an ANN. The loss function is the 

squared difference between target and prediction. The loss function value is minimized 

by updating the weights of ANN. Loss function can be defined in DQN just like 

supervised learning methods, as shown in equation (26).  

 

DQN uses two different Q networks: local and target Q networks. These two different Q 

networks are used to find the prediction value (𝜃𝜃) and the target value (𝜃𝜃′). During the 

training process, periodically target network weights are updated by copying weights of 

the actual Q network. Pausing the target network for a while and then updating target 

networks weights with actual Q network weights makes the learning process more stable. 

Applying a replay buffer mechanism on top of this makes even more stable learning 

process. 

 

In conclusion, agent's experiences 𝑒𝑒𝑡𝑡 = (𝑠𝑠𝑡𝑡 ,  𝑎𝑎𝑡𝑡 ,  𝑟𝑟𝑡𝑡 ,  𝑠𝑠𝑡𝑡+1 ) are stored in a dataset 𝐷𝐷 =

 𝑒𝑒1, 𝑒𝑒2, … , 𝑒𝑒𝑁𝑁, collected over episodes into experience replay buffer. Experience samples 

𝑒𝑒 ~ 𝐷𝐷  are collected from the experience replay buffer, and mini-batch updates are 

applied. After mini-batch updates by the experience replay buffer, the agent selects action 

with 𝜖𝜖 greedy policy. Agent histories produced with 𝜙𝜙 function from experience replay 

buffer. These histories are going to be used as ANN input. The complete algorithm is 

presented below as a pseudo code. 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = (𝑟𝑟 + 𝛾𝛾max
𝑎𝑎′

𝑄𝑄(𝑠𝑠′,𝑎𝑎′;  𝜃𝜃) − 𝑄𝑄(𝑠𝑠,𝑎𝑎;  𝜃𝜃))2 
(26) 
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Algorithm 3: DQN with Experience Replay Buffer 

1 Create experience replay buffer 

2 Create action-value network Q with random weights 

3 for every episode, do 

4 
 

Create sequence𝑠𝑠1 = {𝑥𝑥1} and 𝜙𝜙1 = 𝜙𝜙(𝑠𝑠1) 

5 
 

do 

6 
 

  if  𝜖𝜖 probability is satisfied 

7 
 

    select random action 𝑎𝑎𝑡𝑡 

8 
 

  else 
 

9 
 

    select max valuable action 𝑎𝑎𝑡𝑡 = max
𝑎𝑎

𝑄𝑄∗(𝜙𝜙(𝑠𝑠𝑡𝑡),𝑎𝑎;  𝜃𝜃) 

10 
 

  Execute action 𝑎𝑎𝑡𝑡 , observe reward 𝑟𝑟𝑡𝑡 and image 𝑥𝑥𝑡𝑡+1 

11 
 

  Assign 𝑠𝑠𝑡𝑡+1 = 𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡 , 𝑟𝑟𝑡𝑡 , 𝑥𝑥𝑡𝑡+1 and calculate 𝜙𝜙𝑡𝑡+1 = 𝜙𝜙(𝑠𝑠𝑡𝑡+1) 

12 
 

  Save transition to replay buffer as <S, A, R, S'>  (𝜙𝜙𝑡𝑡,𝑎𝑎𝑡𝑡 , 𝑟𝑟𝑡𝑡 ,𝜙𝜙𝑡𝑡+1) 

13 
 

  Generate random minibatch of  (𝜙𝜙𝑡𝑡 ,𝑎𝑎𝑡𝑡 , 𝑟𝑟𝑡𝑡 ,𝜙𝜙𝑡𝑡+1) from replay buffer 

14 
 

  
Set 𝑦𝑦𝑗𝑗 = �

𝑟𝑟𝑗𝑗 , 𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝜙𝜙𝑗𝑗+1
𝑟𝑟𝑗𝑗 +  𝛾𝛾max

𝑎𝑎′
𝑄𝑄 (𝜙𝜙𝑗𝑗+1, 𝑎𝑎′;  𝜃𝜃), 𝑓𝑓𝑓𝑓𝑓𝑓 𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝜙𝜙𝑗𝑗+1  

15 
 

  Perform gradient descent step on (𝑦𝑦𝑖𝑖 − 𝑄𝑄(𝜙𝜙𝑗𝑗 ,𝑎𝑎𝑗𝑗; 𝜃𝜃))2 

16 
 

until the end of the episode 

17 end for 
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2.6. Reinforce Algorithm 

As previously discussed, Q learning or deep Q learning algorithm tries to find the optimal 

policy, which is the selection of best Q valued action in every state, which could be 

formulated as equation (27) . These Q value-based methods estimate the optimal value 

function before working on optimal policy. It is also possible to work directly on the 

policy function without Q value estimations. 

 

 
 
The policy approach is more sufficient than the Q value estimate approach for two 

reasons. Firstly, total reward is more important than the highest Q value at every step. In 

an MDP model agent takes observation from the environment and needs a decision to 

make. The agent needs to find the best action to take in the next step. The highest value 

estimated action might not be an optimal one. Secondly, environments could have a high 

number of actions or includes continuous actions. Continuous action like steering angle 

makes optimization problems become hard. It is more feasible to apply a policy approach 

and avoid value function-based approaches. This is where policy gradient algorithms 

come to help [18] 

 

 

Figure 10. Cart pole policy approximation with neural network 

  

Cart position

Probability of action LEFT

Probability of action RIGHT

two actions = > two nodes

Cart velocity

Pole angle

Pole velocity

𝜋𝜋(𝑠𝑠) = 𝑎𝑎𝑎𝑎𝑎𝑎max
𝑎𝑎

𝑄𝑄(𝑠𝑠,𝑎𝑎) 
(27) 
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Cart pole environment is investigated as an example. Cart pole environment outputs are 

velocity and position feature of the car and, angle and speed feature of the pole. The agent 

takes these and decides whether go left or go right. Just like DQN, a neural network is 

constructed with inputs of agents as input. But unlike DQN, the neural network returns 

probabilities of actions. The agent makes decisions according to these probabilities. 

Another difference with DQN with Reinforce Algorithm is DQN takes argmax of output 

layer but reinforce algorithm considers probability distribution. 

 

The training objective of reinforce algorithm is to find the best possible values for the 

ANN so that for each state-input, it returns probabilities where it is most likely to select 

an action that leads to maximum reward. Reinforce learning agent updates ANN weighs 

by interacting with the environment to maximize expected return G. Expected return G 

can be expressed as Equation (28) where p is the probability of possible trajectories where 

𝑅𝑅(𝜏𝜏) is the total reward of a specific trajectory.  

 

 
 
Calculating real expected reward value requires evaluation of all possible trajectories. It 

can be computationally very expensive to calculate all possible trajectories. One way to 

reduce this complexity is to use a sample of some number of trajectories (m) generated 

by the policy.[18] The gradient is given in equation (29). This gradient estimation can be 

used to update the weights of the policy. 

 

 

  

𝐺𝐺(𝜃𝜃) = �𝑝𝑝(𝜏𝜏;𝜃𝜃)𝑅𝑅(𝜏𝜏)
𝜏𝜏

 
(28) 

∇Θ𝐺𝐺(𝜃𝜃) ≈ ĝ ∶=  
1
𝑚𝑚
��∇Θ log𝜋𝜋𝜃𝜃(𝑎𝑎𝑡𝑡

(𝑖𝑖)|𝑠𝑠𝑡𝑡
(𝑖𝑖))𝑅𝑅(𝜏𝜏(𝑖𝑖))

𝐻𝐻

𝑡𝑡=0

𝑚𝑚

𝑖𝑖=1

 
(29) 
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Algorithm 4: Reinforce 

Step 1 Initialize policy parameters 𝜃𝜃 

Step 2 for every episode, do 

Step 3  Collect M trajectory using policy 𝜋𝜋𝜃𝜃  with horizon H 
𝜏𝜏 = (𝑠𝑠0,𝑎𝑎0 , … , 𝑠𝑠𝐻𝐻 ,𝑎𝑎𝐻𝐻 , 𝑠𝑠𝐻𝐻+1 ) 

Step 4  Estimate gradient ĝ using trajectories. 
Shown in Equation (29) 

Step 5  Update ANN weights using gradient ĝ. 
𝜃𝜃 ← 𝜃𝜃 +  𝛼𝛼ĝ 

Step 6 end for 
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2.7 Actor-Critic Methods 

Actor-critic methods combine the policy-based algorithms like reinforce and value-based 

algorithms like DQN. Actor-critic methods represent policy and value functions 

independent from each other due to their separate memory structure. Actor-critic methods 

select actions with their actor mechanism and criticize those decisions with critic 

mechanism. It can be said that actor is the policy function of actor-critic methods, and 

critic is the value function of actor-critic methods. 

 

 

Figure 11. Actor-critic method architecture 

 
Critic mechanism maps state to values. At the end of each iteration, the critic calculates 

errors to find out learning is better or worse than expected. Error calculation is given in 

Equation (30, where 𝑉𝑉 is the value function. If the error is positive, it is more likely for 

that action to be selected in the future. Else if the error is negative, then it is less likely 

for that action to be selected in the future [19]. 

  

𝛿𝛿𝑡𝑡 = 𝑟𝑟𝑡𝑡+1 +  𝛾𝛾𝛾𝛾(𝑠𝑠𝑡𝑡+1) − 𝑉𝑉(𝑠𝑠𝑡𝑡) 
(30) 
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3. USED REINFORCEMENT LEARNING ALGORITHMS 

 
3.1. Deep Deterministic Policy Gradient Algorithm 

As discussed before, DQN can solve complex reinforcement learning tasks with high 

dimensional observation spaces but only the ones with limited discrete action spaces. 

When it comes to solving continuous actions, it fails due to the curse of dimensionality 

problem. Lilicrap et al. [20] combined DQN and DPG algorithms to use reinforcement 

learning in continuous control tasks. 

 

DDPG utilizes two separate actor and critic networks. An actor is responsible for 

determining best actions from probabilities by configuring the weight parameters 𝜃𝜃. A 

critic is responsible for the evaluation of actions generated by the actor-network. The 

actor deterministically approximates the optimal policy, which means the actor generates 

the best possible actions for any given state. The actor-network of DDPG uses a policy-

based learning model and tries to directly estimate optimal policy by maximizing rewards 

through gradient ascent. Critic network, on the other hand, uses a value-based learning 

model to estimate the quality of state-action pairs. 
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Algorithm 5: DDPG 

1 Initialize actor 𝑄𝑄(𝑠𝑠,𝑎𝑎 | 𝜃𝜃𝑄𝑄) and critic 𝜇𝜇(𝑠𝑠|𝜃𝜃𝜇𝜇) network 
with random  𝜃𝜃 parameters 

2 Assign initial weights to target networks 𝑄𝑄′ and 𝜇𝜇′  
with weights 𝜃𝜃𝑄𝑄′ ⟵ 𝜃𝜃𝑄𝑄, 𝜃𝜃𝜇𝜇′ ← 𝜃𝜃𝜇𝜇  

3 Create experience replay buffer R 
4 for every episode, do  
5  Create task P for exploration of actions 
6  Set initial state 𝑠𝑠1 
7  for t in range (0, T) do 

8    Choose action 𝑎𝑎𝑡𝑡 = 𝜇𝜇(𝑠𝑠𝑡𝑡|𝜃𝜃𝜇𝜇) +  𝑃𝑃𝑡𝑡 using  
exploration noise and policy at time t 

9    Apply action 𝑎𝑎𝑡𝑡 and take reward  𝑟𝑟𝑡𝑡 , new state 𝑠𝑠𝑡𝑡+1 
10    Save transition (𝑠𝑠1,𝑎𝑎𝑖𝑖 , 𝑟𝑟𝑖𝑖 , 𝑠𝑠𝑖𝑖+1) in replay buffer R 
11    Create minibatch of N transitions (𝑠𝑠1, 𝑎𝑎𝑖𝑖 , 𝑟𝑟𝑖𝑖 , 𝑠𝑠𝑖𝑖+1)  from R 
12    Set 𝑦𝑦𝑖𝑖 = 𝑟𝑟𝑖𝑖 +  𝛾𝛾𝛾𝛾′(𝑠𝑠𝑖𝑖+1, 𝜇𝜇′(𝑠𝑠𝑖𝑖+1|𝜃𝜃𝜇𝜇′)|𝜃𝜃𝑄𝑄′) 
13    Optimize critic by loss minimization: L=1

𝑁𝑁
∑ (𝑦𝑦𝑖𝑖 − 𝑄𝑄(𝑠𝑠𝑖𝑖 ,𝑎𝑎𝑖𝑖|𝜃𝜃𝑄𝑄))2𝑖𝑖  

14    Optimize the actor policy using the sampled policy gradient: 

   

     ∇𝜃𝜃𝑢𝑢𝐽𝐽 ≈  
1
𝑁𝑁
�∇𝑎𝑎𝑄𝑄(𝑠𝑠,𝑎𝑎|𝜃𝜃𝑄𝑄)|𝑠𝑠=𝑠𝑠𝑖𝑖,𝑎𝑎=𝜇𝜇(𝑠𝑠𝑖𝑖)∇𝜃𝜃𝜇𝜇𝜇𝜇(𝑠𝑠|𝜃𝜃𝜇𝜇)|𝑠𝑠𝑖𝑖
𝑖𝑖

 

15 
   

One step optimization of the target networks  
by making them closer to current networks 

     𝜃𝜃𝑄𝑄′ ⟵ 𝜏𝜏𝜃𝜃𝑄𝑄 + (1 − 𝜏𝜏)𝜃𝜃𝑄𝑄′ 
     𝜃𝜃𝜇𝜇′ ⟵ 𝜏𝜏𝜃𝜃𝜇𝜇 + (1 − 𝜏𝜏)𝜃𝜃𝜇𝜇′ 

16  end for 
17 end for   
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3.2. Twin Delayed Temporal Difference Algorithm 

Fujimoto et al. [21] claim that the Q function of DDPG is commonly made 

overestimations, which causes poor policy updates and significant biases. TD3 algorithm 

is proposed to solve this problem and increase the performance of DDPG. 

 

Firstly, the single Q function of DDPG is changed to double Q function, which represents 

the twin keyword in naming. Minimum of Q value is used to form targets. This clipped 

double Q-learning mechanism helps to avoid any additional overestimation over the 

standard mechanism. Also, minimization of the Q function provides low-variance value 

estimations with stable learning targets that help policy updates to be safer. 

 

Secondly, TD3 delays policy and Its target network updates relative to the Q function. 

That is where the delayed keyword in the algorithm name came from. The authors of TD3 

recommend one policy update per every two Q-function updates.  

 

Finally, TD3 adds noise to the target action. This noise helps to avoid deterministic policy 

overfitting to narrow peaks in the value estimates and smooths out Q. 
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Algorithm 6: TD3 
1 Randomly initialize critic networks 𝑄𝑄𝜃𝜃1 ,𝑄𝑄𝜃𝜃2  and actor-network 𝜋𝜋𝜙𝜙  
2 Create target networks 𝜃𝜃′1 ⟵ 𝜃𝜃1, 𝜃𝜃′2 ⟵ 𝜃𝜃2 ,𝜙𝜙′ ⟵ 𝜙𝜙 
3 Create replay buffer R 
4 𝒇𝒇𝒇𝒇𝒇𝒇 𝑡𝑡 𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(0,𝑇𝑇)  
5  Choose action 𝑎𝑎~𝜋𝜋𝜙𝜙(𝑠𝑠) +  𝜖𝜖 with exploration noise 𝜖𝜖~𝒩𝒩(0,𝜎𝜎) 
6  Run 𝑎𝑎 and take reward 𝑟𝑟 new state 𝑠𝑠′  
7  Save transition (𝑠𝑠, 𝑎𝑎, 𝑟𝑟, 𝑠𝑠′) in R 
8  Create minibatch of N transitions (𝑠𝑠,𝑎𝑎, 𝑟𝑟, 𝑠𝑠′) randomly from R 
9  𝑎𝑎�  ⟵ 𝜋𝜋𝜙𝜙′(𝑠𝑠′) +  𝜖𝜖, 𝜖𝜖~𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝒩𝒩(0,𝜎𝜎�),−𝑐𝑐, 𝑐𝑐) 
10  𝑦𝑦 ⟵ 𝑟𝑟 +  𝛾𝛾 min

𝑖𝑖=1,2
𝑄𝑄𝜃𝜃𝑖𝑖′(𝑠𝑠

′,𝑎𝑎�) 
11  Update critics 𝜃𝜃𝑖𝑖 ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝜃𝜃𝑖𝑖𝑁𝑁

−1 ∑(𝑦𝑦 − 𝑄𝑄𝜃𝜃𝑖𝑖(𝑠𝑠,𝑎𝑎))2 
12  if 𝑡𝑡 mod 𝑑𝑑 then 
13    Update actor parameters 𝜙𝜙 with deterministic policy gradient: 

∇𝜙𝜙𝐽𝐽(𝜙𝜙) = 𝑁𝑁−1�∇𝑎𝑎 𝑄𝑄𝜃𝜃1(𝑠𝑠,𝑎𝑎)|𝑎𝑎=𝜋𝜋𝜙𝜙(𝑠𝑠)∇𝜙𝜙𝜋𝜋𝜙𝜙(𝑠𝑠) 
 

 
  

14    Optimize the target networks:  
   𝜃𝜃𝑖𝑖′ ⟵ 𝜏𝜏𝜃𝜃𝑖𝑖 + (1 − 𝜏𝜏)𝜃𝜃𝑖𝑖′  
   ∅′ ⟵  𝜏𝜏𝜏𝜏 + (1 − 𝜏𝜏)𝜙𝜙′  

15  end if  
16 end for   

 
 
  



 

 35 

 
3.3. Soft Actor-Critic Algorithm 

Haarnoja et al. [22] announced the SAC algorithm with the contributions of UC Berkley 

and Google in 2018. They developed SAC to be a sample efficient, not sensitive to 

hyperparameters, off-policy model-free reinforcement learning algorithm. 

 

The maximum entropy reinforcement learning framework is used in the SAC algorithm, 

which uses the objective function given in equation (31). Here the expectation is 

constructed from the policy on the left side and the actual dynamics of the system on the 

right. The optimal policy of the SAC algorithm maximizes expected return together with 

expected entropy. Temperature parameter 𝛼𝛼  controls the tradeoff between policy and 

dynamics of the system. Authors showed in a technical report [23] that 𝛼𝛼 temperature 

parameter could be learned automatically instead of treating it as a hyperparameter. 

 

 

SAC algorithm has a couple of different versions. In this work, open ai implementation 

is studied [24]. 

 

  

𝐽𝐽(𝜋𝜋) = 𝔼𝔼𝜋𝜋 ��𝑟𝑟(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡) − 𝛼𝛼 log(𝜋𝜋(𝑠𝑠𝑡𝑡|𝑎𝑎𝑡𝑡))
𝑡𝑡

� 
(31) 
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Algorithm 7: SAC 
1 Initialize parameters 𝜃𝜃, Q function parameters 𝜙𝜙1,𝜙𝜙2 
2 Set target params to main params 𝜙𝜙𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡1 ← 𝜙𝜙1, 𝜙𝜙𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡2  ← 𝜙𝜙2 
3 Create replay buffer R 
4 while not converged 
5  Observe state s and select action 𝑎𝑎~𝜋𝜋𝜃𝜃(. |𝑠𝑠) 
6  Run action 𝑎𝑎 and save reward 𝑟𝑟, new state 𝑠𝑠′  and done signal d 
7  Store transition (𝑠𝑠,𝑎𝑎, 𝑟𝑟, 𝑠𝑠′) in R 
8  If its terminal reset environment state, then 
9  If it is time to update, then 
10    for j in range (however many updates), do 
11      Sample random minibatch of B transitions (𝑠𝑠,𝑎𝑎, 𝑟𝑟, 𝑠𝑠′) from R 
12      Compute targets for Q functions:  

 
    𝑦𝑦(𝑟𝑟, 𝑠𝑠′,𝑑𝑑) = 𝑟𝑟 + 𝛾𝛾(1 − 𝑑𝑑) �min

𝑖𝑖=1,2
𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑖𝑖(𝑠𝑠′,𝑎𝑎�′) − 𝛼𝛼 log𝜋𝜋𝜃𝜃(𝑠𝑠′| 𝑎𝑎�′)�,   

 𝑎𝑎�′~𝜋𝜋𝜃𝜃(. |𝑠𝑠′) 
13      One step optimize Q functions by gradient descent  

 
      

∇𝜙𝜙𝑖𝑖
1

|𝐵𝐵| � �𝑄𝑄𝜙𝜙𝑖𝑖(𝑠𝑠,𝑎𝑎) − 𝑦𝑦(𝑟𝑟, 𝑠𝑠′,𝑑𝑑)�
2

    𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1,2
(𝑠𝑠,𝑎𝑎,𝑟𝑟,𝑠𝑠′,𝑑𝑑)

 

14      One step optimize policy by gradient ascent 
 

 
  

∇𝜃𝜃
1

|𝐵𝐵|��min
𝑖𝑖=1,2

𝑄𝑄𝜙𝜙𝑖𝑖(𝑠𝑠,𝑎𝑎�𝜃𝜃(𝑠𝑠) − 𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝜋𝜋𝜃𝜃(𝑎𝑎�𝜃𝜃(𝑠𝑠)|𝑠𝑠)� ,
𝑠𝑠∈𝐵𝐵

 

    Where𝑎𝑎�𝜃𝜃(𝑠𝑠) is a sample from 𝜋𝜋𝜃𝜃(. |𝑠𝑠) 
15      Optimize target networks 
    𝜙𝜙𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑖𝑖 ← 𝜌𝜌𝜙𝜙𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑖𝑖 + (1 − 𝜌𝜌)𝜙𝜙𝑖𝑖     𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1,2 
16    end for 
17  end if 
18 end while 
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3.4. Hindsight Experience Replay Algorithm 

Sparse rewards in learning environments are one of the biggest challenges for 

reinforcement learning systems. Which is agent gets remarkable reward when only it 

reaches the goal state. Andrychowicz et al. [25] presented the HER algorithm to improve 

performance on sparse reward and multi-goal reinforcement learning tasks. HER 

algorithm can be combined with off-policy reinforcement learning algorithms to improve 

sample efficiency. 

 

The idea behind HER is to store a set of experienced episodes in a replay buffer not only 

with the original goal but also with a subset of other goals. HER is independent of the 

initial distribution of environment states. Algorithm 8 shows HER algorithm in detail.  
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   Algorithm 8: HER 
1 Given: 
2 • an off-policy RL solution ℱ  like TD3, SAC, DDPG 
3 • a strategy 𝕊𝕊 for sampling goals for replay buffer. 
4 • a reward function 𝑟𝑟: 𝑆𝑆 𝑥𝑥 𝐴𝐴 𝑥𝑥 𝐺𝐺 ⟶  ℝ  
5 Initialize algorithm ℱ 
6 Create replay buffer R 
7 for every episode, do 
8  Select a goal 𝑔𝑔 and initial state 𝑠𝑠0 
9  for t in range (0, T) do 
10    Select action 𝑎𝑎𝑡𝑡 using the behavioral policy from ℱ  

   𝑎𝑎𝑡𝑡 ⟵ 𝜋𝜋𝑏𝑏(𝑠𝑠𝑡𝑡‖𝑔𝑔) 
11    Execute action 𝑎𝑎𝑡𝑡 and observe the new state 𝑠𝑠𝑡𝑡+1 
12  end for 
13  for t in range (0, T) do 
14    𝑟𝑟𝑡𝑡 ∶=  𝑟𝑟(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡 ,𝑔𝑔) 
15    Store transition (𝑠𝑠𝑡𝑡‖𝑔𝑔, 𝑎𝑎𝑡𝑡 , 𝑟𝑟𝑡𝑡 , 𝑠𝑠𝑡𝑡+1‖𝑔𝑔) in R 
16    Take a set of additional goals 𝐺𝐺 ≔  𝕊𝕊 
17    for 𝑔𝑔′ in G do 
18      𝑟𝑟′ ∶= 𝑟𝑟(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡 ,𝑔𝑔′) 
19      Store transition (𝑠𝑠𝑡𝑡‖𝑔𝑔′,𝑎𝑎𝑡𝑡 , 𝑟𝑟′𝑡𝑡 , 𝑠𝑠𝑡𝑡+1‖𝑔𝑔′) 
20    end for 
21  end for 
22  for t in range (0, N) do 
23    Take mini batch ℬ from replay buffer R 
24    Do one training loop using ℱ and  ℬ 
25  end for 
26 end for 
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4. USED ENVIRONMENT SIMULATION MODEL 

 
Creating and using environment simulation models is one of the most important tasks for 

reinforcement learning researchers. Leurent et al. [26] open-sourced their environments 

on GitHub. In this work, their parking environment is used. 

 

 
 

Figure 12. Parking environment 

 

The parking environment uses bicycle kinematic model [27], which is given at equation 

(36) where (𝑥𝑥, 𝑦𝑦) is vehicle position, 𝑣𝑣  is speed, 𝛼𝛼 is heading angle, 𝑎𝑎 is acceleration 

command, 𝜃𝜃 is slip angle at the center of gravity, 𝛿𝛿 is steering angle. 

 

 

  

𝑥̇𝑥 = 𝑣𝑣 cos(𝛼𝛼 + 𝜃𝜃) 

𝑦̇𝑦 = 𝑣𝑣 sin(𝛼𝛼 + 𝜃𝜃) 

𝑣̇𝑣 = 𝑎𝑎 

𝛼̇𝛼 =
𝑣𝑣
𝑙𝑙

sin𝜃𝜃 

𝜃𝜃 = tan−1(1/2 tan 𝛿𝛿) 

(32) 
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The parking environment implements a low-level controller on top of the vehicle to track 

the given target speed and trajectory. The longitudinal controller is a proportional 

controller to control speed given in equation (33). The lateral controller, on the other 

hand, is a proportional-derivative controller to control heading, combined with some 

nonlinearities inverting the kinematic model. Equations (34) lateral position controller 

and Equations (35) show lateral heading controller. Where 𝑎𝑎 is acceleration, 𝑣𝑣 is velocity, 

𝑣𝑣𝑟𝑟 is reference velocity, 𝐾𝐾𝑝𝑝 is controller gain, ∆𝑙𝑙𝑙𝑙𝑙𝑙 is the lateral position of the vehicle, 

𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙,𝑟𝑟 is lateral velocity command, ∆𝜓𝜓𝑟𝑟  is heading variation, 𝑣𝑣𝐿𝐿  is lane heading, 𝜓𝜓𝑟𝑟  is 

target heading, 𝛿𝛿 is front-wheel angle control. 

 

 
 

 
 

 

  

𝑎𝑎 = 𝐾𝐾𝑝𝑝(𝑣𝑣𝑟𝑟 − 𝑣𝑣) 
(33) 

𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙,𝑟𝑟 = −𝐾𝐾𝑝𝑝,𝑙𝑙𝑙𝑙𝑙𝑙∆𝑙𝑙𝑙𝑙𝑙𝑙 

∆𝜓𝜓𝑟𝑟 = sin−1 �
𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙,𝑟𝑟

𝑣𝑣
� (34) 

𝜓𝜓𝑟𝑟 = 𝜓𝜓𝐿𝐿 +  ∆𝜓𝜓𝑟𝑟 

𝜓̇𝜓𝑟𝑟 = 𝐾𝐾𝑝𝑝,𝜓𝜓(𝜓𝜓𝑟𝑟 − 𝜓𝜓) 

𝛿𝛿 = sin−1 �
𝑙𝑙

2𝑣𝑣
𝜓̇𝜓𝑟𝑟� 

(35) 
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Reward function of parking environment is given at equation (36)(36) where 𝑠𝑠 =

�𝑥𝑥,𝑦𝑦, 𝑣𝑣𝑥𝑥, 𝑣𝑣𝑦𝑦, cos𝜓𝜓, sin𝜓𝜓� , 𝑠𝑠𝑔𝑔 = �𝑥𝑥𝑔𝑔,𝑦𝑦𝑔𝑔, 0,0, cos𝜓𝜓𝑔𝑔, sin𝜓𝜓𝑔𝑔� , ‖𝑧𝑧‖𝑊𝑊,𝑝𝑝 = (∑ |𝑊𝑊𝑖𝑖𝑥𝑥𝑖𝑖|
𝑝𝑝

𝑖𝑖 )1/𝑝𝑝 .In 

order to have a narrower spike of rewards at goal p-norm is preferred instead of Euclidian 

norm.  

 

 
 
  

𝑅𝑅(𝑠𝑠,𝑎𝑎) =  − �𝑠𝑠 − 𝑠𝑠𝑔𝑔�𝑊𝑊,𝑝𝑝
𝑝𝑝

 
(36) 
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5. RELATED WORKS 

 

Autonomous control researchers have been studying self-driving systems for decades. 

DARPA announced several autonomous vehicle development competitions in 2003. 

These competitions led a couple of successful autonomous vehicle technologies to appear. 

For example, Stanford's Junior team in 2007 DARPA urban challenge came up with a 

hybrid A* algorithm. Sandford’s team used A* algorithm to plan a trajectory and then 

use classical controllers to follow that trajectory [2].  MIT team on the other side used the 

RRT algorithm to create a trajectory and then follow that trajectory using classical control 

systems [28]. Evestedt et al. [29, 30] studied both path tracking and motion planning of 

an RRT-based approach on a trailered truck. There are studies on heuristic algorithms to 

make them more suitable for path planning [31, 32]. 

 

While plan trajectory with heuristic algorithms and follow using classic controller 

approach improving, recent studies on reinforcement learning made it possible to use 

reinforcement learning approaches in this kind of continuous control problems. Kendal et 

al. [33] were the first team that was able to use deep reinforcement learning on real-world 

autonomous vehicle in 2018. Their model was learning from raw pixel input [34, 35]. 

After training in simulation environments autonomous vehicle was able to drive 

successfully. There are also studies on controlling different types of robots like unmanned 

air vehicles. Kazim is one of the researchers that studied deep reinforcement learning 

algorithms to create autonomous unmanned air vehicles in 2021 [36].  

 

The increasing diversity of reinforcement algorithms and application areas raises the need 

for benchmarking different algorithms with each other. Duan et al. [4] created a diversity 

of algorithms from simple ones like reinforce to more complex ones like the DDPG 

algorithm in 2016. They used commonly used old environments like card pole balancing 

[37–40] and walker [41–44].  
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6. WORK DONE 

 

In this work, we compare TD3, DDPG, and SAC algorithms with and without HER 

wrapper on parking environment. Algorithms are used from the open-source stable 

baselines library [45]. Table 2 shows configurations that are used in experiments. 

Configuration parameters are chosen as default parameters that are published with the 

algorithm if it’s possible else commonly used open-source algorithm parameters are used. 

 

Table 2. Experiment configuration table 

Parameter Value 
Maximum Episode Length 100 
Size of Buffer 1 000 000 
Batch Size 256 
Time Steps Total 200 000 
Learning Rate (𝜂𝜂) 0,001 
Gamma (𝛾𝛾) 0,95 
Network Architecture [256, 256, 256] 
Tau (𝜏𝜏) 0,005 
Policy Delay for TD3 2 
Target Policy Noise for TD3 0,2 
Target Noise Clip for TD3 0,5 
Target Update Interval for SAC 1 

 

 

For every reinforcement learning algorithm training episode starts with vehicle creation 

at a random location and a random goal. After that reinforcement learning algorithm 

(actor network) makes steering and throttle decisions. This decision is sent into the 

environment and the environment calculates the next state �𝑥𝑥,𝑦𝑦,𝑣𝑣𝑥𝑥,𝑣𝑣𝑦𝑦, cos𝜓𝜓, sin𝜓𝜓� and 

reward signals using equations (32-36). The transition pair (𝑠𝑠, 𝑎𝑎, 𝑟𝑟, 𝑠𝑠′) is added to replay 

buffer and the algorithm trains one step. We trained 200 000 steps and observed training 

performance of the algorithms. 
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MacBook pro with core i7 hardware is used for simulations. Python programming 

language is chosen as the implementation language. For each of the actor, critic, and target 

networks same ANN architecture is chosen which has 3 hidden layers with 256 neurons 

for each layer. The reason for choosing this size is it’s enough for convergence and it 

takes a reasonable amount of time to train in simulation hardware. 
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7. SIMULATION RESULTS 

 
Visualization of performance metrics is done by the open-source tensor board module of 

the TensorFlow Python library [46]. Figures that are given in this chapter are smoothed 

by Equation (37). Here smoothing weight 𝑤𝑤 is chosen as 0,9 for Figure 17 and 0,6 for all 

the other figures. 

 

 

 

Figure 13. Mean episode length per algorithm steps shows parking speed at training 

 

Figure 13 shows the mean length of episodes for agents. Here step represents the one 

action of the reinforcement learning system upon a given situation. An episode is 

completed when a task is successfully completed or failed. A failure can be caused by 

hitting a boundary or exceeding the maximum episode limit, which is 100. So, episode 

length can be shortened by failure or success and can have a maximum value of 100. 

Episode length is expected to be shortened over time, as seen in Figure 13. 

�
𝑓𝑓(0) =                                                  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[0]
𝑓𝑓(𝑡𝑡)  =  𝑓𝑓(𝑡𝑡 − 1) ∗ 𝑤𝑤 + (1 − 𝑤𝑤) ∗ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝑡𝑡] (37) 
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The mean of episode rewards is shown in Figure 14 where higher rewards indicate better 

performance. Reward function indicates a negative distance between the current state and 

target state, as shown in equation (36).  

 

 

Figure 14. Mean episode reward values per algorithm training steps 
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Figure 15. Average episode success rate per training steps  

 

The success rate is shown in Figure 15 and Figure 16. The success rate is obtained as the 

successful episode count in the last 100 episodes at that time divided by 100. The success 

rate of 1 means that, last 100 parking attempt was successful in the simulation 

environment. Every algorithm executed 200 thousand steps. When it comes to absolute 

total execution time, Figure 16 shows it took 1hour 25 minutes to execute TD3, 1 hour 

22 minutes to execute DDPG, 1 hour 59 minutes to execute SAC algorithms for two 

hundred thousand simulation steps. 
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Figure 16. Average episode success rate per relative time 

 
 
 
 

 

Figure 17. Average critic network loss value per algorithm training steps 
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Critic loss given in Figure 17 represents the training performance of critic networks in 

inspected algorithms. Critic loss value is simply the distance between intermediate reward 

value 𝑦𝑦 and value of critic network. Critic loss functions are given for each algorithm in 

pseudo-codes (Algorithm 5, 6, 7). Here we see that the TD3 algorithm has a noticeable 

higher error at calculating the quality of actions that the actor mechanism of TD3 made. 

It seems like taking a minimum of two critic networks mechanism of TD3 doesn’t help 

as much here as it is supposed to do. 

 

 

Figure 18. Average actor network loss value per algorithm training steps 

 

Actor loss given in Figure 18 represents the training performance of actor networks in 

inspected algorithms. Actor loss is simply the value of the critic network in given situation 

pair. This chart shows us that, critic network of DDPG is not stable compared to SAC and 

TD3 algorithms wrapped with HER algorithm.
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8. CONCLUSION AND FUTURE WORK 

 

In this work, the autonomous control of a simplified car is considered for parking 

operation. Actor-critic-based reinforcement learning methods are examined to design 

intelligent controllers. Three types of reinforcement learning algorithms are combined 

with the HER wrapper algorithm and compared in a simulation environment. These 

methods are SAC, TD3, and DDPG. 

 

Laurent's parking simulation environment is used for training reinforcement learning 

agents. All actor-critic algorithms learned how to park the car autonomously, using 

reward feedback and state information (location, velocity, position) from the 

environment. 

 

Experiments show that with actor-critic reinforcement learning, it is possible to perform 

autonomous parking tasks. Experiment results show that the SAC algorithm is better than 

TD3 and DDPG in overall performance when it comes to the parking car continuous 

control problem. From Figure 15 we can conclude that the SAC algorithm needs fewer 

steps for convergence. From Figure 16 we can conclude that the SAC algorithm needs 

more time to complete the same number of steps with other algorithms, but because of its 

efficiency, it converges in the shortest time. 

 

TD3 algorithm writers claim that TD3 has improved the learning speed and performance 

of DDPG a lot. From Figure 13, Figure 14, and Figure 15 we can conclude that in our 

experiment setup, TD3 is performing worse than DDPG, and TD3 is not faster than 

DDPG. One of the important claims of TD3 is that it reduces the overestimation bias of 

the critic network in DDPG. So, the critic network of TD3 is expected to have a lower 

loss value than the critic network of DDPG at the training stage. But from Figure 17 we 

can conclude TD3 has no critic network training improvements over DDPG. 
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Future work can be done with more realistic simulation environments that use realistic 

sensor inputs to localize vehicles by making dynamic mapping. Static obstacles like trees 

and dynamic obstacles like pedestrians can be added to have obstacle avoidance. A 

popular approach for solving autonomous parking problems is to plan a trajectory using 

heuristic search algorithms and follow that trajectory with classical control methods. 

Trajectory planning can be done with reinforcement learning algorithms in future work. 

Planning trajectory will make the control system more reliable. Lastly, it can be applied 

to real-world vehicles. 
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