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Wind energy, one of the renewable energy sources, is immensely popular today due to the 

increase in environmental awareness, the decrease in the number of fossil fuels, and the 

increase in the cost of these fuels. Although wind energy is a clean and nature-friendly 

energy source, the wind is not a continuous energy source. In addition, the establishment of 

farms that convert wind energy into electrical energy is expensive and requires technical 

capacity. Determining the locations where wind turbine farms will be established, which 

will provide long-term profit to its investors and require considerable amounts of financing 

at the beginning, is significantly vital in terms of the economic use of resources. It is 

necessary to collect many meteorological data such as wind speed, wind direction, air 

density, temperature, pressure, and relative humidity from at least one year ago at the stage 

of determining the wind turbine construction locations. The wind turbine manufacturer 

creates theoretical information about how much electrical energy the turbine will generate 

at what wind speed. Following the collection of meteorological data, various numerical and 

statistical models are made with the help of the theoretical electricity generation data, and 

the suitability of the construction location is evaluated. However, when similar wind 

turbines are examined, it will be seen that there are differences between the theoretical 
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production amount given by the manufacturer and the actual amount of electricity produced 

at the same wind speed. In this condition, it is clear that there is a fuzzy relationship between 

wind speed and the electrical energy produced. 

For this thesis, the amount of electrical energy to be produced by a wind turbine is estimated 

by using only wind speed or wind speed and wind direction data with fuzzy linear regression 

methods. In addition, the amount of produced electrical energy and the wind speed in the 

data set are fuzzified. Succeeding, crisp input crisp output, crisp input fuzzy output, and 

fuzzy input fuzzy output situations were estimated with four different fuzzy regression 

methods and the results were compared. 

This application is intended to determine the general framework for the locations where the 

wind turbine is planned to be installed before the complex calculations and modeling, or 

when seasonal observations are made rather than annual, or in cases where the observed 

values are not dependable or there are many site alternatives but there is not enough time to 

decide on site selection. It has been determined that it will be beneficial in situations. 

Therefore, it will bring a different approach to the literature. 

Finally, this study will open a new window to the methods by establishing the basis for the 

Fuzzy Partial Regression Method and Fuzzy Nonlinear regression methods that are expected  

to be used in the future in estimating the energy produced by wind turbines.  
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Günümüzde çevre duyarlılığının artması, fosil yakıtların miktarının azalması ve dolayısıyla 

bu yakıtların maliyetinin artmasından dolayı, yenilenebilir enerji kaynaklarından rüzgâr 

enerjisi çok rağbet görmektedir. Ancak, rüzgâr enerjisinin temiz ve doğa ile barışık bir enerji 

kaynağı olmasına rağmen, rüzgâr sürekliliği olan bir enerji kaynağı değildir. Ayrıca, rüzgâr 

enerjisini elektrik enerjisine dönüştüren çiftliklerin kurulması oldukça pahalı ve teknik 

kapasite gerektirmektedir. Uzun vadede yatırımcılarına kazanç sağlayacak ve başlangıçta 

yüksek meblağlarda finansman gerektiren rüzgâr türbini çiftliklerinin, kurulacağı mevkilerin 

belirlenmesi ekonomik kaynakların tasarruflu kullanılması açısından büyük önem arz 

etmektedir. Rüzgâr türbini çiftliklerinin, kurulması planlanan mevkilerin belirlenmesi 

aşamasında, en az bir yıl öncesine ait rüzgâr hızı, rüzgâr yönü, hava yoğunluğu, sıcaklık, 

basınç ve bağıl nem gibi birçok meteorolojik verilerin toplanması gerekmektedir. Rüzgâr 

türbini üreticisi tarafından oluşturulan, türbinin hangi rüzgâr hızında ne kadar elektrik 

enerjisi üreteceğine dair teorik bilgiler mevcuttur. Meteorolojik verilerin toplanmasına 

müteakip, üreticinin verdiği teorik elektrik üretim miktarları verisi yardımıyla çok çeşitli 

nümerik ve istatistiksel modellemeler yapılarak, seçilecek yerlerin uygunluğu tespit 

edilmeye çalışılır. Ancak, benzer rüzgâr türbinleri incelendiğinde, üreticinin verdiği teorik 

üretim miktarı ile aynı rüzgâr hızında gerçekte üretilen elektrik miktarları arasında 
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farklılıklar olduğu görülecektir. Bu koşulda, rüzgâr hızı ile üretilen elektrik enerjisi arasında 

aslında bulanık bir ilişki olduğu açıktır.  

 

Bu tezin amacı kapsamında, bulanık doğrusal regresyon metotları ile sadece rüzgâr hızı ya 

da rüzgâr hızı ve rüzgâr yönü verilerini kullanarak bir rüzgâr türbini tarafından üretilecek 

elektrik enerjisi miktarı tahmin edilmiştir. Ayrıca, çeşitli modellerde veri setinde tahmin 

edilmeye çalışılan üretilecek elektrik enerjisi miktarı ile rüzgâr hızı da bulanıklaştırılarak, 

kesin girdi kesin çıktı, kesin girdi bulanık çıktı ve bulanık girdi ve bulanık çıktı durumları 

da dört farklı regresyon metodu ile tahmin edilmiş ve sonuçlar karşılaştırılmıştır. 

 

Bu uygulama, güç üretimini tahmin etmeye yönelik bulanık regresyon yöntemlerinin, rüzgar 

türbininin kurulması planlanan yerler için karmaşık hesaplamalar ve modellemelerden önce 

genel çerçevesinin belirlenmesinin istendiğinde, ya da yıllık değil mevsimsel gözlemlerin 

yapıldığı durumlarda, ya da gözlemlenen değerlerin güvenilir bulunmadığı durumlarda ya 

da çok yer alternatifinin olduğu ancak yer seçimi kararının verilmesi için yeterli zamanın 

bulunmaması durumlarında faydalı olacağı tespit ediliş olup literatüre farklı bir yaklaşım 

getirecektir. 

 

Son olarak, bu çalışma rüzgâr türbinlerinin üreteceği enerjinin tahmin edilmesinde gelecekte 

kullanılması beklenen Bulanık Parçalı Regresyon Metodu ile Bulanık Doğrusal olmayan 

regresyon metotlarına temel oluşturarak, bu metotlara yeni bir pencere açacaktır. 

 

 

Anahtar Kelimeler: Bulanık mantık, Bulanık Regresyon, Rüzgâr Enerjisi. 
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 INTRODUCTION 

 

Since the industrial revolution, the usage of energy and the need for energy has increased 

with high consumption unceasingly [1]. Human beings have benefited from conventional 

energy resources such as biomass and fossil resources in order to encounter the increasing 

energy need with the increasing human population. In the last century, researchers have 

turned to different energy resources such as wind and sun, due to the decrease in the number 

of fossil resources, increase in prices of them, and especially the increase in the amount of 

carbon dioxide in the atmosphere [2]. 

Usage of wind energy have increased speedily in the last 20 years. Renewable energy makes 

wind energy attractive because it is an environmental-friendly and efficient energy source 

when applied properly [3]. 

The installed power generated by wind energy was only 24 GW in 2001, it reached 743 GW 

all over the world by 2021. In twenty years, wind energy installation increased thirty times. 

The situation proves that wind energy is quite important for the future of humanity and wind 

energy investments will continue to increase in the future. Europe is the world leader in 

wind energy with a total installed power of 220 GW [4]. Turkey ranks seventh in this list 

with an installed power value of 9 GW [5]. So, wind energy earns popularity not only in 

Europe but also in Turkey. Correspondingly to the situation, many studies have been done 

to improve the capacity and the efficiency of wind energy tools due to the potential of wind 

energy. 

Statistical analysis and big data applications have permeated many sectors, including 

renewable energy, storage, in tandem with the speedy growth of information science and 

the fast convergence of conventional industries and intelligent technology [6].  

In essence, finding an effective method that can provide precise wind power projections is 

crucial, as it can assist the efficiency of wind turbine plants, reduce unfavorable effects in 

the wind energy installation scenario, and improve profits of the wind energy earnings 

through the optimization of bidding strategies [7]. 

Wind energy is naturally intermittent due to the high correlation of fluctuating and varying 

wind speeds and other meteorological parameters. The feature makes it difficult to predict 
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accurately and results in a relatively poor generation result for large-scale wind energy input 

into the system. For this reason, incorrect wind energy estimation can cause many problems 

and ineffective usage of economic resources [8].  

To maximize the generated electrical energy, it is necessary to estimate the power generation 

of a wind turbine. In recent years, various models have been developed. Usually, a similar 

format is used when conducting wind power studies. 

Primarily, meteorological models and historical power generation data of wind plants are 

combined for a place where is evaluated as a potential construction area. Then, seasonal or 

characteristic correlated data of wind speed and load are collected for the same period.  

The forecasts are provided by the preprocessed results that are the adoption of the power 

system models and statistical analysis models [9]. The mentioned models are physical 

models and conventional statistical models [10].  

Proposed methods for predicting power generation have been revealed to be frequently 

complex. Since estimated parameters are affected by a variety of factors, the condition 

necessitates the use of either parametric or non-parametric techniques. The main parametric 

methods are the Linearized Model, Polynomial Model, Probabilistic Model, and Logistic 

function model. The main non-parametric methods are Neural Networks, Data Mining 

Algorithms, and Fuzzy Clustering Methods [11].  

 

It is assumed that there is a relation between wind speed and generated power, but there are 

also unexplainable factors that affect wind speed, power generation, and the relation of 

them. The thesis was driven by the unknown associations in the dataset's context, which led 

to the use of fuzzy regression. Because the application of fuzzy set theory is popular for the 

kind of subjects, and it is capable to generate not only crisp decisions but also corresponding 

degrees of membership. 

 

In this study, the power that would be generated by a wind turbine with wind speed and 

wind direction data is used to predict with the help of the various fuzzy linear regression 

(FLR) methods. Fuzzy regression methods do not consider distribution and there is a fuzzy 

relation between wind speed, wind direction, and power generation. Thus, fuzzy logic is 

implemented to the regression analysis. The methods to predict the power generation are 

especially influential and advantageous when a general frame of the wind turbine models is 
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required before complex calculations, when there are a small number of observations that 

are not trustworthy, or when there are more optional places to construct a wind farm for 

decision-maker.  

 

In addition to the goals, it is believed that the study will be the basis and open a new door 

to the unused application of fuzzy piecewise regression and fuzzy non-linear regression for 

the estimation of wind turbine energy estimation. 
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 REGRESSION ANALYSIS 

 

The systems which have not randomness for succeeding observations are called 

Deterministic Systems. In these systems, the same outputs are always created by the same 

inputs at the identified beginning. Non-deterministic or stochastic systems, conversely 

include randomness, are the systems that cannot produce equivalent outputs with equivalent 

inputs. Nevertheless, it does not mean that calculations or predictions related to results 

cannot be made. 

 

The complications in the science and engineering era can be resolved by examination or 

analysis of the relationship between two or more variables. The statistical tools are generally 

used to explore and model the non-deterministic connection between variables. The 

mentioned methods are termed Regression Analysis [12]. Francis Galton, one of the leading 

scientists of the 18th century, was the first to use and develop the concepts of correlation and 

regression. Karl Pearson, a colleague, and researcher of Galton continued Galton's work 

after Galton's death. Although the correlation coefficient, which is widely used today, is 

known as the Pearson correlation coefficient, this concept is essentially based on Galton's 

studies [13].  

 

In regression models, the one or more variables that affect or produce the output are defined 

as independent variables, outputs are stated as a dependent variable in general. However, 

the definition can generate confusion. Therefore, it is possible to call the independent 

variable a regressor or predictor variable and a dependent variable as a response variable 

[14]. 

2.1 Regression Types 

 

In literature, the regression analysis can be classified with the number of regressors the 

shape of the regression line or the type of the dependent variable, or whether the regression 

has parametric or non-parametric structures. Not only these main attributes but also 

subsidiary attributes are used to detail the type of regression analysis. 

 

Montgomery et al. [14], classified the types of regression analysis methods shown as in 

Figure 2.1. 
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Figure 2. 1 Classification of the Regression Models 

 

Although there are many subordinate types for regression models, only principal types for 

regression analysis are indicated above. 

 

Regression analysis is a statistical model used to define or predict the causal relationship 

between a dependent variable and one or more independent variables. Within the framework 

of this definition, a regression model, Y dependent variable, k number of independent 

variables, and X's independent variables can be defined as below:    

 

 𝒀 = 𝒇(𝑿𝟏, 𝑿𝟐, 𝑿𝟑, … , 𝑿𝒌) +ε   (2.1)  
   

The last term in Equation 2.1 is called the error term and this term indicates the mismatch 

between the estimated value obtained by the model and the actual value. The expression 

𝑓(𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑘) seen in the equation allows the model to be defined as linear or 

nonlinear. The mathematical model of Equation 2.1 above is shown below: 

 

 

𝑌 =  𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 +⋯+ 𝛽𝑘𝑥𝑘𝑖  +  𝜀     (2.2) 

 

Written in Equation 2.2 format, it is a multiple linear regression model in terms of both 

     REGRESSION 
  

   

 

 

 

Number of Independent               Shape of Regression           Time Series              

Variables                                      Lines  
  

 
Simple Reg.    Multiple Reg. 

                                         Linear Regression 

                                                        

   Non-Linear Regression 

    

                                                                   Polynomial Regression 



6 

 

variables and parameters which is the most general form: 

 

𝑌 =  𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥1
2  +  𝜀           (2. 3) 

 

However, the model in Equation 2.3 is an example of a non-linear relation between 

variables. Also, some models are non-linear according to their parameters like in Equation 

2.4 below: 

 

𝑌 = 𝛽0𝑋
(𝛽1)𝑒𝜀                                (2. 4) 

 

However, when the expression "𝑋1
2" in Equation 2.3 is defined as "𝑋2

 " as a new variable, a 

model in Equation 2.5 is obtained and the model transforms into a linear model with this 

new form. 

 

𝑌 =  𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2  +  𝜀                (2. 5) 

 

After the logarithms of both sides are taken in Equation 2.4, a linear model is reached as in 

Equation 2.6 which is written below: 

 

𝑙𝑜𝑔(𝑌) = 𝑙𝑜𝑔(𝛽0) + 𝛽1𝑙𝑜𝑔(𝑋1) + ε               (2. 6) 

                

As described above, some models that are not linear in terms of variables and parameters 

can be transformed into linear models with the help of appropriate transformations. Thus, 

these models generally can be defined as linear regression models. However, there are also 

models in which linearity cannot be achieved as a result of any transformation and these 

models are also classified as nonlinear regression models. 

2.1.1  Linear Regression Analysis 

 

Linear regression models are shaped with the assumption that there is a linear relationship 

between the regressor(s) and the dependent variable. If there is a single independent variable 

in the model, the model is called a Simple Linear Regression Model; on the other hand, if 

there are more than two independent variables in the model, the model is called a Multiple 

Linear Regression Model [15]. 
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The researchers have two general purposes in multiple linear regression. The first is to 

estimate the value of the dependent variable via the independent variables assumed to affect 

the dependent variable. The second is to identify which of the independent variables affect 

the dependent variable more and capable to define the relationship between them  [16]. If 

the relationship between Y dependent variable and p number of independent variables is 

linear and if there are observation values of Y and X, the multiple linear regression model is 

expressed as follows: 

    

   𝑌 =  𝑿𝛽 +  𝜀                   (2. 7) 

   

In the formula, Y designates an n-dimension vector for n- number of observations, X labels 

a matrix which is formed by the number of independent variables and observations. β shows 

an n-dimension vector like Y. ε, which is an n-dimension vector that defines the error 

between observation and prediction. The error terms are considered that they are normally 

distributed, the error is assumed that its mean equals to zero (E(ε)=0) and its variance is 

constant (var(ε)= 𝜎2I) [17]. 

2.2 Least Square Estimation Method 

 

The primary objective of regression analysis is to model the relationship between variables 

accurately by predicting the unknown parameters. Numerous methods are applied to 

estimate the parameters of regression models. The main purpose of the estimation methods 

is to minimize the total errors which are calculated as the distance between the estimated 

regression line and the observations. One of the methods which use the minimization of 

total sums calculated by the negative or positive observations located above an under-

regression line is the Least Absolute Deviation Regression [18]. This method is expressed 

as below: 

 

  𝑴𝒊𝒏∑ |(𝒀İ − 𝒀̂İ)|
𝒏
𝒊=𝟏     (2. 8)  

      

The method occasionally cannot reach common solutions; moreover, it permits obtaining 

many regression lines that have the same total absolute error. Contrarily, in the least Squares 

Estimation method, using the squares of errors vanishes the problem mentioned above 

because of the negative and positive of errors, also it emphasizes the effects of the 



8 

 

observation with a bigger error. Because of this reason, the Least Squares method is mostly 

used to estimate the parameters of a regression model today. The mathematical expression 

of the Least Squares Method is given below: 

 

  Min ∑ (𝒀𝒊 − 𝒀̂𝒊)
𝟐𝒏

𝒊=𝟏      (2. 9) 

          

If Equation 2.9 is detailed: 

 

Min∑ (𝒀𝒊 − (𝜷𝟎 + 𝜷𝟏𝒙𝟏𝒊 + 𝜷𝟐𝒙𝟐𝒊 +⋯+ 𝜷𝒑𝒙𝒑𝒊))
𝟐

𝒏
𝒊=𝟏        (2. 10 )    

       

is attained. 

 
Here, the Multiple Regression Model can be written again as: 

 

 𝑌 = 𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 +⋯+ 𝛽𝑝𝑥𝑖𝑝 + 𝜀𝑖  (i=1,2, … , n) 

 

     = 𝜷𝟎 + ∑ 𝜷𝒋𝒙𝒊𝒋 + 𝜺𝒊, 𝒊 = 𝟏, 𝟐, … , 𝒏
𝒌
𝒋=𝟏       (2. 11) 

 

After, the least square function is shown below: 

 

             𝑺(𝜷𝟎, 𝜷𝟏, … , 𝜷𝒌) = ∑ 𝜺𝒊
𝟐 = ∑ (𝒚𝒊 − 𝜷𝟎 − ∑ 𝜷𝒋𝒙𝒊𝒋

𝒌
𝒋=𝟏 )

𝟐𝒏
𝒊=𝟏

𝒏
𝒊=𝟏        (2. 12) 

 

According to normal procedure, the function S should be minimized concerning 

𝛽0, 𝛽1, … , 𝛽𝑘. In other words, the derivation of the function S with respect to 𝛽0 will be 

calculated. Thus, the least-square estimators of 𝛽0, 𝛽1, … , 𝛽𝑘  should fulfill the equation 

below: 

 

𝜕𝑆

𝜕𝛽0
| 𝛽0̂,𝛽1̂,…,𝛽𝑘̂ = −2∑( 𝑦𝑖  −   𝛽0̂  −∑𝛽𝑗𝑥𝑖𝑗

𝑛

𝑗=1

 

𝑛

𝑖=1

)  =  0 

     

and  

 

(2. 13) 

https://tureng.com/tr/turkce-ingilizce/mathematical%20expression
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𝝏𝑺

𝝏𝜷𝒋
| 𝜷𝟎̂,𝜷𝟏̂,…,𝜷𝒌̂ = −𝟐∑ (𝒚𝒊 −  𝜷𝟎̂ − ∑ 𝜷𝒋𝒙𝒊𝒋

𝒏
𝒋=𝟏 )𝒙𝒊𝒋

𝒏
𝒊=𝟏  =  𝟎, 𝒋 = 𝟏, 𝟐, … , 𝒌    

After expanding Equation 2.14, The least-squares normal equation can be found : 

 

𝑛𝛽̂0 + 𝛽̂1∑𝑥𝑖1 + 𝛽̂2∑𝑥𝑖2 +⋯+ 𝛽̂𝑘∑𝑥𝑖𝑘

𝑛

𝑖=1

=∑𝑦𝑖

𝑛

𝑖=1

𝑛

𝑖=1

𝑛

𝑖=1

 

 

𝛽̂0∑𝑥𝑖1

𝑛

𝑖=1

+ 𝛽̂1∑𝑥𝑖1
2   +     𝛽̂2∑𝑥𝑖1𝑥𝑖2 +⋯+      𝛽̂𝑘∑𝑥𝑖1𝑥𝑖𝑘

𝑛

𝑖=1

=∑𝑥𝑖1𝑦𝑖

𝑛

𝑖=1

𝑛

𝑖=1

𝑛

𝑖=1

 

        ⋮                     ⋮         ⋮               ⋮        ⋮ 

𝛽̂0∑𝑥𝑖𝑘

𝑛

𝑖=1

+ 𝛽̂1∑𝑥𝑖𝑘 𝑥𝑖1
 + 𝛽̂2∑𝑥𝑖1𝑥𝑖2 +⋯+ 𝛽̂𝑘∑𝑥 𝑖𝑘

2

𝑛

𝑖=1

=∑𝑥𝑖𝑘𝑦𝑖

𝑛

𝑖=1

𝑛

𝑖=1

𝑛

𝑖=1

 

 

When the least-square estimators are calculating, it will be significant that there is one more 

equation from the number of the estimators, in other words, when least-square estimators 

are  β̂0, β̂1, … , β̂𝑘, the number of the regression equation is p, p = k +1. 

 

The researchers who want to see whole variables compactly generally prefer to use matrix 

notation to manage multiple regression easier [17]. The matrix representation of the model 

is shown with Eq. (2.11) below: 

 

    𝑌 =  𝑋𝛽 +  𝜖 

Where: 

 𝑌 =

[
 
 
 
 
𝑦1
𝑦2
⋮
𝑦𝑛
 ]
 
 
 
 

 ,      𝑋 =  [

1
1
⋮
1

𝑥11
𝑥21
⋮
𝑥𝑛1

𝑥21
𝑥22
⋮
𝑥𝑛2

 

⋯
⋯ 
⋯
   

𝑥1𝑘
𝑥2𝑘
⋮
𝑥𝑛𝑘

],   𝛽 =

[
 
 
 
 
𝛽0
𝛽1
⋮
𝛽𝑛
 ]
 
 
 
 

 ,     𝜀 =

[
 
 
 
 
𝜀1
𝜀2
⋮
𝜀𝑛
 ]
 
 
 
 

 

 

As understood from the matrix notation; the dimension of y vector called observations is 

n × 1, the dimension of  X called regressor variables is n × p, the dimension of the vector β 

called regression coefficients is n×1 and finally, the dimension of the vector ε called random 

errors is n × 1. 

(2. 15) 

(2. 14) 
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𝑆(𝛽0, 𝛽1, … , 𝛽𝑘) =∑𝜀𝑖
2 =∑(𝑦𝑖 − 𝛽0 −∑𝛽𝑗𝑥𝑖𝑗

k

j=1

)

2
n

i=1

n

i=1

 

                                                          

                               = 𝜀′𝜀 = (𝑦 − 𝑋𝛽)′(𝑦 − 𝑋𝛽) 

 

If  the least-square function S(β) improved as below: 

 

𝑆(𝛽) = 𝑦′𝑦 − 𝛽′𝑋′𝑦 − 𝑦′𝑋𝛽 + 𝛽′𝑋′𝑋𝛽 

 

Due to 𝛽′𝑋′𝑦  and its transpose 𝑦′𝑋β  are scalar or in other words, 1×1 matrix, 

 the least-square function above will be transformed to function below : 

 

                                               𝑆(𝛽) = 𝑦′𝑦 − 2𝛽′𝑋′𝑦 + 𝛽′𝑋′𝑋𝛽 

 

Also, the derivation of function according to estimators must equal to zero as below: 

 

                                              
𝜕𝑆

𝜕𝛽 
| β ̂ = −2𝑋

′𝑦 +  2𝑋′𝑋β̂  =  0 

  

After simplifying the derivation above, the least-squares normal equations below will be 

found as: 

    𝑋′𝑋𝛽̂ = 𝑋′𝑦 

 

The least-square estimators (𝛽̂) can be reached by multiplying both sides of (2.16) by 

(𝑋′𝑋)
−1

. Thus, the estimator is:  

  β̂ = (𝑋′𝑋)−1X′𝑦  

When the estimator 𝛽̂ put in place in the equation below: 

 

𝑦̂ = 𝑋𝛽̂ = 𝑋(𝑋′𝑋)−1X′𝑦 =  𝐻𝑦 

 

H =  𝑋(𝑋′𝑋)−1𝑋′ is generally named hat matrix and its dimension is n × n. The assets of 

(2. 19) 

(2. 17) 

(2. 16) 

 (2. 18) 

  (2. 20) 
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the hat matrix are quite important, and it is also used to calculate the residuals which are the 

difference between observed and fitted values.  

   𝑒 = 𝑦 − 𝑦̂  

After the H matrix is added to the equation above, the residual will be: 

 

𝑒 = 𝑦 −𝑋𝛽̂ = 𝑦−𝐻𝑦 = (𝐼 −𝐻)𝑦 

 

Figure 2. 2 The Least Square Method with two independent variables [19]. 

 

The plane in Figure 2.2 indicates the regression model that is obtained by the least square 

estimation with two independent variables, after minimizing the squares of errors. Grey lines 

between the plane and dots show the error values. The least Square Estimation method is 

used not only in linear regression models but also in non-linear and fuzzy regression models. 

A detailed explanation of the method will be given in the following chapters. 

 

The theoretical part of the least-square method is emphasized above superficially, however, 

some certain assumptions are obliged to satisfy for the usage of the least-square method. 

Otherwise, the method will not give appropriate results to analyze data.  

The assumptions are listed below [19]: 

 

 (2. 21) 
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• Firstly, the error terms are considered to have normal distribution, otherwise, other 

assumptions would be invalid, and the least-square method would be an unnecessary 

application for the data set wanted to practice. 

• The expected value of the error terms is assumed to equal to zero (E(ε)=0). The 

assumption avoids that the regression line cannot be violated, in other words for a 

group of observations the model is not systematically low or high. 

• The variance of the error terms is stable (var(ε)= 𝜎2I). It means the variance of the 

errors cannot be different for some part of the data set. The assumption for error 

terms that have constant variance is called homoscedasticity. 

• There cannot be a correlation between each error term. The correlation between 

errors happens in time series data and the situation called autocorrelation. 

 

The violations of the assumption mentioned above lead the model to be misled and they 

weaken the strength and capacity of estimation. For prevention from the violation, some 

plots and tests are advised to check the model. 

  

2.3 Circular Regression 

 

The researchers prefer to use not only linear observations but also directional observations 

to reach a proper and efficient solution according to the structure of the dataset. When the 

dataset includes directional and circular data, it leads the researchers to use the directional 

statistics for appropriate prediction. In science, the Directional Statistic generally is used in 

Meteorology, Biology, Geology, Geophysics, Geography, and Psychology, etc.[20] 

2.3.1 Literature Review 

 
When linear statistical methods are applied to directional data causes errors in subjects such 

as parameter estimation and regression analysis. Therefore, many methods have been 

developed differently from known statistical techniques. The development of directional 

data analysis that has its statistical attributes has begun with the study of Gumbel et al. [21]. 

They examined the theoretical background of circular normal distribution. 

  

Gould [22] proposed the first regression model with circular variables in 1969. The model 

uses the dependent variable as a circular variable and independent variables are linear 
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variables also the dependent variable has von Mises distribution. 

 

Examining that the probability function proposed by Gould led to erroneous Maximum 

Likelihood Errors, Johnson and Wehrly proposed models for direct estimation of the mean 

direction and concentration parameter in the case of a single covariate [23]. 

 

Mardia calculated the correlation coefficient for bivariate circular distributions [24]. Lund 

implemented the least-squares errors method to circular regression [25]. Jammalamadaka 

and Sarma proposed a regression model with two circular random variables that explain the 

relationship between these variables and demonstrating the conditional expectation of the 

given vector [26]. 

 

Probability density functions that are defined on the timeline can be wrapped around a unit 

circle. The application of this concept encouraged the use of time-dependent variables as 

circular variables. Mardia and Jupp describe the properties of wrapped distributions as quite 

inclusive in their book [27]. 

 

Downs and Mardia (2002) offered a circular regression model based on a one-to-one match 

between the independent angle and the mean of the dependent angle [28]. 

 

Hussin et al. developed Mardia's model [29] by addressing the situation in which both 

response and explanatory variables are circular. 
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2.3.2 Circular Descriptive Statistic     

 

When the classic statistical methods that are formed for the linear dataset are applied to the 

directional dataset causes errors for parameter estimation, regression analysis, etc. [27]. The 

directional data cannot be mentioned in any size; therefore, the observed value can be 

described by points over a unit circle whose center is the origin or a vector that joins the 

points with the origin of the circle. Directional data can be defined with an interval between 

0 and 2π. 𝜽° that is used to define vector shows the angle between the vector and positive x-

axis with clockwise or counterclockwise. The Cartesian coordinates of the vector are: 

𝒄𝒐𝒔(𝜽) 𝒂𝒏𝒅 𝒔𝒊𝒏(𝜽).  

The radian and degree units can be used for directional data, the angle in the degree unit is 

symbolized with 𝜽° and angle in radian unit is symbolized with 𝜽 . Transformations from 

radian to degree unit and from degree to radian unit are shown below: 

 

 𝜽° =  𝟏𝟖𝟎 𝜽 
𝝅⁄  , 𝟎° < 𝜽° < 𝟑𝟔𝟎°       (2. 22) 

 𝜽  =  𝝅𝜽
°  
𝟏𝟖𝟎⁄  , 𝟎 < 𝜽 < 𝟐𝝅       (2. 23) 

Also, the relation between Cartesian coordinates and polar coordinates is depicted in 

 Figure 2.3. 

 

Figure 2. 3 The relation between cartesian coordinates and polar coordinates. 

 

The polar coordinates of the P are defined with radius (r) and angle (𝜃), the Cartesian 

coordinates of the point can be reached with trigonometric transformation below [30]: 

 

 
X 

Y 

θ 

P 

r 

0 

r sinθ 

 

r cosθ 
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𝒙 =  𝒓 𝐬𝐢𝐧 𝜽  𝒂𝒏𝒅 𝒚 = 𝐫 𝐜𝐨𝐬 𝜽         (2. 24) 

 

2.3.3 Mean Direction 

 

When directional data is used in research, the mean of the data set cannot be calculated as 

the arithmetic mean. When the arithmetic mean of 001 and 359 is 180, on the other side, the 

directional mean of the 001° and 359° will be 360°. The basic example explains the 

importance of the mean directional. The same difference between linear and directional data 

can be seen in variance calculations. The directional mean is calculated as a resultant vector 

of the directions that are accepted as directional vectors. If All Pi  are points on a unit circle 

with an angle θ𝑖(𝑖 = 1,2, … , 𝑛), the mean of points  𝜃̅ is the resultant of the unit vectors 

𝑂𝑃1̅̅ ̅̅ ̅, … , 𝑂𝑃𝑛̅̅ ̅̅ ̅. 

 

Where C and S are the components of the resultant vector R, 

 

𝑅 = (∑𝑐𝑜𝑠𝜃𝑖

𝑛

𝑖=1

,∑𝑠𝑖𝑛𝜃𝑖

𝑛

𝑖=1

) = (𝐶, 𝑆) 

 

Subsequently, the mean of the direction is stated as below [27]: 

 

 

  

θ̅ =

{
 
 
 

 
 
 𝑎𝑟𝑐𝑡𝑎𝑛 (

𝑆
𝐶) ,                         𝑖𝑓  𝑆 ≥ 0, 𝐶 > 0

   𝜋 2⁄ ,                                      𝑖𝑓  𝐶 = 0, 𝑆 > 0

𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑆
𝐶) +  𝜋 , 𝑖𝑓 𝐶 < 0

𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑆
𝐶) +  2𝜋 ,              𝑖𝑓 𝐶 ≥ 0, 𝑆 < 0

𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑,                           𝑖𝑓 𝐶 = 0, 𝑆 = 0

 

 

The mod and the median of the directional data can be calculated like the method that is used 

to calculate the directional mean, nevertheless, the terms are not detailed in the study. 

 

2.3.4 Circular Regression Types 
 

Although regression analysis is a frequently used method in statistics, the usage percent of 

it with circular data is quite low. Studies about circular regression have begun approximately 

50 years ago [31].  

 (2. 25) 
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A regression method is named circular regression whether it has a circular variable as a 

dependent or independent variable in a regression model. Comprehensively, in a circular 

regression when there is/are circular independent variable(s), a linear or circular dependent 

variable can exist or when there is a circular dependent variable, just linear independent 

variable(s) can exist. The directional descriptive statistics are practiced in circular regression. 

The methods and approaches can change according to circular variables used as dependent 

or independent variables. Three Circular Regression Types are detailed below [32], [33]: 

 

1. Circular – Linear Regression: When one of the independent variables in the model is a 

circular variable, if the dependent variable is linear, the model is called the Circular-Linear 

Regression model. 

2. Linear – Circular Regression: When independent variable(s) is/are linear variable(s) if the 

dependent variable is a circular variable, the model is named Linear – Circular Regression 

model. 

3. Circular – Circular Regression: When both independent and dependent variables are 

circular variables, the model is called the Circular – Circular Regression Model. 

The Linear – Circular Regression and Circular- Circular Regression models are not dilated 

since the models are not used in the study. 

2.3.4.1 Circular-Linear Regression 
 

When Y is the linear dependent, the a1 is the circular independent variable with a single 

period. The simple regression model for these variables is: 

 

𝒚 = 𝑨𝟎 + 𝑨𝟏𝒄𝒐𝒔𝝎(𝒂𝟏 − 𝒂𝟎)     (2. 26) 

 

The above model has T period, A0  is named the mean level, A1 is named amplitude, ω is 

named the angular frequency with 2π / 𝑇 , and lastly, a0 is named acrophase that points to 

the highest peak and is symbolized with φ. So, the model can be written as below [30]: 

  

 𝑾𝒉𝒆𝒏 𝛗 = 𝛚𝒂𝟎, 𝒀 = 𝑨𝟎 + 𝑨𝟏𝒄𝒐𝒔(𝛚𝒂 − 𝛗)        (2. 27) 

After determination of the constants via the Least Square Method, the model in Equation 

2.28 can be generalized as in Equation 2.29 : 
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𝒚 = 𝑨𝟎 + 𝑨𝟏𝒄𝒐𝒔(𝛚𝒂 − 𝛗) + 𝑨𝟐𝒄𝒐𝒔(𝟐𝛚𝒂 − 𝛗𝟐) + ⋯+ 𝑨𝒌𝒄𝒐𝒔(𝒌𝛚𝒂 − 𝛗𝒌)         (2. 28) 

 

Researchers report the distortion of the oscillation, in other words, the sinusoidal curve of 

the variable does not follow peak and trough points with the same period and skewed 

oscillations occur [30], [34]. To solve the problem, different methods or terms are generated 

to avoid the mentioned deviations.  

 

Johnson and Wehrly developed a new approach for angular linear distributions and the 

regression models were relatively generated with these distributions in 1978 [23]. They tried 

to forecast the Air Quality Index as the dependent variable with the temperature that is a 

linear independent variable and wind direction that is an angular variable. When x1 is the air 

pollution index, x2 is the temperature and θ is the wind direction, the model offered by 

Johnson and Wehrly is seen below:  

 𝒙𝟏̂ = 𝑨𝟎 + 𝑨𝟏𝒙𝟐 + 𝑨𝟑𝒄𝒐𝒔𝜽 + 𝑨𝟒𝒔𝒊𝒏𝜽         (2. 29)
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 FUZZY SET THEORY 

 

Firstly, propounded by Zadeh in 1965 [35], the fuzzy set theory is an approximation logic 

system that uses imprecise or linguistic data or human experiences to compute based on 

mathematical models, in other words, it allows humanity to utilize fuzzy data for decision- 

making [36].  

 

Aristotle's logic uses only “0” and only”1” to explain events, it means an event is white or 

black; the event exists or not exists. Contrarily fuzzy logic uses a membership degree which 

is a value between “0” and “1” [37]. 

 

According to Zadeh, fuzzy logic is calculating with words instead of numbers [38]. For 

instance, the word “ice cream” represents different tastes and preferences to anyone. Indeed, 

an expression of a human reflects his or her thoughts which have uncertainty. The Fuzzy 

logic skillfully breaks the classical two-valued (0 or 1) approach and gives a capability to a 

thought, an event, or a variable to be denoted by an infinite number of values  

between 0 and 1. 

 

Fuzzy logic is a revolution against classical logic. It also led to new applications not only 

in mathematical science but also in engineering. In the first decade after fuzzy logic was 

proposed, some researchers approached the theory with suspicion. Due to not having an 

application, the theory stayed as a philosophical debate among scientists [39]. However, the 

fuzzy set theory and fuzzy systems took the attention of academia, afterward, Mamdani and 

Assilian applied the fuzzy set theory to a steam engine controller in 1975 [40]. Following 

years, the fuzzy set theory was practiced in hoovers, washing machines, elevators, metro 

systems, business administrations, and many fields in the economy and engineering, etc. So 

far, the fuzzy set theory has continued to boost its popularity. 
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3.1 Literature Review 

The fuzzy set theory gained popularity in Japan in the 1970s, after Zadeh's proposal for 

fuzzy set theory. And many new objections have been proposed [41].  

Bezdek developed the fuzzy clustering method to cluster and analyze plants in a well-known 

botanical dataset. It is another example of the implementation of the fuzzy set theory to a 

crisp method [42]. 

Dubois and Prade presented information about algebraic operations on fuzzy numbers and 

examined L-R type fuzzy numbers [43] Lowen studied convex fuzzy sets and put forwards 

the preliminaries of the convexity of the fuzzy sets [44]. 

Pedrycz worked on fuzzy logic operators to be used in fuzzy membership degrees, 

essentially incorporating statistical properties [45]. 

Some issues related to choosing suitable operators for combination and intersection of fuzzy 

subsets have been criticized by Yager and new operator suggestions were made on the topic 

[46]. 

Laarhoven and  Pedrycz [47]  implemented fuzzy triangular numbers to one of the most 

popular decision-making methods that are Saaty’s [48] Analytic Hierarchy Process. Buckley 

[49] developed the Fuzzy AHP method by using trapezoidal fuzzy numbers. 

Pehlivan and Apaydın analyzed the fuzzy linear programming problem using the simplex 

method and artificial neural networks approach in their studies and compared the results. As 

a result of the research, they reported that the artificial neural network approach was quite 

useful and could be an alternative to the other method examined [50]. 

Karwowski and Evans emphasized that the application of fuzzy set theory to production 

management whose sub-areas are new product advancement, facility location, production 

planning, inventory and stock controlling , cost-benefit analysis would produce effective 

results [51]. Many studies are contributed to the production management area and over two 

hundred studies between 1994-2001 are reviewed detailly by Bansal [52]. 



20 

 

Bellman and Zadeh firstly dealt with the implementation of the fuzzy set to decision-making 

methods [53]. After, Baldwin and Guild applied fuzzy set theory to decision-making 

methods by comparing fuzzy sets in the space [54]. Since fuzzy multi-criteria decision-

making methods have emerged, many contributions are made to the issue. The last two 

decades' studies are examined systematically by Mardani et al. [55]. Also, Kahraman et al. 

comprehensively reviewed the studies until 2015 [56]. 

Mamdani and Assilian developed the first fuzzy logic controller and put the fuzzy set theory 

into practice in 1975 [40]. Hereby, the Fuzzy Inference System established and began to use 

in the industry. After, Takagi-Sugeno-Kang [57] proposed a system with fuzzy inputs and a 

crisp output (linear combination of inputs) to be computationally efficient and suitable for 

working with optimization and adaptive techniques different from the method of Mamdani. 

Examples of the application of fuzzy logic in the industry are the control of a cement kiln 

created by Smith & Co. in Denmark in 1980 and the design of the Sendai metro by the 

Hitachi company in Japan in 1987. Later, a Japanese government-industry joint activity, 

LIFE (Laboratory for Industrial Fuzzy Engineering) was established as a consortium of 

about 50 members [58]. After the industrial applications of the fuzzy set theory were proven, 

the usage and trial of the fuzzy set-in sub-areas of the industry have begun to attract the 

attention of industrial companies. Although just fifty years passed after the fuzzy set theory 

is propounded, the theory is developed quite speedily and implemented to not only social 

sciences but also engineering and industry. Consequently, it is significant to prove that the 

importance of the theory and application of fuzzy logic will continue to appear in every area 

of human life due to existing vagueness in every part of human life [59]. 

3.2 Fuzzy Sets 

 

The fuzzy set is generally described with its membership functions which sign different 

belonging degrees to a set or a phenomenon. In classic set theory, a candidate for 

membership is either an element of a set or not. It can be stated that if the candidate is an 

element of the set, so it is 1 or if the candidate is not a member of the set so it is 0, like in 

Aristo Logic. However, the fuzzy set theory transforms the certain membership term in 

classical logic into a generalized partial membership concept.  
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An element of a fuzzy set could be a member of another fuzzy set. Consequently, the fuzzy 

sets are vague and have imprecise boundaries comparing to classic sets [60], [61]. For 

instance, when it is considered that X is possible temperature value in Celsius; if it is used 

to define the boiling temperature of the water, it is a crisp or classic set: 

A(x)= Boiling Temperature of water (Precise definition: a classic set),  

                   𝑨 = {𝒙 ∈ 𝑿 | 𝒙 ≥ 𝟏𝟎𝟎  },      (3.1) 

 Or detailed formulation is: 

 μA(x)= {
1 for x≥100
0 for x<100

 , 𝒙 ∈ 𝑿        (3.2) 

 on the other side, if it is used to define hot temperature, it is absolutely a fuzzy set: 

𝐴̃(x)= Extremely hot temperature (According to whom? a fuzzy set) 

 

  𝐴̃ = {(𝑥,  𝜇𝐴̃(𝑥))| 𝑥𝜖 𝑋,   𝜇𝐴̃(𝑥)𝜖[0,1]      (3.3) 

 

3.2.1 Basic Fuzzy Set Operations 

 
 

Basic fuzzy set operations are intersection, union, complementation, and inclusion similar 

to the classical set operations, however, the properties of the fuzzy sets like membership 

functions, etc. must primarily be applied to the classic set operation and all fuzzy sets must 

be in the same universe as the first axiom in the operations [61]. Owing to different 

applications of the feature of the fuzzy set theory; Sugeno [62], Yager [63], Dubois, and 

Prade [64], [65] enhanced their set approaches in the fuzzy set operations. Zadeh’s standard 

operations are described below, but the researchers who want detailed knowledge about 

fuzzy set operations can see the approaches mentioned above. 

 

Intersection 

 

Fuzzy sets 𝐀̃ and 𝐁̃ are a subset of X and their membership functions are 𝝁𝑨̃(𝒙) and 𝝁𝑩̃(𝒙) 

respectively, the membership function of the intersection of the two fuzzy sets can be stated 

as in Equation 3.4:  
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 𝝁(𝑨̃∩𝑩̃)(𝒙) = 𝒎𝒊𝒏[𝝁𝑨̃(𝒙), 𝝁𝑩̃(𝒙)]∀𝒙 ∈ 𝑿      (3.4) 

 

 
 

Figure 3. 1 Intersection of the fuzzy sets. 

 

Union  

Fuzzy sets 𝑨̃ and 𝑩̃ are a subset of X and their membership functions are 𝝁𝑨̃(𝒙) and 𝝁𝑩̃(𝒙) 

respectively. The union operation is also referred to as MAX-union or standard fuzzy union. 

The membership function of the union of the two fuzzy sets can be stated as in  

Equation 3.5:  

 

 𝜇(𝐴̃∪𝐵̃)(𝑥) = 𝑚𝑎𝑥[𝜇𝐴̃(𝑥), 𝜇𝐵̃(𝑥)]∀𝑥 ∈ 𝑋 z

 

Figure 3. 2 Union of the two fuzzy sets. 

𝑩̃ 𝑨̃ 

𝑨̃ ∩ 𝑩̃ 

𝝁=1 

x 

𝑩̃ 𝑨̃ 

𝑨̃ ∪ 𝑩̃ 
𝝁=1 

x 

(3.5) 
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Complementation 

 

The complement of a fuzzy set Ã can be symbolized as  Ac ,  𝐴 or A’, the membership 

functions of fuzzy set Ã  and fuzzy set  Ã𝑐  are 𝜇𝑨̃(𝑥)  and 𝜇𝐴𝑐(𝑥)  correspondingly and 

formulated as: 

 

 𝜇𝐴𝑐(𝑥)=1-𝜇𝐴(𝑥)    ∀𝑥 ∈ 𝑋        (3. 6) 

 

 
Figure 3. 3  Complementation of Fuzzy set 𝐀̃. 

 

The bold membership function is the fuzzy set 𝐀̃ and the other membership function is the 

complementary fuzzy set 𝐀̃𝐜. 

Inclusion (Containment) 

 

If all elements of a fuzzy set 𝐴̃ are also elements of a fuzzy set𝐵̃, the fuzzy set 𝐴̃  is said that 

it is included by the fuzzy set 𝐵̃. In this case, the fuzzy set 𝐴̃ is a subset of the fuzzy set 𝐵̃; 

in other words, the fuzzy set 𝐵̃ is the superset of the fuzzy set 𝐴̃. 

 

𝐴̃ ⊆ 𝐵̃ ⇔ ∀𝑥 ∈ 𝑋[𝑥 ∈ 𝐴̃ ⇒ 𝑥 ∈ 𝐵̃] or 𝐵̃ ⊇ 𝐴̃     (3.7) 

 
𝐴̃ ⊆ 𝐵̃ ⇔ 𝜇𝐴(𝑥) ≤ 𝜇𝐵(𝑥) ∀𝑥 ∈ 𝑋       (3.8) 

 
 

The summary of basic fuzzy set operations is shown in Table 3.1 below [66]:  

 

 

 

1 

𝝁 

=

x

=

𝐀̃ 

𝐀̃𝒄 
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Table 3.1 Summary of the basic fuzzy set operations. 

Description Notation Definition 

A is a subset of B 𝐵̃ ⊇ 𝐴̃ μÃ(x) ≤ μB̃(x) 
A is equal to B A =̃  B̃  μÃ(x) = μB̃(x) 

Complement of A Ac,  A or A’ μAc(x)=1-μA(x) 

A intersect B Ã ∩ B̃ 
 

A union B Ã ∪ B̃ 

 
 

 

 

3.3 Extension Principle   

   

The extension principle permits general mathematical notions and theories used in fuzzy 

situations. The operation was firstly offered by Zadeh [67], and also known as Zadeh’s 

Extension Principle. The main goal of the principle is to reach the reflection of a fuzzy set 𝐴̃ 

of the universe X, after a function (f: X→Y) applied to the fuzzy set  Ã. The fuzzy set  Ã is 

defined in X and the fuzzy set  B̃ is defined in Y, mathematical presentation of the extension 

principle is as in Equations 3.9 - 3.12 [68]: 

 

              Ã  = {(x, μÃ(x))|xϵ X} ;  B̃  = {(y, μB(y))|y = f(x1, x2, … . , xn) }        (3.9) 

 

B̃ = f(A1, A2, … , An) 
 

                 𝜇𝐵̃(𝑦) = {
sup 𝜇𝐴(𝑥), 𝑖𝑓 𝑓

−1(𝑦) ≠ ∅;𝑤ℎ𝑒𝑛 𝑥 ∈  𝑓−1(𝑦)
 

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

      (3.10) 

    

 

B̃ = ∫ min ( (μA1(x1), μA2(x2), μA3(x3), … , μAn(xn)/f(x1, x2, x3))
 

X=X1×X2×…×Xn

 

 

 

The detailed definition is: 

 

  

           Ã =
μA(x1)

x1
+
μA(x2)

x2
+⋯+

μA(xn)

xn
=∑

μA(xi)

xi

∞

i=1

 

     (3.) 

 

 

           B̃ = f (∑
μA(xi)

xi

∞

i=1

) =∑
μA(xi)

f(xi)

∞

i=1

 

( ) min ( ), ( )
BAA B

x x x x X 


 =   

( ) max ( ), ( )
BAA B

x x x x X 


 =   

(3.11) 

(3.) 

(3.12) 
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3.4 Membership Functions  

 

In fuzzy logic, every input has a belonging degree to a fuzzy function. The belonging degree 

is identified with a membership function. The membership function has a value between [0, 

1] and is indicated by µ(x). For instance, 𝜇𝐴 ̃(x) = 0.7 means that membership degree of 

element x to fuzzy set  𝐴̃ is 0.7, in other words, x is a member of the fuzzy set  𝐴̃ with a 70 

% possibility. According to the statement, an element may not be completely the member 

of a fuzzy set [60].  

3.4.1 Basic Definitions of Fuzzy Membership Functions 

 

When objects signified by x generate the collection of X, a fuzzy set 𝐴̃ can be defined as: 

 𝐴̃  = {(x, 𝝁𝑨̃(𝑥))|𝑥𝜖 𝑋} 
 

Fuzzy membership functions also have parts; the subset which involves all interval of a 

fuzzy set is called the Support. The support of the fuzzy set  𝐴̃, S (𝐴̃), is the crisp set of all 

x 𝜖 X, when 𝜇𝐴̃(𝑥)>0. Similarly, more than one value in the fuzzy set 𝐴̃ can be equal to 1. 

These values are doubtlessly subset of fuzzy set Ã. These values are generally accepted to 

stay at the center area of the fuzzy set Ã. Thus, the subsets whose membership degrees are 

equal to 1 named the Core of the fuzzy setÃ. Correspondingly, other subsets not mentioned 

which are not equal to 0 and 1 called the boundary of fuzzy set Ã. All parts of the fuzzy set 

𝐴̃ can be seen in Figure 3.4.  

 

Figure 3. 4 Parts of a Membership Function. 

 

Core 

Boundary Boundary 

Support 

𝝁𝑨̃
=

x 
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3.4.2 Convexity of Fuzzy Sets 
 

Convexity is also an important attribute for Fuzzy Membership Functions. A fuzzy set𝐴̃ is 

convex if: 

𝝁𝑨̃(𝜆𝑥1 + (1 − 𝜆)𝑥2)  ≥ min{𝝁𝑨̃(𝑥1), 𝝁𝑨̃(𝑥2)} , 𝑥1 , 𝑥2  ∈ 𝑋, 𝜆 ∈ [0,1]   (3.13) 

 

However, the property above is the conclusion of inequalities that are found by basic set 

operations [35]. For fuzzy sets, A, B, ⋀   the basic concept of convex combination is:  

 

A ∩ B ⊂ (A, B;  ⋀   ) ⊂ A U B for all ⋀  .                             (3.14) 

 

 

Figure 3. 5 Convex (a) and Nonconvex (b) Fuzzy Sets. 

In Figure 3.5,  when the shape at left is an example of a convex fuzzy set, the other shape 

symbolizes a nonconvex fuzzy set. 

3.4.3 Normality of Fuzzy Sets 

 

In this case, there is at least one point that equals one; the fuzzy set  Ã is called Normal, 

otherwise the fuzzy set  Ã is a non-normal fuzzy set. In other words, if the fuzzy set  Ã is 

normal, the maximum value of  μÃ(x) that is occasionally stated as the height of the fuzzy 

membership function must equal 1 [39]. The examples of Normal and Non-normal Fuzzy 

Sets are depicted in Figure 3.6. 

𝝁𝑨̃ 

1 

𝑎 b 

𝑥 



27 

 

 

Figure 3. 6  Normal (a) and non-normal (b) Fuzzy Sets. 

 

3.5 Types of Fuzzy Membership Functions 

 

There is various type of membership function has different shapes. In literature, mostly used 

membership functions are Triangular, Trapezoidal, Gaussian, Sigmoidal membership 

functions [69]. 

3.5.1 Triangular Membership Functions 

 

The triangular membership function is defined by three parameters a, b, c which draw the 

borders of a fuzzy set. 

 

𝝁𝑨̃(𝒙; 𝒂, 𝒃, 𝒄) =

{
 
 

 
 

 

    
(𝒙−𝒂)

𝒃−𝒂
   𝒊𝒇 𝒂 ≤ 𝒙 ≤ 𝒃

(𝒄−𝒙)

𝒄−𝒃
   𝒊𝒇 𝒃 ≤ 𝒙 ≤ 𝒄

𝟎 𝒊𝒇 𝒙 > 𝒄 𝒐𝒓 𝒙 < 𝒂

                      (3.15) 

𝝁𝑨̃ 

1 

𝑎 b 

𝑥 

μÃ(x) < 1 
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Figure 3. 7  Triangular Fuzzy Numbers 

 

3.5.2 Trapezoidal membership function 

 

The trapezoidal membership function is expressed by four parameters a, b, c, and d, like the 

triangular fuzzy number in a fuzzy set.                                    

  𝜇𝐴̃(𝑥; 𝑎, 𝑏, 𝑐, 𝑑) =

{
 
 

 
 

 

    
(𝑥−𝑎)

𝑏−𝑎
   𝑖𝑓 𝑎 ≤ 𝑥 ≤ 𝑏

1  𝑖𝑓 𝑏 ≤ 𝑥 ≤ 𝑐
(𝑐−𝑥)

𝑐−𝑏
   𝑖𝑓 𝑐 ≤ 𝑥 ≤ 𝑑

 0 𝑖𝑓 𝑥 > 𝑑 𝑜𝑟 𝑥 < 𝑎

    (3.16) 

 

Figure 3. 8  Trapezoidal Fuzzy Numbers. 

 µ(x) 

 1 

 a  b  c  x 

 µ(x) 

 1 

 a  b  c  d 
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3.5.3 Gaussian Membership Function 

 

Another fuzzy membership function mentioned before is the Gaussian Membership 

Function which is generally used to signify impreciseness and fuzzy occurrences. Gaussian 

Membership Function is defined with c which represents the center and σ which represents 

the width of fuzzy set 𝐴̃  [70]. 

 𝜇𝐴̃(𝑥; 𝑐, 𝜎 ) = 𝑒𝑥𝑝 (−
(𝑐𝑖−𝑥)

2

2𝜎2𝑖
) 

 

 

Figure 3. 9  Gaussian Fuzzy Membership Function. 

3.5.4 Sigmoidal Membership Function 

 

One of the other frequently used membership functions is the sigmoidal membership 

function which has two parameters. The first parameter ‘c’ the crossover of the S-shaped 

curve and the second parameter ‘a’ is the value of the slope of the S wave. A characteristic 

of the Sigmoidal MF is having open right and left sides which enable researchers to describe 

exceptionally large or negative fuzzy conceptions [71]. 

(3.17) 
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Figure 3. 10  Sigmoidal Fuzzy Membership Functions. 

 

The mathematical formula of Sigmoidal Membership Function is described below: 

 

 𝜇𝐴̃(𝑥; 𝑎, 𝑐 ) = (
1

1+ 𝑒−𝑎(𝑥−𝑐)
) 

 

3.6 A 𝜶-Levels Concept in Fuzzy Sets 

 

Due to avoid complex calculations with the fuzzy sets, producing less complex arithmetic 

operations, and using as a defuzzification or ranking method, the α-level concept is 

generated by leading scientists. The concept is also used to produce a subset of the fuzzy set 

𝑨̃ whose membership degree is greater than the given α. In other words, the subset is a crisp 

interval and continuous function [67]. The fuzzy set 𝑨̃  is in a set of real numbers and its α-

cut is denoted by  𝑨𝒂̃. Then,  𝐀𝐚̃ = 𝛍𝐀̃
−𝟏[(𝐚, 𝟏)], is a crisp set and written as: 

c a a 

 µ(x) 

(3.18) 
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 𝑨𝒂 = {𝒙 ∈ 𝓡|𝑨(𝒙) ≥ 𝒂}                     (3.19) 

The strong α-level which is denoted by 𝑨𝒂+  is also crisp set and written as: 

 𝑨𝒂+ = {𝒙 ∈ 𝓡|𝑨(𝒙) > 𝒂}        (3.20) 

 

Figure 3. 11  α-levels in a Fuzzy Number. 

 

According to figure 3.11, α-level for α1 is 𝝁−𝟏
𝑨 
(𝒂𝟏) = [𝒂, 𝒆],  

strong α-level for α1 is  𝝁−𝟏
𝑨 
(𝒂+𝟏) = [𝒂, 𝒅] and α-level for α2   is  𝝁−𝟏

𝑨 
(𝒂𝟐) = [𝒃, 𝒄]. 

 

3.7 Fuzzy Arithmetical Operations 
 

The fuzzy set operators mentioned in the previous section are insufficient for calculations 

with fuzzy numbers. When the fuzzy numbers are in an equation, the arithmetical operations 

that are addition, subtraction, multiplication, and division should be activated for solving 

the problem. Since the equations that include fuzzy numbers are important components of 

mathematical programming and the other scientific areas for modeling real-life problems. 

Like in basic fuzzy set operations, there are different approaches for fuzzy arithmetical 

operations. However, α-cut and max-min convolution methods are defined in the next 

section [72]. 

 

 µ(x) 

 1 

 a  b  d  x 

𝑎1  

𝑎2  

 c  e 
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3.7.1 Addition of Fuzzy Numbers 

 

If 𝐀̃ and  𝐁̃ are fuzzy numbers, the addition of the two fuzzy numbers can be calculated by 

two methods as mentioned: 

 I. α-level cut Method: The method uses the upper and lower values that are 

generated after the application of the α-level cut method to the fuzzy numbers. The fuzzy 

numbers’ lower and upper values are  𝐀̃𝒂 = [ 𝑨𝒂
𝑳 , 𝑨𝒂

𝑼 ] and  𝐁̃𝒂 = [ 𝑩𝒂
𝑳 , 𝑩𝒂

𝑼] . If the fuzzy 

number 𝑪̃ is the summation of the two fuzzy number, the fuzzy number 𝑪̃: 

 

 𝑪𝒂̃ = 𝐀̃𝒂 + 𝐁̃𝒂=[𝑨𝒂
𝑳 + 𝑩𝒂

𝑳 , 𝑨𝒂
𝑼 + 𝑩𝒂

𝑼] for every α 𝝐 [0,1]  (3.21)  

 

As a result, a lower value of 𝑪̃ is visibly summation of the lower values of the fuzzy numbers 

and the upper value of 𝑪̃  is similarly the summation of the fuzzy numbers. 

 

 II. Max-Min Convolution: The method especially uses Zadeh’s extension 

principle. If the fuzzy number 𝑪̃ is the summation of the two fuzzy number, the fuzzy 

number 𝑪̃: 

 

 𝝁𝒄 ̃(𝒛) = 𝒎𝒂𝒙𝒛=𝒙+𝒚
  {𝒎𝒊𝒏[𝝁𝑨̃(𝒙) + 𝝁𝑩̃(𝒚)]}     (3.22)  

 

where x, y, and z 𝛜 R 

 

 
 

Figure 3. 12  Addition of Two Fuzzy Number in Max-Min Convolution Method. 

 

 µ(x,y,z) 

 

1 

  

𝑨̃  𝑩̃ 𝑪 ̃= 𝐀̃ + 𝐁̃  

 x/y/z 
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3.7.2 Subtraction of Fuzzy Numbers 
 

The two methods practiced besides operation are also applied to subtraction operations. The 

defined fuzzy numbers are used similarly: 

 I. α-level cut Method: The fuzzy numbers’ lower and upper values are 

 𝐀̃𝒂 = [ 𝑨𝒂
𝑳 , 𝑨𝒂

𝑼] and 𝐁̃𝒂 = [ 𝑩𝒂
𝑳 , 𝑩𝒂

𝑼] again. If the fuzzy number 𝑪̃ is the subtraction of the 

two fuzzy number, the fuzzy number 𝑪̃: 

 

 𝑪𝒂̃ = 𝐀̃𝒂 − 𝐁̃𝒂=[𝑨𝒂
𝑳 − 𝑩𝒂

𝑼, 𝑨𝒂
𝑼 − 𝑩𝒂

𝑳] for every α 𝝐 [0,1]  (3.23)  

 

 II. Max-Min Convolution: The method uses the extension principle too. If the 

fuzzy number 𝑪̃ is the subtraction of the two fuzzy number, the fuzzy number 𝑪̃: 

 

 𝝁𝒄 ̃(𝒛) = 𝒎𝒂𝒙𝒛=𝒙−𝒚
  {𝒎𝒊𝒏[𝝁𝑨̃(𝒙), 𝝁𝑩̃(𝒚)]}       

 

 𝝁𝒄 ̃(𝒛) = 𝒎𝒂𝒙𝒛=𝒙+𝒚
  {𝒎𝒊𝒏[𝝁𝑨̃(𝒙), 𝝁𝑩̃(−𝒚)]}    (3.24)  

 

        𝝁𝒄 ̃(𝒛) = 𝒎𝒂𝒙𝒛=𝒙+𝒚
  {𝒎𝒊𝒏[𝝁𝑨̃(𝒙), 𝝁−𝑩̃(𝒚)]}  

where x, y, and z 𝛜 R.    

 
Figure 3. 13   Subtraction of Two Fuzzy Number in Max-Min Convolution Method. 

 

 µ(x,y,z) 

  

𝑨̃  𝑩̃ 
𝑪 ̃= 𝐀̃ − 𝐁̃  

 x/y/z 
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3.7.3 Multiplication of Fuzzy Numbers  
 

There is an assumption to avoid sign effect of the operation, it is 𝝁𝑨̃(𝒙) = 𝟎 𝒇𝒐𝒓 𝒙 <

𝟎 𝐚𝐧𝐝  𝝁𝑩̃(𝒚) = 𝟎 𝒇𝒐𝒓 𝒚 < 𝟎 . 

 I. α-level cut Method: The fuzzy numbers’ lower and upper values are 𝐀̃𝒂 =

[ 𝑨𝒂
𝑳 , 𝑨𝒂

𝑼] and 𝐁̃𝒂 = [ 𝑩𝒂
𝑳 , 𝑩𝒂

𝑼] again. The fuzzy number 𝑪̃ is the multiplication of the fuzzy 

number𝑨̃ and the fuzzy number 𝑩̃, the multiplication is: 

 

 𝑪𝒂̃ = 𝐀̃𝒂 ∙ 𝐁̃𝒂=[𝑨𝒂
𝑳 ∙  𝑩𝒂

𝑳 , 𝑨𝒂
𝑼 ∙ 𝑩𝒂

𝑼] for every α 𝝐 [0,1]    (3.25)  

 

       II. Max-Min Convolution: The method also uses the extension principle; 

however, the principle makes the multiplication operation more complicated. So, Kaufmann 

and Gupta suggest a new procedure [73]. The procedure is defined as: 

 

 1. If the fuzzy number is normal, the point where membership value equals 1 is 

found, if else the fuzzy number is not normal, the peak value is found. Next, the peak value 

of the fuzzy number  𝑪̃ is determined after the left and right sides of the fuzzy number are 

defined. 

 2. The left side of the fuzzy number 𝑪̃: 

 

 𝝁𝒄̃(𝒛) = 𝐦𝐚𝐱
𝒙𝒚≤𝒛

   {𝐦𝐢𝐧[𝝁𝑨̃(𝒙), 𝝁𝑩̃(𝒚)]}     (3.26)  

 

 3. The right side of the fuzzy number 𝑪̃: 

 

 𝝁𝒄̃(𝒛) = 𝐦𝐚𝐱
𝒙𝒚≥𝒛

   {𝐦𝐢𝐧[𝝁𝑨̃(𝒙), 𝝁𝑩̃(𝒚)]}       (3.27)  

 

3.7.4 Division of Fuzzy Numbers 
 

The same approaches in multiplication operation can be applied to division operation. 

Therefore, the division operation is defined as follows: 

 I. α-level cut Method: The fuzzy number C̃ is the multiplication of the fuzzy 

numbers and the result is: 
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 𝐶𝑎̃ = Ã𝑎 ÷ B̃𝑎=[𝐴𝑎
𝐿 ÷ 𝐵𝑎

𝑈, 𝐴𝑎
𝑈 ÷ 𝐵𝑎

𝐿]   for every α 𝜖 [0,1]   (3.28) 

 

 II. Max-Min Convolution: The procedure used in multiplication operation is 

also applied to division operation. Firstly, the peak value of the fuzzy number  𝐶̃  is 

determined and the left side of the division is defined as: 

 

 𝜇𝑐̃(𝑧) = max
𝑥

𝑦
≤𝑧
   {min[𝜇𝐴̃(𝑥), 𝜇𝐵̃(𝑦)]}     (3.29)  

 𝜇𝑐̃(𝑧) = max
𝑥𝑦≤𝑧

   {min [𝜇𝐴̃(𝑥), 𝜇𝐵̃ (
1

𝑦
)]}     (3.30)  

 

The right side of the fuzzy number  𝐶̃ is calculated as: 

 

 𝜇𝑐̃(𝑧) = max
𝑥

𝑦
≥𝑧
   {min[𝜇𝐴̃(𝑥), 𝜇𝐵̃(𝑦)]}     (3.31)  

 𝜇𝑐̃(𝑧) = max
𝑥𝑦≥𝑧

   {min [𝜇𝐴̃(𝑥), 𝜇𝐵̃ (
1

𝑦
)]}      (3.32)  

 

The division operation can be obtained by continuing as the multiplication operation from 

these equations. 

3.8 L-R Representation of Fuzzy Set 

 

Arithmetic calculations between fuzzy numbers cannot be easy as expected. Thus, a new 

and easier definition not only for academicians and but also for computers is needed. 

Moreover, Due to reach the limit of effectiveness when a vague real-world model is 

explained by computers, fuzzy numbers are preferred to depict with its left and right 

parameters. The main theme in the L-R form of fuzzy number is first determining the center 

of the fuzzy number after diving it into two pieces called to left and right sides [69]. 

 

L-R representation of the fuzzy number M is shown in formula 3.5 below. 

 

 𝜇𝑀(𝑥) = {
𝐿 (

𝑚−𝑥

𝑎
) , 𝑎 > 0, 𝑥 ≤ 𝑚;

𝑅 (
𝑥−𝑚

𝛽
) , 𝛽 > 0, 𝑥 ≥ 𝑚

     (3. 33) 
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In formula 3.7, L (for Left) and R (for Right) are the reference functions of the fuzzy 

number 𝑀̃. α and β are scalar that called left and right spread of the fuzzy number 𝑀̃ 

respectively and they are bigger than zero, also m denotes the mean of the fuzzy number 

𝑀̃. When the spreads (α and β) of the fuzzy number 𝑀̃are equal to zero, which means that 

M is a crisp number. One of the most important advantages of the L-R representation of a 

fuzzy membership function is to define the left and right parts of the function individually 

[74]. In other words, two distinct functions can be combined in a fuzzy membership 

function. The other advantage of the representation is straightforward computational 

calculations in a complex model, in case that fuzzy membership functions are symmetric. 

 

Mathematical notation of the fuzzy number 𝑀̃ is: 

 

  𝑀̃ = (𝑚, 𝑎, 𝛽)𝐿𝑅         (3.34) 

 

An illustration of the fuzzy number 𝑀̃ is given in figure 3.14 below.  

 

Figure 3. 14 L-R Representation of Fuzzy Sets 

 

 

 µ(x) 

 1 

 a  m  β 

 x 



37 

 

 FUZZY REGRESSION 

 

After the dissertation and improvement of the fuzzy set theory approach by Zadeh [35], it 

allowed researchers to assess vague variables as numeric variables. In 1982, Tanaka et al. 

developed the Linear Regression Analysis with a fuzzy model by taking advantage of the 

fuzzy set theory [75]. Every qualitative variable or observation is injected into the model 

with its fuzzy membership degrees. 

 

Although the crisp regression models are quite prevailing to detect the relationship between 

variables, and huge varieties of crisp models are generated by the researcher; the models 

cannot determine the relationship between variables as expected due to some reasons and 

obscures. The situations led researchers to implement fuzzy set theory to crisp regression 

models and improve the fuzzy regression models. For instance, if the number of 

observations is considerable small, the type of the distribution of the observations are not 

perceived, the distribution of the errors is not normal, the relationships between dependent 

and independent variables are ambiguous or the structure of the data set is spoiled after 

linearization process; the fuzzy regression methods are advised to use for modeling 

dataset [76]. 

 

The distribution of the error terms is disregarded in fuzzy regression models. When the 

errors in crisp regression models are the result of mismeasurement or selecting not 

appropriate model, the errors in the fuzzy regression model are the result of the fuzziness of 

the model parameters. Thus, the error in the fuzzy regression model is equal to the total 

spread of the fuzzy parameters. When a small number of observations are used in a crisp 

regression model, the distribution of the observation cannot be determined, and the main 

assumptions of the crisp regression cannot be provided. Moreover, the reliability of the 

model with a small number of observations would not be at the desired level.  

 

Lots of researchers have tried to enhance the fuzzy regression model by criticizing the prior 

models. Thus, many fuzzy regression models have been generated. Subsequently, the 

classification of fuzzy regression models has been complicated. Chukhrova and Johannssen 

classified the fuzzy regression models with more updated and inclusive techniques. They 

also added fuzzy application of Machine Learning Techniques, which are currently popular, 

to their classification method, as is seen in Figure 4.1 below [77]:  
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Although Chukhrova and Johannssen’s study is contemporary and comprehensive, it gives 

general facts about fuzzy regression models to researchers. 

 

As explained above, the classification concept is applied just for fuzzy linear regression 

models, so the generated scheme is shown in Figure 4.2. 

 

 

 

 

 

Figure 4. 1   Detailed Classification of Fuzzy Regression Method  [77]. 
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It is also possible to classify the fuzzy regression models according to the type of 

independent or dependent variables. So, there are three types of fuzzy regression models 

with diverse types of input and output. The classes are: 

• crisp input and crisp output (CICO), 

• crisp input and fuzzy output (CIFO),  

• fuzzy input and fuzzy output (FIFO). 

 

In the study, the classification method according to inputs and outputs is not detailed, 

however, when the fuzzy regression models are mentioned, the input and output details will 

be given in section 6. 

4.1 Literature Review 

 

The first fuzzified linear regression analysis is suggested by Tanaka et al. [75]. It is assumed 

that the input and output variables are crisp numbers, but the system parameters are fuzzy, 

and the objective function is based on the minimization of the spread of the predicted value 

of the dependent variable.  

Since the appearance of fuzzy regression, scientists have made many contributions to the 

method. Thus, fuzzy regression has been developed rapidly until today. Tanaka [78] 

proposed the possibilistic linear model for processing fuzzy data. Diamond [79] developed 

Figure 4. 2 Classification of the FLR Models. 

FUZZY LINEAR REGRESSION 

Possibilistic Regression  Fuzzy Least Square Method 

Linear Programming  

 Goal Programming 

  Interval Regression
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the fuzzy least-squares method in which the independent variable is definite, and the 

dependent variable is a triangular fuzzy number.  

 

Moskowitz and Kim [80] determined the relationship between the spreads of fuzzy 

parameters, the forms of membership functions, and the h value in fuzzy linear regression. 

 

Peters [81] introduced a new linear fuzzy regression model to address the shortcomings of 

the method proposed by Tanaka et al [75]. The method is referred to as interval regression 

analysis in the literature. 

 

Kim et al. [82] and Kim and Chen [83] compared fuzzy linear regression with crisp  

non-parametric regression methods and reported that fuzzy regression analysis could be 

preferred to classical regression analysis when working with a small data set in their study. 

 

Ishibuchi and Nii [84] brought a new perspective to fuzzy regression analysis by using 

asymmetric triangular and trapezoidal fuzzy coefficients in their studies. 

 

Chang [85] proposed a hybrid method using weighted fuzzy arithmetic based on the fuzzy 

least-squares method that is capable of adapting to diverse types of data. 

 

D'urso and Gastaldi [86] worked on a linear sub-model called "Doubly linear adaptive fuzzy 

regression model" based on the fuzzy regression model. They expressed the interaction 

between center and fuzzy spreads, also discussed the model with numerical estimates. 

 

Because linear programming and least squares-based approaches are overly sensitive to 

outlines in fuzzy regression, more robust methods are needed. The least absolute deviation 

method based on the medians has been developed by Dielman [87]. The pioneers of this 

method are Chang and Lee [88] and Kim et al. [89]. 

 

Lee and Chen [90] presented a generalized fuzzy linear regression model, and they proposed 

a nonlinear programming model to determine fuzzy parameters. 

 

Nasrabadi et al. criticized that fuzzy regression models are sensitive to outliers; it is not 

effective to predict parameters of the whole dataset. They also mentioned that the predicted 
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values are distributed more widely when the dataset has a large number of observations in 

the model. In order to eliminate these deficiencies, a multi-objective fuzzy linear regression 

model has been developed [91]. 

 

Watada was the first to suggest methods that combined time series analysis with fuzzy 

regression analysis. Watada used the intersection concept of fuzzy numbers in the fuzzy 

time series model in this study [92]. 

 

The chronological development and various usage of the fuzzy regression at similar subjects 

are enlightened so far. Besides the theoretical contributions, there are diverse applications 

of fuzzy regression in primary areas. Examples of the applications can be seen in the 

automotive industry, business administration, economics, engineering, energy research, 

finance, hydrology, information technology, insurance, manufacturing, etc.[77].  

4.2 The Components of The Fuzzy Regression Models  

 

It is assumed that the difference between observed and predicted values in classical 

regression analysis is due to observational errors or incorrect selection of the model. In fuzzy 

regression, it is considered that the difference between the observed and predicted values 

naturally arises from the uncertainty or fuzziness of the system structure. The output variable 

that is defined for the specified inputs in the system structure has a possible value within a 

specified range and the output can take any value within this range. Fuzzy functions are 

expressed with the fuzzy coefficients in fuzzy regression models [93].  

Tanaka’s general fuzzy linear regression method is shown below to explain the main 

components of the model [75]: 

 

𝑌𝑖̃ = 𝐴𝑜̃ + 𝐴1̃𝑋1 +⋯+ 𝐴𝑝̃𝑋𝑖𝑝     (4. 1) 

      

In Equation 4.1, the parameter  𝐴𝑗̃  is a fuzzy number and j signifies the parameter that 

belongs to which independent variable. The membership functions which belong to 

independent variables can be generated in different forms. In the condition of preferring 

symmetric triangular fuzzy numbers for the membership functions, the model parameters 

would be 𝐴𝑗̃ = (𝑎𝑗 , 𝑐𝑗), 𝑗 = 1,… , 𝑝; 𝑎 = (𝑎0, 𝑎1, … , 𝑎𝑝) 𝑎𝑛𝑑 𝑐 = (𝑐0, 𝑐1, … , 𝑐𝑝) . Here, 𝑎𝑗 

designates the center of the fuzzy number and 𝑐𝑗 designates left and right spread from the 

center. So, the model above would be transformed to the equation below: 
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  𝒀𝒊̃ = (𝒂𝟎, 𝒄𝟎) + (𝒂𝟏, 𝒄𝟏)𝑿𝟏 +⋯+ (𝒂𝒑, 𝒄𝒑)𝑿𝒊𝒑    (4. 2) 

 

Moreover, the membership function of the expected values of the 𝑌𝑗̃ is defined as below with 

help of the Zadeh’s extension principle [94]: 

   

𝜇 (𝑌𝑗) (𝑦) =

{
 
 

 
 1 −

|𝑦𝑗 − ∑ 𝑎𝑗𝑥𝑗
𝑝
𝑗=1 |

∑ 𝑐𝑗
𝑝
𝑗1

|𝑥𝑗|

1, 𝑥 = 0, 𝑦 = 0
0, 𝑥 = 0, 𝑦 ≠ 0

 

  

Under circumstances 𝑌𝑗̃  is a symmetric triangular fuzzy number, it can be defined with 

center y and spread 𝑒𝑗, the membership function is: 

 

                                  𝜇 (𝑌𝑗) (𝑦) = 1 −
|𝑦𝑗 − 𝑦|

𝑒𝑗
 

 

4.2.1 “h” Value in The Fuzzy Linear Regression Models 

 

The "ℎ” value refers to the degree of compliance of the fuzzy outcomes that are estimated 

in the fuzzy linear regression analysis according to the observed values of the dependent 

variable, in other words, it defines the desired reliability level by obtaining the width or 

narrowness of the fuzzy spread of parameters in fuzzy regression model [93]. 

 

The error term (ε) is used to define randomness in the classical linear regression model. 

When there is ε value in every observation, contrary to the classic model, the error is 

distributed over all in fuzzy linear regression models’ coefficients. In this case, each 

parameter is estimated at a certain fuzzy level. This fuzzy level is called "h term" or “h 

value” and takes a value in the range between zero and one [0, 1] [80]. 

 

In literature, many researchers have conducted several studies to suggest what h value 

should be. Tanaka and Watada reported that values of ℎ can change according to the size of 

the data set. If the data set is large enough, the ℎ term should be "0.0"; otherwise, researchers 

should increase the h term [95].  

 (4. 3) 

(4. 4) 
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Moskowitz and Kim aimed to determine the relationship between the "h value", the spread 

of fuzzy parameters, and the shape of membership functions in their study [80]. 

 

Figure 4. 3 hi value of 𝒚𝒊
∗  to the observation yi  [80]. 

Ỹ𝑖, the fuzzy estimates are obtained by multiplying each crisp explanatory variables Xj with 

fuzzy Ãj, although the dependent variable 𝑌𝑖 are crisp values. The condition that Ỹi fuzzy 

intervals include observations Yi is provided by the following two constraints: 

 

  

                        ∑𝑎𝑗𝑋𝑖
𝑗

𝑗 + 𝐿−1(ℎ)∑ 𝑗 𝑐𝑗│𝑋𝑖𝑗│ ≥ 𝑦𝑖  

    

  

                         ∑𝑎𝑗𝑋𝑖
𝑗

𝑗  −  𝐿−1(ℎ)∑ 𝑗 𝑐𝑗│𝑋𝑖𝑗│ ≤ 𝑦𝑖  

             

                       i = 1, 2 … ,n      j = 0,1, … ,k     cj  ≥ 0   

“n” is the number of observations for the dependent variable in the model. k is the number 

of explanatory variables. The number of constraints is determined by the number of 

observations, that is, n. Because a range is estimated by approaching Yi from the left and 

right. Therefore, two constraints should be written for each Yi observation value. In this case, 

the constraint number will be two times the observations. The increase or decrease in the 

number of explanatory variables does not change the constraints. 

 

Membership value 

Hnew 
 

Center value  

 (4. 5) 

 (4. 6) 
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4.3 Possibilistic Regression Methods 

 

 

If the parameters of a linear system are explained with possibility distributions, the term  

“possibilistic linear system” is used for such systems. Due to a fuzzy number takes a value 

between zero and one [0,1],  a fuzzy number can signify a possibility distribution. 

Moreover, if a fuzzy number used as a parameter of an independent variable or observed 

value in a regression model, the model called Possibilistic Regression Model [96]. 

4.3.1 Linear Programming Approaches 

 

Tanaka et al. first proposed the Linear programming approach for fuzzy linear regression 

(FLR) [75]. It has fuzzy output, crisp input, and fuzzy parameters. The model is established 

in a mathematical programming problem. This model aims to minimize the total spread of 

fuzzy parameters, depending on the support of the predicted values, and to ensure that the 

spread is created by the observed values for a given h-level. 

As criticized by Redden and Woodall, the approaches are overly sensitive to outliers and 

can generate endless solutions [97]. Also, the distribution of predicted values becomes wider 

as more data is included in the model. 

Based on this criticism, Tanaka [78], Tanaka and Watada [95], and Tanaka et al. [96] tried 

to develop the early fuzzy regression models. 

4.3.1.1 Tanaka’s Method 

 

It is assumed that the spread between the observed and predicted data in fuzzy regression is 

due to the system vagueness or the fuzziness of the regression coefficients. The goal of fuzzy 

regression is to find a suitable regression model that covers all observed fuzzy data. 

Different fuzzy regression models can be produced depending on the use of appropriate 

criteria. The regression coefficients in the method are fuzzy numbers. Since the regression 

coefficients are fuzzy numbers, the predicted dependent variable Y value is also a fuzzy 

number. The fuzzy regression model with independent variables Xi  is summarized below. 

A0 is the fuzzy coefficient and Ai’s are the fuzzy slope coefficients [75]. 

 

 𝑌𝑖̃ = 𝐴𝑜̃ + 𝐴1̃𝑋1 +⋯+ 𝐴𝑝̃𝑋𝑖𝑝 

 

Each fuzzy parameter 𝐴𝑖 = (𝑐𝑖, 𝑠𝑖)  is expressed as symmetric triangular membership 
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functions with central value ci and spread value si.  

  

According to the approach, the fuzzy output 𝑌̃ is predicted when the fuzzy coefficients 

provide minimum spread to output and objective  “h term” is also ensured . “h term” is 

referred to as "degree of fit", which measures the fit between data and the regression model. 

A basic fuzzy linear regression model is written as follows: 

 

 (𝑌)̃ = 𝐴̃0𝑋0 + 𝐴̃1𝑋1 +⋯+ 𝐴𝑁̃𝑋𝑁 = 𝐴̃𝑋 

 

 X = [X0, X1, … , XN]
T   is the vector of the independent variables, 

 

𝐴̃ = [𝐴̃0, 𝐴̃1, … , 𝐴̃N]
T
 is the vector of the parameters that are defined below: 

 

Ã𝑖  parameter is a symmetric triangular fuzzy number whose structure is generated by  

Aj =(cj, sj)  fuzzy coefficient vectors. Here, cj is the central value and sj is the spread value. 

 

 μxj(aj) = {
1 −

|𝑐𝑗−𝑎𝑗
 |

𝑠𝑗
, 𝑐𝑗 − 𝑠𝑗 ≤ 𝑐𝑗 + 𝑠𝑗 , ∀j = 1,2, … , N

0,   𝑜𝑡ℎ𝑒𝑟 𝑐𝑜𝑛𝑑.
   

 

Thus, the fuzzy regression model can be written as below : 

 

𝑌𝑖̃ = (𝑐0, 𝑠0) + (𝑐1, 𝑠1)𝑋1𝑖 + (𝑐2, 𝑠2)𝑋2𝑖 +⋯+ (𝑐𝑁 , 𝑠𝑁)𝑋𝑁𝑖 
   

 

The fuzzy regression model in Equation 4.8 predicts fuzzy outputs and fuzzy parameters 

which signify the fuzzy relationship between crisp input and fuzzy output data. Applying 

the extension principle, the membership function of the fuzzy number Yi is calculated as 

follows: 

 

𝝁(𝒀𝒊) =

{
 
 

 
 𝟏 − 

|𝒀𝒊 − 𝑿
′𝒄|

𝒔′|𝑿|
,                          𝑿 ≠ 𝟎,

𝟏, 𝑿 = 𝟎, 𝒀 ≠ 𝟎, ∀𝒊 = 𝟏, 𝟐,… ,𝑴
 

𝟎,                                               𝑿 = 𝟎, 𝒀 = 𝟎

 

 

 

𝑠𝑡 = (𝑠0, 𝑠1, … , 𝑠𝑁), 𝑐 = (𝑐0, 𝑐1, … , 𝑐𝑁) 

 

 

 (4. 7) 

 (4. 8) 

(4. 9) 
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Every dependent fuzzy variable can be calculated as 𝑌𝑖̃ = (𝑌𝑖
𝐿 , 𝑌𝑖

ℎ=1, 𝑌𝑖
𝑈),  i=1,2,3…, M. 

The lower bound of the fuzzy number 𝑌𝑖̃ is 𝑌𝑖
𝐿 = ∑ (𝑐𝑗 − 𝑠𝑗)𝑋𝑖𝑗

𝑁
𝑗=0  , the center of 𝑌𝑖̃  is                        

𝑌𝑖
ℎ=1 = ∑ (𝑐𝑗)𝑋𝑖𝑗

𝑁
𝑗=0  and lastly the upper bound of  𝑌𝑖̃  is 𝑌𝑖

𝑈 = ∑ (𝑐𝑗 + 𝑠𝑗)𝑋𝑖𝑗
𝑁
𝑗=0  . 

 

To obtain an effective fuzzy regression model by reducing fuzziness, the objective function 

is adapted to minimize the total spread of the fuzzy number Yi ̃ ; 

 

𝑀𝐼𝑁 (𝑠𝑇 |𝑋|) = 𝑀𝐼𝑁∑(𝑠𝑗∑|𝑥𝑖𝑗|

𝑁

𝑗=1

)

𝑁

𝑗=0

 

 

The constraints require that each observation value of Yi be related to Yĩ with a minimum of 

h value. So, μYi ≥ h (i = 1,2, ..., M) 

  

               𝟏 − 
|𝒀𝒊 − 𝑿

′𝒄|

𝒔′|𝑿|
 ≥ 𝒉, ∀𝐢 = 𝟏, 𝟐,… ,𝐌 

       

 
Figure 4. 4 The h-value, Y required to obtain fuzzy data Yi [98]. 

   

To calculate the fuzzy coefficient Ai = (ci, si), the following linear fuzzy regression model 

developed by Tanaka et al. is formulated as follows: 

 

 

(4. 10) 

            

(4. 11) 
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𝑚𝑖𝑛 𝑆 = 𝑛𝑠0 + 𝑠1∑|𝑋𝑖|

𝑛

𝑖=1

 

  

Subject to : 

𝒔𝟎 ≥ 𝟎, 𝒔𝟏 ≥ 𝟎          (4. 13) 

 

∑𝑐𝑗𝑋𝑖𝑗 + (1 − ℎ)∑𝑠𝑗|𝑋𝑖𝑗| ≥ 𝑌𝑖 + (1 − ℎ) 𝑒𝑖          𝑓𝑜𝑟 𝑖 = 1,2. . . , 𝑛

𝐼

𝑗=0

𝐼

𝑗=0

 

 

∑𝑐𝑗𝑋𝑖𝑗 − (1 − ℎ)∑𝑠𝑗|𝑋𝑖𝑗| ≤ 𝑌𝑖  −  (1 − ℎ) 𝑒𝑖                𝑓𝑜𝑟 𝑖 = 1,2. . . , 𝑛

𝐼

𝑗=0

𝐼

𝑗=0

 

 

The objective function in the model minimizes the total spread, in other words, fuzziness. It 

is supposed to determine a value for h term in constraints. By the way, the centers and spread 

values of the fuzzy parameters can be estimated. Tanaka et.al targeted to cover all 

observations in the model and assumed that observations are sure and possible. They do not 

want to label some observations as outliers as in conventional regression models. However, 

they recommended to users to take the advice of experts when users select the data set and 

h value [96]. 

 

 
Figure 4. 5 The estimated view of the Tanaka Method. 

 

The central tendency with bold line at the middle, lower and upper boundary with dashed 

lines are shown in Figure 4.5. As seen in the figure, Tanaka Method prefers to cover all 

observations into spreads that are at the same distance from the central line.  

 

  

y  
  

               X 11 
  
  X 21 

    
  X 31    X 41 

  

X 

 (4. 12) 
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4.3.2 Goal Programming Approaches 
 

When more than one objective function is considered in fuzzy regression models,  the 

approaches are called Goal Programming Approaches (GPA) [77]. In essence, linear 

programming approaches can be accepted as a special case of Goal Programming. Sakawa 

and Yano formerly applied multi-objective programming techniques [99] and used FIFO 

data in FLR models [100]. However, the approach of Sakawa and Yano is criticized that the 

model is quite sensitive to outliers by Redden and Woodall [101]. Nasrabadi et al. suggested 

a GPA (The approaches boundaries are softer than previous models) to smooth over the 

obstacles that are emphasized by Redden and Woodall [91]. Thereafter, they enhanced the 

model by introducing FIFO data [102]. However, the model proposed by Nasrabadi et al. 

[91] would be utilized in the study. 

 

4.3.2.1 Nasrabadi Method 
 

 

When linear programming based FLR methods that minimize the fuzziness are easy for 

programming and calculation, on the other side FLS based methods that use least-squares 

of errors as a constraint reach minimum fuzziness level. The first group of methods have 

wider spreads and sensitive to outliers, FLS methods are quite tough for calculation [94]. 

Nasrabadi et al. formerly purposed a new arithmetic operation on symmetric triangular 

fuzzy numbers to decrease the spreads [103]. Nasrabadi et al. latterly revisited their model 

[103] to overwhelm the deficiencies of fuzzy regression methods by implementing the 

approach of Özelkan and Duckstein into a multi-objective model [91], [104]. The model can 

use fuzzy outputs and fuzzy inputs as in Equation 4.23 below: 

  

 𝒀̃ = 𝑨𝟎̃𝑿𝟎̃ + 𝑨𝟏̃𝑿𝟏̃ +⋯+ 𝑨𝑵̃𝑿𝑵̃      (4. 14) 

                                     

 𝐴𝑗̃ = (𝑐𝑗 , 𝑠𝑗);  are the parameters that centers are symbolized with cj and the radius are 

symbolized with sj. c =(𝑐0, 𝑐1, … , 𝑐𝑛)
𝑡  and s =(s0, s1, … , s)

𝑡   are the vector of the fuzzy 

parameters 𝐴𝑗̃’s. The fuzzy independent variables are defined as 𝑋𝑖𝑗̃ = (𝑥𝑖𝑗 , 𝑟𝑖𝑗) . Here xij 

symbolizes the center and rij symbolizes the radius of the spread of the fuzzy independent 

variable 𝑋̃𝑖𝑗 . The given outputs are 𝑌𝑖𝑗̅̅ ̅̃ = (𝑦𝑖𝑗̅̅ ̅, 𝑒𝑖𝑗̅̅ ̅) and finally, the fuzzy estimated values 

are defined as 𝑌𝑖𝑗̃ = (𝑦𝑖𝑗, 𝑒𝑖𝑗) . Here yij symbolizes the center and eij symbolizes the radius 

of the spread of the fuzzy estimated values 𝑌̃𝑖𝑗. The Nasrabadi method works after solving 
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the quadratic programming problem below [103] : 

𝑀𝑖𝑛:𝐷2(ℎ) =∑(𝑠𝑟𝑖
𝑇 − 𝑒𝑖̅)

2

𝑚

𝑖=1

 

Subject to: 

∑(𝑐𝑗𝑥𝑖𝑗)

𝑛

𝑗=0

+ |(1 − ℎ)|∑(𝑠𝑗𝑟𝑖𝑗)

𝑛

𝑗=0

≥ 𝑦𝑖̅ − |(1 − ℎ)|𝑒𝑖, 

−∑(𝑐𝑗𝑥𝑖𝑗)

𝑛

𝑗=0

+ |(1 − ℎ)|∑(𝑠𝑗𝑟𝑖𝑗)

𝑛

𝑗=0

≥ −𝑦𝑖̅ − |(1 − ℎ)|𝑒𝑖, 

 

 

cj and sj ∈ ℜ ,     (j=0,1,2, …,n)  ( i=1,2, …,m)    0 ≤ h ≤ 1  

 

 

The brief format of Equation 4.15 is given below: 

 

  𝒚𝒊  ≥  𝒚𝒊̅           (4. 17) 

 

And the brief format of Equation 4.16 is given below: 

 

  𝒚𝒊  ≤  𝒚𝒊̅            (4. 18) 

  

The improved multi-objective fuzzy linear regression model is obtained by adding an extra 

objective function that ensures the soft border to the quadratic programming method above: 

   

𝑀𝑖𝑛: 𝐷2(ℎ) =∑(𝑒𝑖 − 𝑒𝑖̅)
2

𝑚

𝑖=1

 

 

𝑀𝑖𝑛: 𝐸2(ℎ) =∑(𝜀𝑖,𝐿
2  +  𝜀𝑖,𝑅

2 )
 

𝑚

𝑖=1

 

 

s.t. 𝑦𝑖 − 𝑦𝑖̅ ≤  𝜀𝑖,𝐿
  ,   𝑖 =  1, … ,𝑚, 

 

 𝑦𝑖̅  −  𝑦𝑖 ≤  𝜀𝑖,𝑅
  ,  𝑖 =  1, … ,𝑚, 

 

 𝑒𝑖 ≥ 0,             𝜀𝑖,𝐿
2  , 𝜀𝑖,𝑅

2  ≥ 0 𝑖 =  1, … ,𝑚,   

 

 

Here, 𝐸2(ℎ) = ∑ (𝜀𝑖,𝐿
2  +  𝜀𝑖,𝑅

2 )
 𝑚

𝑖=1 is a deviation from extreme values and ε  values are 

the relaxation variables. In the MOFLR method, all constraints influence the solution, 

and herewith all observations join to estimation. 

 (4. 16) 

(4. 15) 
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Hence, Nasrabadi Method keeps the spread in the model constant, inversely to other 

methods, Nasrabadi Method also uses symmetric triangular fuzzy numbers either as an 

independent variable or as a dependent variable. 

 

Figure 4. 6    The estimated view of the Nasrabadi Method 

 

The central tendency with bold line at the middle, lower and upper boundary with dashed 

lines are shown in Figure 4.6. As seen in the figure, Nasrabadi Method models the data with 

soft boundaries without covering all observations. However, studies that use a vast number 

of variables is reported that the borders’ spreads get narrower. 

4.3.3 Interval Regression Approaches 

 

The interval regression is a basic type of the possibilistic regression model that is stated by 

Tanaka [105]. The system parameters, in other words, fuzzy regression coefficients, are 

defined in intervals. Various interval regression methods are considered. When some of the 

proposed models use symmetric triangular fuzzy numbers, others proposed asymmetric 

triangular or trapezoidal fuzzy numbers [75]. Tanaka and Lee developed the basic interval 

model by implementing quadratic programming [105]. Lee and Tanaka also studied 

estimating lower and upper boundaries with their interval model [106]. 

4.3.3.1 Lee and Tanaka Method 
 

 When an interval regression method uses symmetric triangular fuzzy numbers, the upper 

and lower lines are pointlessly wide. To cope with the drawback, Lee and Tanaka suggested 

an interval model that estimates parameters as a non-symmetric triangular fuzzy number. 

Additionally, they combined the least square method for central tendency and LP techniques 

for lower and upper boundaries [107]. An FLR model is assumed as below: 

 

    
X  

Y  
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𝒀𝒊̃ = 𝑨𝒐̃ + 𝑨𝟏̃𝑿𝟏 +⋯+ 𝑨𝒏̃𝑿𝒏       (4. 19) 

 

Where X is a crisp input vector, Y(x) is estimated fuzzy output   𝐴̃ = (𝐴0, … , 𝐴𝑛) is the fuzzy 

coefficient vector with non-symmetric triangular fuzzy numbers, 𝐴̃𝑖 stated as 

 𝐴𝑖 = (𝑎𝑖, 𝑐𝑖, 𝑑𝑖)𝑇 . Here, ai is a center, ci is a left spread, and di is a right spread. The 

estimated output data can be written as below: 

 

𝒀(𝒙𝒋) = (𝜽𝒄(𝒙𝒋), 𝜽𝑳(𝒙𝒋), 𝜽𝑹(𝒙𝒋))         (4. 20) 

 

𝒀(𝒙𝒋) = (∑ 𝒂𝒊𝒙𝒋𝒊
𝒏
𝒊=𝟎 )

𝒄
, (∑ 𝒄𝒊𝒙𝒋𝒊

𝒏
𝒙𝒋𝒊≥𝟎 − ∑ 𝒅𝒊𝒙𝒋𝒊

 
𝒙𝒋𝒊< 𝟎 )

𝑳
, (∑ 𝒅𝒊𝒙𝒋𝒊

𝒏
𝒙𝒋𝒊≥𝟎 − ∑ 𝒄𝒊𝒙𝒋𝒊

 
𝒙𝒋𝒊< 𝟎 )

𝑹
 (4. 21) 

 

The h-level set of  Y(x)  can be denoted as below: 

 

[𝒀(𝒙)]𝒉 = {𝒚|𝛍𝒀(𝒙)(𝒚) ≤ 𝒉 } = [𝒚𝒉
−, 𝒚𝒉

+]      (4. 22) 

where  

𝑦ℎ
− = 𝜃𝑐(𝑥𝑗) − (1 − ℎ)𝜃𝐿(𝑥𝑗), 

 

𝑦ℎ
+ = 𝜃𝑐(𝑥𝑗) + (1 − ℎ)𝜃𝑅(𝑥𝑗) 

 

𝑦ℎ
− 𝑎𝑛𝑑 𝑦ℎ

+  represent the lower and upper boundaries. The minimization function for the 

sum of squared distance between estimated and observed outputs can be formulized as 

below: 

 𝑴𝒊𝒏: 𝑱𝑳𝑺  = ∑ (𝒚𝒋 − 𝒂
𝒕𝒙𝒋)

𝟐𝒎
𝒊=𝟏        (4. 23) 

And  the minimization function of the sum of spreads of estimated output is written below: 

 

 𝑴𝒊𝒏: 𝑱𝑳𝑷 = (𝟏 − 𝒉)∑ (𝒄𝒕|𝒙𝒋| + 𝒅
𝒕|𝒙𝒋|)

𝒎
𝒊=𝟏        (4. 24) 

 

The newly proposed method combines the objection functions in Equation 4.23 and 4.24 

above as a new joint objection function. After the specification of the objection function and 

constraints, Lee and Tanaka method can be designated as below: 

 

 𝑀𝑖𝑛𝑎,𝑐,𝑑: 𝐽 = 𝑘1𝐽𝐿𝑆 + 𝑘2𝐽𝐿𝑃 + 𝜉(𝑐
𝑡𝑐 + 𝑑𝑡𝑑)  
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Subject to:  𝑦ℎ
+ ≥ 𝑦𝑗, 

  𝑦ℎ
− ≤ 𝑦𝑗 , 𝑗 =  1, … ,𝑚,   

  𝑐𝑖 ≥ 0, 𝑑𝑖 ≥ 0, 𝑖 = 0,… , 𝑛,  

In the QP model,  k1 and k2 are the weight coefficients, 𝜉 is a small positive number that is 

k1, k2 ≫ 𝜉. 

 

 

Figure 4. 7 Fuzzy regression model with non-symmetric TFN coefficient by QP [107]. 

 

The central tendency with dashed line at the middle, lower and upper boundary with bold 

lines are shown in Figure 4.7. As seen in the figure, Lee and Tanaka Method also prefers to 

cover all observations into spreads. Inputs and observed outputs are crisp numbers in the 

model. However, the central tendency is calculated with Least Square Method and the 

spreads are calculated with the LP technique. Due to the combination of different techniques 

and usage of non-symmetric TFN as system parameters, the lower and upper boundaries 

have not same distance from the central line.  

4.4 Fuzzy Least Square Method 

 

Diamond and Tanaka reported that two conditions in a fuzzy least square method are studied 

[108]. These are: 

• Fuzzy input and fuzzy output (FIFO). 

• Crisp input and fuzzy output (CIFO). 
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Fuzzy the Least Square method is put forward by diamond in 1988 with the aim of parameter 

estimation [79]. The fuzzy least square method can be interpreted as the classical linear 

regression method’s fuzzy expansion. The process of obtaining the parameters in the fuzzy 

least square method has similarities in the classical regression method. The main purpose of 

the model proposed by Diamond is to minimize the distance between the estimated value 

and observed value. The inputs and outputs can be used as a fuzzy number or crisp number 

in the method. Two different models are offered as written below: 

 

𝒀 = 𝒂 + 𝒃𝑿, 𝒂, 𝒃 ∈  𝑹,         (4. 25)  

 

𝒀 = 𝑬̃ + 𝒃𝑿, 𝒃 ∈ 𝑹, 𝑬̃ ∈ 𝑭(𝑹)      (4. 26) 

      

It is assumed that the observations involved with Xi and Yi couples (i=1,2, …. N). So, the 

model is detailed, and the version is shown below:  

 

𝑿𝒊 = (𝒙𝒊, 𝝃𝒊, 𝝃𝒊), 𝒀𝒊 = (𝒚𝒊, 𝜼𝒊, 𝜼𝒊) and 𝒙𝒊 − 𝝃𝒊 ≥  𝟎     (4. 27)  

 

When the Eq.4.38  the least square optimization problem is solved: 

 

Minimum r(a, b) = 𝛴 𝑑(𝑎 + 𝑏 𝑋𝑖 ,  𝑌𝑖)
2 

 

In the minimization problem, two situations occur; the first is b ≥ 0 and the second one is 

b<0. If  b ≥ 0, the distance between fuzzy outputs and the observed values of the dependent 

variables is calculated in Equation 4.41 below : 

 

𝒅(𝒂 + 𝒃𝑿𝒊, 𝒀𝒊) = [𝒂 + 𝒃𝒙𝒊 − 𝒚𝒊 − (𝒃𝝃𝒊 − 𝜼𝒊)]
𝟐

+ [𝒂 + 𝒃𝒙𝒊 − 𝒚𝒊 − (𝒃𝝃𝒊 − 𝜼𝒊)]
𝟐
+ 

                                        (𝒂 + 𝒃𝒙𝒊 − 𝒚𝒊)
𝟐       (4. 28) 

  

When b<0, The equation of the distance is shown in Equation 4.42:  

 

𝒅(𝒂 + 𝒃𝑿𝒊, 𝒀𝒊) = [𝒂 + 𝒃𝒙𝒊 − 𝒚𝒊 + 𝒃𝝃𝒊 − 𝜼𝒊]
𝟐

+ [𝒂 + 𝒃𝒙𝒊 − 𝒚𝒊 − 𝒃𝝃𝒊 + 𝜼𝒊]
𝟐

+ 
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                                             (𝒂 + 𝒃𝒙𝒊 − 𝒚𝒊)
𝟐       (4. 29) 

        

The next step at the least square method is the derivation of the equation 4.41 according to 

a and b. After solving the 4.43 equations system below, a and b parameters can be 

calculated[69], [108]. 

 

 
𝝏𝒅

𝝏𝒂
= 𝟑𝑵𝒂 + 𝒃𝚺[𝟑𝒙𝒊 + 𝜹(𝑿𝒊)] = 𝚺[𝟑𝒚𝒊 + 𝜹(𝒀𝒊)] = 𝟎 ,    (4. 30) 

𝜕𝑑

𝜕𝑏
= 𝑎Σ[3𝑥𝑖 + 𝛿(𝑋𝑖)] + 𝑏[𝑥𝑖

2 + (𝑥𝑖 − 𝜉𝑖)
2] 

 

       = Σ [(𝑥𝑖 − 𝜉𝑖) (𝑦𝑖 − 𝜂𝑖) + (𝑥𝑖 + 𝜉𝑖) (𝑦𝑖 + 𝜂𝑖) + 𝑥𝑖𝑦𝑖] = 0 

  
 

Here xi   (i=1,2, … , n )  and, 
 

 𝛿 (𝑋) = 𝜉 − 𝜉 

 

𝛿 (𝑌) = 𝜂 − 𝜂 

 

The minimum optimization of the model offered by Diamond is shown in Equation 4.39 is 

𝜌( 𝐸, 𝑏) = Σ(𝐸 + 𝑏𝑋𝑖, 𝑌𝑖)
2 . The term “E” in the equation can be defined as 

𝐸 = (𝑐, 𝛾, 𝛾)𝑇 . There are two conditions in the model depicted by Equation 4.38. The 

conditions are b ≥ 0 and b<0.  

 

If b ≥ 0, the equation 4.41 will be transformed the Equation 4.44 below: 

 

𝒅(𝑬 + 𝒃𝑿𝒊, 𝒀𝒊) = [𝒄 + 𝒃𝒙𝒊 − 𝒚𝒊 − 𝜸 − (𝒃𝝃𝒊 − 𝜼𝒊)]
𝟐

+ [𝒄 + 𝒃𝒙𝒊 − 𝒚𝒊 + 𝜸 +

                                  (𝒃𝝃𝒊 − 𝜼𝒊)]
𝟐
+ (𝒄 + 𝒃𝒙𝒊 − 𝒚𝒊)

𝟐      (4. 31) 

 

 

In the condition of b < 0, the equation 4.42 will be transformed the Equation 4.45 below: 

 

 

𝒅(𝑬 + 𝒃𝑿𝒊, 𝒀𝒊) = [𝒄 + 𝒃𝒙𝒊 − 𝒚𝒊 − 𝜸 − (𝒃𝝃𝒊 + 𝜼𝒊)]
𝟐

 + [𝒄 + 𝒃𝒙𝒊 − 𝒚𝒊 + 𝜸 +

                                  (𝒃𝝃𝒊 + 𝜼𝒊)]
𝟐
+  (𝒄 + 𝒃𝒙𝒊 − 𝒚𝒊)

𝟐      (4. 32) 

 

 

The inputs are crisp numbers that are 𝑥𝑖, (i=1,2…., N.) and the outputs are fuzzy numbers 
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that are 𝑌𝑖 = (𝑦𝑖, 𝜂, 𝜂 )  in the model proposed by Diamond   83. The model: 

 

𝑌 = 𝐴 + 𝑥𝐵, 𝑥 ∈ 𝑅, 𝐴 ∈ 𝑇(𝑅), 𝐵 ∈ ℘(R), Yi ∈ 𝐹(𝑅)     (4. 33)  

 

The parameters in the model are defined with 𝐴 = (𝑎 , 𝑎 , 𝑎) and 𝐵 = (𝑏, 𝛽, 𝛽 ), also A 

and B are symmetric fuzzy numbers. After applying the crisp inputs and fuzzy outputs to 

the model, it will be improved as below: 

Minimum r(A,B) = Σ𝑑(𝐴 + 𝑥𝑖𝐵, 𝑌𝑖)
2 

When the parenthesis of the equation above is opened: 

 

𝒅(𝑨 + 𝒙𝒊, 𝒀𝒊) = (𝒂 + 𝒃𝒙𝒊 − 𝒚𝒊)
𝟐 + (𝒂 + 𝒃𝒙𝒊 − 𝒂 − 𝜷𝒙𝒊 + 𝒚𝒊 + 𝜼𝒊)

𝟐

+ (𝒂 + 𝒃𝒙𝒊 + 𝒂 +

                                𝜷𝒙𝒊 + 𝒚𝒊 + 𝜼𝒊)
𝟐
        (4. 34) 

 

The parameters of the model (a and b) will be calculated when the equation  derivation is 

taken by a (
𝜕𝑑

𝜕𝑎
) and b (

𝜕𝑑

𝜕𝑏
), after the results of the derivation equaled to zero. The calculated 

parameters’ centers and fuzzy spread are given below: 

 

A= 𝑦̂ − 𝑏𝑥̂ 

 

𝑎 = 𝜂̂ − 𝛽𝑥̂ 

 

𝑏 =  𝐾 𝑇2⁄  

 

𝛽 =  𝑘 𝑇2⁄   

 

The K, T2, 𝑥̂ ,𝑦̂ are defined below with the known x, y, and other values [79]: 

 

𝐾 =  Σ(xi − x̂)(𝑦i − ŷ)  
 

𝑘 =  Σ(xi − x̂)(𝜂i − η̂)  
 

𝑥̂ =
Σ𝑥𝑖
𝑁
            𝑦̂ =

Σ𝑦𝑖
𝑁

 

 

𝑇2 = Σ(𝑥𝑖 − 𝑥̂)
2  𝑎, 𝛽 ≥ 0 

 

The method proposed by Diamond [79] was developed by the studies of Wang and Tsaur   

[94]. Wang and Tsaur studied crisp input and fuzzy output regression which was proposed 

by Tanaka et al. [75], they applied the Least Square approach to Tanaka’s method and 

reached a simpler and more predictable way according to Diamond’s common method.  
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4.5 Comparison of The Fuzzy Linear Regression Models 

 

The power, efficiency, or goodness of crisp regression models are probable to compare with 

each other, according to some statistical indicator. Thus, the most appropriate crisp 

regression model can be distinguished from the other models straightforwardly. On the 

contrary, fuzzy regression models work without distribution and they do not have detailed 

statistics like crisp regression models. The comparison of the fuzzy regression models is a 

necessity to prefer a more applicable model. In the study, two indicators would be used as 

distinguisher property.  

 

Total Error Fit (TEF) is one of the statistics that calculates the difference between the 

membership functions of the observed and estimated output in Triangular Fuzzy Number 

form [109]. The total sum of errors can be defined as below: 

  

𝑬 =  ∑ |𝛍𝒀(𝒙) − 𝛍𝒀̃(𝒙)|
𝒏
𝒊=𝟏         (4. 35) 

 

Another statistic is Goodness of Fit (GOF) which is the mean squared distance between 

response and prediction based on the concept of  Diamond’s distance [79] [110]. The error 

term can be calculated as in Equation 4.36 below: 

 

𝐺𝑂𝐹 =
 1 

𝑛
∑  𝑑2(𝑌𝑖,   𝐹̂
𝑛
𝑖=1 (𝑥𝑖))   

 

𝑮𝑶𝑭 =  
 𝟏 

𝒏
∑  ((𝒍𝒚𝒊  −  𝒍̂
𝒏
𝒊=𝟏 (𝒙𝒊))

𝟐  + (𝒄𝒚𝒊 − 𝒄̂(𝒙𝒊))
𝟐 + (𝒖𝒚𝒊 − 𝒖̂(𝒙𝒊))

𝟐)   (4. 36)
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 APPLICATION 

 

The requirement of humanity to energy increases parallel to the world population [111]. 

The huge consumption of fossil fuel to generate energy that causes global warming currently 

reveals the importance of clean and renewable energy sources [112]. Among renewable 

energy sources, wind energy is one of the most prominent ones.  

 

The tools that alter wind energy to dynamic energy and consequently generate electrical 

energy are called “Wind Turbines” and the places where more than one wind turbine is 

constructed to generate cumulative electrical energy are named “Wind Plants” or “Wind 

Farms”. The wind energy plants have no harmful effect on the environments, human beings, 

and other living beings around the place they constructed.  

 

Besides the significant advantages of wind energy, there are some disadvantages, such as 

its intermittent form and high construction costs of wind farms. Therefore, the selection of 

the construction zone is one of the most principal factors in the calculation of the cost and 

the performance of the wind turbine. 

 

The values of the wind speed and the wind direction, temperature, air density, and other 

related parameters of the construction zone have to be observed before at least one year from 

the construction time of a wind turbine. Similarly, the distance between the construction 

zone and main transportation roads or residential area, the joint convenience to the national 

electric line, the slope of the terrain, the flora of the area are the other critical issues to 

construct a wind turbine on a selected zone [113]. 

5.1 The Calculation of The Power Curve 

 

The power curve is the theoretical electric power that is expected to be generated by a wind 

turbine at any place on earth. It is generally used by wind turbine manufacturers as an 

empirical parameter to predict the power that would be generated. The theoretical electric 

power is explained in Equation 5.1. 

 

 𝑷𝒘 = 𝟏/𝟐𝜺 ×  𝛒 × 𝑨 × 𝑽𝟑           (5. 1) 
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Here, 𝑃𝑤 is power (watt), ρ is the density of the air (𝑘𝑔/𝑚3), A is the area swept by the wing 

of the turbine (m2), v is the speed of wind (m/s), ε is the efficiency of the turbine that is 

generally around %30. The area is: 

 𝑨 = 𝝅𝒓𝟐         (5. 2) 

where r is the radius of the turbine rotor (m). According to Equation 5.2, the theoretical 

power would increase to the square of the radius of the wind turbine rotor, and cubic of the 

speed of wind relatively. However, a wind turbine cannot generate electrical power when 

the wind speed is approximately below 3,5 m/s, and it cannot generate more electrical energy 

or it reaches maximum generated electricity capacity when wind speed is approximately 

above 13,5 m/s, due to its physical feature. Consequently, Figure 5.1 can be obtained by 

using the constraints and features explained. The obtained line looks like a curve, and it is 

called “Wind Turbine Power Curve (WTPC)”. 

 

 

Figure 5. 1 Wind Turbine Power Curve (WTPC) [11]. 

 

A WTPC is determined by the manufacturer of a wind turbine according to the 

characteristics of the wind turbine. Nevertheless, the observed generated power curve is not 

usually matching to manufacturers’ one. Thus, short-term power prediction that gives 

instant information about the energy at a specific time is becoming an important subject to 

analyze the power curve. As a result of the propagation of wind energy and the necessity to 

minimize the costs, lots of models are created by scientists. However, it can be said that the 

best single way for all situations is not found, owing to numerous variables with different 
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combinations like wind speed, temperature, and geographical structures. There are two types 

of wind power prediction methods. When the first group of methods uses statistical methods 

that are more efficient for short-term observations (1- 8 hours), the other group of methods 

is numeric models and they reach wind power by using wind speed, wind direction, 

temperature, air density, and similar quantities that are more effective with 8–12 hours. In 

other words, the second group methods easily study manufacturers’ WTPC [114].  

 

The differences between theoretical and observed power led researchers to apply many 

statistical methods to the cases. After examination of WTPC models, it is divulged that 

proposed models are frequently complex. Because estimated parameters depend on several 

factors, the situation requires the application of parametric or non-parametric techniques. 

The main parametric methods are the Linearized Model, Polynomial Model, Probabilistic 

Model, and Logistic function model. The main non-parametric methods are Neural 

Networks, Data Mining Algorithms, and Fuzzy Clustering Methods [11]. 

 

Consequently, many methods are applied to forecast the power generated by wind turbines, 

and important studies are revealed. For instance, Croonenbroeck and Ambach applied the 

time series model to wind power forecasting [115]. Villanueva and Feijoo used logistic 

functions for wind turbine power generation [116]. The non-linear regression methods are 

studied by Marciukaitis et al. [117]. Moreover, machine learning methods are practiced. 

Different techniques are tried by Marvuglia and Messineo [118]. Park and Hur concerned 

Support Vector Machines to Short-Term Power forecasting [119] [120]. 
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 IMPLEMENTATION OF THE PROPOSED MODELS 

 

In the section, crisp models are implemented to the dataset of 2292 observations to 

understand whether the crisp models work or not. It is emphasized that other statistical 

models like non-linear regression and machine learning methods are applied to a similar 

dataset that belongs to a wind turbine. It is realized that fuzzy linear or fuzzy nonlinear 

regression methods are not utilized in a wind turbine dataset formerly. Here, fuzzy linear 

regression methods that are stated in Section 4 are implemented to the dataset in diverse 

conditions. Thereby, the convenience and functionality of the fuzzy methods are discussed. 

Moreover, the results of the different fuzzy linear regression methods are compared in the 

section. 

6.1 Description of The Data Set and The Analyzed Case 

 

A wind turbine from a wind farm constructed in Canakkale District of Turkey is selected for 

analysis for the study because there are plenty of wind speed and wind direction observations 

that have sufficient variability and availability. The real data is collected by the Supervisory 

Control and Data Acquisition (SCADA) system of the wind turbine. The components of the 

dataset are wind speed (m/s), theoretical power output (kW), generated power output (kW), 

and wind direction (°). The measurements include 1-hour intervals covering the period from 

01-09-2018 to 31-12-2018. The theoretical power output (kW) is Power Curve given by the 

manufacturer. The data consist of 4 months, 2292 observations. The first three and last three 

observations of the data set are depicted in Table 6.1 below: 

 

Table 6. 1 Sample of the Dataset. 

Date/Time Theoretical  

Power 

(kW) 

Power 

Generated (kW) 

Wind  

Speed 

(m/s) 

Wind 

Direction (°) 

Cosines of 

Wind Direction 

01-09-2018 

00:00 
3588.3 3404.1 12,6 72.3 0.303 

01-09-2018 

01:00 
3478.1 3102.2 11.7 70.6 0.332 

01-09-2018 

02:00 
3572,1 3222.7 12.4 74.1 0.273 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

31-12-2018 

21:00 
2601.1 2309.9 9.7 80.3 0.167 

31 12 2018 

22:00 
3025.2 2681.3 10.4 80.5 0.166 

31 12 2018 

23:00 
3583.3 3514.3 12.5 80.5 0.165 
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The figure of the initial data set that contains power output, wind speed, and cosines of wind 

direction is shown in Figure 6.2. Normally, the wind directions 359° and 001° are neighbors 

to one other, cosine that is a method to linearize the direction. The wind direction is limited 

between -1 and 1. 

 

Figure 6. 1 The initial data set of power output, wind speed, and wind direction. 

 

The three-dimension graphic of the data set is shown in Figure 6.1 above. Because cosines 

of wind directions are used in the study especially as an independent variable in regression 

models, the cosine values are preferred to show in the figure. Also, the fuzziness of the 

relations between variables is almost distinctive at first look. 

 

The relation between theoretical power and wind speed, also between generated power and 

wind speed are illustrated in Figure 6.2 below [11]: 
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Figure 6. 2 (a) Wind Speed vs. Theoretical Power, (b) Wind Speed vs. Generated Power. 

 

The curve shown in Figure 6.2 (a) is the power curve that belongs to the manufacturer of 

the wind turbine used in the study. As seen, it is similar to a generic WTPC example given 

in Figure 5.1. On the other hand, the observed power curve is shown in Figure 6.2 (b) is 

unlike common WTPC. The observed power curved behaves in that it has an upper and 

lower spread from the central tendency that is expected to be similar to the theoretical power 

curve. Also, there are outliers in Figure 6.2 (b) whose reasons cannot be explained. For 

instance, there are “0” kw generated power observations, although the wind speed increases. 

It can be assumed that the wind turbine is out of order when the observations are recorded. 

Because of such occasions, fuzzy regression models will be put on trial as explained before 

in the study. 

6.2 Proposed Models 

 

The modeling of proper location selection for wind turbines with fuzzy linear regression is 

the main purpose of the study. For the aim, fuzzy linear regression methods are applied to 

the wind turbine dataset not only to verify the reliability of the manufacturer’s expected 

electric power generation curve but also to control the suitability of the place where the 

turbines were constructed in the study.  

 

(a) 

 
(b) 
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Even though it looks there is a relation between the wind speed and the generated power, 

there are also uncontrollable factors that affect the wind speed such as pressure, temperature, 

and terrain of the location, etc. The unexplained relationships at the background of the 

dataset steered to use of fuzzy regression in the study. Because it is assumed that there are 

strong relations between error terms and system fuzziness, applying the fuzzy regression 

models instead of crisp regression models is evaluated to be more efficient and powerful 

[104]. 

 

Although the data set has a vast number of observations with narrow periods like every hour 

in four months, the number of the independent variables could not ease to conclude about 

estimations of the generated energy values. The recent studies show that WTPC’s have 

generally Weibull or Rayleigh distribution [11], therefore linear models are not effective to 

forecast wind turbine power. Although Piecewise linear regression appears more operative, 

the most suitable model cannot be detected. Since fuzzy regression methods do not consider 

distribution for modeling, the fuzzy regression methods look more applicable. Thus, the 

fuzzy regression models will be more effective to evaluate the outputs. When these 

conditions occur, the fuzzy regression models are especially recommended to use for 

estimation of generated power by a wind turbine: 

• When a general frame of the wind turbine models is wanted to realize before 

complex calculations and modeling for a place, 

•  When there are a small number of observations, 

•  When it is hard to observe the parameters, 

• When there is a more optional place to construct a wind farm. 

CICO, CIFO, and FIFO datasets would also be used in models. So, these types of datasets 

would be produced with the method of fuzzification. The fuzzified observations would be 

in the Triangular Fuzzy Number (TFN) form. The symmetric form of the triangular fuzzy 

numbers would be used in both dependent and independent variables. When the application 

of non-symmetric triangular fuzzy numbers is just possible in the Fuzzy Least Square 

method as a dependent variable, it is not preferred due to the difficulty of comparability 

between other models. Compendiously, the dependent variable, and independent variables 

would have symmetric spread to lower and upper borders. The main output, generated 

power, in the dataset would be fuzzified with the help of the theoretical output data. It was 

mentioned that theoretical power is generally greater than generated power in the previous 



64 

 

section. Hence, the difference between theoretical power and generated power would be 

used as a symmetric spread for the upper and lower side, but the generated power would be 

accepted as a central tendency. The main input or independent variable, wind speed, would 

be symmetrically fuzzified with 10 % below and above the observed value. As emphasized 

above, three groups of datasets (CICO, CIFO, FIFO) would be applied, and two models 

would be set up. The first model is: 

𝑌 ̃ = 𝐴𝑜̃ + 𝐴1̃𝑋1 

Here, 𝑌 ̃ is the predicted wind power (kW) in TFN form, 𝑋1 is the wind speed (m/s) that can 

be crisp or symmetric TFN according to the applied method. Lastly, 𝐴𝑜̃ , 𝐴1̃ are the fuzzy 

coefficients. The second model is: 

𝑌 ̃ = 𝐴𝑜̃ + 𝐴1̃𝑋1 + 𝐴2̃𝑋2 

In the second model, there is an extra regressor 𝑋2different from the first model. It is the 

cosine value of the observations’ wind directions. The variable would be crisp form in 

applications. 

 

The models are practiced with the “fuzzyreg” and “FuzzyNumbers” package in R 

Programming [121], [122]. The package includes the Lee and Tanaka method [107] that is 

an example of interval regression methods, Tanaka Method [96] that is an example of the 

Fuzzy Linear Programming Method, Fuzzy Least Square Method [77] and lastly Nasrabadi 

Method [91] that is an example of the Fuzzy Goal Programming Methods. The number of 

independent variables, type of variables, and type of predicted values is summarized below 

in Table 6.2. [121]. 

 

Table 6. 2 The Available Method and their features in “fuzzyreg” package in R. 

METHOD M X Y 𝒀̂ predicted 

Lee & Tanaka  ∞ crisp crisp nsTFN 

Tanaka  ∞ crisp sTFN sTFN 

Fuzzy Least Square 1 crisp nsTFN nsTFN 

Nasrabadi  ∞ sTFN sTFN sTFN 

 

In Table 6.2, M is the number of allowed independent variables, “crisp” means crisp numbers 

should be used as a variable, sTFN is symmetric Triangular Fuzzy Numbers (TFN), and 

nsTFN is non-symmetric TFN. The whole methods that are implemented to Model-1 and 

Model-2 with different type of input-output (CICO, CIFO, FIFO) in the study are detailed 

in Figure 6.3: 
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Figure 6. 3 Scheme of the Models that are applied to Dataset. 
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6.3 Crisp Models 

 

Firstly, the classical (crisp) linear regression method is applied to understand the basics of 

the dataset and the effectiveness of the classical linear regression model to compare it with 

fuzzy models. 

6.3.1 Implementation of Classical Linear Regression Method to Model 1. 

 

Model 1 will be analyzed, next, Model 2 will be evaluated with the crisp method. Model 1, 

a crisp simple linear regression model, is stated again below: 

𝒀 = 𝜷𝒐 + 𝜷𝟏𝑿𝟏 

Here, Y is the predicted wind power (kW), 𝑋1  is the wind speed (m/s).  

The regression equation is: 

𝑌 = −1207 + 329𝑋1  

The summary of the crisp linear regression model is as in Table 6.3 below: 

 

Table 6. 3 Statistics of the Crisp Linear Regression Model. 

Predictor Coefficients Estimated Standard Error T Value P 

Intercepts -1207.30       27.14   -44.49    0.00 

Wind Speed (𝑋1) 328.96        2.88   114.24    0.00 

 

The model is significant at 0.05 level  and R-squared is 0.85. The ANOVA table of the model 

is shown below in Table 6.4: 

 

Table 6. 4 ANOVA Table of the Crisp Linear Regression Model. 

Source DF Sum of Sq. Mean Sq. F P 

Regression 1 3237788492 3237788492 13050 0.00 

Residuals 2291                             568411674 248106   

Total 2292 3806200166    

 

Under  this circumstance, statistical transformations should be applied to variables. The crisp 

linear regression model significant and the R-squared statistics of the model is 0.85. 
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The residual versus fitted values and Normal Probability plots can be shown in  

Figure 6.4 (a) and Figure 6.4 (b): 

 
 

Figure 6. 4  (a) Residuals versus Fitted Values. (b) Normal Q-Q Plot. 

 

When Figure 6.4 (a) Residuals versus Fitted Values plot is analyzed, it is seen that the 

residuals do not scatter randomly around the zero line, which means that the linearity 

assumption is not reasonable. When residuals are expected to be distributed equally around 

the zero line, the residuals create an unexpected pattern. It suggests that the variance of the 

error terms are not equal. Also, there are many outliers on the graph as an undesired situation. 

Therefore, the errors can be said errors are not distributed normally, moreover, the Normal 

Q-Q plot in Figure 6.4 (b) proves the non-normality.  

(a) 

  

(b) 
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Figure 6. 5 The Linear Regression Line of the Crisp Model. 

The linear regression line is depicted in Figure 6.5. The Box-Cox [123] transformation is 

also applied to the independent variable to enhance the linear regression line. However, the 

results are not at expected level. Adding one more independent variable to the model is an 

option to increase the effectiveness of the model. 

6.3.2 Implementation of Classical Linear Regression Method to Model 2. 

 

Model 2 is a crisp multiple linear regression model as stated below: 

𝒀 = 𝜷𝒐 + 𝜷𝟏𝑿𝟏 + 𝛃𝟐𝑿𝟐 

Here, Y is the predicted wind power (kW), 𝑋1 is the wind speed (m/s) and X2 is the cosines 

of the wind direction. The regression equation is: 

 

𝑌 = −1218.68 + 329.65𝑋1 + 28.53𝑋2  

This model is significant at 0.05 level, MSE is 497.8 and R-squared is calculated as 0.8509.  
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Figure 6. 6 The Multiple Linear Regression Plane of the Crisp Model. 

 

The crisp multiple linear regression model is significant at 0.05 level and, the adjusted  

R-squared is 0.8509. Although an independent variable is added to the model, expected 

recovery at adjusted R-squared statics is not realized. Also, the non-normality problems of 

the errors continue. Consequently, it signifies that the crisp linear methods should be 

abandoned, and fuzzy linear methods should be adapted. 

6.4 Implementation of Fuzzy Linear Regression Methods 

 

In the subsection, the fuzzy linear regression models that are embedded in “fuzzyreg” 

package in R and detailed in Table 6.2 are implemented according to the plan in  

Figure 6.3. 

6.4.1 Implementation of FLR Methods to Model 1 with CICO Dataset 

 

As known crisp numbers are also fuzzy numbers with zero spread to lower and upper bound, 

so they can be evaluated as fuzzy numbers. Hence, all mentioned methods are used in the 

section. Here, the original dataset, whose inputs and outputs are crisp, is used in the section 

without fuzzification. 

 

 h-values defines the desired reliability level by obtaining the width or narrowness of the 

fuzzy spread of parameters in fuzzy regression model [93]. It means when h-value increases 

the width of the upper and lower bounders from center increase. Three different h-values at 
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0.01, 0.25, and 0.5 that signify different fuzziness levels are applied to models. When 0.01 

h-value indicates the least fuzziness, 0.5 h-value shows the most fuzziness in the study.  

6.4.1.1 Lee and Tanaka Method 
 

At 0.01 h level, the results fuzzy linear model using Lee and Tanaka method are given below. 

The coefficients of the model in form nsTFN are as in Table 6.5. 

 

Table 6.5 Values of Model 1 with Lee and Tanaka Method and CICO dataset  

at 0.01 h-value. 

 center Left Spread Right Spread 

Intercept -1205.85 0 251.62 

X1 328.82 0 71.82 

 

The central tendency of the fuzzy regression model: 

 

𝑌 ̃ = −1205.85 + 328.82 𝑋1  

 

The lower boundary of the model support interval: 

 

𝑌 ̃𝐿 = −1205.85 + 77.07𝑋1  

 

The upper boundary of the model support interval: 

 

𝑌 ̃𝑈 = −954.23 + 400.64𝑋1  

 

The total error of fit (TEF) is calculated as 3.517522×1012 and the mean squared between 

response and prediction is 7208626. 

 

Figure 6. 7 Model 1 with Lee and Tanaka Method and CICO dataset (h=0.01). 
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The central tendency with bold line at the middle, lower and upper boundary with dashed 

lines are shown in Figure 6.7. As seen in the figure, Lee and Tanaka method inclines to 

include all observations between fuzzy upper and lower boundary. However, the outliers at 

the left or right spread do not the same distance from the center, the upper and lower bounds 

extend non-symmetrically. So, the parameters of the models 𝐴𝑜̃ 𝑎𝑛𝑑 𝐴1̃  are  

non-symmetric triangular fuzzy numbers. 

 

At 0.25 h level, the results fuzzy linear model using Lee and Tanaka method are given below. 

The coefficients of the model in form nsTFN are as in Table 6.6 : 

 

Table 6.6 Values of Model 1 with Lee and Tanaka Method and CICO dataset  

at 0.25 h-value. 

 

 

 

 

The central tendency of the fuzzy regression model: 

 

  𝑌 ̃ = −1205.85 + 328.82 𝑋1 

 

The lower boundary of the model support interval: 

 

𝑌 ̃𝐿 = −1205.85 − 3.5𝑋1  

   

Upper boundary of the model support interval: 

 

𝑌 ̃𝑈 = −873.72 + 423.6𝑋1   

The total error of fit (TEF) is calculated as 4.643129 ×1012 and the mean squared between 

response and prediction is 12008163. 

 

Figure 6. 8 Model 1 with Lee and Tanaka Method and CICO dataset (h=0.25) 

 center Left Spread Right Spread 

Intercept -1205.85 0 332.13 

X1 328.82 332.31 94.8 
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The central tendency with bold line at the middle, lower and upper boundary with dashed 

lines are shown in Figure 6.8. The model with 0.25 h-value is fuzzier or has wider spreads 

than the model with 0.01 h-value depicted in Figure 6.7. Lee and Tanaka Method tends to 

include all observations into upper and lower boundary at minimum fuzziness level  

(h = 0.01). When the fuzziness increases, the whole fuzzy area that captures the observation 

increases unnecessarily, also the total error fit values and the mean squared distance values 

are increased depending on the increase of the h-values. Due to the tendency of the model to 

include all observations in the fuzzy area, usage of minimum h-value is evaluated to give 

accurate results. 

6.4.1.2 Tanaka Method 

 

At 0.01 h level, the results fuzzy linear model using Tanaka method are given below. The 

coefficients of the model in form sTFN are as in Table 6.7. 

 

Table 6. 7 Values  of Model 1 with Tanaka Method and CICO dataset at 0.01 h value. 

 center Left Spread Right Spread 

Intercept -0.12 0 0 

X1 157.25 158.77 158.77 

 

Central tendency of the fuzzy regression model: 

 

𝑌 ̃ = −0.12 + 157.25 𝑋1  

   

Lower boundary of the model support interval: 

 

𝑌 ̃L = −0.12 − 1.51𝑋1  

 

Upper boundary of the model support interval: 

 

𝑌 ̃U = −0.12 + 316.02𝑋1  
  

The total error of fit (TEF) is calculated as infinitive and the mean squared between response 

and prediction is 6623078. 
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Figure 6. 9 Model 1 with Tanaka Method and CICO dataset (h=0.01) 

The central tendency with bold line at the middle, lower and upper boundary with dashed 

lines are shown in Figure 6.9. As seen in the figure, Tanaka Method inclines to include all 

observation into spreads too. However, distinctly from Lee and Tanaka Method, the outliers 

at the left or right spread have the same distance from the center, the upper and lower bounds 

extend symmetrically. In other words, left and right spreads of intercept and independent 

variable are equal to each other. The parameters of the models 𝐴𝑜̃ 𝑎𝑛𝑑 𝐴1̃ are symmetric 

triangular fuzzy numbers. 

 

At 0.25 h level, the results fuzzy linear model using Tanaka method are given below. The 

coefficients of the model in form sTFN are as in Table 6.8 : 

 

Table 6. 8 Values  of Model 1 with Tanaka Method and CICO dataset at 0.25 h-value. 

 center Left Spread Right Spread 

Intercept -0.12 0 0 

X1 157.25 209.57 209.57 
 

Central tendency of the fuzzy regression model: 

 

𝑌 ̃ = −0.12 + 157.25 𝑋1  

   

Lower boundary of the model support interval: 

 

𝑌 ̃L = −0.12 − 52.32𝑋1    

 

Upper boundary of the model support interval: 

 

𝑌 ̃U = −0.12 + 366.83𝑋1  
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The total error of fit (TEF) is calculated as infinitive and the mean squared between response 

and prediction is 9947141. 

 

Figure 6. 10 Model 1 with Tanaka Method and CICO dataset (h=0.25) 

 

The central tendency with bold line at the middle, lower and upper boundary with dashed 

lines are shown in Figure 6.10. The model with 0.25 h-value is fuzzier than the model with 

0.01 h-value depicted in Figure 6.9. The model has also the tendency to include all 

observations into fuzzy spreads symmetrically. Thus, the model can be said fuzzier than the 

previous model with 0.01 h value. Due to the inclusion tendency of the model, it is also an 

efficient way to use minimum h-value like in Lee and Tanaka Method. 

6.4.1.3 Nasrabadi Method 

 

At 0.01 h level, the results fuzzy linear model using Nasrabadi method are given below. 

The coefficients of the model in form sTFN are as in Table 6.9 : 

 

Table 6. 9 Values  of Model 1 with Nasrabadi Method and CICO dataset at 0.25 h-value. 

 center Left Spread Right Spread 

Intercept -1207.3      0 0 

X1 328.96 0 0 

 

Central tendency of the fuzzy regression model: 

 

𝑌 ̃ = −1207.3 + 328.96 𝑋1  

   

Lower boundary of the model support interval: 
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𝑌 ̃L = −1207.3 + 328.96𝑋1    

 

Upper boundary of the model support interval: 

 

𝑌 ̃U = −1207.3 + 328.96𝑋1  

 

The total error of fit (TEF) is calculated as infinitive and the mean squared between 

response and prediction is 743670. 

   

 
Figure 6. 11 Model 1 with Nasrabadi Method and CICO dataset (h=0.25) 

The central tendency and lower and upper boundary collided with each other, and the borders 

can be seen with the bold line at the middle shown in Figure 6.11. As seen in the figure, 

Nasrabadi Method does not incline to include all observation contrary to Lee and Tanaka, 

Tanaka Method. However, the outliers at the left or right boundary have not spread from the 

center. So, the parameters of the models 𝐴𝑜̃ 𝑎𝑛𝑑 𝐴1̃  are crisp numbers or symmetric 

triangular fuzzy numbers with a “0” spread. 

 

Because the results of models with  h=0.01 and h=0.5 gave us the same results with h=0.25, 

the results of the other h values were not put here. Due to the nature of the Nasrabadi Method 

and usage of crisp numbers for independent and dependent variables, the method behaved 

such it is a crisp least square method and gave the same results as it. Normally, the Nasrabadi 

method provided left and right spread with small values like 10-3, but the spreads were 

dismissed due to being small values that do not affect the results. Three results with different 

h values have the same results. 
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6.4.1.4 Fuzzy Least Squares Method 

 

As stated before, in the method h value is not used. The results of fuzzy linear model using 

Fuzzy Least Squares Method are given below. The Coefficients of the model in form of 

sTFN are as in Table 6.10 : 

 

Table 6. 10 Values  of Model 1 with Lee and Tanaka Method and CICO dataset. 

 center Left Spread Right Spread 

Intercept -1207.3      0 0 

X1 328.96 0 0 
 

Central tendency of the fuzzy regression model: 

 

𝑌 ̃ = −1207.3 + 328.96 𝑋1  

   

Lower boundary of the model support interval: 

 

𝑌 ̃L = −1207.3 + 328.96𝑋1    

 

Upper boundary of the model support interval: 

 

𝑌 ̃U = −1207.3 + 328.96𝑋1  

   

The total error of fit (TEF) is calculated as infinitive and the mean squared between response 

and prediction is 743670. 

 

Figure 6. 12 Model 1 with FLS Method and CICO dataset. 

 

The central tendency and lower and upper boundary collided with each other, and the borders 

can be seen with the bold line at the middle shown in Figure 6.12. As seen in the Figure 6.11 
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of the Nasrabadi Method, Fuzzy Least Square Method is not inclined to contain all 

observations. However, the outliers at the left or right boundary have not spread from the 

center. So, the parameters of the models 𝐴𝑜̃ 𝑎𝑛𝑑 𝐴1̃ are crisp numbers. 

 

The fuzzy Least Square Method panned out the same result with the Nasrabadi method and 

crisp least square method. The crisp values for independent and dependent variables are 

estimated to cause the situation.  

6.4.1.5 Comparison of FLR Methods to Model 1 with CICO Dataset 

 

The results of fuzzy linear regression models that are applied to crisp input and crisp output 

data with “wind speed” as an independent variable and “generated power” as a dependent 

variable (Model 1) are compared in Table 6.11 below. The total error fit (TEF) and the mean 

squared distance statistics are given for each method with h-values. 

 

Table 6. 11 Comparison of  FLR Methods with Model 1 and CICO dataset. 

Method h
-v

a
l. 

Total 

Error 

Fit 

Mean 

Square 

Distance 

Central Left Sp. Right Sp. 

Intercept X1 Intercept X1 Intercept X1 

Lee and 

Tanaka 

0.01 3.5×1012 7.2×106 -1205.9 328.8 0 0 251.6 72 

0.25 4.6×1012 1.2 ×107 -1205.9 328.8 0 0 332 95 

0.5 7×1012 2.6×107 -1205.9 328.8 0 499 498 142 

Tanaka 0.01 ∞ 6.6×106 -0.1 157 0 158 0 158 

0.25 ∞ 1×107 -0.1 157 0 210 0 210 

0.5 ∞ 2×107 -0.1 157 0 314 0 314 

Nasrabadi 0.01 ∞ 7.4×105 -1207 328.9 0 0 0 0 

0.25 ∞ 7.4×105 -1207 328.9 0 0 0 0 

0.5 ∞ 7.4×105 -1207 328.9 0 0 0 0 

FLS - ∞ 7.4×105 -1207 328.9 0 0 0 0 

 

When models are compared, the model with the least TEF or the mean squared distance 

(GOF) value should be preferred. After analyzing the results of models, due to assessment 

with the vast number of observations some methods gave infinitive total error fit value. 

Nasrabadi and FLS Methods gave the least Mean Square Distance value. However, these 

methods behaved like crisp linear regression models. If high fuzziness is not preferred, the 

models can be selected. But Tanaka or Lee and Tanaka Method with minimum h-value can 

opt when optimal fuzziness is wanted. Because GOF values of Lee and  Tanaka Method and 

Tanaka Method are 7.2×106 and  6.6×106
  with 0.01 h-value, respectively. These results are 

the minimum among the other options with fuzzy spreads. 
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6.4.2 Implementation of FLR Methods to Model 2 with CICO Dataset 

 

In the section, the original dataset has crisp input and crisp output variables in the dataset 

without fuzzification. Lee and Tanaka method and Tanaka method are used in the section. 

Also, three different h values that signify different fuzziness levels are applied to models. 

These are h=0.01, h=0.25, and h=0.5 . However, the details and graphs of the h value with 

0.25 and 0.5 are not given like in the previous section. The results of the h=0.25 and h=0.5 

are given to compare with other h-value results. Because they gave similar but fuzzier results 

as h=0.01 value. Model 2 would be as given below: 

𝑌 ̃ = 𝐴𝑜̃ + 𝐴1̃𝑋1 + 𝐴2̃𝑋2 

6.4.2.1 Lee and Tanaka Method 

 

At 0.01 h level, the results fuzzy linear model using Lee and Tanaka method are given 

below. The coefficients of the model in form nsTFN are as in Table 6.12. 

 

Table 6. 12 Values of Model 2 with Lee and Tanaka Method and CICO dataset at  

0.01 h-value. 

 center Left Spread Right Spread 

Intercept -1216.94 0 262 

X1 329.5 253.4 59.87 

X2 28 0 105.4 

 

Central tendency of the fuzzy regression model: 

 

𝑌 ̃ = −1216.94 + 329.5𝑋1 + 28𝑋2  

 

Lower boundary of the model support interval: 

 

𝑌 ̃𝐿 = −1216.94 + 76.1𝑋1 + 28𝑋2   

 

Upper boundary of the model support interval: 

 

𝑌 ̃𝑈 = −954.94 + 389.37𝑋1 + 133.4𝑋2   

 

The total error of fit (TEF) is calculated as infinitive and the mean squared between response 

and prediction is infinitive. 
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.  

Figure 6. 13 Wind Speed vs. Power Generated in Lee and Tanaka Method with CICO dataset 

(h=0.01). 

 
 

Figure 6. 14 Model 2 with Lee and Tanaka Method and CICO dataset (h=0.01). 

The central tendency with bold line at the middle, lower and upper boundary with dashed 

lines are shown in Figure 6.13 and  Figure 6.14. The outliers at the left or right spread have 

not the same distance from the center, the upper and lower bounds extend non-symmetrically 

for the first input “wind speed” and the second input. The parameters of the models 

𝐴𝑜̃ , 𝐴1̃ 𝑎𝑛𝑑 𝐴2̃  are non-symmetric triangular fuzzy numbers. When Figure 6.13 and Figure 

6.7 that belong to Model 1 resemble, on the other hand, Figure 6.14 cannot incline the 

observations. In every h-values, the second input cannot reflect the observation, as seen in 

Figure 6.14. Consequently, Lee and Tanaka's method does not give appropriate results for 

Model 2. 
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6.4.2.2 Tanaka Method 

 

At 0.01 h level, the results fuzzy linear model using Tanaka method are given below. The 

coefficients of the model in form sTFN are as in Table 6.13 : 

 

Table 6. 13  Values  of Model 2 with Tanaka Method and CICO dataset at 0.01 h-value. 

 center Left Spread Right Spread 

Intercept -0.7 0 0 

X1 151.4 152.9 152.9 

X2 69.6 71 71 

 

Central tendency of the fuzzy regression model: 

 

𝑌 ̃ = −0.7 + 151.4 𝑋1 +  69.6 𝑋2   

   

Lower boundary of the model support interval: 

 

𝑌 ̃L = −0.7 − 1.5𝑋1 − 1.4𝑋2  

 

Upper boundary of the model support interval: 

 

𝑌 ̃U = −0.7 + 304.3𝑋1 + 140.6𝑋2  
   

The total error of fit (TEF) is calculated as infinitive and the mean squared between response 

and prediction is infinitive. 

 

Figure 6. 15 Wind Speed vs. Power Generated in Tanaka Method with CICO dataset (h=0.01). 
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Figure 6. 16 Model 2 with Tanaka Method and CICO dataset (h=0.01). 

 

The fuzzy regression lines are shown in Figure 6.15 and  Figure 6.16. The outliers at the left 

or right spread have the same distance from the center, the parameters of the models 

𝐴𝑜̃ , 𝐴1̃ 𝑎𝑛𝑑 𝐴2̃  are symmetric triangular fuzzy numbers. Figure 6.16 can incline the 

observations contrary to Lee and Tanaka method. So, model 2 is more preferable to Lee and 

Tanaka method. 

 

6.4.2.3 Comparison of FLR Methods to Model 2 with CICO Dataset 

 

The results of fuzzy linear regression models that are applied to crisp input and  

crisp output data with “wind speed” and “cosine of wind direction ”as independent variables 

and “generated power” as dependent variables (Model 2) are compared in Table 6.14 below.  

Table 6. 14 Comparison of FLR Methods with Model 2 and CICO dataset. 

 

After analyzing the results of models, due to assessment with the vast number of 

observations and two regressors, all methods gave infinitive total error fit and Mean Squared 

Method h
-v

a
l. 

Total 

Error 

Fit 

MSE Central Left Sp. Right Sp. 

Intrcpt. X1 X2 Intrcpt. X1 X2 Intrcpt. X1 X2 

Lee 

and 

Tanaka 

0.01 ∞ ∞ -1217 330 28 0 253 0 262 60 105 

0.25 ∞ ∞ -1217 330 28 0 335 0 346 79 139 

0.5 ∞ ∞ -1217 330 28 0 502 0 519 119 209 

Tanaka 0.01 ∞ ∞ -0.7 151 70 0 153 71 0 153 71 

0.25 ∞ ∞ -0.5 151 70 0 202 94 0 202 94 

0.5 ∞ ∞ -0.2 151 70 0 303 141 0 303 141 
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Distance values. Nonetheless, Lee and Tanaka's method cannot include a second 

independent variable (cosine of wind direction) into the model. Consequently, the methods 

are not suggested when a vast number of observations are used with many regressors, but 

Lee and Tanaka Method is not strictly recommended. 

6.4.3 Implementation of FLR Methods to Model 1 with  CIFO Dataset  

 

In the section, the original dataset, however, the dependent variable is fuzzified with the help 

of the theoretical output data. The symmetrical spreads of the dependent variables are the 

numeric difference between theoretical power and generated power and the generated power 

is accepted as a central tendency. The sample of  CIFO data set is given in  

Table 6.15. Tanaka, Nasrabadi and, FLS methods are used in the section. Also, three 

different h values that signify different fuzziness levels are applied to models. However, the 

details and graphs of the h value with 0.5 are not given. The results of the h=0.5 are given 

to compare with other h-value results.  

 

Table 6. 15 Sample CIFO Data Set. 

Date/Time Theoretical  

Power 

(kW) 

Power Generated 

(kW) 

Symmetric 

Spread of 

Power 

Generated 

Wind  

Speed (m/s) 

Cosines of Wind 

Direction 

01-09-2018 

00:00 

3588.3 3404.1 184.2 12.6 0.303 

01-09-2018 

01:00 

3478.1 3102.2 375.9 11.7 0.332 

01-09-2018 

02:00 

3572.1 3222.7 349.4 12.4 0.273 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

31-12-2018 

21:00 

2601.1 2309.9 291.2 9.7 0.167 

31 12 2018 

22:00 

3025.2 2681.3 343.9 10.4 0.166 

31 12 2018 

23:00 

3583.3 3514.3 69.0 12.5 0.165 

6.4.3.1 Tanaka Method 

 

At 0.01 h level, the results fuzzy linear model using Tanaka method are given below. The 

coefficients of the model in form sTFN are as in Table 6.16. 

 

Table 6. 16 Values  of Model 1 with Tanaka Method and CIFO dataset at 0.01 h-value. 

 center Left Spread Right Spread 

Intercept -1.1 0 0 

X1 157.3 158.8 158.8 



83 

 

 

Central tendency of the fuzzy regression model: 

 

𝑌 ̃ = −1.1 + 157.3 𝑋1  

   

Lower boundary of the model support interval: 

 

𝑌 ̃L = −1.1 − 1.5𝑋1  

 

Upper boundary of the model support interval: 

 

𝑌 ̃U = −1.1 + 316.1𝑋1  

 

The total error of fit (TEF) is calculated as infinitive and the mean squared between response 

and prediction is 5970442. 

   

 
 

Figure 6. 17  Model 1 with Tanaka Method and CIFO dataset (h=0.01) 

 

The fuzzy regression lines are shown in Figure 6.17. The outliers at the left or right spread 

has the same distance from the center, the upper and lower bounds extend symmetrically. 

So, the parameters of the models 𝐴𝑜̃ 𝑎𝑛𝑑 𝐴1̃ are symmetric triangular fuzzy numbers. Also, 

the symbols dots at the middle with “T” shaped lines signify the fuzzy outputs that are also 

triangular fuzzy number. 

 

At 0.25 h level, the results fuzzy linear model using Tanaka method are given below. The 

coefficients of the model in form sTFN are as in Table 6.17. 
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Table 6. 17 Values  of Model 1 with Tanaka Method and CIFO dataset at 0.25 h-value. 

 center Left Spread Right Spread 

Intercept -0.87 0 0 

X1 157.29 209.62 209.62 
 

Central tendency of the fuzzy regression model: 

 

𝑌 ̃ = −0.87 + 157.29 𝑋1  

   

Lower boundary of the model support interval: 

 

𝑌 ̃L = −0.87 − 52.33𝑋1    

 

Upper boundary of the model support interval: 

 

𝑌 ̃U = −0.87 + 366.91𝑋1  

 

The total error of fit (TEF) is calculated as infinitive and the mean squared between response 

and prediction is 9058213. 

 

Figure 6. 18 Model 1 with Tanaka Method and CIFO dataset (h=0.25). 

 

The central tendency with bold line at the middle, lower and upper boundary with dashed 

lines are shown in Figure 6.18. The model is fuzzier than previous model. 

6.4.3.2 Nasrabadi Method 
 

At 0.01 h level, the results fuzzy linear model using Nasrabadi method are given below. The 

coefficients of the model in form sTFN are as in Table 6. 18. 
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Table 6. 18 Values  of Model 1 with Nasrabadi Method and CIFO dataset at 0.01 h-value. 

 center Left Spread Right Spread 

Intercept -1206.86      99.2 99.2 

X1 328.92 16.8 16.8 

 

Central tendency of the fuzzy regression model: 

 

𝑌 ̃ = −1206.86 + 328.92 𝑋1  

   

Lower boundary of the model support interval: 

 

𝑌 ̃L = −1306.1 + 312.12𝑋1    

 

Upper boundary of the model support interval: 

 

𝑌 ̃U = −1107.65 + 345.73𝑋1  

The total error of fit (TEF) is calculated as infinitive and the mean squared between 

response and prediction is 830139. 

 
 

Figure 6. 19 Model 1 with Nasrabadi Method and CIFO dataset (h=0.01). 

The central tendency with bold line at the middle, lower and upper boundary with dashed 

lines are shown in Figure 6.19. As seen in the figure, Nasrabadi Method does not incline to 

include all observation into spreads. Nasrabadi Method specifies optimal spread and does 

not prefer to put all observation into the fuzzy area. The outliers at the left or right spread 

have the same distance from the center, the upper and lower bounds extend symmetrically 

like in Tanaka Method. In other words, left and right spreads of intercept and independent 

variable are equal to each other. The parameters of the models 𝐴𝑜̃ 𝑎𝑛𝑑 𝐴1̃ are symmetric 

triangular fuzzy numbers. 
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At 0.25 h level, the results fuzzy linear model using Nasrabadi method are given below. The 

coefficients of the model in form sTFN are as in Table 6.19 : 

 

Table 6. 19 Values  of Model 1 with Tanaka Method and CIFO dataset at 0.25 h-value. 

 center Left Spread Right Spread 

Intercept -1207.3    130.96 130.96 

X1 328.96 22.18 22.18 

 

Central tendency of the fuzzy regression model: 

 

𝑌 ̃ = −1207.3 + 328.96 𝑋1  

   

 

 

Lower boundary of the model support interval: 

 

𝑌 ̃L = −1338.26 + 306.78𝑋1    

 

Upper boundary of the model support interval: 

 

𝑌 ̃U = −1076.34 + 351.14𝑋1  

   

The total error of fit (TEF) is calculated as infinitive and the mean squared between response 

and prediction is 884561. 

 

 
 

Figure 6. 20 Model 1 with Nasrabadi Method and CIFO dataset (h=0.25). 

The fuzzy regression lines are shown in Figure 6.20. The model is fuzzier than the previous 

model. When h-value is increased, the spreads from the center are increased. 
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6.4.3.3 Fuzzy Least Square Method 
 

The results of the Fuzzy Least Squares Method are given below. The Coefficients of the 

model are in form of  sTFN due to observations that have symmetric spreads. The spreads 

of the Values  are as in Table 6.20 : 

 

Table 6. 20 Values  of Model 1 with FLS Method and CIFO dataset. 

 center Left Spread Right Spread 

Intercept -1207.3      49.1 49.1 

X1 328.96 8.32 8.32 

 

Central tendency of the fuzzy regression model: 

 

𝑌 ̃ = −1207.3 + 328.96 𝑋1  

   

Lower boundary of the model support interval: 

 

𝑌 ̃L = −1256.4 + 320.65𝑋1    

 

Upper boundary of the model support interval: 

 

𝑌 ̃U = −1158.2 + 337.28𝑋1  

   

The total error of fit (TEF) is calculated as infinitive and the mean squared between response 

and prediction is 29642706. 

 
 

Figure 6. 21 Model 1 with FLS Method and CIFO dataset. 

The fuzzy regression lines are shown in Figure 6.21. As seen in the figure Fuzzy Least 

Square Method does not tend to include all observation. The parameters of the models 

𝐴𝑜̃ 𝑎𝑛𝑑 𝐴1̃ are symmetric triangular fuzzy numbers. 
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6.4.3.4 Comparison of FLR Methods to Model 1 with CIFO Dataset 

 

Table 6. 21 Comparison of FLR Methods to Model 1 with CIFO Dataset. 

Method h
-v

a
l. 

Total 

Error 

Fit 

Mean 

Square 

Distance 

Central Left Sp. Right Sp. 

Intercept X1 Intercept X1 Intercept X1 

Tanaka 0.01 ∞ 6×106 -1 157 0 159 0 159 

0.25 ∞ 9×106 -0.9 157 0 210 0 210 

0.5 ∞ 1.8×107 -0.6 157 0 314 0 314 

Nasrabadi 0.01 ∞ 8.3×105 -1207 328.9 100 17 100 17 

0.25 ∞ 8.8×105 -1207 328.9 131 22 131 22 

0.5 ∞ 1.1 ×106 -1207 328.9 196 33 196 33 

Diamond - ∞ 3×107 -1207 328.9 49 8 49 8 

After analyzing the results of models, due to assessment with the vast number of 

observations all methods gave infinitive total error fit value. Because Mean Square Distance 

values of Nasrabadi Method are lower than the other methods. The Nasrabadi method can 

be recommended when outputs are fuzzy. 

 

6.4.4 Implementation of FLR Methods to Model 2 with CIFO Dataset 

  

Tanaka and Nasrabadi Methods are used in the section. Also, three different h values that 

signify different fuzziness levels are applied to models. However, the details and graphs of 

the h value with 0.25 and 0.5 are not given. Because they gave similar but fuzzier results as 

h=0.01 value. 

6.4.4.1 Tanaka Method 
 

At 0.01 h level, the results fuzzy linear model using Tanaka method are given below. The 

coefficients of the model in form sTFN are as in Table 6.22. 

 

Table 6. 22 Values  of Model 2 with Tanaka Method and CIFO dataset at 0.01 h-value. 

 center Left Spread Right Spread 

Intercept -0.7 0 0 

X1 151 152 152 

X2 69 71 71 

 

Central tendency of the fuzzy regression model: 

 

𝑌 ̃ = −0.7 + 151𝑋1 + 69𝑋2  

 

Lower boundary of the model support interval: 

 

𝑌 ̃L = −0.7 − 1𝑋1 − 2𝑋2    
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Upper boundary of the model support interval: 

 

𝑌 ̃U = −0.7 + 303𝑋1 + 140𝑋2  

   

The total error of fit (TEF) is calculated as infinitive and the mean squared between response 

and prediction is infinitive. 

 
 

Figure 6. 22 Wind Speed vs. Power Generated in Tanaka Method with CIFO dataset (h=0.01) 

 

 
 

Figure 6. 23 Model 2 with Tanaka Method and CIFO dataset (h=0.01) 

 

The fuzzy regression lines are shown in Figure 6.22 and  Figure 6.23. The parameters of the 

models 𝐴𝑜̃ , 𝐴1̃ 𝑎𝑛𝑑 𝐴2̃  are symmetric triangular fuzzy numbers. Figure 6.23 can incline the 

observations partially. 
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6.4.4.2 Nasrabadi Method 
 

At 0.01 h level, the results fuzzy linear model using Nasrabadi method are given below. 

The coefficients of the model in form sTFN are as in Table 6.23. 

 

Table 6. 23 Values of Model 2 with Nasrabadi Method and CIFO dataset at 0.01 h value. 

 

 center Left Spread Right Spread 

Intercept -1218  176 176 

X1 329.6 20 20 

X2 28 -156 -156 

 

Central tendency of the fuzzy regression model: 

 

𝑌 ̃ = −1218 + 329.6𝑋1 + 28𝑋2  

   

Lower boundary of the model support interval: 

 

𝑌 ̃L = −1394 + 309.6𝑋1 + 184𝑋2    

 

Upper boundary of the model support interval: 

 

𝑌 ̃U = −1042 + 349.6𝑋1 − 128𝑋2  

   

The total error of fit (TEF) is calculated as infinitive and the mean squared between response 

and prediction is infinitive. 

  
 

Figure 6. 24 Wind Speed vs. Power Generated in Nasrabadi Method with CIFO dataset (h=0.01). 
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Figure 6. 25 Model 2 with Nasrabadi Method and CIFO dataset (h=0.01). 

 

The central tendency with bold line at the middle, lower and upper boundary with dashed 

lines are shown in Figure 6.24 and Figure 6.25. As seen in the figures, Nasrabadi Method 

does not incline to include all observation into spreads. The parameters of the models 

𝐴𝑜̃ , 𝐴1̃ 𝑎𝑛𝑑 𝐴2̃ are symmetric triangular fuzzy numbers. However, Figure 6.25 cannot 

incline the observations. It means second independent variable is not effective to fit the 

model. So, Nasrabadi Method is not suggested for Model 2. 

 

6.4.4.3 Comparison of FLR Methods to Model 2 with CIFO Dataset 

 

The results of FLR models that are applied to crisp input and  

fuzzy output data with “wind speed”  and “cosine of wind direction ”as independent variables 

and “generated power” as dependent variable (Model 2) are compared in  

Table 6.24. 

Table 6. 24 Comparison of FLR Methods to Model 2 with CIFO Dataset. 

 

Method h
-v

a
l. 

Total 

Error 

Fit 

MSE Central Left Sp. Right Sp. 

Intrcp

t. 

X1 X2 Intrcp

t. 

X1 X2 Intrcp

t. 

X1 X2 

Tanaka 0.01 ∞ ∞ 0 151 69 0 152 71 0 152 71 

0.25 ∞ ∞ 0 151 69 0 201 94 0 201 94 

0.5 ∞ ∞ 0 151 69 0 302 141 0 302 141 

Nasrabadi 0.01 ∞ ∞ -1218 330 28 176 20 -156 176 20 -156 

0.25 ∞ ∞ -1218 330 28 232 26 -206 232 26 -206 

0.5 ∞ ∞ -1218 330 28 348 39 -309 348 39 -309 
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After analyzing the results of models, due to assessment with the vast number of 

observations and two regressors, all methods gave infinitive total error fit and Mean Squared 

Distance values. Nonetheless, the Nasrabadi method cannot include a second independent 

variable (cosine of wind direction) into the model. Consequently, the methods are not 

suggested when a vast number of observations are used with many regressors, but Tanaka 

Method looks more preferable to another. 

 

6.4.5  Implementation of FLR Methods to Model 1 with FIFO Dataset 

 

The dependent variable in the original dataset was fuzzified with the help of the theoretical 

output data. The symmetrical spreads of the dependent variables are the numeric difference 

between theoretical power and generated power and the generated power is accepted as a 

central tendency. The main input, wind speed, is symmetrically fuzzified with 10 % below 

and above the observed value. The sample of FIFO data set is given in Table 6.25. Only 

Nasrabadi Method is used in the section. Also, three different h values that signify different 

fuzziness levels are applied to the model. The results of 0.01 and 0.25 h-values are given. 

 

Table 6. 25 The sample of FIFO data set. 

Date/Time Theoretical  

Power (kW) 

Power 

Generated 

(kW) 

Symmetric Spread 

of Power Generated 

Wind  

Speed (m/s) 

Symmetric Spread 

of Wind Speed 

(%10) 

01-09-2018 

00:00 

3588.3 3404.1 184.2 12.6 1.26 

01-09-2018 

01:00 

3478.1 3102.2 375.9 11.7 11.7 

01-09-2018 

02:00 

3572.1 3222.7 349.4 12.4 1.24 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

31-12-2018 

21:00 

2601.1 2309.9 291.2 9.7 0.97 

31 12 2018 

22:00 

3025.2 2681.3 343.9 10.4 1.04 

31 12 2018 

23:00 

3583.3 3514.3 69.0 12.5 1.25 

 

6.4.5.1 Nasrabadi Method 
 

At 0.01 h level, the results fuzzy linear model using Nasrabadi method are given below. 

The coefficients of the model in form sTFN are as in Table 6.26. 
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Table 6. 26 Values  of Model 1 with Nasrabadi Method and FIFO dataset at 0.01 h-value. 

 center Left Spread Right Spread 

Intercept -84  -32 -32 

X1 200 10 10 

 

Central tendency of the fuzzy regression model: 

 

𝑌 ̃ = −84 + 200 𝑋1  

   

Lower boundary of the model support interval: 

 

𝑌 ̃L = −52 + 190𝑋1    

 

Upper boundary of the model support interval: 

 

𝑌 ̃U = −116 + 210𝑋1  

   

The total error of fit (TEF) is calculated as 216964 and the mean squared between response 

and prediction is 502468. 

 
Figure 6. 26 Model 1 with Nasrabadi Method and FIFO dataset (h=0.01). 

 

As seen in Figure 6.26, Nasrabadi Method does not incline to include all observation into 

spreads. Nasrabadi Method specifies optimal spread and does not prefer to put all 

observation into the fuzzy area. The parameters of the models 𝐴𝑜̃ 𝑎𝑛𝑑 𝐴1̃ are symmetric 

triangular fuzzy numbers. Also, the symbols dots at the middle with “+” shaped lines signify 

FIFO data, the fuzzy inputs, and outputs that are also triangular fuzzy numbers. 

 

At 0.01 h level, the results fuzzy linear model using Nasrabadi method are given below. The 
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coefficients of the model in form sTFN are as in Table 6. 27. 

 

Table 6. 27 Values  of Model 1 with Nasrabadi Method and FIFO dataset at 0.25 h-value. 

 center Left Spread Right Spread 

Intercept -1053  -88 -88 

X1 311 8 8 

 

Central tendency of the fuzzy regression model: 

 

𝑌 ̃ = −1053 + 311 𝑋1  

   

Lower boundary of the model support interval: 

 

𝑌 ̃L = −965 + 303𝑋1    

 

Upper boundary of the model support interval: 

 

𝑌 ̃U = −1141 + 319𝑋1  

The total error of fit (TEF) is calculated as 262460 and the mean squared between response 

and prediction is 910200. 

 

Figure 6. 27 Model 1 with Nasrabadi Method and CIFO dataset (h=0.25). 

 

The fuzzy regression lines are shown in Figure 6.27. The model is fuzzier than the previous 

model. When h-value is increased, the spreads from the center are increased. In the section, 

when the dataset includes fuzzy input for fuzzy outputs, it is studied the applicability of the 

situation. 
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6.5 Results of Applied Models  
 

In the section, the comparative two statistical indicators of all applied methods to all types 

of datasets are compared to see the whole picture of the study. 

 

Table 6. 28 Comparison of all Applied Models. 

 

CICO, CIFO, and FIFO datasets are used for modeling with different methods. It is an 

advantage for researchers to have the ability to use different datasets. Because, according to 

the situation, dependent or independent variables can be observed partially or observation 

can be mismeasured, and it can be needed to fuzzify the defective variables. Hence, different 

methods are applied to different datasets. All datasets are considered,  Nasrabadi and FLS 

methods are generally more successful than the other methods. However, these methods are 

more complex for calculations. Nasrabadi and FLS methods do not include all observations 

into fuzzy upper and lower boundary, contrary to  Lee and Tanaka, and Tanaka Methods. 

 

In CICO dataset analysis, Nasrabadi and FLS behaved like crisp models, but it does not 

mean that they will behave like a crisp method in every CICO dataset. So, these models also 

can be applied to CICO dataset, for different cases. On the other, Lee and Tanaka, Tanaka 

methods can be applied to CICO dataset when fuzziness is desired. Because Lee and 

Tanaka's method has already been designed for CICO dataset. In brief, Lee, and Tanaka, 

Tanaka methods look more efficient with minimum h-value in CICO dataset case, due to 

other models’ crispness. In other words, in a case whose observations are distributed 

proximately linear, Lee and Tanaka, Tanaka methods would be more powerful and suitable. 

 

 

Method h
-v

a
l. 

DATA TYPES 

CICO CIFO FIFO 

Model 1 Model 2 Model 1 Model 2 Model 1 

Error Terms TEF GOF TEF GOF TEF GOF TEF GOF TEF GOF 

Lee and 

Tanaka 

0.01 3.5×1012 7.2×106 ∞ ∞ - - - - - - 

0.25 4.6×1012 1.2 ×107 ∞ ∞ - - - - - - 

0.5 7×1012 2.6×107 ∞ ∞ - - - - - - 

Tanaka 0.01 ∞ 6.6×106 ∞ ∞ ∞ 6×106 ∞ ∞ - - 

0.25 ∞ 1×107 ∞ ∞ ∞ 9×106 ∞ ∞ - - 

0.5 ∞ 2×107 ∞ ∞ ∞ 1.8×107 ∞ ∞ - - 

Nasrabadi 0.01 ∞ 7.4×105 ∞ ∞ ∞ 8.3×105 ∞ ∞ 2.2×105 9×105 

0.25 ∞ 7.4×105 ∞ ∞ ∞ 8.8×105 ∞ ∞ 2.6×105 1×106 

0.5 ∞ 7.4×105 ∞ ∞ ∞ 1.1 ×106 ∞ ∞ 4×105 1.5×106 

FLS - ∞ 7.4×105 - - ∞ 3×107 - - - - 
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When the results of Model 2 are compared, the descriptive statistics are not distinguishing. 

However, the Tanaka method is more preferable to Lee and Tanaka method. Because Tanaka 

Method included a second independent variable when Lee and Tanaka's method did not. 

 

In  CIFO dataset, the applied methods in minimum h-value gave better results. But Nasrabadi 

Method is the winner of the case with a minimum GOF value. When the results of Model 2 

are compared, the descriptive statistics are not distinctive too. However, the Tanaka method 

is more preferable to Nasrabadi Method. Because Tanaka Method included second 

independent variable again. Consequently, when there is more than one independent 

variable, Tanaka Method can be more accurate than the other methods. The Nasrabadi  

Method applied to FIFO dataset in the study. The results showed that Nasrabadi Method is 

appropriate for FIFO dataset cases. 
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 CONCLUSION 

Gathering data or observing parameters for all types of statistical analysis is always 

demanding and effortful. The processes are generally expensive and collecting accurate data 

is a probable problem. Besides the significant advantages of wind energy, it is emphasized 

that the high construction costs of wind farms are one of the most important disadvantages. 

So, wind energy investors are obliged to have detailed, precise, accurate, inclusive research 

done to professionals. Furthermore, all possible models should apply to observations. 

Otherwise, faults in observations or in models will cause a waste of economic resources. 

 

It is aforementioned that numerous studies have been generated and many different 

statistical methods have been applied to predict accurate generated power by wind turbines, 

due to the importance of wind energy investments. The proposed methods to forecast power 

generation are frequently complicated. As various conditions influence approximate 

observations, parametric or non-parametric methods are used for the aim. The main 

parametric methods are the Linearized Model, Polynomial Model, Probabilistic Model, and 

Logistic function model. The main non-parametric methods are Neural Networks, Data 

Mining Algorithms, and Fuzzy Clustering Methods [11].  

 

While there is a relationship between wind speed and produced electrical power, there are 

also unexplainable factors that influence wind speed and power production or their 

relationship. The study was motivated by the dataset's ambiguous context, which led to the 

use of fuzzy regression. Due to the fact that fuzzy regression methods do not take account 

of the distribution of observations and a fuzzy relation is assumed between wind speed, wind 

direction, and power generation. Also, the application of fuzzy set theory is naturally 

common in such subjects. The other motivation source to apply fuzzy linear regression is 

having a dataset that includes just four months of observation or seasonal (autumn) not 

annual. The annual dataset is obviously more available for crisp modeling, however fuzzy 

regression is more efficient for seasonal, limited, or partial datasets. Thus, the situations 

fulfilled the assumption to apply fuzzy regression modeling.  

  

In the study, two models were proposed to estimate the amount of produced electrical energy 

by a wind turbine. The first model used only wind speed as a regressor, the second model 

used wind speed and wind direction as regressors. The original dataset had crisp input and 
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crisp output. However, firstly the output of the dataset was fuzzified, so the CIFO dataset 

was generated. Secondly, both output and the first input (wind speed) were fuzzified, so the 

FIFO dataset was generated. Thereby, the applicability of the fuzzy regression models in 

the different datasets was evaluated.  

 

Lee and Tanaka, Tanaka, Nasrabadi, and FLS method were applied to datasets and their 

results were compared. Hereby, the behavior and suitability of the fuzzy regression models 

were observed. When the results were examined, all suggested methods were quite 

successful for CICO dataset for Model 1. If the distribution of the observations is close to 

the normal distribution, the inclusive methods (Tanaka, Lee and Tanaka) would be more 

successful. In CIFO dataset for Model 1, the applied methods in minimum h-value gave 

proper results. But Nasrabadi Method gave the best results, so the method proved the 

accessibility in the situation.  

 

The second regressor (wind direction) , which was not an explanatory variable in the crisp 

linear regression model is applied in the study. Due to not having another regressor in 

dataset, it was compulsory to use wind direction. So, it was a limitation for the study. The 

all proposed fuzzy regression method except Tanaka Method were ineffective for Model 2 

in every dataset. The Tanaka method included the second regressor in the fuzzy area at least.  

 

Accordingly, it is evaluated in the study that the fuzzy regression methods to predict the 

power generation are especially influential and advantageous when a general frame of the 

wind turbine models is wanted to realize before complex calculations and modeling for a 

place, or there are a small number of observations, or it is hard to observe the parameters or 

the observations are not trustworthy, or there are more optional places to construct a wind 

farm and decision-maker do not have sufficient time to take action.  

 

Consequently, the suggested models provided alternative solutions for different situations, 

as well as a more flexible decision area and a theoretical basis for wind energy investors 

and researchers. This study will expand the horizon for studies such as the fuzzy piecewise 

regression method and fuzzy nonlinear regression methods that are expected to be used in 

the future in estimating the energy produced by wind turbines.  
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