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Wind energy, one of the renewable energy sources, is immensely popular today due to the
increase in environmental awareness, the decrease in the number of fossil fuels, and the
increase in the cost of these fuels. Although wind energy is a clean and nature-friendly
energy source, the wind is not a continuous energy source. In addition, the establishment of
farms that convert wind energy into electrical energy is expensive and requires technical
capacity. Determining the locations where wind turbine farms will be established, which
will provide long-term profit to its investors and require considerable amounts of financing
at the beginning, is significantly vital in terms of the economic use of resources. It is
necessary to collect many meteorological data such as wind speed, wind direction, air
density, temperature, pressure, and relative humidity from at least one year ago at the stage
of determining the wind turbine construction locations. The wind turbine manufacturer
creates theoretical information about how much electrical energy the turbine will generate
at what wind speed. Following the collection of meteorological data, various numerical and
statistical models are made with the help of the theoretical electricity generation data, and
the suitability of the construction location is evaluated. However, when similar wind

turbines are examined, it will be seen that there are differences between the theoretical



production amount given by the manufacturer and the actual amount of electricity produced
at the same wind speed. In this condition, it is clear that there is a fuzzy relationship between

wind speed and the electrical energy produced.

For this thesis, the amount of electrical energy to be produced by a wind turbine is estimated
by using only wind speed or wind speed and wind direction data with fuzzy linear regression
methods. In addition, the amount of produced electrical energy and the wind speed in the
data set are fuzzified. Succeeding, crisp input crisp output, crisp input fuzzy output, and
fuzzy input fuzzy output situations were estimated with four different fuzzy regression

methods and the results were compared.

This application is intended to determine the general framework for the locations where the
wind turbine is planned to be installed before the complex calculations and modeling, or
when seasonal observations are made rather than annual, or in cases where the observed
values are not dependable or there are many site alternatives but there is not enough time to
decide on site selection. It has been determined that it will be beneficial in situations.

Therefore, it will bring a different approach to the literature.

Finally, this study will open a new window to the methods by establishing the basis for the
Fuzzy Partial Regression Method and Fuzzy Nonlinear regression methods that are expected

to be used in the future in estimating the energy produced by wind turbines.

Keywords: Fuzzy Logic, Fuzzy Regression, Wind Energy.
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Sadik Ozkan GUNDUZ

Yiiksek Lisans, Endiistri Miihendisligi Boliimii
Tez Damisman: Prof. Dr. Ozlem Miige TESTIK
Haziran 2021, 106 sayfa

Gilintimiizde ¢evre duyarliliginin artmasi, fosil yakitlarin miktarinin azalmasi ve dolayisiyla
bu yakitlarin maliyetinin artmasindan dolayi, yenilenebilir enerji kaynaklarindan riizgar
enerjisi ¢ok ragbet gormektedir. Ancak, riizgar enerjisinin temiz ve doga ile barisik bir enerji
kaynag1 olmasina ragmen, riizgar siirekliligi olan bir enerji kaynag1 degildir. Ayrica, riizgar
enerjisini elektrik enerjisine doniistiiren ciftliklerin kurulmasi oldukca pahali ve teknik
kapasite gerektirmektedir. Uzun vadede yatirimcilarina kazang saglayacak ve baslangicta
yiiksek meblaglarda finansman gerektiren riizgar tiirbini ¢iftliklerinin, kurulacagi mevkilerin
belirlenmesi ekonomik kaynaklarin tasarruflu kullanilmasi agisindan biiyiik 6nem arz
etmektedir. Riizgar tiirbini giftliklerinin, kurulmasi planlanan mevkilerin belirlenmesi
asamasinda, en az bir yil 6ncesine ait riizgar hizi, riizgar yoni, hava yogunlugu, sicaklik,
basing ve bagil nem gibi bir¢cok meteorolojik verilerin toplanmasi1 gerekmektedir. Riizgar
tiirbini {reticisi tarafindan olusturulan, tiirbinin hangi riizgar hizinda ne kadar elektrik
enerjisi tretecegine dair teorik bilgiler mevcuttur. Meteorolojik verilerin toplanmasina
miiteakip, tireticinin verdigi teorik elektrik tiretim miktarlar1 verisi yardimiyla ¢ok ¢esitli
niimerik ve istatistiksel modellemeler yapilarak, segilecek yerlerin uygunlugu tespit
edilmeye ¢alisilir. Ancak, benzer riizgar tiirbinleri incelendiginde, iireticinin verdigi teorik

tiretim miktar1 ile aym riizgadr hizinda gergekte iiretilen elektrik miktarlar1 arasinda



farkliliklar oldugu goriilecektir. Bu kosulda, riizgar hizi ile iiretilen elektrik enerjisi arasinda

aslinda bulanik bir iliski oldugu agiktir.

Bu tezin amac1 kapsaminda, bulanik dogrusal regresyon metotlari ile sadece riizgar hiz1 ya
da riizgar hiz1 ve riizgar yonii verilerini kullanarak bir riizgar tiirbini tarafindan iiretilecek
elektrik enerjisi miktar1 tahmin edilmistir. Ayrica, ¢esitli modellerde veri setinde tahmin
edilmeye caligilan iiretilecek elektrik enerjisi miktar1 ile riizgar hiz1 da bulaniklastirilarak,
kesin girdi kesin ¢ikt1, kesin girdi bulanik ¢ikt1 ve bulanik girdi ve bulanik ¢ikti durumlari

da dort farkli regresyon metodu ile tahmin edilmis ve sonuglar karsilastirilmistir.

Bu uygulama, gii¢ tiretimini tahmin etmeye yonelik bulanik regresyon yontemlerinin, riizgar
tiirbininin kurulmasi planlanan yerler i¢in karmasik hesaplamalar ve modellemelerden 6nce
genel cercevesinin belirlenmesinin istendiginde, ya da yillik degil mevsimsel gézlemlerin
yapildigi durumlarda, ya da gozlemlenen degerlerin giivenilir bulunmadig1 durumlarda ya
da c¢ok yer alternatifinin oldugu ancak yer se¢imi kararinin verilmesi i¢in yeterli zamanin
bulunmamasi durumlarinda faydali olacag: tespit edilis olup literatiire farkli bir yaklasim

getirecektir.
Son olarak, bu ¢aligma riizgar tlirbinlerinin iliretecegi enerjinin tahmin edilmesinde gelecekte

kullanilmas1 beklenen Bulanik Parcali Regresyon Metodu ile Bulanik Dogrusal olmayan

regresyon metotlarina temel olusturarak, bu metotlara yeni bir pencere agacaktir.

Anahtar Kelimeler: Bulanik mantik, Bulanik Regresyon, Riizgar Enerjisi.
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I INTRODUCTION

Since the industrial revolution, the usage of energy and the need for energy has increased
with high consumption unceasingly [1]. Human beings have benefited from conventional
energy resources such as biomass and fossil resources in order to encounter the increasing
energy need with the increasing human population. In the last century, researchers have
turned to different energy resources such as wind and sun, due to the decrease in the number
of fossil resources, increase in prices of them, and especially the increase in the amount of

carbon dioxide in the atmosphere [2].

Usage of wind energy have increased speedily in the last 20 years. Renewable energy makes
wind energy attractive because it is an environmental-friendly and efficient energy source

when applied properly [3].

The installed power generated by wind energy was only 24 GW in 2001, it reached 743 GW
all over the world by 2021. In twenty years, wind energy installation increased thirty times.
The situation proves that wind energy is quite important for the future of humanity and wind
energy investments will continue to increase in the future. Europe is the world leader in
wind energy with a total installed power of 220 GW [4]. Turkey ranks seventh in this list
with an installed power value of 9 GW [5]. So, wind energy earns popularity not only in
Europe but also in Turkey. Correspondingly to the situation, many studies have been done
to improve the capacity and the efficiency of wind energy tools due to the potential of wind

energy.

Statistical analysis and big data applications have permeated many sectors, including
renewable energy, storage, in tandem with the speedy growth of information science and
the fast convergence of conventional industries and intelligent technology [6].

In essence, finding an effective method that can provide precise wind power projections is
crucial, as it can assist the efficiency of wind turbine plants, reduce unfavorable effects in
the wind energy installation scenario, and improve profits of the wind energy earnings

through the optimization of bidding strategies [7].

Wind energy is naturally intermittent due to the high correlation of fluctuating and varying

wind speeds and other meteorological parameters. The feature makes it difficult to predict



accurately and results in a relatively poor generation result for large-scale wind energy input
into the system. For this reason, incorrect wind energy estimation can cause many problems

and ineffective usage of economic resources [8].

To maximize the generated electrical energy, it is necessary to estimate the power generation
of a wind turbine. In recent years, various models have been developed. Usually, a similar

format is used when conducting wind power studies.

Primarily, meteorological models and historical power generation data of wind plants are
combined for a place where is evaluated as a potential construction area. Then, seasonal or
characteristic correlated data of wind speed and load are collected for the same period.
The forecasts are provided by the preprocessed results that are the adoption of the power
system models and statistical analysis models [9]. The mentioned models are physical

models and conventional statistical models [10].

Proposed methods for predicting power generation have been revealed to be frequently
complex. Since estimated parameters are affected by a variety of factors, the condition
necessitates the use of either parametric or non-parametric techniques. The main parametric
methods are the Linearized Model, Polynomial Model, Probabilistic Model, and Logistic
function model. The main non-parametric methods are Neural Networks, Data Mining
Algorithms, and Fuzzy Clustering Methods [11].

It is assumed that there is a relation between wind speed and generated power, but there are
also unexplainable factors that affect wind speed, power generation, and the relation of
them. The thesis was driven by the unknown associations in the dataset's context, which led
to the use of fuzzy regression. Because the application of fuzzy set theory is popular for the
kind of subjects, and it is capable to generate not only crisp decisions but also corresponding

degrees of membership.

In this study, the power that would be generated by a wind turbine with wind speed and
wind direction data is used to predict with the help of the various fuzzy linear regression
(FLR) methods. Fuzzy regression methods do not consider distribution and there is a fuzzy
relation between wind speed, wind direction, and power generation. Thus, fuzzy logic is
implemented to the regression analysis. The methods to predict the power generation are

especially influential and advantageous when a general frame of the wind turbine models is



required before complex calculations, when there are a small number of observations that
are not trustworthy, or when there are more optional places to construct a wind farm for

decision-maker.

In addition to the goals, it is believed that the study will be the basis and open a new door
to the unused application of fuzzy piecewise regression and fuzzy non-linear regression for

the estimation of wind turbine energy estimation.



2 REGRESSION ANALYSIS

The systems which have not randomness for succeeding observations are called
Deterministic Systems. In these systems, the same outputs are always created by the same
inputs at the identified beginning. Non-deterministic or stochastic systems, conversely
include randomness, are the systems that cannot produce equivalent outputs with equivalent
inputs. Nevertheless, it does not mean that calculations or predictions related to results

cannot be made.

The complications in the science and engineering era can be resolved by examination or
analysis of the relationship between two or more variables. The statistical tools are generally
used to explore and model the non-deterministic connection between variables. The
mentioned methods are termed Regression Analysis [12]. Francis Galton, one of the leading
scientists of the 18™ century, was the first to use and develop the concepts of correlation and
regression. Karl Pearson, a colleague, and researcher of Galton continued Galton's work
after Galton's death. Although the correlation coefficient, which is widely used today, is
known as the Pearson correlation coefficient, this concept is essentially based on Galton's
studies [13].

In regression models, the one or more variables that affect or produce the output are defined
as independent variables, outputs are stated as a dependent variable in general. However,
the definition can generate confusion. Therefore, it is possible to call the independent
variable a regressor or predictor variable and a dependent variable as a response variable
[14].

2.1 Regression Types

In literature, the regression analysis can be classified with the number of regressors the
shape of the regression line or the type of the dependent variable, or whether the regression
has parametric or non-parametric structures. Not only these main attributes but also

subsidiary attributes are used to detail the type of regression analysis.

Montgomery et al. [14], classified the types of regression analysis methods shown as in

Figure 2.1.



REGRESSION

Number of Independent Shape of Regression Time Series
Variables Lines

Simple Reg. Multiple Reg.
> Linear Regression

— Non-Linear Regression

— Polynomial Regression

Figure 2. 1 Classification of the Regression Models

Although there are many subordinate types for regression models, only principal types for

regression analysis are indicated above.

Regression analysis is a statistical model used to define or predict the causal relationship
between a dependent variable and one or more independent variables. Within the framework
of this definition, a regression model, Y dependent variable, k number of independent

variables, and X's independent variables can be defined as below:

Y:f(Xl,Xz,X3,...,Xk) +¢ (21)

The last term in Equation 2.1 is called the error term and this term indicates the mismatch
between the estimated value obtained by the model and the actual value. The expression
f (X1, X2, X3, ..., X)) seen in the equation allows the model to be defined as linear or

nonlinear. The mathematical model of Equation 2.1 above is shown below:

Y = Bo+ B1x1i + Boxyi + -+ Prxy; + € (2.2)

Written in Equation 2.2 format, it is a multiple linear regression model in terms of both



variables and parameters which is the most general form:

Y = Bo+ Pixs+ Boxi + € (2.3)

However, the model in Equation 2.3 is an example of a non-linear relation between
variables. Also, some models are non-linear according to their parameters like in Equation
2.4 below:

Y = BoXBr)et (2.4)

However, when the expression X" in Equation 2.3 is defined as "X," as a new variable, a
model in Equation 2.5 is obtained and the model transforms into a linear model with this

new form.

Y = Bo+ B1X1+ [X; + € (2.5)

After the logarithms of both sides are taken in Equation 2.4, a linear model is reached as in
Equation 2.6 which is written below:

log(Y) = log(Bo) + B1log(Xy) + ¢ (2.6)

As described above, some models that are not linear in terms of variables and parameters
can be transformed into linear models with the help of appropriate transformations. Thus,
these models generally can be defined as linear regression models. However, there are also
models in which linearity cannot be achieved as a result of any transformation and these

models are also classified as nonlinear regression models.

2.1.1 Linear Regression Analysis

Linear regression models are shaped with the assumption that there is a linear relationship
between the regressor(s) and the dependent variable. If there is a single independent variable
in the model, the model is called a Simple Linear Regression Model; on the other hand, if
there are more than two independent variables in the model, the model is called a Multiple
Linear Regression Model [15].



The researchers have two general purposes in multiple linear regression. The first is to
estimate the value of the dependent variable via the independent variables assumed to affect
the dependent variable. The second is to identify which of the independent variables affect
the dependent variable more and capable to define the relationship between them [16]. If
the relationship between Y dependent variable and p number of independent variables is
linear and if there are observation values of Y and X, the multiple linear regression model is

expressed as follows:
Y = XB + ¢ (2.7

In the formula, Y designates an n-dimension vector for n- number of observations, X labels
a matrix which is formed by the number of independent variables and observations. $ shows
an n-dimension vector like Y. e, which is an n-dimension vector that defines the error
between observation and prediction. The error terms are considered that they are normally
distributed, the error is assumed that its mean equals to zero (E(g)=0) and its variance is
constant (var(e)= o21) [17].

2.2 Least Square Estimation Method

The primary objective of regression analysis is to model the relationship between variables
accurately by predicting the unknown parameters. Numerous methods are applied to
estimate the parameters of regression models. The main purpose of the estimation methods
Is to minimize the total errors which are calculated as the distance between the estimated
regression line and the observations. One of the methods which use the minimization of
total sums calculated by the negative or positive observations located above an under-
regression line is the Least Absolute Deviation Regression [18]. This method is expressed

as below:
Min 2?=1|(Yi - ?l)l (2. 8)

The method occasionally cannot reach common solutions; moreover, it permits obtaining
many regression lines that have the same total absolute error. Contrarily, in the least Squares
Estimation method, using the squares of errors vanishes the problem mentioned above

because of the negative and positive of errors, also it emphasizes the effects of the



observation with a bigger error. Because of this reason, the Least Squares method is mostly
used to estimate the parameters of a regression model today. The mathematical expression

of the Least Squares Method is given below:

Min 2t (¥; - 7;)° (2.9)

If Equation 2.9 is detailed:

2
MinYi-, (Yi - (ﬁo + B1x1; + Baxg + -+ ﬁpxpi)) (2.10)

is attained.

Here, the Multiple Regression Model can be written again as:
Y = BO + leli + ﬁzxzi + e+ ,Bpxl-p + & (i:1,2, cee Il)
=Bo+ X1 Bjxij+E,i=12,..,n (2. 11)

After, the least square function is shown below:

S(Bo, B, - Bi) = Sy 62 = X (vi — Bo — Ty Byxif)” (2.12)

According to normal procedure, the function S should be minimized concerning
Bo, B1, -, Bx- In other words, the derivation of the function S with respect to B, will be

calculated. Thus, the least-square estimators of B, B4, ..., Bx should fulfill the equation

below:

aS n n

ﬁlm,ﬁ,._,m = —22(% - Bo _Zﬁjxij) =0 (2. 13)
0 i=1 =

and


https://tureng.com/tr/turkce-ingilizce/mathematical%20expression

as — )
a_ﬁj|i2},/?1,...,m = =23 ,(yi— Bo—Xj1Bjxij)xy; = 0, j=1,2,..,k (2.14)

After expanding Equation 2.14, The least-squares normal equation can be found :

n n n n
npo +,31in1 +.Bzzxi2 + "'+.Bkzxik = Z)’i
i=1 i=1 i=1 i=1
n n n n n
ﬁozxn + .31zxi21 + Bzzxuxiz + -+ )Bkzxilxik = inﬂ’i
i=1 i=1 i=1 i=1 i—1
n n n n n
5 5 5 5 2.15
ﬁozxik+ﬁ1zxikxi1+ﬁzzxi1xiz+"‘+ﬁkzxi2k=zxik}’i ( )
i=1 i=1 i=1 i=1 i=1

When the least-square estimators are calculating, it will be significant that there is one more

equation from the number of the estimators, in other words, when least-square estimators

are Bo, P, ..., B, the number of the regression equation is p, p = k +1.

The researchers who want to see whole variables compactly generally prefer to use matrix
notation to manage multiple regression easier [17]. The matrix representation of the model

is shown with Eqg. (2.11) below:

Y = XB+ €
Where:
Y1 1 X11 X21 ... X1k o .
A I S N
lynJ 1 x1.11 xr.zz x‘r.lk bn lan

As understood from the matrix notation; the dimension of y vector called observations is
n x 1, the dimension of X called regressor variables is n x p, the dimension of the vector g
called regression coefficients is nx1 and finally, the dimension of the vector ¢ called random

errorsisn x 1.



n n k

S(Bos By - Br) = z &% = z Yi—Bo— Eﬁjxi]'

i=1 i=1 j=1
=ee=(y-XB)'(y—XB)
If the least-square function S(/) improved as below:
SB)=y'y-B'X'y-y'XB+B'X'XB (2. 16)

Due to B'X'y and its transpose y'X[ are scalar or in other words, 1x1 matrix,

the least-square function above will be transformed to function below :

SB)=y'y=2B'X"y+B'X'XB
(2.17)

Also, the derivation of function according to estimators must equal to zero as below:

aS

ﬁl’ﬁ\ = —2X'y + 2X'XB = 0 (2.18)

After simplifying the derivation above, the least-squares normal equations below will be

found as:

The least-square estimators (ﬁ) can be reached by multiplying both sides of (2.16) by

;=1
(X X) . Thus, the estimator is:
B=XX) "Xy

When the estimator £ put in place in the equation below:
y=XB=XX'X)""X'y = Hy (2. 20)

H = X(X'X)~1X'is generally named hat matrix and its dimension is n x n. The assets of

10



the hat matrix are quite important, and it is also used to calculate the residuals which are the
difference between observed and fitted values.

e=y—y
After the H matrix is added to the equation above, the residual will be:

e=y-XB=y—Hy=(U-Hy (@.2)

50
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X1

Figure 2. 2 The Least Square Method with two independent variables [19].

The plane in Figure 2.2 indicates the regression model that is obtained by the least square
estimation with two independent variables, after minimizing the squares of errors. Grey lines
between the plane and dots show the error values. The least Square Estimation method is
used not only in linear regression models but also in non-linear and fuzzy regression models.

A detailed explanation of the method will be given in the following chapters.

The theoretical part of the least-square method is emphasized above superficially, however,
some certain assumptions are obliged to satisfy for the usage of the least-square method.
Otherwise, the method will not give appropriate results to analyze data.

The assumptions are listed below [19]:
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e Firstly, the error terms are considered to have normal distribution, otherwise, other
assumptions would be invalid, and the least-square method would be an unnecessary
application for the data set wanted to practice.

e The expected value of the error terms is assumed to equal to zero (E(g)=0). The
assumption avoids that the regression line cannot be violated, in other words for a
group of observations the model is not systematically low or high.

e The variance of the error terms is stable (var(s)= a21). It means the variance of the
errors cannot be different for some part of the data set. The assumption for error
terms that have constant variance is called homoscedasticity.

e There cannot be a correlation between each error term. The correlation between

errors happens in time series data and the situation called autocorrelation.

The violations of the assumption mentioned above lead the model to be misled and they
weaken the strength and capacity of estimation. For prevention from the violation, some

plots and tests are advised to check the model.

2.3 Circular Regression

The researchers prefer to use not only linear observations but also directional observations
to reach a proper and efficient solution according to the structure of the dataset. When the
dataset includes directional and circular data, it leads the researchers to use the directional
statistics for appropriate prediction. In science, the Directional Statistic generally is used in

Meteorology, Biology, Geology, Geophysics, Geography, and Psychology, etc.[20]

2.3.1 Literature Review

When linear statistical methods are applied to directional data causes errors in subjects such
as parameter estimation and regression analysis. Therefore, many methods have been
developed differently from known statistical techniques. The development of directional
data analysis that has its statistical attributes has begun with the study of Gumbel et al. [21].
They examined the theoretical background of circular normal distribution.

Gould [22] proposed the first regression model with circular variables in 1969. The model

uses the dependent variable as a circular variable and independent variables are linear

12



variables also the dependent variable has von Mises distribution.

Examining that the probability function proposed by Gould led to erroneous Maximum
Likelihood Errors, Johnson and Wehrly proposed models for direct estimation of the mean

direction and concentration parameter in the case of a single covariate [23].

Mardia calculated the correlation coefficient for bivariate circular distributions [24]. Lund
implemented the least-squares errors method to circular regression [25]. Jammalamadaka
and Sarma proposed a regression model with two circular random variables that explain the
relationship between these variables and demonstrating the conditional expectation of the

given vector [26].

Probability density functions that are defined on the timeline can be wrapped around a unit
circle. The application of this concept encouraged the use of time-dependent variables as
circular variables. Mardia and Jupp describe the properties of wrapped distributions as quite

inclusive in their book [27].

Downs and Mardia (2002) offered a circular regression model based on a one-to-one match

between the independent angle and the mean of the dependent angle [28].

Hussin et al. developed Mardia's model [29] by addressing the situation in which both

response and explanatory variables are circular.

13



2.3.2 Circular Descriptive Statistic

When the classic statistical methods that are formed for the linear dataset are applied to the
directional dataset causes errors for parameter estimation, regression analysis, etc. [27]. The
directional data cannot be mentioned in any size; therefore, the observed value can be
described by points over a unit circle whose center is the origin or a vector that joins the
points with the origin of the circle. Directional data can be defined with an interval between
0 and 27t. @° that is used to define vector shows the angle between the vector and positive x-
axis with clockwise or counterclockwise. The Cartesian coordinates of the vector are:
cos(0) and sin(0).

The radian and degree units can be used for directional data, the angle in the degree unit is
symbolized with 8° and angle in radian unit is symbolized with 8 . Transformations from

radian to degree unit and from degree to radian unit are shown below:

o

o°= 1800/ 0° <9 <360° (2. 22)

0 =T /100,0<6 <2m (2.23)

Also, the relation between Cartesian coordinates and polar coordinates is depicted in
Figure 2.3.

75ind _\ p

Figure 2. 3 The relation between cartesian coordinates and polar coordinates.

The polar coordinates of the P are defined with radius (r) and angle (@), the Cartesian

coordinates of the point can be reached with trigonometric transformation below [30]:
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x = rsinf andy =rcos6 (2. 24)

2.3.3 Mean Direction

When directional data is used in research, the mean of the data set cannot be calculated as
the arithmetic mean. When the arithmetic mean of 001 and 359 is 180, on the other side, the
directional mean of the 001° and 359° will be 360°. The basic example explains the
importance of the mean directional. The same difference between linear and directional data
can be seen in variance calculations. The directional mean is calculated as a resultant vector
of the directions that are accepted as directional vectors. If All P; are points on a unit circle
with an angle 8;(i = 1,2, ...,n), the mean of points 8 is the resultant of the unit vectors

Where C and S are the components of the resultant vector R,
n n
R = (Z cosHi,z sin9i> =(C,S) (2.25)
i=1 i=1

Subsequently, the mean of the direction is stated as below [27]:

(arctan (%), if $=20C>0
”/2, if C=0S5>0
6 =1 arctan(%)+ w, if C<O0
arctan (%) + 2m, ifC>05<0
\ undefined, ifC=0S=0

The mod and the median of the directional data can be calculated like the method that is used

to calculate the directional mean, nevertheless, the terms are not detailed in the study.

2.3.4 Circular Regression Types

Although regression analysis is a frequently used method in statistics, the usage percent of
it with circular data is quite low. Studies about circular regression have begun approximately

50 years ago [31].
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A regression method is named circular regression whether it has a circular variable as a
dependent or independent variable in a regression model. Comprehensively, in a circular
regression when there is/are circular independent variable(s), a linear or circular dependent
variable can exist or when there is a circular dependent variable, just linear independent
variable(s) can exist. The directional descriptive statistics are practiced in circular regression.
The methods and approaches can change according to circular variables used as dependent

or independent variables. Three Circular Regression Types are detailed below [32], [33]:

1. Circular — Linear Regression: When one of the independent variables in the model is a
circular variable, if the dependent variable is linear, the model is called the Circular-Linear
Regression model.

2. Linear — Circular Regression: When independent variable(s) is/are linear variable(s) if the
dependent variable is a circular variable, the model is named Linear — Circular Regression
model.

3. Circular — Circular Regression: When both independent and dependent variables are
circular variables, the model is called the Circular — Circular Regression Model.

The Linear — Circular Regression and Circular- Circular Regression models are not dilated

since the models are not used in the study.

2.3.4.1 Circular-Linear Regression

When Y is the linear dependent, the a: is the circular independent variable with a single

period. The simple regression model for these variables is:

y =4+ Ajcosw(a; — ay) (2. 26)

The above model has T period, Ao is named the mean level, A; is named amplitude, w is
named the angular frequency with 2w / T , and lastly, ag is named acrophase that points to

the highest peak and is symbolized with . So, the model can be written as below [30]:

When @ = way, Y = Ay + Ajcos(wa — @) (2.27)

After determination of the constants via the Least Square Method, the model in Equation

2.28 can be generalized as in Equation 2.29 :
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y =A¢ + Ajcos(wa — @) + Aycos(2wa — @3) + -+ + Acos(kwa — @) (2. 28)

Researchers report the distortion of the oscillation, in other words, the sinusoidal curve of
the variable does not follow peak and trough points with the same period and skewed
oscillations occur [30], [34]. To solve the problem, different methods or terms are generated
to avoid the mentioned deviations.

Johnson and Wehrly developed a new approach for angular linear distributions and the
regression models were relatively generated with these distributions in 1978 [23]. They tried
to forecast the Air Quality Index as the dependent variable with the temperature that is a
linear independent variable and wind direction that is an angular variable. When x is the air
pollution index, x2 is the temperature and & is the wind direction, the model offered by
Johnson and Wehrly is seen below:

X1 =49+ A1xy + Azc0s0 + A4sinf (2.29)
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3 FUZZY SET THEORY

Firstly, propounded by Zadeh in 1965 [35], the fuzzy set theory is an approximation logic
system that uses imprecise or linguistic data or human experiences to compute based on
mathematical models, in other words, it allows humanity to utilize fuzzy data for decision-
making [36].

Aristotle’s logic uses only “0” and only”1” to explain events, it means an event is white or
black; the event exists or not exists. Contrarily fuzzy logic uses a membership degree which

is a value between “0” and “1” [37].

According to Zadeh, fuzzy logic is calculating with words instead of numbers [38]. For
instance, the word “ice cream” represents different tastes and preferences to anyone. Indeed,
an expression of a human reflects his or her thoughts which have uncertainty. The Fuzzy
logic skillfully breaks the classical two-valued (0 or 1) approach and gives a capability to a
thought, an event, or a variable to be denoted by an infinite number of values

between 0 and 1.

Fuzzy logic is a revolution against classical logic. It also led to new applications not only
in mathematical science but also in engineering. In the first decade after fuzzy logic was
proposed, some researchers approached the theory with suspicion. Due to not having an
application, the theory stayed as a philosophical debate among scientists [39]. However, the
fuzzy set theory and fuzzy systems took the attention of academia, afterward, Mamdani and
Assilian applied the fuzzy set theory to a steam engine controller in 1975 [40]. Following
years, the fuzzy set theory was practiced in hoovers, washing machines, elevators, metro
systems, business administrations, and many fields in the economy and engineering, etc. So

far, the fuzzy set theory has continued to boost its popularity.
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3.1 Literature Review

The fuzzy set theory gained popularity in Japan in the 1970s, after Zadeh's proposal for

fuzzy set theory. And many new objections have been proposed [41].

Bezdek developed the fuzzy clustering method to cluster and analyze plants in a well-known
botanical dataset. It is another example of the implementation of the fuzzy set theory to a
crisp method [42].

Dubois and Prade presented information about algebraic operations on fuzzy numbers and
examined L-R type fuzzy numbers [43] Lowen studied convex fuzzy sets and put forwards
the preliminaries of the convexity of the fuzzy sets [44].

Pedrycz worked on fuzzy logic operators to be used in fuzzy membership degrees,

essentially incorporating statistical properties [45].

Some issues related to choosing suitable operators for combination and intersection of fuzzy
subsets have been criticized by Yager and new operator suggestions were made on the topic
[46].

Laarhoven and Pedrycz [47] implemented fuzzy triangular numbers to one of the most
popular decision-making methods that are Saaty’s [48] Analytic Hierarchy Process. Buckley

[49] developed the Fuzzy AHP method by using trapezoidal fuzzy numbers.

Pehlivan and Apaydin analyzed the fuzzy linear programming problem using the simplex
method and artificial neural networks approach in their studies and compared the results. As
a result of the research, they reported that the artificial neural network approach was quite

useful and could be an alternative to the other method examined [50].

Karwowski and Evans emphasized that the application of fuzzy set theory to production
management whose sub-areas are new product advancement, facility location, production
planning, inventory and stock controlling , cost-benefit analysis would produce effective
results [51]. Many studies are contributed to the production management area and over two

hundred studies between 1994-2001 are reviewed detailly by Bansal [52].
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Bellman and Zadeh firstly dealt with the implementation of the fuzzy set to decision-making
methods [53]. After, Baldwin and Guild applied fuzzy set theory to decision-making
methods by comparing fuzzy sets in the space [54]. Since fuzzy multi-criteria decision-
making methods have emerged, many contributions are made to the issue. The last two
decades' studies are examined systematically by Mardani et al. [55]. Also, Kahraman et al.

comprehensively reviewed the studies until 2015 [56].

Mamdani and Assilian developed the first fuzzy logic controller and put the fuzzy set theory
into practice in 1975 [40]. Hereby, the Fuzzy Inference System established and began to use
in the industry. After, Takagi-Sugeno-Kang [57] proposed a system with fuzzy inputs and a
crisp output (linear combination of inputs) to be computationally efficient and suitable for
working with optimization and adaptive techniques different from the method of Mamdani.

Examples of the application of fuzzy logic in the industry are the control of a cement kiln
created by Smith & Co. in Denmark in 1980 and the design of the Sendai metro by the
Hitachi company in Japan in 1987. Later, a Japanese government-industry joint activity,
LIFE (Laboratory for Industrial Fuzzy Engineering) was established as a consortium of
about 50 members [58]. After the industrial applications of the fuzzy set theory were proven,
the usage and trial of the fuzzy set-in sub-areas of the industry have begun to attract the
attention of industrial companies. Although just fifty years passed after the fuzzy set theory
is propounded, the theory is developed quite speedily and implemented to not only social
sciences but also engineering and industry. Consequently, it is significant to prove that the
importance of the theory and application of fuzzy logic will continue to appear in every area

of human life due to existing vagueness in every part of human life [59].

3.2  Fuzzy Sets

The fuzzy set is generally described with its membership functions which sign different
belonging degrees to a set or a phenomenon. In classic set theory, a candidate for
membership is either an element of a set or not. It can be stated that if the candidate is an
element of the set, so it is 1 or if the candidate is not a member of the set so it is 0, like in
Aristo Logic. However, the fuzzy set theory transforms the certain membership term in

classical logic into a generalized partial membership concept.
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An element of a fuzzy set could be a member of another fuzzy set. Consequently, the fuzzy
sets are vague and have imprecise boundaries comparing to classic sets [60], [61]. For
instance, when it is considered that X is possible temperature value in Celsius; if it is used

to define the boiling temperature of the water, it is a crisp or classic set:

A(x)= Boiling Temperature of water (Precise definition: a classic set),
A={x€eX|x>100}, (3.1)

Or detailed formulation is:

1 forx=>100

#A(X):{Oforx<100 X EX (3.2)

on the other side, if it is used to define hot temperature, it is absolutely a fuzzy set:

A(x)= Extremely hot temperature (According to whom? a fuzzy set)

A ={(x, pa()| xe X, puz(x)el0,1] (3.3)
3.2.1 Basic Fuzzy Set Operations

Basic fuzzy set operations are intersection, union, complementation, and inclusion similar
to the classical set operations, however, the properties of the fuzzy sets like membership
functions, etc. must primarily be applied to the classic set operation and all fuzzy sets must
be in the same universe as the first axiom in the operations [61]. Owing to different
applications of the feature of the fuzzy set theory; Sugeno [62], Yager [63], Dubois, and
Prade [64], [65] enhanced their set approaches in the fuzzy set operations. Zadeh’s standard
operations are described below, but the researchers who want detailed knowledge about

fuzzy set operations can see the approaches mentioned above.
Intersection
Fuzzy sets A and B are a subset of X and their membership functions are uz(x) and pg(x)

respectively, the membership function of the intersection of the two fuzzy sets can be stated

as in Equation 3.4:
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K (ang)(X) = min[pz(x), pup(x)]vx € X (3.4)

]
S

pu=1

ANB X

Figure 3. 1 Intersection of the fuzzy sets.

Union

Fuzzy sets A and B are a subset of X and their membership functions are uz(x) and pg(x)
respectively. The union operation is also referred to as MAX-union or standard fuzzy union.
The membership function of the union of the two fuzzy sets can be stated as in
Equation 3.5:

teauvs) (x) = max[pz(x), us(x)]Vx € X z (3.5)

N
S

Figure 3. 2 Union of the two fuzzy sets.
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Complementation

The complement of a fuzzy set A can be symbolized as A°, 4 or A’, the membership
functions of fuzzy set A and fuzzy set A€ are uz(x) and pyc(x) correspondingly and

formulated as:

pac(0)=1-pu(x) Vx€X (3.6)

Figure 3. 3 Complementation of Fuzzy set A.

The bold membership function is the fuzzy set A and the other membership function is the

complementary fuzzy set A€

Inclusion (Containment)

If all elements of a fuzzy set A are also elements of a fuzzy setB, the fuzzy set 4 is said that
it is included by the fuzzy set B. In this case, the fuzzy set 4 is a subset of the fuzzy set B;

in other words, the fuzzy set B is the superset of the fuzzy set A.

AcBovixeX[xeAd=>x€B] or B24 (3.7)

A

N

Bou,(x) <ug(x) vx € X (3.8)

The summary of basic fuzzy set operations is shown in Table 3.1 below [66]:
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Table 3.1 Summary of the basic fuzzy set operations.

Description Notation Definition

A is a subset of B B2A px(x) < pg(x)

A is equal to B A=TB uz(x) = pg(x)

Complement of A A Aor A’ Upac(x)=1-pa(x)

A intersect B AnB L, 00 =min] 4 (X), () | ¥x € X
A union B AUB L () =max (%), 45 (x) ] ¥x € X

3.3 Extension Principle

The extension principle permits general mathematical notions and theories used in fuzzy
situations. The operation was firstly offered by Zadeh [67], and also known as Zadeh’s
Extension Principle. The main goal of the principle is to reach the reflection of a fuzzy set 4
of the universe X, after a function (f: X—Y) applied to the fuzzy set A. The fuzzy set A is
defined in X and the fuzzy set B is defined in Y, mathematical presentation of the extension

principle is as in Equations 3.9 - 3.12 [68]:

K = {(X, HA(X))'XE X} ; E = {(Y: IJ'B(Y))ly = f(XIIXZI "Xn) } (39)
B =f(A}A,, .., A)
sup pa(x),if f~1(y) # @;whenx € f~1(y)
us(y) = (3.10)

0 otherwise

B = min ( (a, (1), ta, (%2), May (%a), - ay () /1, X2, %)) (3.10)

~[X=X1><X2><...><Xn

The detailed definition is:

A=

uaCa) | paCea) | paCen) i pa(xi)
X1 X2 Xn =1 Xj
3)
= _ N pa (xi)
B = f<; .
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3.4 Membership Functions

In fuzzy logic, every input has a belonging degree to a fuzzy function. The belonging degree
is identified with a membership function. The membership function has a value between [0,
1] and is indicated by u(x). For instance, uz(X) = 0.7 means that membership degree of
element x to fuzzy set A is 0.7, in other words, x is a member of the fuzzy set A with a 70
% possibility. According to the statement, an element may not be completely the member

of a fuzzy set [60].

3.4.1 Basic Definitions of Fuzzy Membership Functions

When objects signified by x generate the collection of X, a fuzzy set A can be defined as:
A ={(x pz(x))|xe X}

Fuzzy membership functions also have parts; the subset which involves all interval of a
fuzzy set is called the Support. The support of the fuzzy set A, S (4), is the crisp set of all
x € X, when uz(x)>0. Similarly, more than one value in the fuzzy set A can be equal to 1.
These values are doubtlessly subset of fuzzy set A. These values are generally accepted to
stay at the center area of the fuzzy set A. Thus, the subsets whose membership degrees are
equal to 1 named the Core of the fuzzy setA. Correspondingly, other subsets not mentioned
which are not equal to 0 and 1 called the boundary of fuzzy set A. All parts of the fuzzy set

A can be seen in Figure 3.4.

Core
I —

>

1
|
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
:
' ! Boundary

Boundary .

Support

Figure 3. 4 Parts of a Membership Function.
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3.4.2 Convexity of Fuzzy Sets

Convexity is also an important attribute for Fuzzy Membership Functions. A fuzzy setA is
convex if:
MZ(Axl + (1 - A)Xz) = mln{”;‘i(xl)i M‘A(XZ)}rxl » X2 € X!A € [0'1] (313)

However, the property above is the conclusion of inequalities that are found by basic set

operations [35]. For fuzzy sets, A, B, A the basic concept of convex combination is:

ANBCc(AB; A )cAUBforall A . (3.14)

Figure 3. 5 Convex (a) and Nonconvex (b) Fuzzy Sets.

In Figure 3.5, when the shape at left is an example of a convex fuzzy set, the other shape

symbolizes a nonconvex fuzzy set.

3.4.3 Normality of Fuzzy Sets

In this case, there is at least one point that equals one; the fuzzy set A is called Normal,
otherwise the fuzzy set A is a non-normal fuzzy set. In other words, if the fuzzy set A is
normal, the maximum value of px(x) that is occasionally stated as the height of the fuzzy
membership function must equal 1 [39]. The examples of Normal and Non-normal Fuzzy

Sets are depicted in Figure 3.6.
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uz(x) <1

Figure 3. 6 Normal (a) and non-normal (b) Fuzzy Sets.

3.5 Types of Fuzzy Membership Functions

There is various type of membership function has different shapes. In literature, mostly used

membership functions are Triangular, Trapezoidal, Gaussian, Sigmoidal membership

functions [69].

3.5.1 Triangular Membership Functions

The triangular membership function is defined by three parameters a, b, ¢ which draw the

borders of a fuzzy set.

(z:z) ifa<x<bhb
uwi(x;a,b,c) =4 (cx ifb<x<c

c-b
Oifx>corx<a

27
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p(x)

a b C X

Figure 3. 7 Triangular Fuzzy Numbers

3.5.2 Trapezoidal membership function

The trapezoidal membership function is expressed by four parameters a, b, ¢, and d, like the

triangular fuzzy number in a fuzzy set.

"0 ifa<x<b
b-a
watsabe,d) =4 1)1fb£x$c (3.16)
—- ifcsx<d
Oif x>dorx<a
1
H(x)
a b C d

Figure 3. 8 Trapezoidal Fuzzy Numbers.
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3.5.3 Gaussian Membership Function

Another fuzzy membership function mentioned before is the Gaussian Membership
Function which is generally used to signify impreciseness and fuzzy occurrences. Gaussian
Membership Function is defined with ¢ which represents the center and 6 which represents
the width of fuzzy set A [70].

(ci—x)?
atricio) = exp (-2
(3.17)
. C, |
CL‘B i
v i
7] aab b LEEL
gus :
© G; |
D.. E
i
oz :-
‘o 18 f.:' T I] 3 4
Centres

Figure 3. 9 Gaussian Fuzzy Membership Function.

3.5.4 Sigmoidal Membership Function

One of the other frequently used membership functions is the sigmoidal membership
function which has two parameters. The first parameter ‘C’ the crossover of the S-shaped
curve and the second parameter ‘a’ is the value of the slope of the S wave. A characteristic
of the Sigmoidal MF is having open right and left sides which enable researchers to describe

exceptionally large or negative fuzzy conceptions [71].
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Figure 3. 10 Sigmoidal Fuzzy Membership Functions.

The mathematical formula of Sigmoidal Membership Function is described below:

1
ui(x;a,c) = (m) (3.18)

3.6 A a-Levels Concept in Fuzzy Sets

Due to avoid complex calculations with the fuzzy sets, producing less complex arithmetic
operations, and using as a defuzzification or ranking method, the a-level concept is
generated by leading scientists. The concept is also used to produce a subset of the fuzzy set
A whose membership degree is greater than the given a. In other words, the subset is a crisp
interval and continuous function [67]. The fuzzy set 4 is in a set of real numbers and its a-

cut is denoted by A,. Then, A, = pz [(a, 1)], is a crisp set and written as:
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A, ={x e R|A(x) = a} (3.19)
The strong a-level which is denoted by A+ is also crisp set and written as:

A+ = {x e R|A(x) > a} (3.20)

p(x)

Figure 3. 11 a-levels in a Fuzzy Number.

According to figure 3.11, a-level for o, is M_IA (ay) =[a,e],

strong a-level for a1 is p~, (a*;) = [a,d] and a-level for oz is p~*, (az) = [b, c].

3.7 Fuzzy Arithmetical Operations

The fuzzy set operators mentioned in the previous section are insufficient for calculations
with fuzzy numbers. When the fuzzy numbers are in an equation, the arithmetical operations
that are addition, subtraction, multiplication, and division should be activated for solving
the problem. Since the equations that include fuzzy numbers are important components of
mathematical programming and the other scientific areas for modeling real-life problems.
Like in basic fuzzy set operations, there are different approaches for fuzzy arithmetical
operations. However, a-cut and max-min convolution methods are defined in the next
section [72].
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3.7.1 Addition of Fuzzy Numbers

If A and B are fuzzy numbers, the addition of the two fuzzy numbers can be calculated by
two methods as mentioned:

I. a-level cut Method: The method uses the upper and lower values that are
generated after the application of the a-level cut method to the fuzzy numbers. The fuzzy
numbers’ lower and upper values are A, = [ AL, AY] and B, = [ BL, BY]. If the fuzzy

number C is the summation of the two fuzzy number, the fuzzy number C:

C,=A,+ B,=[AL + BL AY + BY] for every o € [0,1] (3.21)

As aresult, a lower value of € is visibly summation of the lower values of the fuzzy numbers

and the upper value of C is similarly the summation of the fuzzy numbers.
Il. Max-Min Convolution: The method especially uses Zadeh’s extension

principle. If the fuzzy number C is the summation of the two fuzzy number, the fuzzy

number C:

1z (2) = max,_..,, (min[pz(x) + pp(y)1} (3.22)

where x, y, and z € R

w(x,v.z)

xlylz

Figure 3. 12 Addition of Two Fuzzy Number in Max-Min Convolution Method.
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3.7.2 Subtraction of Fuzzy Numbers

The two methods practiced besides operation are also applied to subtraction operations. The
defined fuzzy numbers are used similarly:

I. a-level cut Method: The fuzzy numbers’ lower and upper values are
A, =[AL, AV and B, = [ BL, BY] again. If the fuzzy number C is the subtraction of the
two fuzzy number, the fuzzy number C:

C,=A,—B,=[A% — BY, AY — BL] forevery o €[0,1] (3.23)

I1. Max-Min Convolution: The method uses the extension principle too. If the

fuzzy number C is the subtraction of the two fuzzy number, the fuzzy number C:

ue (z) = max,_,_, {min[uz(x), up(y)1}

pe (2) = max,_y,, {min[p;(x), ug(—y)1} (3.24)

Pe (2) = max,—y,, {min[uz(x), p5(y)]}

where X, y, and z € R.

w(x,y,z)
N

—_—
7

xlylz

Figure 3. 13 Subtraction of Two Fuzzy Number in Max-Min Convolution Method.
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3.7.3 Multiplication of Fuzzy Numbers

There is an assumption to avoid sign effect of the operation, it is puz(x) = 0 for x <
Oand puz(y) =0fory<o.

I. a-level cut Method: The fuzzy numbers’ lower and upper values are A, =
[ AL, AY] and B, = [ BL, BY] again. The fuzzy number C is the multiplication of the fuzzy

numberA and the fuzzy number B, the multiplication is:
C,=A, B,=[AL - BL AY - BY]for every o € [0,1] (3.25)

Il. Max-Min Convolution: The method also uses the extension principle;
however, the principle makes the multiplication operation more complicated. So, Kaufmann

and Gupta suggest a new procedure [73]. The procedure is defined as:

1. If the fuzzy number is normal, the point where membership value equals 1 is
found, if else the fuzzy number is not normal, the peak value is found. Next, the peak value
of the fuzzy number C is determined after the left and right sides of the fuzzy number are
defined.

2. The left side of the fuzzy number C:

pe(z) = max {min[pz;(x), up(¥)1} (3.26)

3. The right side of the fuzzy number C:

u(z) = max {min[uz(x), uz ()1} (3.27)

3.7.4 Division of Fuzzy Numbers

The same approaches in multiplication operation can be applied to division operation.
Therefore, the division operation is defined as follows:
I a-level cut Method: The fuzzy number C is the multiplication of the fuzzy

numbers and the result is:
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C,=A, +B,=[AL ~ BY,AY + BL] for every a € [0,1] (3.28)

1. Max-Min Convolution: The procedure used in multiplication operation is

also applied to division operation. Firstly, the peak value of the fuzzy number C is
determined and the left side of the division is defined as:

1 (2) = Ipax {min[uz (x), s (M1} (3.29)
pe(2) = max  {min ;00,5 ()]} (3:30)

The right side of the fuzzy number C is calculated as:

pe(z) = Ipax {min[pz(x), us ()1} (3.31)
pe(z) = max {min [ug(x), [ (%)]} (3.32)

The division operation can be obtained by continuing as the multiplication operation from
these equations.

3.8 L-R Representation of Fuzzy Set

Arithmetic calculations between fuzzy numbers cannot be easy as expected. Thus, a new
and easier definition not only for academicians and but also for computers is needed.
Moreover, Due to reach the limit of effectiveness when a vague real-world model is
explained by computers, fuzzy numbers are preferred to depict with its left and right
parameters. The main theme in the L-R form of fuzzy number is first determining the center

of the fuzzy number after diving it into two pieces called to left and right sides [69].

L-R representation of the fuzzy number M is shown in formula 3.5 below.

(3. 33)
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In formula 3.7, L (for Left) and R (for Right) are the reference functions of the fuzzy
number M. a and B are scalar that called left and right spread of the fuzzy number M
respectively and they are bigger than zero, also m denotes the mean of the fuzzy number
M. When the spreads (o and ) of the fuzzy number Mare equal to zero, which means that
M is a crisp number. One of the most important advantages of the L-R representation of a
fuzzy membership function is to define the left and right parts of the function individually
[74]. In other words, two distinct functions can be combined in a fuzzy membership
function. The other advantage of the representation is straightforward computational

calculations in a complex model, in case that fuzzy membership functions are symmetric.

Mathematical notation of the fuzzy number M is:

M= (m,a,B).z (3.34)

An illustration of the fuzzy number M is given in figure 3.14 below.

p(x)

Figure 3. 14 L-R Representation of Fuzzy Sets
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4 FUZZY REGRESSION

After the dissertation and improvement of the fuzzy set theory approach by Zadeh [35], it
allowed researchers to assess vague variables as numeric variables. In 1982, Tanaka et al.
developed the Linear Regression Analysis with a fuzzy model by taking advantage of the
fuzzy set theory [75]. Every qualitative variable or observation is injected into the model

with its fuzzy membership degrees.

Although the crisp regression models are quite prevailing to detect the relationship between
variables, and huge varieties of crisp models are generated by the researcher; the models
cannot determine the relationship between variables as expected due to some reasons and
obscures. The situations led researchers to implement fuzzy set theory to crisp regression
models and improve the fuzzy regression models. For instance, if the number of
observations is considerable small, the type of the distribution of the observations are not
perceived, the distribution of the errors is not normal, the relationships between dependent
and independent variables are ambiguous or the structure of the data set is spoiled after
linearization process; the fuzzy regression methods are advised to use for modeling
dataset [76].

The distribution of the error terms is disregarded in fuzzy regression models. When the
errors in crisp regression models are the result of mismeasurement or selecting not
appropriate model, the errors in the fuzzy regression model are the result of the fuzziness of
the model parameters. Thus, the error in the fuzzy regression model is equal to the total
spread of the fuzzy parameters. When a small number of observations are used in a crisp
regression model, the distribution of the observation cannot be determined, and the main
assumptions of the crisp regression cannot be provided. Moreover, the reliability of the

model with a small number of observations would not be at the desired level.

Lots of researchers have tried to enhance the fuzzy regression model by criticizing the prior
models. Thus, many fuzzy regression models have been generated. Subsequently, the
classification of fuzzy regression models has been complicated. Chukhrova and Johannssen
classified the fuzzy regression models with more updated and inclusive techniques. They
also added fuzzy application of Machine Learning Techniques, which are currently popular,

to their classification method, as is seen in Figure 4.1 below [77]:
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(evolnﬂonuy olgomhm)

linear & normlinear

P (support vector machines)

Figure 4. 1 Detailed Classification of Fuzzy Regression Method [77].
Although Chukhrova and Johannssen’s study is contemporary and comprehensive, it gives

general facts about fuzzy regression models to researchers.

As explained above, the classification concept is applied just for fuzzy linear regression

models, so the generated scheme is shown in Figure 4.2.
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FUZZY LINEAR REGRESSION

/\

Possibilistic Regression Fuzzy Least Square Method

Linear Programming

\ 4

Goal Programming

\ 4

\ 4

Interval Regression

Figure 4. 2 Classification of the FLR Models.

It is also possible to classify the fuzzy regression models according to the type of
independent or dependent variables. So, there are three types of fuzzy regression models
with diverse types of input and output. The classes are:

e crisp input and crisp output (CICO),

e crisp input and fuzzy output (CIFO),

e fuzzy input and fuzzy output (FIFO).

In the study, the classification method according to inputs and outputs is not detailed,
however, when the fuzzy regression models are mentioned, the input and output details will

be given in section 6.

4.1 Literature Review

The first fuzzified linear regression analysis is suggested by Tanaka et al. [75]. It is assumed
that the input and output variables are crisp numbers, but the system parameters are fuzzy,
and the objective function is based on the minimization of the spread of the predicted value

of the dependent variable.

Since the appearance of fuzzy regression, scientists have made many contributions to the
method. Thus, fuzzy regression has been developed rapidly until today. Tanaka [78]

proposed the possibilistic linear model for processing fuzzy data. Diamond [79] developed
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the fuzzy least-squares method in which the independent variable is definite, and the

dependent variable is a triangular fuzzy number.

Moskowitz and Kim [80] determined the relationship between the spreads of fuzzy

parameters, the forms of membership functions, and the h value in fuzzy linear regression.

Peters [81] introduced a new linear fuzzy regression model to address the shortcomings of
the method proposed by Tanaka et al [75]. The method is referred to as interval regression

analysis in the literature.

Kim et al. [82] and Kim and Chen [83] compared fuzzy linear regression with crisp
non-parametric regression methods and reported that fuzzy regression analysis could be

preferred to classical regression analysis when working with a small data set in their study.

Ishibuchi and Nii [84] brought a new perspective to fuzzy regression analysis by using

asymmetric triangular and trapezoidal fuzzy coefficients in their studies.

Chang [85] proposed a hybrid method using weighted fuzzy arithmetic based on the fuzzy

least-squares method that is capable of adapting to diverse types of data.

D'urso and Gastaldi [86] worked on a linear sub-model called "Doubly linear adaptive fuzzy
regression model” based on the fuzzy regression model. They expressed the interaction

between center and fuzzy spreads, also discussed the model with numerical estimates.

Because linear programming and least squares-based approaches are overly sensitive to
outlines in fuzzy regression, more robust methods are needed. The least absolute deviation
method based on the medians has been developed by Dielman [87]. The pioneers of this
method are Chang and Lee [88] and Kim et al. [89].

Lee and Chen [90] presented a generalized fuzzy linear regression model, and they proposed

a nonlinear programming model to determine fuzzy parameters.

Nasrabadi et al. criticized that fuzzy regression models are sensitive to outliers; it is not

effective to predict parameters of the whole dataset. They also mentioned that the predicted
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values are distributed more widely when the dataset has a large number of observations in
the model. In order to eliminate these deficiencies, a multi-objective fuzzy linear regression

model has been developed [91].

Watada was the first to suggest methods that combined time series analysis with fuzzy
regression analysis. Watada used the intersection concept of fuzzy numbers in the fuzzy

time series model in this study [92].

The chronological development and various usage of the fuzzy regression at similar subjects
are enlightened so far. Besides the theoretical contributions, there are diverse applications
of fuzzy regression in primary areas. Examples of the applications can be seen in the
automotive industry, business administration, economics, engineering, energy research,

finance, hydrology, information technology, insurance, manufacturing, etc.[77].

4.2 The Components of The Fuzzy Regression Models

It is assumed that the difference between observed and predicted values in classical
regression analysis is due to observational errors or incorrect selection of the model. In fuzzy
regression, it is considered that the difference between the observed and predicted values
naturally arises from the uncertainty or fuzziness of the system structure. The output variable
that is defined for the specified inputs in the system structure has a possible value within a
specified range and the output can take any value within this range. Fuzzy functions are
expressed with the fuzzy coefficients in fuzzy regression models [93].
Tanaka’s general fuzzy linear regression method is shown below to explain the main

components of the model [75]:
Y, =4, + A, X, + -+ A, X 4.1)

In Equation 4.1, the parameter /T] is a fuzzy number and j signifies the parameter that
belongs to which independent variable. The membership functions which belong to
independent variables can be generated in different forms. In the condition of preferring
symmetric triangular fuzzy numbers for the membership functions, the model parameters
would be Zl} = (aj,cj),j =1,..,p;a= (ao,al, ...,ap) and ¢ = (co,cl, ...,cp). Here, a;
designates the center of the fuzzy number and c; designates left and right spread from the

center. So, the model above would be transformed to the equation below:
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Y, = (ag, co) + (ay, c)X1 + -+ (a,,¢,)Xip (4.2)

Moreover, the membership function of the expected values of the Y, is defined as below with

help of the Zadeh’s extension principle [94]:

ly; — X0-1 %]

1- P
Hiv) O) = 1 Eh x| . (4.3)
,x =0, y =
0, x=0,y#0

Under circumstances 7] is a symmetric triangular fuzzy number, it can be defined with

center y and spread e;, the membership function is:

| = vl (4. 4)
e

.U(Y]-)(J’)=1_ .
]

4.2.1 “h” Value in The Fuzzy Linear Regression Models

The "h” value refers to the degree of compliance of the fuzzy outcomes that are estimated
in the fuzzy linear regression analysis according to the observed values of the dependent
variable, in other words, it defines the desired reliability level by obtaining the width or

narrowness of the fuzzy spread of parameters in fuzzy regression model [93].

The error term (g) is used to define randomness in the classical linear regression model.
When there is & value in every observation, contrary to the classic model, the error is
distributed over all in fuzzy linear regression models’ coefficients. In this case, each
parameter is estimated at a certain fuzzy level. This fuzzy level is called "h term” or “A

value” and takes a value in the range between zero and one [0, 1] [80].

In literature, many researchers have conducted several studies to suggest what h value
should be. Tanaka and Watada reported that values of /4 can change according to the size of
the data set. If the data set is large enough, the / term should be "0.0"; otherwise, researchers

should increase the h term [95].

42



Moskowitz and Kim aimed to determine the relationship between the "h value", the spread

of fuzzy parameters, and the shape of membership functions in their study [80].

Membership value
AL v

>y

@y y() yw_ % Vv Vi v” wry? ym ()’
Center value

Figure 4. 3 h; value of y; to the observation yi [80].

Y;, the fuzzy estimates are obtained by multiplying each crisp explanatory variables Xj with
fuzzy 4j, although the dependent variable Y; are crisp values. The condition that Yi fuzzy

intervals include observations Yi is provided by the following two constraints:

, _ . 4.5
ZaniJ+L1(h)ZjCj|XiJ|23’i (4.5)

J

YaXg - W) jglxil <y (4.6)

J

i=1,2...n j=01,....k ¢ >0
“n” is the number of observations for the dependent variable in the model. k is the number
of explanatory variables. The number of constraints is determined by the number of
observations, that is, n. Because a range is estimated by approaching Y; from the left and
right. Therefore, two constraints should be written for each Y; observation value. In this case,
the constraint number will be two times the observations. The increase or decrease in the

number of explanatory variables does not change the constraints.
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4.3 Possibilistic Regression Methods

If the parameters of a linear system are explained with possibility distributions, the term
“possibilistic linear system” is used for such systems. Due to a fuzzy number takes a value
between zero and one [0,1], a fuzzy number can signify a possibility distribution.
Moreover, if a fuzzy number used as a parameter of an independent variable or observed

value in a regression model, the model called Possibilistic Regression Model [96].

4.3.1 Linear Programming Approaches

Tanaka et al. first proposed the Linear programming approach for fuzzy linear regression
(FLR) [75]. It has fuzzy output, crisp input, and fuzzy parameters. The model is established
in a mathematical programming problem. This model aims to minimize the total spread of
fuzzy parameters, depending on the support of the predicted values, and to ensure that the

spread is created by the observed values for a given h-level.

As criticized by Redden and Woodall, the approaches are overly sensitive to outliers and
can generate endless solutions [97]. Also, the distribution of predicted values becomes wider
as more data is included in the model.

Based on this criticism, Tanaka [78], Tanaka and Watada [95], and Tanaka et al. [96] tried
to develop the early fuzzy regression models.

4.3.1.1 Tanaka’s Method

It is assumed that the spread between the observed and predicted data in fuzzy regression is
due to the system vagueness or the fuzziness of the regression coefficients. The goal of fuzzy
regression is to find a suitable regression model that covers all observed fuzzy data.
Different fuzzy regression models can be produced depending on the use of appropriate
criteria. The regression coefficients in the method are fuzzy numbers. Since the regression
coefficients are fuzzy numbers, the predicted dependent variable Y value is also a fuzzy
number. The fuzzy regression model with independent variables Xi is summarized below.

Ao is the fuzzy coefficient and Ai’s are the fuzzy slope coefficients [75].
Vo= A, +AX; + -+ Ap Xy
Each fuzzy parameter A; = (c;, s;) is expressed as symmetric triangular membership
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functions with central value ci and spread value s;.

According to the approach, the fuzzy output ¥ is predicted when the fuzzy coefficients
provide minimum spread to output and objective “A term” is also ensured . “h term” is
referred to as "degree of fit", which measures the fit between data and the regression model.

A basic fuzzy linear regression model is written as follows:

—~

( ) :AOX0+A1X1 ++1217VXN :AX

X = [Xo, X4, ..., XN]T is the vector of the independent variables,

A= Ao Ay, ..., Ay|" is the vector of the parameters that are defined below:

A; parameter is a symmetric triangular fuzzy number whose structure is generated by

Aj=(cj, 5j) fuzzy coefficient vectors. Here, ¢j is the central value and s; is the spread value.

|cj—a; | :
1———,¢ci—s;<c +s;,Vi=12,..,N
iy (ay) = sip T (4.7)
0, other cond.

Thus, the fuzzy regression model can be written as below :

Y, = (co, So) + (c1,51)X1; + (€2, 82) X1 + -+ + (cn, Sw) X (4.8)

The fuzzy regression model in Equation 4.8 predicts fuzzy outputs and fuzzy parameters
which signify the fuzzy relationship between crisp input and fuzzy output data. Applying
the extension principle, the membership function of the fuzzy number Y; is calculated as

follows:

¥, — X'c|
s'|X]
ul¥) =41, X=0, Y#0,Vi =1,2,... M

X+0,

(4. 9)
0, X=0Y=0

st = (59,51, e, SN), € = (€, €1, wrer CN)
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Every dependent fuzzy variable can be calculated as ¥, = (Y, v/"=%,v¥), i=1,2,3..., M.
The lower bound of the fuzzy number ¥,is Y} = 9’:0(01' - sj)Xij , the center of ¥, is
Y=t = 3L o(¢;)X;; and lastly the upper bound of ¥, is Y,Y = ¥1_o(c; + ;)X -

To obtain an effective fuzzy regression model by reducing fuzziness, the objective function

is adapted to minimize the total spread of the fuzzy number Y, ;

N N (4. 10)

MIN (sT |X|) = MINZ sj2|xij|

j=0\ j=t

The constraints require that each observation value of Y; be related to ¥, with a minimum of
hvalue. So, wYi>h (i=12, ..., M)

|Yi —X’C|

1
s'|X|

>hVvi=12.,M (4. 11)

Membership value

E
n

LU0 T TR \

| |‘; _j‘(]l-h)e. |'\\ gmi"u Y

|
chlxﬁl (l—h]ZC_ilxij|
i

]

Figure 4. 4 The h-value, Y required to obtain fuzzy data Y [98].

To calculate the fuzzy coefficient Ai = (ci, si), the following linear fuzzy regression model

developed by Tanaka et al. is formulated as follows:
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n
minS = nsy + s; ZIXiI (4. 12)
i=1
Subject to :
$50=>0,5,=0 (4.13)
I I
chXl-j + (1 - h)Zsj|Xij| >Y,+(1—-h)e; fori=12...,n
j=0 j=o
I I
chXl-j— (l—h)Zsj|XU| <Y, — (1-h)e fori=12...,n
j=0 j=o

The objective function in the model minimizes the total spread, in other words, fuzziness. It
is supposed to determine a value for h term in constraints. By the way, the centers and spread
values of the fuzzy parameters can be estimated. Tanaka et.al targeted to cover all
observations in the model and assumed that observations are sure and possible. They do not
want to label some observations as outliers as in conventional regression models. However,
they recommended to users to take the advice of experts when users select the data set and
h value [96].

y A .

Figure 4. 5 The estimated view of the Tanaka Method.

The central tendency with bold line at the middle, lower and upper boundary with dashed
lines are shown in Figure 4.5. As seen in the figure, Tanaka Method prefers to cover all

observations into spreads that are at the same distance from the central line.
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4.3.2 Goal Programming Approaches

When more than one objective function is considered in fuzzy regression models, the
approaches are called Goal Programming Approaches (GPA) [77]. In essence, linear
programming approaches can be accepted as a special case of Goal Programming. Sakawa
and Yano formerly applied multi-objective programming techniques [99] and used FIFO
data in FLR models [100]. However, the approach of Sakawa and Yano is criticized that the
model is quite sensitive to outliers by Redden and Woodall [101]. Nasrabadi et al. suggested
a GPA (The approaches boundaries are softer than previous models) to smooth over the
obstacles that are emphasized by Redden and Woodall [91]. Thereafter, they enhanced the
model by introducing FIFO data [102]. However, the model proposed by Nasrabadi et al.
[91] would be utilized in the study.

4.3.2.1 Nasrabadi Method

When linear programming based FLR methods that minimize the fuzziness are easy for
programming and calculation, on the other side FLS based methods that use least-squares
of errors as a constraint reach minimum fuzziness level. The first group of methods have
wider spreads and sensitive to outliers, FLS methods are quite tough for calculation [94].
Nasrabadi et al. formerly purposed a new arithmetic operation on symmetric triangular
fuzzy numbers to decrease the spreads [103]. Nasrabadi et al. latterly revisited their model
[103] to overwhelm the deficiencies of fuzzy regression methods by implementing the
approach of Ozelkan and Duckstein into a multi-objective model [91], [104]. The model can

use fuzzy outputs and fuzzy inputs as in Equation 4.23 below:
Y = AgXy + A1 Xy + -+ AyXy (4.14)

A, = (c;,s;); are the parameters that centers are symbolized with ¢; and the radius are
symbolized with sj. ¢ =(cq, ¢y, ..., ¢,)t and s =(sg, sq, ...,s)t are the vector of the fuzzy
parameters ;1;’5. The fuzzy independent variables are defined as )?Tl = (xi i j) . Here Xj;
symbolizes the center and rij symbolizes the radius of the spread of the fuzzy independent
variable Xl-j . The given outputs are Yzl] = (y_l] e_u) and finally, the fuzzy estimated values
are defined as ¥, = (y;;, e;;) . Here yij symbolizes the center and ej; symbolizes the radius

of the spread of the fuzzy estimated values Y; ;- The Nasrabadi method works after solving
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the quadratic programming problem below [103] :

m
Min:D?(h) = Z(sriT -g)?
i=1

Subject to:

n n

D () +1A =01 (5m5) 25— 10 = Wleg
j=0

j=0
n

_Z(ijij) + (1 = h)| Z(sjrij) > -y, — (A —=h)le,
=0

Jj=0

ciandsjeR, (j=0,1,2,...,n) (i=1,2,....m) 0<h<l1
The brief format of Equation 4.15 is given below:

Yi 2V

And the brief format of Equation 4.16 is given below:

Yi <V

(4. 15)

(4. 16)

(4. 17)

(4. 18)

The improved multi-objective fuzzy linear regression model is obtained by adding an extra

objective function that ensures the soft border to the quadratic programming method above:

Min: D2(h) = Z(el- _ &)
i=1

m
Min:E?(h) = Z(Eiz,L + eiz,R)
i=1

s.t. Yi— W= &1, i=1,..,m,
YW= YVi< &pr , L =1,..,m,
>0 el 200 =1
e; =0, &L, &p 200 = 1,..,m,

Here, E?(h) = X% (e?, + &) is a deviation from extreme values and ¢ values are

the relaxation variables. In the MOFLR method, all constraints influence the solution,

and herewith all observations join to estimation.
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Hence, Nasrabadi Method keeps the spread in the model constant, inversely to other
methods, Nasrabadi Method also uses symmetric triangular fuzzy numbers either as an

independent variable or as a dependent variable.

Figure 4.6 The estimated view of the Nasrabadi Method

The central tendency with bold line at the middle, lower and upper boundary with dashed
lines are shown in Figure 4.6. As seen in the figure, Nasrabadi Method models the data with
soft boundaries without covering all observations. However, studies that use a vast number

of variables is reported that the borders’ spreads get narrower.

4.3.3 Interval Regression Approaches

The interval regression is a basic type of the possibilistic regression model that is stated by
Tanaka [105]. The system parameters, in other words, fuzzy regression coefficients, are
defined in intervals. Various interval regression methods are considered. When some of the
proposed models use symmetric triangular fuzzy numbers, others proposed asymmetric
triangular or trapezoidal fuzzy numbers [75]. Tanaka and Lee developed the basic interval
model by implementing quadratic programming [105]. Lee and Tanaka also studied

estimating lower and upper boundaries with their interval model [106].

4.3.3.1 Lee and Tanaka Method

When an interval regression method uses symmetric triangular fuzzy numbers, the upper
and lower lines are pointlessly wide. To cope with the drawback, Lee and Tanaka suggested
an interval model that estimates parameters as a non-symmetric triangular fuzzy number.
Additionally, they combined the least square method for central tendency and LP techniques

for lower and upper boundaries [107]. An FLR model is assumed as below:
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Y,=4,+A. X, ++A,X, (4.19)

Where X is a crisp input vector, Y(X) is estimated fuzzy output A = (4,, ..., 4,,) is the fuzzy
coefficient wvector with non-symmetric triangular fuzzy numbers, A; stated as
A; = (a;,¢;,d;)r. Here, ai is a center, ¢i is a left spread, and di is a right spread. The

estimated output data can be written as below:
Y(x;) = (BC(Xi)J 0.(x;), BR(x,-)) (4. 20)
Y(x]) = (2?:0 aixji)cl (Z;Cljizo Cixji - Zx]-,-<0 dixji)L ) ( 2]'1'20 dixji - ijk 0 Cixji)R (4 21)

The h-level set of Y(x) can be denoted as below:

[YO)Ir = ¥ty < h} = [ya~,ya"] (4.22)
where

v~ = 6:(x5) — (1 — W6, (x),

yn~ and y,* represent the lower and upper boundaries. The minimization function for the
sum of squared distance between estimated and observed outputs can be formulized as

below:
. 2
Min:Jis = Y1 (y; — a'x)) (4. 23)

And the minimization function of the sum of spreads of estimated output is written below:

Min:Jip = (1 - ) I (ct|x;| + dt|x;]) (4.24)

The newly proposed method combines the objection functions in Equation 4.23 and 4.24
above as a new joint objection function. After the specification of the objection function and

constraints, Lee and Tanaka method can be designated as below:

Mingcq:] = kiJis + kaJip + &(ctc + d'a)
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Subject to: vt 2y,

Yy <ypj=1..,m,

¢;=>0,d;>0,i=0,..,n
In the QP model, ki and k> are the weight coefficients, ¢ is a small positive number that is
ki, k2 > €.

Figure 4. 7 Fuzzy regression model with non-symmetric TFN coefficient by QP [107].

The central tendency with dashed line at the middle, lower and upper boundary with bold
lines are shown in Figure 4.7. As seen in the figure, Lee and Tanaka Method also prefers to
cover all observations into spreads. Inputs and observed outputs are crisp humbers in the
model. However, the central tendency is calculated with Least Square Method and the
spreads are calculated with the LP technique. Due to the combination of different techniques
and usage of non-symmetric TFN as system parameters, the lower and upper boundaries

have not same distance from the central line.

4.4  Fuzzy Least Square Method

Diamond and Tanaka reported that two conditions in a fuzzy least square method are studied
[108]. These are:

e Fuzzy input and fuzzy output (FIFO).
e Crisp input and fuzzy output (CIFO).
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Fuzzy the Least Square method is put forward by diamond in 1988 with the aim of parameter
estimation [79]. The fuzzy least square method can be interpreted as the classical linear
regression method’s fuzzy expansion. The process of obtaining the parameters in the fuzzy
least square method has similarities in the classical regression method. The main purpose of
the model proposed by Diamond is to minimize the distance between the estimated value
and observed value. The inputs and outputs can be used as a fuzzy number or crisp number

in the method. Two different models are offered as written below:
Y=a+bX abceE R, (4. 25)

Y=E+bX,beR, EcF(R) (4. 26)

It is assumed that the observations involved with X; and Yicouples (i=1,2, .... N). So, the

model is detailed, and the version is shown below:

Xi= (xi»fi»f,-) Y; = (Yi'ﬂi,ﬁi) andx; —§; = 0 (4.27)
When the Eq.4.38 the least square optimization problem is solved:

Minimumr(a, b) =X d(a+ b X;, Y;)?
In the minimization problem, two situations occur; the first is b > 0 and the second one is

b<0. If b >0, the distance between fuzzy outputs and the observed values of the dependent

variables is calculated in Equation 4.41 below :

d(a+ bX;Y;) = [a +bx;—y; — (bi — 1)]2 + [a +bx;—y; — (ba — E)]Z +
(a+ bx; — y;)? (4. 28)

When b<0, The equation of the distance is shown in Equation 4.42:

_ 2 2
d(a+in,Yi)=[a+bxi—yi+bEi—m] +[a+bx,-—yi—b§+m] +
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(a + bx; — y;)? (4. 29)

The next step at the least square method is the derivation of the equation 4.41 according to
a and b. After solving the 4.43 equations system below, a and b parameters can be
calculated[69], [108].

% = 3Na + bZ[3x; + (X)) = Z[3y; + (Y] =0, (4. 30)

ad 2 2
5= aZ3x; + 6(X)] + b[x;* + (xi — &) ]

=Z[(xi—i)(yi—ﬂ)+(xi+f_i)(yi+ﬁ)+xi3’i] =0

Here xi (i=1,2,...,n) and,

5 =F-¢

5()=7—-1

The minimum optimization of the model offered by Diamond is shown in Equation 4.39 is
p(E,b) =X(E +bX;,Y;)? . The term “E” in the equation can be defined as
E = (c,y,y)r. There are two conditions in the model depicted by Equation 4.38. The

conditions are b > 0 and b<0.

If b > 0, the equation 4.41 will be transformed the Equation 4.44 below:

(0% - )] + (e + bx; - y)? (4. 31)

2
d(E+in,Yi)=[c+bxi—yi—z—(bﬁ—ni)] +[C+bxi—yl'+7+

In the condition of b < 0, the equation 4.42 will be transformed the Equation 4.45 below:

2
d(E +bXi YD) = [c+bx; —y; -y — (b& +m:)| +[c+bxi—y; +7 +
— 2
(bfi‘HTi)] + (c+ bx; — y,)* (4.32)

The inputs are crisp numbers that are x;, (i=1,2...., N.) and the outputs are fuzzy numbers
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thatare Y; = (y;,7, 17_) in the model proposed by Diamond 83. The model:

Y=A+xB, x€R, A€ T(R), B € p(R), Y; € F(R) (4. 33)

The parameters in the model are defined with A = (a,a,@) and B = (b, EE ) also A

and B are symmetric fuzzy numbers. After applying the crisp inputs and fuzzy outputs to
the model, it will be improved as below:

Minimum r(A,B) = 2d(4 + x;B, Y;)?
When the parenthesis of the equation above is opened:

2
d(A+xl-,Yi)=(a+bx,~—yi)2+(a+bx,~—g—£x,-+yi+m) +(a+bx;+a+
2

Bxi+yi + ;) (4. 34)
The parameters of the model (a and b) will be calculated when the equation derivation is
taken by a (Z—Z) and b (Z—‘;), after the results of the derivation equaled to zero. The calculated

parameters’ centers and fuzzy spread are given below:

A= § — bR
a=1n-—px
b= K/TZ
p = k/TZ

The K, T2, X ,y are defined below with the known X, y, and other values [79]:
K=Z2x-00-9)

k=X =R —f)

L XX . LY
=N Y=N
T? = 3(x; — &)2 a,B =0

The method proposed by Diamond [79] was developed by the studies of Wang and Tsaur
[94]. Wang and Tsaur studied crisp input and fuzzy output regression which was proposed
by Tanaka et al. [75], they applied the Least Square approach to Tanaka’s method and

reached a simpler and more predictable way according to Diamond’s common method.
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4.5 Comparison of The Fuzzy Linear Regression Models

The power, efficiency, or goodness of crisp regression models are probable to compare with
each other, according to some statistical indicator. Thus, the most appropriate crisp
regression model can be distinguished from the other models straightforwardly. On the
contrary, fuzzy regression models work without distribution and they do not have detailed
statistics like crisp regression models. The comparison of the fuzzy regression models is a
necessity to prefer a more applicable model. In the study, two indicators would be used as
distinguisher property.

Total Error Fit (TEF) is one of the statistics that calculates the difference between the

membership functions of the observed and estimated output in Triangular Fuzzy Number
form [109]. The total sum of errors can be defined as below:

E = Yiqluy(x) — pp(x)] (4. 35)

Another statistic is Goodness of Fit (GOF) which is the mean squared distance between
response and prediction based on the concept of Diamond’s distance [79] [110]. The error

term can be calculated as in Equation 4.36 below:

1 ~
GOF =—Xi, d*(Y;, F(x)

GOF = — ¥, (L, — L@)? + (cy, — @)? + (uy, — 8(x)?) (4.36)
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5 APPLICATION

The requirement of humanity to energy increases parallel to the world population [111].
The huge consumption of fossil fuel to generate energy that causes global warming currently
reveals the importance of clean and renewable energy sources [112]. Among renewable

energy sources, wind energy is one of the most prominent ones.

The tools that alter wind energy to dynamic energy and consequently generate electrical
energy are called “Wind Turbines” and the places where more than one wind turbine is
constructed to generate cumulative electrical energy are named “Wind Plants” or “Wind
Farms”. The wind energy plants have no harmful effect on the environments, human beings,

and other living beings around the place they constructed.

Besides the significant advantages of wind energy, there are some disadvantages, such as
its intermittent form and high construction costs of wind farms. Therefore, the selection of
the construction zone is one of the most principal factors in the calculation of the cost and

the performance of the wind turbine.

The values of the wind speed and the wind direction, temperature, air density, and other
related parameters of the construction zone have to be observed before at least one year from
the construction time of a wind turbine. Similarly, the distance between the construction
zone and main transportation roads or residential area, the joint convenience to the national
electric line, the slope of the terrain, the flora of the area are the other critical issues to
construct a wind turbine on a selected zone [113].

5.1 The Calculation of The Power Curve

The power curve is the theoretical electric power that is expected to be generated by a wind
turbine at any place on earth. It is generally used by wind turbine manufacturers as an
empirical parameter to predict the power that would be generated. The theoretical electric

power is explained in Equation 5.1.

P,=1/2ex pxAxV3 (5.1)
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Here, B, is power (watt), p is the density of the air (kg/m?3), A is the area swept by the wing
of the turbine (m?), v is the speed of wind (m/s), ¢ is the efficiency of the turbine that is
generally around %30. The area is:

A = ir? (5. 2)
where r is the radius of the turbine rotor (m). According to Equation 5.2, the theoretical
power would increase to the square of the radius of the wind turbine rotor, and cubic of the
speed of wind relatively. However, a wind turbine cannot generate electrical power when
the wind speed is approximately below 3,5 m/s, and it cannot generate more electrical energy
or it reaches maximum generated electricity capacity when wind speed is approximately
above 13,5 m/s, due to its physical feature. Consequently, Figure 5.1 can be obtained by
using the constraints and features explained. The obtained line looks like a curve, and it is
called “Wind Turbine Power Curve (WTPC)”.
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Figure 5. 1 Wind Turbine Power Curve (WTPC) [11].

A WTPC is determined by the manufacturer of a wind turbine according to the
characteristics of the wind turbine. Nevertheless, the observed generated power curve is not
usually matching to manufacturers’ one. Thus, short-term power prediction that gives
instant information about the energy at a specific time is becoming an important subject to
analyze the power curve. As a result of the propagation of wind energy and the necessity to
minimize the costs, lots of models are created by scientists. However, it can be said that the

best single way for all situations is not found, owing to numerous variables with different
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combinations like wind speed, temperature, and geographical structures. There are two types
of wind power prediction methods. When the first group of methods uses statistical methods
that are more efficient for short-term observations (1- 8 hours), the other group of methods
is numeric models and they reach wind power by using wind speed, wind direction,
temperature, air density, and similar quantities that are more effective with 8-12 hours. In
other words, the second group methods easily study manufacturers” WTPC [114].

The differences between theoretical and observed power led researchers to apply many
statistical methods to the cases. After examination of WTPC models, it is divulged that
proposed models are frequently complex. Because estimated parameters depend on several
factors, the situation requires the application of parametric or non-parametric techniques.
The main parametric methods are the Linearized Model, Polynomial Model, Probabilistic
Model, and Logistic function model. The main non-parametric methods are Neural
Networks, Data Mining Algorithms, and Fuzzy Clustering Methods [11].

Consequently, many methods are applied to forecast the power generated by wind turbines,
and important studies are revealed. For instance, Croonenbroeck and Ambach applied the
time series model to wind power forecasting [115]. Villanueva and Feijoo used logistic
functions for wind turbine power generation [116]. The non-linear regression methods are
studied by Marciukaitis et al. [117]. Moreover, machine learning methods are practiced.
Different techniques are tried by Marvuglia and Messineo [118]. Park and Hur concerned
Support Vector Machines to Short-Term Power forecasting [119] [120].
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6 IMPLEMENTATION OF THE PROPOSED MODELS

In the section, crisp models are implemented to the dataset of 2292 observations to
understand whether the crisp models work or not. It is emphasized that other statistical
models like non-linear regression and machine learning methods are applied to a similar
dataset that belongs to a wind turbine. It is realized that fuzzy linear or fuzzy nonlinear
regression methods are not utilized in a wind turbine dataset formerly. Here, fuzzy linear
regression methods that are stated in Section 4 are implemented to the dataset in diverse
conditions. Thereby, the convenience and functionality of the fuzzy methods are discussed.
Moreover, the results of the different fuzzy linear regression methods are compared in the

section.

6.1 Description of The Data Set and The Analyzed Case

A wind turbine from a wind farm constructed in Canakkale District of Turkey is selected for
analysis for the study because there are plenty of wind speed and wind direction observations
that have sufficient variability and availability. The real data is collected by the Supervisory
Control and Data Acquisition (SCADA) system of the wind turbine. The components of the
dataset are wind speed (m/s), theoretical power output (kW), generated power output (kW),
and wind direction (°). The measurements include 1-hour intervals covering the period from
01-09-2018 to 31-12-2018. The theoretical power output (kW) is Power Curve given by the
manufacturer. The data consist of 4 months, 2292 observations. The first three and last three

observations of the data set are depicted in Table 6.1 below:

Table 6. 1 Sample of the Dataset.

Date/Time | Theoretical | Power Wind Wind Cosines of
Power Generated (kW) | Speed Direction (°) | Wind Direction
(kW) (m/s)
01-09-2018 3588.3 3404.1 12,6 72.3 0.303
00:00
01-09-2018 3478.1 3102.2 11.7 70.6 0.332
01:00
01-09-2018 3572,1 3222.7 12.4 74.1 0.273
02:00
31-12-2018 2601.1 2309.9 9.7 80.3 0.167
21:00
31122018 3025.2 2681.3 10.4 80.5 0.166
22:00
31215. 5818 3583.3 3514.3 12.5 80.5 0.165
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The figure of the initial data set that contains power output, wind speed, and cosines of wind
direction is shown in Figure 6.2. Normally, the wind directions 359° and 001° are neighbors
to one other, cosine that is a method to linearize the direction. The wind direction is limited

between -1 and 1.
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Figure 6. 1 The initial data set of power output, wind speed, and wind direction.

The three-dimension graphic of the data set is shown in Figure 6.1 above. Because cosines
of wind directions are used in the study especially as an independent variable in regression
models, the cosine values are preferred to show in the figure. Also, the fuzziness of the
relations between variables is almost distinctive at first look.

The relation between theoretical power and wind speed, also between generated power and

wind speed are illustrated in Figure 6.2 below [11]:
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Figure 6. 2 (a) Wind Speed vs. Theoretical Power, (b) Wind Speed vs. Generated Power.

The curve shown in Figure 6.2 (a) is the power curve that belongs to the manufacturer of
the wind turbine used in the study. As seen, it is similar to a generic WTPC example given
in Figure 5.1. On the other hand, the observed power curve is shown in Figure 6.2 (b) is
unlike common WTPC. The observed power curved behaves in that it has an upper and
lower spread from the central tendency that is expected to be similar to the theoretical power
curve. Also, there are outliers in Figure 6.2 (b) whose reasons cannot be explained. For
instance, there are “0” kw generated power observations, although the wind speed increases.
It can be assumed that the wind turbine is out of order when the observations are recorded.
Because of such occasions, fuzzy regression models will be put on trial as explained before
in the study.

6.2 Proposed Models

The modeling of proper location selection for wind turbines with fuzzy linear regression is
the main purpose of the study. For the aim, fuzzy linear regression methods are applied to
the wind turbine dataset not only to verify the reliability of the manufacturer’s expected
electric power generation curve but also to control the suitability of the place where the

turbines were constructed in the study.
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Even though it looks there is a relation between the wind speed and the generated power,
there are also uncontrollable factors that affect the wind speed such as pressure, temperature,
and terrain of the location, etc. The unexplained relationships at the background of the
dataset steered to use of fuzzy regression in the study. Because it is assumed that there are
strong relations between error terms and system fuzziness, applying the fuzzy regression
models instead of crisp regression models is evaluated to be more efficient and powerful
[104].

Although the data set has a vast number of observations with narrow periods like every hour
in four months, the number of the independent variables could not ease to conclude about
estimations of the generated energy values. The recent studies show that WTPC’s have
generally Weibull or Rayleigh distribution [11], therefore linear models are not effective to
forecast wind turbine power. Although Piecewise linear regression appears more operative,
the most suitable model cannot be detected. Since fuzzy regression methods do not consider
distribution for modeling, the fuzzy regression methods look more applicable. Thus, the
fuzzy regression models will be more effective to evaluate the outputs. When these
conditions occur, the fuzzy regression models are especially recommended to use for
estimation of generated power by a wind turbine:

e When a general frame of the wind turbine models is wanted to realize before

complex calculations and modeling for a place,

e When there are a small number of observations,

e When itis hard to observe the parameters,

e When there is a more optional place to construct a wind farm.
CICO, CIFO, and FIFO datasets would also be used in models. So, these types of datasets
would be produced with the method of fuzzification. The fuzzified observations would be
in the Triangular Fuzzy Number (TFN) form. The symmetric form of the triangular fuzzy
numbers would be used in both dependent and independent variables. When the application
of non-symmetric triangular fuzzy numbers is just possible in the Fuzzy Least Square
method as a dependent variable, it is not preferred due to the difficulty of comparability
between other models. Compendiously, the dependent variable, and independent variables
would have symmetric spread to lower and upper borders. The main output, generated
power, in the dataset would be fuzzified with the help of the theoretical output data. It was

mentioned that theoretical power is generally greater than generated power in the previous
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section. Hence, the difference between theoretical power and generated power would be
used as a symmetric spread for the upper and lower side, but the generated power would be
accepted as a central tendency. The main input or independent variable, wind speed, would
be symmetrically fuzzified with 10 % below and above the observed value. As emphasized
above, three groups of datasets (CICO, CIFO, FIFO) would be applied, and two models
would be set up. The first model is:
Y=A4,+4.X,
Here, Y is the predicted wind power (kW) in TFN form, X, is the wind speed (m/s) that can
be crisp or symmetric TFN according to the applied method. Lastly, 4,, A; are the fuzzy
coefficients. The second model is:
Y = A4, + A, X, + 4,X,

In the second model, there is an extra regressor X,different from the first model. It is the
cosine value of the observations’ wind directions. The variable would be crisp form in

applications.

The models are practiced with the “fuzzyreg” and “FuzzyNumbers” package in R
Programming [121], [122]. The package includes the Lee and Tanaka method [107] that is
an example of interval regression methods, Tanaka Method [96] that is an example of the
Fuzzy Linear Programming Method, Fuzzy Least Square Method [77] and lastly Nasrabadi
Method [91] that is an example of the Fuzzy Goal Programming Methods. The number of
independent variables, type of variables, and type of predicted values is summarized below
in Table 6.2. [121].

Table 6. 2 The Available Method and their features in “fuzzyreg” package in R.

METHOD M X Y Y predicted
Lee & Tanaka o crisp crisp nsTFN
Tanaka (o) crisp STFN STFN
Fuzzy Least Square 1 crisp nsTEN nsTEN
Nasrabadi 00 STFN STFN STFN

In Table 6.2, M is the number of allowed independent variables, “crisp”” means crisp numbers
should be used as a variable, STFN is symmetric Triangular Fuzzy Numbers (TFN), and
nsTFEN is non-symmetric TFN. The whole methods that are implemented to Model-1 and
Model-2 with different type of input-output (CICO, CIFO, FIFO) in the study are detailed
in Figure 6.3:
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Figure 6. 3 Scheme of the Models that are applied to Dataset.
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6.3 Crisp Models

Firstly, the classical (crisp) linear regression method is applied to understand the basics of
the dataset and the effectiveness of the classical linear regression model to compare it with

fuzzy models.

6.3.1 Implementation of Classical Linear Regression Method to Model 1.

Model 1 will be analyzed, next, Model 2 will be evaluated with the crisp method. Model 1,
a crisp simple linear regression model, is stated again below:

Y=8,+pB1X1

Here, Y is the predicted wind power (kW), X; is the wind speed (m/s).
The regression equation is:
Y = —1207 + 329X,

The summary of the crisp linear regression model is as in Table 6.3 below:

Table 6. 3 Statistics of the Crisp Linear Regression Model.

Predictor Coefficients | Estimated Standard Error | T Value | P
Intercepts -1207.30 27.14 -44.49 0.00
Wind Speed (X;) | 328.96 2.88 114.24 0.00

The model is significant at 0.05 level and R-squared is 0.85. The ANOVA table of the model

is shown below in Table 6.4:

Table 6. 4 ANOVA Table of the Crisp Linear Regression Model.

Source DF Sum of Sq. Mean Sq. F P
Regression 1 3237788492 3237788492 | 13050 0.00
Residuals 2291 568411674 248106

Total 2292 3806200166

Under this circumstance, statistical transformations should be applied to variables. The crisp

linear regression model significant and the R-squared statistics of the model is 0.85.
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The residual versus fitted values and Normal Probability plots can be shown in
Figure 6.4 (a) and Figure 6.4 (b):
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Figure 6. 4 (a) Residuals versus Fitted Values. (b) Normal Q-Q Plot.

When Figure 6.4 (a) Residuals versus Fitted Values plot is analyzed, it is seen that the
residuals do not scatter randomly around the zero line, which means that the linearity
assumption is not reasonable. When residuals are expected to be distributed equally around
the zero line, the residuals create an unexpected pattern. It suggests that the variance of the
error terms are not equal. Also, there are many outliers on the graph as an undesired situation.
Therefore, the errors can be said errors are not distributed normally, moreover, the Normal

Q-Q plot in Figure 6.4 (b) proves the non-normality.
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Figure 6. 5 The Linear Regression Line of the Crisp Model.

The linear regression line is depicted in Figure 6.5. The Box-Cox [123] transformation is
also applied to the independent variable to enhance the linear regression line. However, the
results are not at expected level. Adding one more independent variable to the model is an

option to increase the effectiveness of the model.

6.3.2 Implementation of Classical Linear Regression Method to Model 2.

Model 2 is a crisp multiple linear regression model as stated below:
Y =B,+ B1X1 + B2X;

Here, Y is the predicted wind power (kW), X; is the wind speed (m/s) and X is the cosines

of the wind direction. The regression equation is:

Y = —-1218.68 + 329.65X; + 28.53X,
This model is significant at 0.05 level, MSE is 497.8 and R-squared is calculated as 0.8509.
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Figure 6. 6 The Multiple Linear Regression Plane of the Crisp Model.

The crisp multiple linear regression model is significant at 0.05 level and, the adjusted
R-squared is 0.8509. Although an independent variable is added to the model, expected
recovery at adjusted R-squared statics is not realized. Also, the non-normality problems of
the errors continue. Consequently, it signifies that the crisp linear methods should be

abandoned, and fuzzy linear methods should be adapted.

6.4 Implementation of Fuzzy Linear Regression Methods

In the subsection, the fuzzy linear regression models that are embedded in “fuzzyreg”
package in R and detailed in Table 6.2 are implemented according to the plan in
Figure 6.3.

6.4.1 Implementation of FLR Methods to Model 1 with CICO Dataset

As known crisp numbers are also fuzzy numbers with zero spread to lower and upper bound,
so they can be evaluated as fuzzy numbers. Hence, all mentioned methods are used in the
section. Here, the original dataset, whose inputs and outputs are crisp, is used in the section

without fuzzification.

h-values defines the desired reliability level by obtaining the width or narrowness of the
fuzzy spread of parameters in fuzzy regression model [93]. It means when h-value increases

the width of the upper and lower bounders from center increase. Three different h-values at
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0.01, 0.25, and 0.5 that signify different fuzziness levels are applied to models. When 0.01

h-value indicates the least fuzziness, 0.5 h-value shows the most fuzziness in the study.

6.4.1.1 Lee and Tanaka Method

At0.01 h level, the results fuzzy linear model using Lee and Tanaka method are given below.

The coefficients of the model in form nsTFN are as in Table 6.5.

Table 6.5 Values of Model 1 with Lee and Tanaka Method and CICO dataset
at 0.01 h-value.

center Left Spread | Right Spread
Intercept | -1205.85 | 0 251.62
X1 328.82 0 71.82

The central tendency of the fuzzy regression model:
Y =—1205.85 +328.82 X,

The lower boundary of the model support interval:
YL =-1205.85+ 77.07X,

The upper boundary of the model support interval:

YU = —-954.23 + 400.64X,

The total error of fit (TEF) is calculated as 3.517522x10'? and the mean squared between
response and prediction is 7208626.

Lee and Tanaka Method (h=0.01)

6000

Pawer Generated (ki)
2000

0

Wind Speed (m/s)

Figure 6. 7 Model 1 with Lee and Tanaka Method and CICO dataset (h=0.01).
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The central tendency with bold line at the middle, lower and upper boundary with dashed
lines are shown in Figure 6.7. As seen in the figure, Lee and Tanaka method inclines to
include all observations between fuzzy upper and lower boundary. However, the outliers at
the left or right spread do not the same distance from the center, the upper and lower bounds
extend non-symmetrically. So, the parameters of the models A, and A, are

non-symmetric triangular fuzzy numbers.

At0.25 h level, the results fuzzy linear model using Lee and Tanaka method are given below.
The coefficients of the model in form nsTFN are as in Table 6.6 :

Table 6.6 Values of Model 1 with Lee and Tanaka Method and CICO dataset
at 0.25 h-value.

center Left Spread Right Spread
Intercept | -1205.85 | 0 332.13
X1 328.82 332.31 94.8

The central tendency of the fuzzy regression model:

Y = —1205.85 + 328.82 X,
The lower boundary of the model support interval:
YL =-1205.85— 3.5X;

Upper boundary of the model support interval:

YU =-873.72 + 423.6X;

The total error of fit (TEF) is calculated as 4.643129 x1012and the mean squared between
response and prediction is 12008163.

Lee and Tanaka Method {(h=0.25)

£000

Power Generated (KvY)

0 2000

Wind Speed (mis)

Figure 6. 8 Model 1 with Lee and Tanaka Method and CICO dataset (h=0.25)
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The central tendency with bold line at the middle, lower and upper boundary with dashed
lines are shown in Figure 6.8. The model with 0.25 h-value is fuzzier or has wider spreads
than the model with 0.01 h-value depicted in Figure 6.7. Lee and Tanaka Method tends to
include all observations into upper and lower boundary at minimum fuzziness level
(h =0.01). When the fuzziness increases, the whole fuzzy area that captures the observation
increases unnecessarily, also the total error fit values and the mean squared distance values
are increased depending on the increase of the h-values. Due to the tendency of the model to
include all observations in the fuzzy area, usage of minimum h-value is evaluated to give

accurate results.

6.4.1.2 Tanaka Method

At 0.01 h level, the results fuzzy linear model using Tanaka method are given below. The
coefficients of the model in form sTFEN are as in Table 6.7.

Table 6. 7 VValues of Model 1 with Tanaka Method and CICO dataset at 0.01 h value.

center Left Spread Right Spread
Intercept -0.12 0 0
X1 157.25 158.77 158.77

Central tendency of the fuzzy regression model:
Y =-0.12 +157.25 X,

Lower boundary of the model support interval:
Yl=-012-1.51X%,

Upper boundary of the model support interval:

YU =-012+316.02X,

The total error of fit (TEF) is calculated as infinitive and the mean squared between response
and prediction is 6623078.
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Tanaka Method (h=0.01)
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Figure 6. 9 Model 1 with Tanaka Method and CICO dataset (h=0.01)

The central tendency with bold line at the middle, lower and upper boundary with dashed
lines are shown in Figure 6.9. As seen in the figure, Tanaka Method inclines to include all
observation into spreads too. However, distinctly from Lee and Tanaka Method, the outliers
at the left or right spread have the same distance from the center, the upper and lower bounds
extend symmetrically. In other words, left and right spreads of intercept and independent
variable are equal to each other. The parameters of the models A, and A, are symmetric

triangular fuzzy numbers.

At 0.25 h level, the results fuzzy linear model using Tanaka method are given below. The

coefficients of the model in form sTFN are as in Table 6.8 :

Table 6. 8 VValues of Model 1 with Tanaka Method and CICO dataset at 0.25 h-value.

center Left Spread Right Spread
Intercept -0.12 0 0
X1 157.25 209.57 209.57

Central tendency of the fuzzy regression model:

~

¥ =-0.12 +157.25X,

Lower boundary of the model support interval:

Yl =-012-5232X,

Upper boundary of the model support interval:

YU =-0.12+366.83X,
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The total error of fit (TEF) is calculated as infinitive and the mean squared between response
and prediction is 9947141.

Tanaka Method (h=0.25)

Fower Generated (KW)
6000

0 2000

Wiind Speed (m/s)

Figure 6. 10 Model 1 with Tanaka Method and CICO dataset (h=0.25)

The central tendency with bold line at the middle, lower and upper boundary with dashed
lines are shown in Figure 6.10. The model with 0.25 h-value is fuzzier than the model with
0.01 h-value depicted in Figure 6.9. The model has also the tendency to include all
observations into fuzzy spreads symmetrically. Thus, the model can be said fuzzier than the
previous model with 0.01 h value. Due to the inclusion tendency of the model, it is also an

efficient way to use minimum h-value like in Lee and Tanaka Method.
6.4.1.3 Nasrabadi Method

At 0.01 h level, the results fuzzy linear model using Nasrabadi method are given below.
The coefficients of the model in form sTFN are as in Table 6.9 :

Table 6. 9 Values of Model 1 with Nasrabadi Method and CICO dataset at 0.25 h-value.

center Left Spread Right Spread
Intercept -1207.3 0 0
X1 328.96 0 0

Central tendency of the fuzzy regression model:

Y =-1207.3 + 328.96 X;

Lower boundary of the model support interval:
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Yl =-1207.3 + 328.96X,
Upper boundary of the model support interval:
YU =-1207.3 + 328.96X,

The total error of fit (TEF) is calculated as infinitive and the mean squared between
response and prediction is 743670.

Nasrabadi Method (h=0.23%)
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Figure 6. 11 Model 1 with Nasrabadi Method and CICO dataset (h=0.25)

The central tendency and lower and upper boundary collided with each other, and the borders
can be seen with the bold line at the middle shown in Figure 6.11. As seen in the figure,
Nasrabadi Method does not incline to include all observation contrary to Lee and Tanaka,
Tanaka Method. However, the outliers at the left or right boundary have not spread from the
center. So, the parameters of the models 4, and A; are crisp numbers or symmetric

triangular fuzzy numbers with a “0” spread.

Because the results of models with h=0.01 and h=0.5 gave us the same results with h=0.25,
the results of the other h values were not put here. Due to the nature of the Nasrabadi Method
and usage of crisp numbers for independent and dependent variables, the method behaved
such it is a crisp least square method and gave the same results as it. Normally, the Nasrabadi
method provided left and right spread with small values like 1073, but the spreads were
dismissed due to being small values that do not affect the results. Three results with different

h values have the same results.
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6.4.1.4 Fuzzy Least Squares Method

As stated before, in the method h value is not used. The results of fuzzy linear model using
Fuzzy Least Squares Method are given below. The Coefficients of the model in form of
STFN are as in Table 6.10 :

Table 6. 10 Values of Model 1 with Lee and Tanaka Method and CICO dataset.

center Left Spread Right Spread
Intercept | -1207.3 | O 0
X1 328.96 0 0

Central tendency of the fuzzy regression model:
Y =-1207.3 +328.96 X,

Lower boundary of the model support interval:
YL =-1207.3 + 328.96X,

Upper boundary of the model support interval:

YU =-1207.3 + 328.96X,

The total error of fit (TEF) is calculated as infinitive and the mean squared between response
and prediction is 743670.

Fuzzy Least Square Method
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Figure 6. 12 Model 1 with FLS Method and CICO dataset.

The central tendency and lower and upper boundary collided with each other, and the borders

can be seen with the bold line at the middle shown in Figure 6.12. As seen in the Figure 6.11
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of the Nasrabadi Method, Fuzzy Least Square Method is not inclined to contain all
observations. However, the outliers at the left or right boundary have not spread from the

center. So, the parameters of the models 4, and A; are crisp numbers.

The fuzzy Least Square Method panned out the same result with the Nasrabadi method and
crisp least square method. The crisp values for independent and dependent variables are

estimated to cause the situation.

6.4.1.5 Comparison of FLR Methods to Model 1 with CICO Dataset

The results of fuzzy linear regression models that are applied to crisp input and crisp output
data with “wind speed” as an independent variable and “generated power” as a dependent
variable (Model 1) are compared in Table 6.11 below. The total error fit (TEF) and the mean
squared distance statistics are given for each method with h-values.

Table 6. 11 Comparison of FLR Methods with Model 1 and CICO dataset.

Method = Total Mean Central Left Sp. Right Sp.
_§_3 Elrt ror %?;2;%8 Intercept | X4 Intercept | X; | Intercept | X3
Lee and 0.01 | 3.5x10%2 | 7.2x106 -1205.9 3288 |0 0 |2516 72
Tanaka 0.25 | 4.6x1012 | 1.2 x107 | -1205.9 3288 | 0 0 |[332 95
0.5 | 7x1012 2.6x107 -1205.9 3288 |0 499 | 498 142
Tanaka 0.01 0 6.6x10° -0.1 157 |0 158 | 0 158
0.25 0 1x107 -0.1 157 |0 210 | O 210
0.5 0 2x107 -0.1 157 |0 314 | 0 314
Nasrabadi | 0.01 o0 7.4x105 -1207 3289 |0 0 |0 0
0.25 o 7.4x105 -1207 3289 | 0 0 |0 0
0.5 o 7.4x105 -1207 3289 |0 0 |0 0
FLS - o 7.4x105 -1207 3289 |0 0 |0 0

When models are compared, the model with the least TEF or the mean squared distance
(GOF) value should be preferred. After analyzing the results of models, due to assessment
with the vast number of observations some methods gave infinitive total error fit value.
Nasrabadi and FLS Methods gave the least Mean Square Distance value. However, these
methods behaved like crisp linear regression models. If high fuzziness is not preferred, the
models can be selected. But Tanaka or Lee and Tanaka Method with minimum h-value can
opt when optimal fuzziness is wanted. Because GOF values of Lee and Tanaka Method and
Tanaka Method are 7.2x106 and 6.6x10° with 0.01 h-value, respectively. These results are

the minimum among the other options with fuzzy spreads.
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6.4.2 Implementation of FLR Methods to Model 2 with CICO Dataset

In the section, the original dataset has crisp input and crisp output variables in the dataset
without fuzzification. Lee and Tanaka method and Tanaka method are used in the section.
Also, three different h values that signify different fuzziness levels are applied to models.
These are h=0.01, h=0.25, and h=0.5 . However, the details and graphs of the h value with
0.25 and 0.5 are not given like in the previous section. The results of the h=0.25 and h=0.5
are given to compare with other h-value results. Because they gave similar but fuzzier results
as h=0.01 value. Model 2 would be as given below:
Y =4, + A X, + A,X,

6.4.2.1 Lee and Tanaka Method

At 0.01 h level, the results fuzzy linear model using Lee and Tanaka method are given

below. The coefficients of the model in form nsTEN are as in Table 6.12.

Table 6. 12 Values of Model 2 with Lee and Tanaka Method and CICO dataset at
0.01 h-value.

center Left Spread | Right Spread
Intercept | -1216.94 | 0 262
X1 329.5 253.4 59.87
X2 28 0 105.4

Central tendency of the fuzzy regression model:
Y =—1216.94 + 329.5X, + 28X,

Lower boundary of the model support interval:
YL =-1216.94 + 76.1X, + 28X,

Upper boundary of the model support interval:

YU = —-954.94 + 389.37X,; + 133.4X,

The total error of fit (TEF) is calculated as infinitive and the mean squared between response

and prediction is infinitive.
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Figure 6. 13 Wind Speed vs. Power Generated in Lee and Tanaka Method with CICO dataset
(h=0.01).
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Figure 6. 14 Model 2 with Lee and Tanaka Method and CICO dataset (h=0.01).

The central tendency with bold line at the middle, lower and upper boundary with dashed
lines are shown in Figure 6.13 and Figure 6.14. The outliers at the left or right spread have
not the same distance from the center, the upper and lower bounds extend non-symmetrically
for the first input “wind speed” and the second input. The parameters of the models
A,,A] and A, are non-symmetric triangular fuzzy numbers. When Figure 6.13 and Figure
6.7 that belong to Model 1 resemble, on the other hand, Figure 6.14 cannot incline the
observations. In every h-values, the second input cannot reflect the observation, as seen in

Figure 6.14. Consequently, Lee and Tanaka's method does not give appropriate results for
Model 2.
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6.4.2.2 Tanaka Method

At 0.01 h level, the results fuzzy linear model using Tanaka method are given below. The
coefficients of the model in form sTFN are as in Table 6.13 :

Table 6. 13 Values of Model 2 with Tanaka Method and CICO dataset at 0.01 h-value.

center | Left Spread | Right Spread
Intercept -0.7 0 0
X1 151.4 152.9 152.9
X2 69.6 71 71

Central tendency of the fuzzy regression model:
Y =-0.7 +151.4 X, + 69.6 X,

Lower boundary of the model support interval:
Yl=-07-15%, — 14X,

Upper boundary of the model support interval:

YU =-0.7 +304.3X; + 140.6X,

The total error of fit (TEF) is calculated as infinitive and the mean squared between response

and prediction is infinitive.

Tanaka Method (h=0.01)
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Power Generated (ki)
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Figure 6. 15 Wind Speed vs. Power Generated in Tanaka Method with CICO dataset (h=0.01).
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Figure 6. 16 Model 2 with Tanaka Method and CICO dataset (h=0.01).

The fuzzy regression lines are shown in Figure 6.15 and Figure 6.16. The outliers at the left

or right spread have the same distance from the center, the parameters of the models

A,, A, and A, are symmetric triangular fuzzy numbers. Figure 6.16 can incline the

observations contrary to Lee and Tanaka method. So, model 2 is more preferable to Lee and

Tanaka method.

6.4.2.3 Comparison of FLR Methods to Model 2 with CICO Dataset

The results of fuzzy linear regression models that are applied to crisp input and

crisp output data with “wind speed” and “cosine of wind direction “as independent variables

and “generated power” as dependent variables (Model 2) are compared in Table 6.14 below.

Table 6. 14 Comparison of FLR Methods with Model 2 and CICO dataset.

Method = | Total | MSE Central Left Sp. Right Sp.
;_J Ei':[ror Intrcpt. | X3 | X2 | Intrept. | X1 | X2 | Intrept. | X1 | Xo
Lee 0.01 o0 oo |-1217 | 330 (28 |0 253 |0 | 262 60 | 105
and 0.25 o0 o |-1217 330 (28 [0 335 |0 | 346 79 | 139
Tanaka | 0.5 o oo |-1217 |330 (28 |0 502 {0 | 519 119 | 209
Tanaka | 0.01 0 o |-07 151 |70 | O 153 |71 |0 153 | 71
0.25 o0 o |-05 151 [ 70 | O 202 (94 |0 202 | 94
0.5 o0 o |-0.2 151 [ 70 | O 303 (141 |0 303 | 141

After analyzing the results of models, due to assessment

with the vast number of

observations and two regressors, all methods gave infinitive total error fit and Mean Squared
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Distance values. Nonetheless, Lee and Tanaka's method cannot include a second
independent variable (cosine of wind direction) into the model. Consequently, the methods
are not suggested when a vast number of observations are used with many regressors, but

Lee and Tanaka Method is not strictly recommended.

6.4.3 Implementation of FLR Methods to Model 1 with CIFO Dataset

In the section, the original dataset, however, the dependent variable is fuzzified with the help
of the theoretical output data. The symmetrical spreads of the dependent variables are the
numeric difference between theoretical power and generated power and the generated power
is accepted as a central tendency. The sample of CIFO data set is given in
Table 6.15. Tanaka, Nasrabadi and, FLS methods are used in the section. Also, three
different h values that signify different fuzziness levels are applied to models. However, the
details and graphs of the h value with 0.5 are not given. The results of the h=0.5 are given

to compare with other h-value results.

Table 6. 15 Sample CIFO Data Set.

Date/Time | Theoretical | Power Generated | Symmetric | Wind Cosines of Wind
Power (kW) Spread of Speed (m/s) | Direction
(kW) Power
Generated
01-09-2018 3588.3 3404.1 184.2 12.6 0.303
00:00
01-09-2018 3478.1 3102.2 375.9 11.7 0.332
01:00
01-09-2018 3572.1 3222.7 349.4 12.4 0.273
02:00
31-12-2018 2601.1 2309.9 291.2 9.7 0.167
21:00
31122018 3025.2 2681.3 343.9 104 0.166
22:00
31122018 3583.3 3514.3 69.0 125 0.165
23:00

6.4.3.1 Tanaka Method

At 0.01 h level, the results fuzzy linear model using Tanaka method are given below. The

coefficients of the model in form sTFEN are as in Table 6.16.

Table 6. 16 Values of Model 1 with Tanaka Method and CIFO dataset at 0.01 h-value.

center | Left Spread Right Spread
Intercept | -1.1 0 0
X1 157.3 158.8 158.8
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Central tendency of the fuzzy regression model:

Y =-11+1573X%,

Lower boundary of the model support interval:
Yl=-11-15%,

Upper boundary of the model support interval:
YU=-1.1+316.1X,

The total error of fit (TEF) is calculated as infinitive and the mean squared between response
and prediction is 5970442.

Tanaka Method with CIFO data (h=0.01)

Power Generated (KWW)
2000 4000 6000

0

Wind Speed (mis)

Figure 6. 17 Model 1 with Tanaka Method and CIFO dataset (h=0.01)

The fuzzy regression lines are shown in Figure 6.17. The outliers at the left or right spread
has the same distance from the center, the upper and lower bounds extend symmetrically.
So, the parameters of the models 4, and A; are symmetric triangular fuzzy numbers. Also,
the symbols dots at the middle with “T” shaped lines signify the fuzzy outputs that are also
triangular fuzzy number.

At 0.25 h level, the results fuzzy linear model using Tanaka method are given below. The

coefficients of the model in form sTFEN are as in Table 6.17.
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Table 6. 17 Values of Model 1 with Tanaka Method and CIFO dataset at 0.25 h-value.

center Left Spread Right Spread
Intercept | -0.87 0 0
X1 157.29 209.62 209.62

Central tendency of the fuzzy regression model:

Y =-087+157.29 X,

Lower boundary of the model support interval:
YL =-0.87-5233X,

Upper boundary of the model support interval:
YU =-087+366.91X,

The total error of fit (TEF) is calculated as infinitive and the mean squared between response
and prediction is 9058213.

Tanaka Method with CIFO data (h=0.23)
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Figure 6. 18 Model 1 with Tanaka Method and CIFO dataset (h=0.25).

The central tendency with bold line at the middle, lower and upper boundary with dashed

lines are shown in Figure 6.18. The model is fuzzier than previous model.

6.4.3.2 Nasrabadi Method

At 0.01 h level, the results fuzzy linear model using Nasrabadi method are given below. The
coefficients of the model in form sSTFN are as in Table 6. 18.
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Table 6. 18 Values of Model 1 with Nasrabadi Method and CIFO dataset at 0.01 h-value.

center Left Spread Right Spread
Intercept | -1206.86 99.2 99.2
X1 328.92 16.8 16.8

Central tendency of the fuzzy regression model:
Y =-1206.86 +328.92 X;

Lower boundary of the model support interval:
Yl =-1306.1 +312.12X,

Upper boundary of the model support interval:

YU =-1107.65 + 345.73X,
The total error of fit (TEF) is calculated as infinitive and the mean squared between

response and prediction is 830139.

Nasrabadi Method with CIFO data (h=0.01)
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Figure 6. 19 Model 1 with Nasrabadi Method and CIFO dataset (h=0.01).

The central tendency with bold line at the middle, lower and upper boundary with dashed
lines are shown in Figure 6.19. As seen in the figure, Nasrabadi Method does not incline to
include all observation into spreads. Nasrabadi Method specifies optimal spread and does
not prefer to put all observation into the fuzzy area. The outliers at the left or right spread
have the same distance from the center, the upper and lower bounds extend symmetrically
like in Tanaka Method. In other words, left and right spreads of intercept and independent
variable are equal to each other. The parameters of the models 4, and A, are symmetric

triangular fuzzy numbers.
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At 0.25 h level, the results fuzzy linear model using Nasrabadi method are given below. The

coefficients of the model in form sTFN are as in Table 6.19 :

Table 6. 19 Values of Model 1 with Tanaka Method and CIFO dataset at 0.25 h-value.

center Left Spread Right Spread
Intercept | -1207.3 130.96 130.96
X1 328.96 22.18 22.18

Central tendency of the fuzzy regression model:

Y =-1207.3 +328.96 X;

Lower boundary of the model support interval:
Yl =-1338.26 + 306.78X,
Upper boundary of the model support interval:
YU =-1076.34 + 351.14X,

The total error of fit (TEF) is calculated as infinitive and the mean squared between response
and prediction is 884561.

Nasrabadi Method with CIFO data (h=0.25)
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Figure 6. 20 Model 1 with Nasrabadi Method and CIFO dataset (h=0.25).

The fuzzy regression lines are shown in Figure 6.20. The model is fuzzier than the previous

model. When h-value is increased, the spreads from the center are increased.
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6.4.3.3 Fuzzy Least Square Method

The results of the Fuzzy Least Squares Method are given below. The Coefficients of the
model are in form of sTFN due to observations that have symmetric spreads. The spreads
of the Values are as in Table 6.20 :

Table 6. 20 Values of Model 1 with FLS Method and CIFO dataset.

center Left Spread Right Spread
Intercept | -1207.3 49.1 49.1
X1 328.96 8.32 8.32

Central tendency of the fuzzy regression model:

Y =-1207.3 + 328.96 X,

Lower boundary of the model support interval:

YL

—1256.4 + 320.65X;
Upper boundary of the model support interval:
YU =-1158.2 + 337.28X,

The total error of fit (TEF) is calculated as infinitive and the mean squared between response
and prediction is 29642706.

Fuzzy Least Square Method

2000 4000 BOOO

Fowier Generated (IkKiy)

0

Wind Speed (mis)

Figure 6. 21 Model 1 with FLS Method and CIFO dataset.

The fuzzy regression lines are shown in Figure 6.21. As seen in the figure Fuzzy Least
Square Method does not tend to include all observation. The parameters of the models

A, and A7 are symmetric triangular fuzzy numbers.
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6.4.3.4 Comparison of FLR Methods to Model 1 with CIFO Dataset

Table 6. 21 Comparison of FLR Methods to Model 1 with CIFO Dataset.

Method = Total | Mean Central Left Sp. Right Sp.
_§_J Eirtro r g?sutg::lie Intercept | X3 Intercept | X1 | Intercept | X3
Tanaka 0.01 co 6x108 -1 157 0 159 | 0 159
0.25 co 9x108 -0.9 157 0 210 | 0 210
0.5 co 1.8x107 -0.6 157 0 314 |0 314
Nasrabadi | 0.01 0 8.3x105 | -1207 328.9 | 100 17 | 100 17
0.25 co 8.8x105 -1207 328.9 | 131 22 131 22
0.5 co 1.1 x106 | -1207 328.9 | 196 33 | 196 33
Diamond - 0 3x107 -1207 328.9 | 49 8 49 8

After analyzing the results of models, due to assessment with the vast number of
observations all methods gave infinitive total error fit value. Because Mean Square Distance
values of Nasrabadi Method are lower than the other methods. The Nasrabadi method can

be recommended when outputs are fuzzy.

6.4.4 Implementation of FLR Methods to Model 2 with CIFO Dataset

Tanaka and Nasrabadi Methods are used in the section. Also, three different h values that
signify different fuzziness levels are applied to models. However, the details and graphs of
the h value with 0.25 and 0.5 are not given. Because they gave similar but fuzzier results as
h=0.01 value.

6.4.4.1 Tanaka Method

At 0.01 h level, the results fuzzy linear model using Tanaka method are given below. The

coefficients of the model in form sTFN are as in Table 6.22.

Table 6. 22 Values of Model 2 with Tanaka Method and CIFO dataset at 0.01 h-value.

center | Left Spread | Right Spread
Intercept | -0.7 0 0
X1 151 152 152
X2 69 71 71

Central tendency of the fuzzy regression model:
Y =—-0.7 + 151X, + 69X,

Lower boundary of the model support interval:
Yi=-07-1X, —2X,
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Upper boundary of the model support interval:
YU =-0.7 +303X, + 140X,

The total error of fit (TEF) is calculated as infinitive and the mean squared between response
and prediction is infinitive.

Tanaka Method (h=0.01)

6000

Fower Generated (KW
2000 4000

]

Wiind Speed (m/s)

Figure 6. 22 Wind Speed vs. Power Generated in Tanaka Method with CIFO dataset (h=0.01)

Tanaka Method data (h=0.01)

Power Generated (KW)
1000 2000 3000

]

Cosine of Wind Direction

Figure 6. 23 Model 2 with Tanaka Method and CIFO dataset (h=0.01)

The fuzzy regression lines are shown in Figure 6.22 and Figure 6.23. The parameters of the

models 4,,A; and A, are symmetric triangular fuzzy numbers. Figure 6.23 can incline the

observations partially.
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6.4.4.2 Nasrabadi Method

At 0.01 h level, the results fuzzy linear model using Nasrabadi method are given below.

The coefficients of the model in form sTFN are as in Table 6.23.

Table 6. 23 Values of Model 2 with Nasrabadi Method and CIFO dataset at 0.01 h value.

center Left Spread | Right Spread
Intercept | -1218 176 176
X1 329.6 20 20
X2 28 -156 -156

Central tendency of the fuzzy regression model:
Y = —1218 + 329.6X; + 28X,

Lower boundary of the model support interval:
YL =-1394 + 309.6X; + 184X,

Upper boundary of the model support interval:

YU =-1042 + 349.6X, — 128X,

The total error of fit (TEF) is calculated as infinitive and the mean squared between response
and prediction is infinitive.

Nasrabadi Method with CIFO data (h=0.01)

Power Generated (KyW)
2000 4000 6000

0

Wind Speed (mis)

Figure 6. 24 Wind Speed vs. Power Generated in Nasrabadi Method with CIFO dataset (h=0.01).
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Nasrabadi Method with CIFO data (h=0.01)

3000

FPower Generated (KVW)
1000

-1000

Cosine of Wind Direction

Figure 6. 25 Model 2 with Nasrabadi Method and CIFO dataset (h=0.01).

The central tendency with bold line at the middle, lower and upper boundary with dashed
lines are shown in Figure 6.24 and Figure 6.25. As seen in the figures, Nasrabadi Method
does not incline to include all observation into spreads. The parameters of the models
A,,A] and A, are symmetric triangular fuzzy numbers. However, Figure 6.25 cannot
incline the observations. It means second independent variable is not effective to fit the

model. So, Nasrabadi Method is not suggested for Model 2.

6.4.4.3 Comparison of FLR Methods to Model 2 with CIFO Dataset

The results of FLR models that are applied to crisp input and
fuzzy output data with “wind speed” and “cosine of wind direction as independent variables
and “generated power” as dependent variable (Model 2) are compared in
Table 6.24.
Table 6. 24 Comparison of FLR Methods to Model 2 with CIFO Dataset.
Method Total | MSE Central Left Sp. Right Sp.
7 | Error
S | Fit Intrcp | X1 | Xo | Intrep | X1 | X2 Intrcp | X1 | X2
- L. L. t.
Tanaka 0.01 ) o) 0 151169 |0 152 | 71 0 152 | 71
0.25 o) 0 0 151169 | O 201 | 94 0 201 | 94
0.5 0 0 0 151169 | O 302 | 141 0 302 | 141
Nasrabadi | 0.01 0 o) -1218 330 | 28 | 176 20 | -156 | 176 20 | -156
0.25 0 o) -1218 330 | 28 | 232 26 | -206 | 232 26 | -206
0.5 0 © -1218 330 | 28 | 348 39 |-309 | 348 39 | -309
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After analyzing the results of models, due to assessment with the vast number of
observations and two regressors, all methods gave infinitive total error fit and Mean Squared
Distance values. Nonetheless, the Nasrabadi method cannot include a second independent
variable (cosine of wind direction) into the model. Consequently, the methods are not
suggested when a vast number of observations are used with many regressors, but Tanaka

Method looks more preferable to another.

6.4.5 Implementation of FLR Methods to Model 1 with FIFO Dataset

The dependent variable in the original dataset was fuzzified with the help of the theoretical
output data. The symmetrical spreads of the dependent variables are the numeric difference
between theoretical power and generated power and the generated power is accepted as a
central tendency. The main input, wind speed, is symmetrically fuzzified with 10 % below
and above the observed value. The sample of FIFO data set is given in Table 6.25. Only
Nasrabadi Method is used in the section. Also, three different h values that signify different

fuzziness levels are applied to the model. The results of 0.01 and 0.25 h-values are given.

Table 6. 25 The sample of FIFO data set.

Date/Time | Theoretical | Power Symmetric Spread Wind Symmetric Spread
Power (kW) | Generated | of Power Generated | Speed (m/s) | of Wind Speed
(kW) (%10)

01-09-2018 3588.3 3404.1 184.2 12.6 1.26
00:00

01-09-2018 3478.1 3102.2 375.9 11.7 11.7
01:00

01-09-2018 3572.1 3222.7 349.4 12.4 1.24
02:00

31-12-2018 2601.1 2309.9 291.2 9.7 0.97
21:00

31122018 3025.2 2681.3 343.9 104 1.04
22:00

31122018 3583.3 3514.3 69.0 12.5 1.25
23:00

6.4.5.1 Nasrabadi Method

At 0.01 h level, the results fuzzy linear model using Nasrabadi method are given below.
The coefficients of the model in form sTFN are as in Table 6.26.
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Table 6. 26 Values of Model 1 with Nasrabadi Method and FIFO dataset at 0.01 h-value.

center | Left Spread | Right Spread
Intercept | -84 -32 -32
X1 200 10 10

Central tendency of the fuzzy regression model:
Y =-84 +200X,

Lower boundary of the model support interval:
Yl =-52+190x,

Upper boundary of the model support interval:

YU =-116 + 210X,

The total error of fit (TEF) is calculated as 216964 and the mean squared between response
and prediction is 502468.

Nasrabadi Method (h=0.01)

4000

2000

FPower Generated (KvY)

0
|

Wind Speed (mis)

Figure 6. 26 Model 1 with Nasrabadi Method and FIFO dataset (h=0.01).

As seen in Figure 6.26, Nasrabadi Method does not incline to include all observation into
spreads. Nasrabadi Method specifies optimal spread and does not prefer to put all
observation into the fuzzy area. The parameters of the models 4, and A, are symmetric
triangular fuzzy numbers. Also, the symbols dots at the middle with “+” shaped lines signify
FIFO data, the fuzzy inputs, and outputs that are also triangular fuzzy numbers.

At 0.01 h level, the results fuzzy linear model using Nasrabadi method are given below. The
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coefficients of the model in form sTFEN are as in Table 6. 27.

Table 6. 27 VValues of Model 1 with Nasrabadi Method and FIFO dataset at 0.25 h-value.

center | Left Spread Right Spread
Intercept | -1053 -88 -88
X1 311 8 8

Central tendency of the fuzzy regression model:

~

Y =-1053 + 311 X,

Lower boundary of the model support interval:

YL =-965+ 303X,
Upper boundary of the model support interval:

YU =-1141 + 319X,
The total error of fit (TEF) is calculated as 262460 and the mean squared between response

and prediction is 910200.

Nasrabadi Method (h=0.25)

3000

Fower Generated (lK)
1000

0

Wind Speed (mis)

Figure 6. 27 Model 1 with Nasrabadi Method and CIFO dataset (h=0.25).

The fuzzy regression lines are shown in Figure 6.27. The model is fuzzier than the previous
model. When h-value is increased, the spreads from the center are increased. In the section,

when the dataset includes fuzzy input for fuzzy outputs, it is studied the applicability of the
situation.
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6.5 Results of Applied Models

In the section, the comparative two statistical indicators of all applied methods to all types

of datasets are compared to see the whole picture of the study.

Table 6. 28 Comparison of all Applied Models.

DATA TYPES
Method - CICO CIFO FIFO
§§_> Model 1 Model 2 Model 1 Model 2 Model 1

Error Terms TEF GOF TEF | GOF | TEF | GOF TEF GOF | TEF GOF
Lee and 0.01 | 3.5x10%2 | 7.2x108 0 0 - - - - - B
Tanaka 0.25 | 4.6x10%2 | 1.2 %107 | o 0 - - - - - _

0.5 | 7x10% 2.6x107 o 0 - - - - - B
Tanaka 0.01 0 6.6x10° 0 o0 0 6x10° s s B B

0.25 0 1x107 0 o0 o0 9x106 0 0 B _

0.5 o 2x107 o 0 o0 1.8x107 00 o0 - -
Nasrabadi | 0.01 0 7.4x10° o 0 0 8.3x10° | oo o 2.2x10° | 9x10°

0.25 0 7.4x10° 0 0 0 8.8x10° | oo o 2.6x10°% | 1x108

0.5 0 7.4x10° 0 0 0 1.1 x108 | o o 4x10° 1.5x10°%
FLS - 0 7.4x10° - - 0 3x107 - - - -

CICO, CIFO, and FIFO datasets are used for modeling with different methods. It is an

advantage for researchers to have the ability to use different datasets. Because, according to

the situation, dependent or independent variables can be observed partially or observation

can be mismeasured, and it can be needed to fuzzify the defective variables. Hence, different

methods are applied to different datasets. All datasets are considered, Nasrabadi and FLS

methods are generally more successful than the other methods. However, these methods are

more complex for calculations. Nasrabadi and FLS methods do not include all observations

into fuzzy upper and lower boundary, contrary to Lee and Tanaka, and Tanaka Methods.

In CICO dataset analysis, Nasrabadi and FLS behaved like crisp models, but it does not

mean that they will behave like a crisp method in every CICO dataset. So, these models also

can be applied to CICO dataset, for different cases. On the other, Lee and Tanaka, Tanaka

methods can be applied to CICO dataset when fuzziness is desired. Because Lee and

Tanaka's method has already been designed for CICO dataset. In brief, Lee, and Tanaka,

Tanaka methods look more efficient with minimum h-value in CICO dataset case, due to

other models’ crispness. In other words, in a case whose observations are distributed

proximately linear, Lee and Tanaka, Tanaka methods would be more powerful and suitable.
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When the results of Model 2 are compared, the descriptive statistics are not distinguishing.
However, the Tanaka method is more preferable to Lee and Tanaka method. Because Tanaka

Method included a second independent variable when Lee and Tanaka's method did not.

In CIFO dataset, the applied methods in minimum h-value gave better results. But Nasrabadi
Method is the winner of the case with a minimum GOF value. When the results of Model 2
are compared, the descriptive statistics are not distinctive too. However, the Tanaka method
is more preferable to Nasrabadi Method. Because Tanaka Method included second
independent variable again. Consequently, when there is more than one independent
variable, Tanaka Method can be more accurate than the other methods. The Nasrabadi
Method applied to FIFO dataset in the study. The results showed that Nasrabadi Method is

appropriate for FIFO dataset cases.
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7 CONCLUSION

Gathering data or observing parameters for all types of statistical analysis is always
demanding and effortful. The processes are generally expensive and collecting accurate data
is a probable problem. Besides the significant advantages of wind energy, it is emphasized
that the high construction costs of wind farms are one of the most important disadvantages.
So, wind energy investors are obliged to have detailed, precise, accurate, inclusive research
done to professionals. Furthermore, all possible models should apply to observations.

Otherwise, faults in observations or in models will cause a waste of economic resources.

It is aforementioned that numerous studies have been generated and many different
statistical methods have been applied to predict accurate generated power by wind turbines,
due to the importance of wind energy investments. The proposed methods to forecast power
generation are frequently complicated. As various conditions influence approximate
observations, parametric or non-parametric methods are used for the aim. The main
parametric methods are the Linearized Model, Polynomial Model, Probabilistic Model, and
Logistic function model. The main non-parametric methods are Neural Networks, Data

Mining Algorithms, and Fuzzy Clustering Methods [11].

While there is a relationship between wind speed and produced electrical power, there are
also unexplainable factors that influence wind speed and power production or their
relationship. The study was motivated by the dataset's ambiguous context, which led to the
use of fuzzy regression. Due to the fact that fuzzy regression methods do not take account
of the distribution of observations and a fuzzy relation is assumed between wind speed, wind
direction, and power generation. Also, the application of fuzzy set theory is naturally
common in such subjects. The other motivation source to apply fuzzy linear regression is
having a dataset that includes just four months of observation or seasonal (autumn) not
annual. The annual dataset is obviously more available for crisp modeling, however fuzzy
regression is more efficient for seasonal, limited, or partial datasets. Thus, the situations

fulfilled the assumption to apply fuzzy regression modeling.

In the study, two models were proposed to estimate the amount of produced electrical energy
by a wind turbine. The first model used only wind speed as a regressor, the second model
used wind speed and wind direction as regressors. The original dataset had crisp input and
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crisp output. However, firstly the output of the dataset was fuzzified, so the CIFO dataset
was generated. Secondly, both output and the first input (wind speed) were fuzzified, so the
FIFO dataset was generated. Thereby, the applicability of the fuzzy regression models in

the different datasets was evaluated.

Lee and Tanaka, Tanaka, Nasrabadi, and FLS method were applied to datasets and their
results were compared. Hereby, the behavior and suitability of the fuzzy regression models
were observed. When the results were examined, all suggested methods were quite
successful for CICO dataset for Model 1. If the distribution of the observations is close to
the normal distribution, the inclusive methods (Tanaka, Lee and Tanaka) would be more
successful. In CIFO dataset for Model 1, the applied methods in minimum h-value gave
proper results. But Nasrabadi Method gave the best results, so the method proved the

accessibility in the situation.

The second regressor (wind direction) , which was not an explanatory variable in the crisp
linear regression model is applied in the study. Due to not having another regressor in
dataset, it was compulsory to use wind direction. So, it was a limitation for the study. The
all proposed fuzzy regression method except Tanaka Method were ineffective for Model 2

in every dataset. The Tanaka method included the second regressor in the fuzzy area at least.

Accordingly, it is evaluated in the study that the fuzzy regression methods to predict the
power generation are especially influential and advantageous when a general frame of the
wind turbine models is wanted to realize before complex calculations and modeling for a
place, or there are a small number of observations, or it is hard to observe the parameters or
the observations are not trustworthy, or there are more optional places to construct a wind

farm and decision-maker do not have sufficient time to take action.

Consequently, the suggested models provided alternative solutions for different situations,
as well as a more flexible decision area and a theoretical basis for wind energy investors
and researchers. This study will expand the horizon for studies such as the fuzzy piecewise
regression method and fuzzy nonlinear regression methods that are expected to be used in

the future in estimating the energy produced by wind turbines.
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