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Bitki örtüsü, kentsel ısı adası etkisinin azaltılması, ekolojik dengenin sürdürülmesi, 

biyolojik çeşitliliğin korunması, yaşam kalitesinin iyileştirilmesi vb. gibi birçok açıdan 

hem kentsel hem de kırsal ortamlarda önemli bir role sahiptir. Farklılıkları ayırt etmek 

için görüntü işleme yöntemleri kullanılarak bitki örtüsü değişikliği tespiti yapılabilir. 

Bunun için farklı zamanlarda çekilen görüntülerin kullanılması gerekmektedir. Kentsel 

alanlarda bitki örtüsü değişikliği, şehirlerin yeşil altyapısının büyüme veya azalması 

açısından iyi bir gösterge olabilir. Diğer yandan, kırsal alanlardaki değişim, tarım 

alanlarının büyümesi veya azalması anlamına gelebilir. Bu tez çalışması, farklı mevsim 

ve yıllarda hava ve uydu sensörlerinden elde edilen çok zamanlı ve çok platformlu verileri 

kullanarak bitki örtüsü değişikliği tespit yöntemlerini araştırmayı amaçlamıştır. İnsansız 

Hava Araçlarına (İHA) monte edilen RGB kameralardan ve çok bantlı Yer Gözlem (EO) 
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uydu sensörlerinden (Göktürk-1 ve Worldview-2) alınan görüntüler bu çalışmada veri 

kaynağı olarak kullanılmıştır. Çalışma alanı, veri mevcudiyeti dikkate alınarak Antalya 

Akdeniz Üniversitesi Kampüsü’nde yer alan koruluk bölgeden seçilmiştir. Radyometrik 

ve geometrik iyileştirmeler için yapılan bir dizi görüntü ön işleme yöntemi, değişiklik 

tespitinden önceki ilk adımları oluşturmaktadır. Görüntülerin doğru yöneltilmesi için 

farklı jeoreferanslama yöntemleri uygulanmıştır. Normalleştirilmiş bitki örtüsü farklılık 

indeksi (NDVI) ve Yeşil ve Kırmızı Oran Bitki Örtüsü İndeksi (GRVI) gibi çeşitli bitki 

örtüsü indeksleri, bitki örtüsünü daha iyi tanımlamak için veri setlerinden türetilmiştir. 

NDVI ve GRVI görüntüleri, bitki örtüsü sınıflandırması için denetimli bir makine 

öğrenimi (MÖ) yöntemi olan rastgele orman (RO) metodu kullanılmıştır. Doğrulama 

sonuçları, RO yönteminin çoklu-zamanlı, çoklu-çözünürlüklü ve çoklu-platformlu veri 

kümeleri için bitki örtüsü haritalaması ve karar seviyesinde değişiklik tespiti için uygun 

bir yöntem olduğunu göstermektedir. Ayrıca, denetimsiz bitki örtüsü haritalaması amaçlı 

olarak bu tezde kullanılan tüm sensörlerden elde edilen GRVI verilerine Otsu eşik-değer 

yöntemi uygulanmış ve başarılı sonuçlar ürettiği görülmüştür. 

 

Anahtar Kelimeler: Bitki örtüsü haritalama, Görüntü İşleme, İnsansız Hava Araçları, 

Optik Uydu Görüntüleri, Değişim Belirleme, Worldview-2, Göktürk-1.  
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Vegetation cover has an essential role in both urban and rural environments in several 

aspects, such as mitigating urban heat island effect, sustaining ecological balance, 

preserving biodiversity, improving the quality of life, etc. Vegetation change detection 

can be carried out by using image processing methods in order to distinguish differences. 

For this purpose, images taken at different moments need to be utilized. In urban areas, 

vegetation change can be a great indicator for the growth or decrease of cities green 

infrastructure. In contrast, the change in rural areas could mean the growth or decrease of 

agricultural fields. This thesis aimed to investigate the vegetation change detection 

methods by using multi-temporal and multi-platform data, i.e. obtained from aerial and 

satellite sensors at different seasons and years. Data from RGB cameras mounted on 

Unmanned Aerial Vehicles (UAV), and from multispectral Earth Observation (EO) 

satellite sensors (i.e. Gokturk-1 and Worldview-2) have been employed as data sources 
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in this study. The study area was selected from the forest area in Akdeniz University 

Campus, Antalya, Turkey, due to data availability. A number of image pre-processing 

methods for radiometric and geometric improvements were the initial tasks prior to 

change detection. Different georeferencing methods were applied for accurate alignment 

of the images. Several vegetation indices such as normalized difference vegetation index 

(NDVI) and Green and Red ratio Vegetation Index (GRVI) were derived from the datasets 

to identify the vegetation better. These NDVI and GRVI images were employed in a 

supervised machine learning (ML) method, i.e. the random forest (RF), for vegetation 

classification. The validation results show that the RF method is a suitable method for 

vegetation mapping and decision level change detection for multi-temporal, multi-

resolution and multi-platform datasets. In addition, for the purpose of unsupervised 

vegetation mapping, the Otsu thresholding method was found successful when applied to 

the GRVI data obtained from all sensors used here. 

 

Keywords: Vegetation mapping, Image Processing, Unmanned Aerial Vehicles, Satellite 

Optical Images, Change Detection, Worldview-2, Göktürk-1. 
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1. INTRODUCTION 

 

1.1 Vegetation Mapping and Change Detection 

Vegetation cover has an essential role in urban environments in several aspects, e.g., 

mitigating urban heat island effect, sustaining ecological balance, preserving biodiversity, 

improving the quality of life, etc. Vegetation mapping includes the determination of the 

spatial distributions various plant species; and is crucial for analyzing vegetation 

dynamics, quantifying spatial patterns of vegetation development, examining the 

outcomes of environmental variations, and predicting spatial patterns of species diversity. 

Satellite imagery and aerial photography are useful data sources for observing vegetation 

both in urban and rural areas. In general, spatial resolutions of images utilized for 

vegetation mapping in cities can be diverse. The images used for this purpose can be 

moderate or high resolution (HR), and even very HR (VHR). In addition, images obtained 

from unmanned aerial vehicle (UAV) platforms can be ultra-high resolution (UHR) [1]. 

 

The earth surface is dynamic, and the changes may source from disasters, deforestation, 

dislocation in course of river, urbanization etc. The changes on earth surface can be 

classified into two groups, i.e. land use and land cover (LULC). The land use explains the 

actual use type of land, e.g., agriculture, urbanization, mining, etc. The land cover 

includes visually observable objects on the Earth’s surface, such as buildings, pavement, 

trees etc. The change detection (CD) methods aim to distinguish differences on Earth’s 

surface and often images taken at different moments are used for this purpose. 

 

The CD applications employ multi-temporal datasets to quantitatively assess the changes 

of land cover properties. The CD activities can be performed by traditional manual 

observations, or by using remote sensing data and applying automated or semi-automated 

techniques. The manual methods are costly, time-consuming, and may possibly be 

inaccurate depending on the observer’s skills. In addition, accessibility to the site. Thus, 

remote sensing data and methods can be preferred to determine the changes over large 

areas with high temporal frequency. 
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1.2 Problem Statement 

In the last years, with the availability of HR remotely sensed imagery, detecting and 

counting trees automatically with high geolocation and semantic accuracy have become 

possible. Thanks to the rapid data acquisition with the remote sensing sensors, in 

particular the optical ones, quick assessment of forest areas and individual tree species 

and detecting the changes in their geometries and the other physical features, e.g. size, 

shape, health, etc. have been widely used by respective authorities and researchers. There 

is yet a growing need for reliable and cost-effective methods for operational and strategic 

applications such as climate change monitoring, environmental sustainability, and forest 

conservation.  

 

The geometric properties of the changes in vegetated areas can be detected by numerous 

approaches, such as counting trees and comparing with the previous state, observing areal 

and volumetric changes, determination of tree decrements (e.g., deforestation), etc. 

Unlike the manual ground-based data collection techniques, which are time-consuming 

and inefficient; the remote sensing data and methods can be utilized for efficient 

monitoring. Often, multi-platform and multi-sensor data are needed for this purpose due 

to the availability of the sensor data (e.g., discontinuation of an Earth Observation (EO) 

satellite), practicality of multiple sensors, such as the use of different cameras mounted 

on UAVs, the spatial and temporal resolution requirements, etc. The spatial, spectral and 

radiometric resolution differences as well as the variances in data quality (e.g., 

geolocation accuracy) between the different sensors and platforms coupled with the 

physical changes in vegetated areas introduce several challenges to the vegetation 

monitoring problem via image CD approaches. In addition, seasonal properties and 

differences in image acquisition angles introduce further issues due to the illumination 

changes, which translate into physical changes of the vegetation in the images. Thus, the 

applied data and methods yield to several types of noises and unexpected errors in the 

resulting vegetation maps. Therefore, various techniques can be needed to be evaluated 

and employed for different types of image sources to obtain accurate results.  

 

1.3 Thesis Goals 

The main goal of this study was to identify vegetation in different images acquired from 

various platforms with multi-sensor and multi-temporal images in an urban area; and thus, 
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to monitor the changes over several years. The study area was selected inside Akdeniz 

University Campus, Antalya, Turkey due to the availability of data acquired at different 

years from satellite and aerial platforms (i.e., Worldview-2 satellite, UAV and Göktürk-

1 satellite). An area with a size of ca. 24,000 m2 was processed to detect the nut pine trees 

and to identify the changes in terms of tree count and vegetation cover. Various image 

processing techniques and vegetation indices were investigated in each image to exploit 

their potential to achieve accurate results. 

 

The three image datasets were acquired with the sensors mentioned above; and have 

different spatial resolutions, acquisition conditions in terms of time of the day and the 

season, and other attributes such as spectral band combinations and electromagnetic 

spectrum bandwidths. The study aimed at investigating the different geometric 

preprocessing requirements for accurate alignment of the datasets; and defining an 

optimal processing and decision-making method for accurate mapping of the changes. 

Thus, a methodological approach was proposed and applied here to achieve the thesis 

goals. 
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2. RELATED WORK 

 

2.1 Vegetation Mapping Methods 

Remote sensing technologies have been developed tremendously and provide a huge 

amount of data for detailed analysis, detecting changes and monitoring the Earth’s surface 

with spaceborne and airborne sensors [2]. Imagery obtained from both satellites and aerial 

platforms have been adopted for monitoring vegetation in urban and rural areas [3], [4]. 

When satellite remote sensing and aerial photogrammetry are comparatively evaluated, 

airborne methods have certain advantages, which make it a very dynamic field nowadays 

[5]. In recent works, advanced classification technologies with multi-source remote 

sensing images and auxiliary information are found for vegetation mapping [6]. When 

considering the relationship between the vegetation and the environment, many studies 

take advantage of auxiliary data such as elevation, soil type and precipitation, which can 

also improve the quality of vegetation classification [7]. 

 

Ground-based mapping is considered obsolete in many cases due to the lack of time and 

resource efficiency, and is leaving its place to remote sensing technologies especially in 

the field of vegetation mapping [8]–[13]. Even though ground-based mapping offers such 

precision for field surveys and detailed mapping, due to size of vegetation areas it is not 

often considered.  

 

Vegetation mapping methods can broadly be categorized into unsupervised or supervised 

object-based and pixel-based methods. Object-oriented methods have been extensively 

used in vegetation mapping because of the high fragmentation and noise problem, which 

is also called “salt and pepper problem” that comes with the pixel-based methods [9]. In 

a study, a comparison was performed between the object-based methods and pixel-based 

methods, and the result was in favor of object-based methods by a minimal marge and 

achieved better spatial organization of land cover [14]. In a comparative study that 

evaluated the two approaches, object-based methods have yielded a higher accuracy with 

a difference of 15% [15]. Another study used satellite and synthetic aperture radar (SAR) 

data using the two methods with random forest (RF) algorithm, and superior results were 

achieved by the object-based approach [16]. The results obtained in [17] proved that 

object-based classification is more accurate and useful than pixel-based method for the 
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generation of vegetation maps. Another study achieved an overall accuracy of 85% using 

RapidEye HR satellite image with object-based classification for eight types of urban tree 

species [3]. A study by [18] found that the object-based approach was better for mapping 

crops when compared to pixel-based supervised classification methods (e.g. 

parallelepiped, minimum distance, Mahanalobis Distance Classifier, Spectral Angle 

Mapper, and MLC). Object-based methods have few disadvantages, such as the 

requirement of prior information of the area and the land cover type, which may not be 

available; and also the image segmentation and the derivation of the topological 

relationships between objects may yield to an overload on the computer resources and 

may require a large amount of memory [19]. 

 

The object-oriented methods are usually carried out in three steps. The first step is to 

partition the image into meaningful regions. The second step is to remove irrelevant and 

unnecessary features while preserving useful information to distinguish the objects based 

on their shape and spatial relationships. The final step is to classify the objects [4], [20]. 

The most important step in the object-based methods is the first one, which requires the 

implementation of a solid image segmentation method so that the objects are apparent to 

characterize the landscape for the specific objective of the work [14].  

 

Pixel is the fundamental (spatial) unit of an image and pixel-based methods are carried 

out per pixel. The most commonly used pixel-based approach is supervised classification 

[21], in which an expert creates training areas and the algorithm assigns a label to each 

pixel based on the spectral signature similarity to the pre-defined training classes [21]. 

The machine learning (ML) methods have also been used to perform vegetation 

classification in remotely sensed images. The use of ML methods may improve the 

accuracy of remote sensing vegetation classification, but the supervised methods require 

a large number of samples as training data for each vegetation class [9] . Several studies 

based on using ML and deep learning (DL) can be found in the literature. In [22], a 

convolutional neural networks (CNN) architecture was used to automatically classify 

crops based in satellite images,  and an overall accuracy of 95.9% was achieved. Another 

research employed DL to classify fourteen crop types while reaching an overall accuracy 

of 85.54% based on Landsat Enhanced Vegetation Index (EVI) times series data [23]. 

The studies [24], [25] adopted an artificial neural network (ANN) model for vegetation 

prediction and mapping.  
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Apart from the neural networks and the DL methods, other statistical ML methods such 

as RF and Support Vector Machine (SVM) have also been employed for vegetation 

mapping [26]. RF is a commonly used ML algorithm for handling classification and 

regression problems using multiple decision trees [27]. SVM is based on non-

probabilistic binary linear classifiers [26]. The RF method was widely used in various 

studies. The researchers in [1] used the RF with UAV data for urban vegetation mapping. 

Another study [16] used the method with SAR data for wetland vegetation mapping. The 

study in [28] used it for forest habitat mapping and monitoring the ecological conditions 

in wetlands [8]. The study in [24] employed it for creating a HR global land cover map 

with Sentinel-2 satellite optical data. In [29], it was used for automated mapping for 

shifting cultivation. Further examples can be found in crop classification [15], [22], [23], 

land cover characterization and vegetation mapping in arid areas [13], [30], [31]. 

 

Vegetation Indices (VIs) have frequently been computed from multi-spectral images 

using various band combinations and provide useful information for many agriculture and 

climate studies [32]. NDVI (Normalized Difference Vegetation Index) is one of the 

widely used indices for vegetation classification, monitoring and rapid assessment of the 

vegetation quality [32]. The use of NDVI in different studies with various methods can 

be found in the literature [5], [29], [33]. 

 

Other than NDVI, diverse VIs, such as EVI [8], [22], [28], [34], NDYI (Normalized 

difference vegetation index) [28], LAI (leaf area index) [5], [25], [28], [35] and SAVI ( 

Soil Adjusted Vegetation Index) [29], [30], [36] have been preferred in many studies. 

Also, NDWI (Normalized Difference Water Index) has been used for mapping wetlands 

[37]. 

 

2.2 Change Detection Methods in Vegetated Areas 

The CD is aims at determining the differences in an area and often by using images taken 

at different times [38]. Another and broader definition [39] states that “in remote sensing, 

CD is the process that leads to the identification of changes occurred on the Earth surface 

by jointly processing two (or more) images acquired on the same geographical area at 

different times”. The changes on earth surface may occur due to disasters, deforestation, 

etc. [40]. Both unsupervised or supervised methods have been applied in the literature for 
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CD purposes [39], [41] [42]. As can be seen in the previous Section, object-based 

approaches overcome the problems of pixel based-methods and improve the accuracy of 

CD immensely [43].  The use of HR data helped to increase the accuracy of CD methods 

overall [44]. The CD methods can as simple as image rationing and image differencing 

but also including post classification and principal component analysis [40]. The CD 

methods  have been used widely in different sectors such as forestry [45], [46], agriculture 

[18], urban planning [40] and water quality [47]. 

 

2.3 Integrated Use of Multi-Platform Data for Vegetation Mapping 

Various remote sensing image sources are available nowadays. The high variety of 

camera/sensor properties provide numerous options for widely used image processing 

algorithms [6]. The advances in remote sensing sensors and methods have made it 

possible to gather information and data with high coverage of land and a great range of 

temporal resolution [8]. Currently, diverse satellite images are available at different 

temporal, spatial and spectral resolution ranges [48]. HR satellite images with high 

temporal resolution can be costly [49] and flying a UAV (e.g. drone) for large areas such 

as crops and forests can be inefficient. UAVs can obtain images at a very high spatial 

resolution which can be used to identify small vegetation communities, but due to logistic 

constraints on operating UAVs, there might be a need for using the UAV and satellite 

imagery together [50]. 

 

Several studies focused on using different platform in an integrated sense. Not only from 

a single sensor, but satellite images obtained from different sensors are also widely used 

to monitor the vegetation state and health [8]. Applications such as precision agriculture 

take advantage of using satellite imagery along with UAV data at large scales [51]. 

Another study [52] aimed at using both satellite imagery and UAV data while focusing 

on their advantages, such as the large coverage of satellite images and precise ground-

truth information that comes with the UAV imagery. In a study by [53], UAV data 

assisted the training data collection step for SVM classification using WorldVew-3 and 

RapidEye satellite images together with a digital elevation model (DEM) obtained from 

a LiDAR (Light Detection and Ranging) sensor. In order to achieve high accuracy, an 

aggregate of color, texture, structure and hyperspectral properties of the UAV images 

were used together with the satellite imagery for the identification of invasive woody 

species [54]. UAVs have been used for the creation of ground-truth maps for obtaining 
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and generating better data than the available satellite data for treeless vegetation mapping 

in [55]. Fusion of Sentinel-1 SAR data and multi-spectral Sentinel-2 data was used for 

mapping the wetlands at the Balikdami area near Sakarya River, Turkey  [56]. Also UAV 

and Landsat images were utilized together for orangutan habitat mapping by classifying 

the land cover [49]. 
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3. STUDY AREA AND THE DATASETS 

 

3.1 Study Area 

The goal of this study was to monitor the changes over several years with images obtained 

from different satellite platforms and aerial platforms. The study area was selected inside 

Akdeniz University Campus, Antalya, Turkey, by considering the thesis goals and the 

availability of multi-platform images in the area (Figure 3.1). The area can be considered 

as a grove and mainly contains nut pine trees (Pinus Pinea) with a size of ca. 24,000 m2. 

The study area can be observed through time with the data acquired from multi platforms. 

The first images of the area were obtained with a UAV on 10 January 2015, Worldview-

2 in 7 May 2015, and Göktürk-1 images on 12 September 2019. 

 

 

Figure 3.1: The location of the study area. 

 

3.2 WorldView-2 Sensor & Data Characteristics 

The WorldView-2 (WV-2) satellite (Figure 3.2) was launched on October 8, 2009 by 

United Launch Alliance (ULA). The WV-2 optical imaging sensor comprise eight 

multispectral (MS) bands with a spatial resolution of 2 m and a swath width of 16.4 km 
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at nadir. The spectral ranges of the eight bands are 400–450 nm (B1-coastal), 450–510 

nm (B2-blue), 510–581 nm (B3-green), 585–625 nm (B4-yellow), 630–690 nm (B5-red), 

705–745 nm (B6-red edge), 770–895 nm (B7-near infrared-1), and 860–1040 nm (B8-

near infrared-2) (Table 3.1). The satellite also has a panchromatic (Pan) sensor (450–800 

nm) with a nominal spatial resolution of 0.5 m [57]. According to DigitalGlobe [58] the 

8 MS bands were uniquely chosen to meet the needs of a variety of applications, including 

resources management, coastal mapping, environmental monitoring, infrastructure 

mapping, and others [59]. 

 

 

 

Figure 3.2. Illustration of The Worldview-2 Spacecraft (image credit: Digital Globe) 

 

Table 3.1: WV-2 band descriptions [58] 

Band Name Band Index Spectral Characteristics(nanometers) 

Coastal 1 400-450 

Blue 2 450-510 

Green 3 510-580 

Yellow 4 585-625 

Red 5 630-690 

Red Edge 6 705-745 

Near IR 1 7 770-895 

Near IR 2 8 860-1040 

Panchromatic - 450-800 



 

 11 

The wavelengths of WorldView-2 bands are mainly sensitive to vegetation properties 

important to distinguish tree species “including 425 nm (chlorophyll absorption), 480 nm 

(chlorophyll absorption), 545 nm (plant health), 605 nm (carotenoid absorption detects 

‘yellowness’ of vegetation), 660 nm (chlorophyll absorption), 725 nm (vegetation health), 

835 nm and 950 nm(leaf mass and moisture content)” [59],[60]. The WV-2 relative 

spectral radiance response is depicted in Figure 3.3. Further specifications of the WV-2 

satellite and the imaging instrument are given in Table 3.2.  

 

 

Figure 3.3: WorldView-2 relative spectral radiance response [62] 

 

The WV-2 imagery used in this study was acquired on the 7th of May 2015. The imagery 

bundle received from DigitalGlobe included the Pan band image and 4 MS band (RGB + 

NIR) data. The dynamic range of the sensor is 11 bits and the cloud cover is 3%. Further 

information on the data characteristics are presented in Table 3.2. An overview of the 

pan-sharpened image of the study area and the part used in the study are given in Figures 

3.4 and 3.5, respectively.  The study area extent is marked with yellow rectangle in Figure 

3.4. The specs of the data used in this study are given in Table 3.3. 
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Table 3.2: The WV-2 satellite characteristics [63] 

 

 

Table 3.3: WV-2 Data Bundle used in the study 

Data Name Bands Spatial 

Resolution 

Radiometric 

resolution 

Acquisition Time Cloud 

Cover 

Processing 

Level 

Multi Spectral RGB + NIR 2 meters 11 bits 07-May-15 9:02:27  0.00 Standard2A 

PAN Pan 0.5 meters 11 bits 07-May-15 9:02:27  0.00 Standard2A 

Pan Sharpened RGB 0.5 meters 11 bits 07-May-15 9:02:27  0.00 Standard2A 
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Figure 3.4: An overview of the WV-2 MS image used in the study. 

 

 

Figure 3.5: Pan Sharpened WV-2 MS image (left) part and the manually delineated 

ground-truth map (right) over the study area 
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3.3 UAV Data Characteristics 

A rotary-winged multi-copter system (Figure 3.6) was used to obtain the VHR images 

used in the study. The complete system weighed around 2.75 kgs with an extra payload 

including a ZeroTech flight control system and GoPro HERO3+ Black Edition camera. 

The camera was calibrated using the Agisoft Lens software package to calculate interior 

orientation parameters (Table 3.4), since the camera is not mainly built for 

photogrammetric purposes [64] and is not metric. The image bundle consists of a total of 

125 RGB images with an overlap rate of 60%-90% and with an average footprint of 1.6 

centimeters. The images were captured on 10 January 2015. The orthophoto of the study 

area with 2 cm spatial resolution is shown in Figure 3.7.  

 

 

Figure 3.6: The Rotary-Winged Multi-Copter UAV and Camera 

 

Table 3.4: Camera Interior Orientation Parameters [64] 

Variable Parameters (pixel) 

f (focal distance) 1.6792915746501974e+003 

Cx (principal point coordinate in x) 1.5071944256835432e+003 

Cy (principal point coordinate in y) 1.1241168025668355e+003 

k1 (radial distortion coefficient) -2.3975802980138777e-001 

k2 (radial distortion coefficient) 8.5264077044722220e-002 

k3 (radial distortion coefficient) -1.7834637858183136e-002 
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Figure 3.7: UAV Orthophoto (left) and the manually delineated ground-truth map (right) 

of Study Area 

 

3.4 GK-1 Sensor & Data Characteristics 

Göktürk-1 is an optical EO satellite (Figure 3.8) launched by the Turkish Ministry of 

Defense on 5 December 2016 in collaboration with VEGA (Italian: Vettore Europeo di 

Generazione Avanzata) rocket from Europe’s Space Centre in Kourou, French Guyana 

[65]. The satellite operates with the push-broom principle and obtains high-resolution 

images in both pan and MS bands with 0.5 m and 2 m ground sampling distances (GSDs), 

respectively. The satellite moves on a Sun Synchronous Orbit (SSO) with an altitude of 

approximately 700 km. The lifetime of the satellite is expected to be around seven years. 

The VHR camera obtains images in five spectral bands, such as Panchromatic, Red, 

Green, Blue and NIR (Near Infra-Red) [66]. 

 

Operation responsibility of Göktürk-1 belongs to the Turkish Air Force (TURAF) 

Command at the location of Göktürk Ground Station (GGS). GGS is also responsible of 

processing the data and generating L2A data by IPS (Ingestion and Processing Services) 

[67]. Göktürk-1 is designed to provide high-resolution data for a wide range of 

applications such as military and civilian applications [65]. 
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Figure 3.8: GK-1 Satellite [68] 

 

The imagery bundle used here includes Pan image and 4 MS bands (RGB + NIR). The 

radiometric resolution is 12 bits and the cloud cover is 3%. Further information on the 

satellite and instrument specifications is given in Table 3.5. Image bundle and the 

overview of the study area with GK-1 pan image can be seen in Table 3.6 and Figure 3.9, 

respectively. In Figures 3 3.10, the image part of the GK-1 MS bands over the study area 

given. 
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Table 3.5: Full Specifications of GK-1 Satellite Sensor[68] 

 

 

Table 3.6: GK-1 Data Bundle characteristics used in the study. 

Band / Product Bands GSD Bit 

Depth 

Acquisition 

Date & Time 

Cloud 

Cover 

Processing 

Level 

Multi Spectral RGB + NIR 2.5 m 12 

Bits 

 

 

12 September 

2019 

07:50:02 

 

%3 Level 2A 

Pan Pan 1 m %3 Level 2A 

Pan 

Sharpened 

RGB 1 m %3 Level 2A 
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Figure 3.9: GK-1 pan band image used in the study. 

 

  

Figure 3.10: GK-1 MS image (left) and the manually delineated ground-truth map (right) 

part in the study area.   



 

 19 

4. METHODOLOGY 

 

4.1 Workflow 

The methodology preferred here is based on extraction prominent features and vegetation 

indices from the images and vegetation mapping based on classification of each image 

based on a supervised classification technique (i.e. Random Forest). However, several 

feature extraction and thresholding methods have also been evaluated for analyzing the 

potential of such methods with the input datasets, which were explained in the previous 

Chapter. The general workflow (Figure 4.1) of this study consists of the following five 

stages: 

1. Preparation of input data  

2. Radiometric and geometric pre-processing 

3. Feature extraction and vegetation mapping 

4. Change detection 

5. Quality assessment 

 

Figure 4.1: Overall methodological workflow. 

 

Steps 4-5 are explained in the following sub-sections in detail. 

 

Input Data 
(UAV, WV-2, 

GK-1)

Radiometric 
and 

geometric 
pre-

processing

Feature 
extraction 

and 
vegetation 
mapping

Change 
detection

Quality 
assessment
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4.2 Data Pre-Processing 

 

In data pre-processing, the data were prepared for the vegetation mapping analyses to 

increase their performance. These preparation steps can be categorized as reduction to 8 

bits and geometric processing; and include georeferencing of UAV and GK-1 datasets for 

accurate alignment; processing of UAV images for orthophoto and DSM generation, 

clipping the input datasets for the selected study region in order to investigate various 

feature / texture extraction methods efficiently. Each dataset was reduced to 8 bits in terms 

of radiometric resolution. The data pre-processing steps are depicted schematically in 

Figure 4.2. 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Data pre-processing methodology.  
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For the georeferencing tasks, the WV-2 image was taken as reference in planimetry for 

both the UAV and the GK-1 data. The elevation information required for the bundle block 

adjustment of UAV images was obtained from the web-supported desktop geographical 

information system (GIS) application (HGM Küre Platform) [69]  of General Directorate 

of Mapping, Turkey. The platform provides very high resolution digital orthophotos and 

DEMs of Turkey. The planimetric coordinates of the ground control points (GCPs) used 

for georeferencing of UAV data were derived from the WV-2 images whereas the 

elevations were obtained from the HGM Küre. The selection of GCPs ( a total of 12 

points) were carried out on WV-2 due to the visibility requirement of the points on both 

images, which was relatively difficult due to the temporal differences in data acquisition 

and the resolution differences. The points were mainly selected on man-made objects in 

an extended study area (Figure 4.3). After the georeferencing, the UAV orthomosaic and 

the DSM was produced. The DSM was not employed in further processing since the 

compared datasets involved 2D information only. The UAV images were processed by 

using Agisoft Metashape Pro 1.7.1 software [70]. The bundle adjustment, DSM and 

orthophotos generation steps are explained in detail in Agisoft Orthophoto Tutorial [71]. 

The UAV data processing workflow is presented schematically in Figure 4.4. 

 

 

Figure 4.3: UAV orthorectification with GCPs 
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Figure 4.4: UAV data processing procedure. 

 

The WV-2 and GK-1 were co-registered using a polynomial method by using the 

planimetric coordinates of the GCPs. A 2nd order of polynomial function was applied for 

the task. A total of 9 points was identified in both images. The GCP selection, coordinate 

information extraction, and the polynomial registration were carried out manually using 

ArcMap 10.8 [72].  

 

In terms of radiometric processing, the tasks performed were relatively simple. The 

satellite images used in this study are radiometrically corrected and did not need further 

processing other than reducing them to 8 bits for further analysis which was performed 

using ArcMap 10.8 Export Raster tool [72]. Besides the satellite images, UAV orthophoto 
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and vegetation index results were reduced to 8 bits for further analysis. Radiometric 

processes were carried out using ArcMap 10.8.0 [72] export to raster tool.  

 

4.3 Feature Extraction and Vegetation Mapping 

Several image enhancement techniques, texture extraction methods and vegetation index 

calculations were applied to the datasets. All the tested methods are presented in Table 

4.1. These methods were chosen based on the recent studies about the topic. Some of the 

methods were not utilized for the final vegetation mapping due to poor information 

extraction performance in one or more datasets. 

 

Table 4.1: Image radiometric enhancement, texture and vegetation index extraction 

methods applied in the thesis. 

Method Product UAV data WV-2 data GK-1 data 

LBP  [73] Textural information extraction Tested Tested Tested 

Gaussian filter + 

LBP 

Noise reduction and textural 

information extraction 

Tested Tested Tested 

GRVI Vegetation index Used Used Used 

NDVI Vegetation index Used Used Used 

Local Maxima Textural information extraction Tested Tested Tested 

Local Minima Textural information extraction Tested Tested Tested 

 

The RF ensemble method was used for the supervised classification of vegetation from 

the extracted features and vegetation index images. Furthermore, several image 

thresholding methods were investigated for the unsupervised mapping of the vegetation 

from the image products. The details are presented in the following sub-sections. 

 

4.3.1 Vegetation Indices 

A vegetation index is commonly used for the identification of vegetation in various areas. 

NDVI requires a near-infrared (NIR) band for computation. The NIR band data are 

available with GK-1 and WV-2, but not for UAV. The MS images of GK-1 and WV-2 

were used to calculate NDVI as following: 
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The GRVI  [10] is calculated only using red and green band images. Due to the lack of 

NIR band in UAV image, GRVI was the most suitable option to use instead of NDVI. In 

order to analyze its effect on the satellite images, pan-sharpened GK-1 and WV-2 data 

were also processed with the same algorithm. The formulation of GRVI is as follows: 

 

 

 

Vegetation indices were included in the  application of RF. Pan-sharpened images of GK-

1 and WV-2 were used together with NDVI and GRVI; while UAV orthophoto was 

processed only with GRVI due to availability. 

 

4.3.2 Local Maxima and Minima 

The darkest pixels in an image are minima, on the other hand, maxima are the brightest 

pixels in terms of pixel values. Local minima and local maxima were applied to each 

dataset to identify the trees. Local maxima algorithm was applied to identify trees and 

local minima algorithm was applied to identify bare lands and shadows.  

 

The scikit-image Python library [74] was used to implement local maxima algorithm and 

Mahotas Python library  [75] to apply local minima. The implemented codes are given in 

Figure A.1 and Figure A.2 in Appendix. 

 

4.3.3 Mapping with Random Forest 

The RF is a modified decision trees (DT) ensemble learning method [77], which requires 

supervised training. A DT is created with the start root node of the tree and advancing 

down to internal nodes and the last part of leaves [78]. The method’s basic principle is to 

select the samples from training labels and followed by training of the system with subset 

data set to create a prediction model [79]. 

 

The RF classifier implemented in scikit-learn [80] was applied using Python 3.9 

programming environment..  The RF classifier was tested on datasets together with the 

NDVI and GRVI results depending on the availability. 
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The OpenCV library [81] for Python was used for image read-write operations. The 

selected classes on orthophotos were shadow areas, trees, and bare land. Only two classes 

were defined for the classification of GRVI and NDVI  images that are vegetation and 

bare land. The training areas were selected manually based on these groups. For 

visualization and plotting, Python matplotlib 3.3.4 library was used. The sample code for 

classification of the UAV image is represented in Figure A.3 in Appendix. The parameters 

used in the RF algorithm as follows; 

• n_estimators defines the number of trees in the forest 

• intensity is the image intensity 

• edges is the usage of Canny Edge Detection 

• texture is the image’s textural appearance 

• sigma_min minimum radius of the isotropic filters used to create the features 

• sigma_max maximum radius of the isotropic filters used to create the features 

• n_jobs is the number of jobs that run accordingly 

• max_depth defines the maximum depth of the tree, the nodes will be expanded 

until a specified number 

• max_samples If bootstrap is True, the number of samples to draw from X to train 

each base estimator.   

 

In image classification, accuracy analysis is essential. To compute the accuracy, training 

areas and test areas were given as input into RF algorithm and split the data with a ratio 

of 80/20. A confusion matrix was created in order to calculate the overall classification 

accuracy. In scikit learn library [82] there is an option to print out the classification report 

where accuracy rate is available. Also, manually delineated ground-truth maps were 

compared using pixel-based methods for  accuracy evaluation. Other than using statistical 

methods, a visual interpretation approach was employed as well. The resulting images 

were compared with the original images to ensure the quality of the results. ArcGIS Pro 

2.8 [72] was used to compare the results with the original images. ArcGIS Pro Swipe tool 

was used for the visual assessment. 
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The F1-score is the measure of a machine learning model's accuracy on a dataset. It's been 

used widely to estimate binary classification problems which classify data into positive 

and negative.  Formula for the F1-score is given in the equation below  [83].  

 

 

 

Precision can be considered of as a measure of the accuracy of a classifier. A low 

precision can also indicate a large number of False Positives. Recall can be considered of 

as a measure of a classifiers completeness. A low recall indicates many False Negatives. 

The F1 score conveys the balance between the precision and the recall. True positive (tp) 

is the number of true positives classified by the model. True negative (tn) False negative 

(fp) is the number of false negatives classified by the model. False positive (fp) is the 

number of false positives classified by the model.  The terms and classes used in this 

study as following; 

• 0 is non-vegetation 

• 1 is vegetation 

• True Negative (0→0) 

• True Positive (1→1) 

• False Positive (0→1) 

• False Negative (1→0) 

 

4.3.4 Mapping with Image Thresholding 

Vegetation mapping was done using the thresholding method on GRVI and NDVI 

images. For thresholding purposes, many methods were tested including the scikit-image 

library algorithms such as; ISODATA, mean, otsu, yen and local thresholding [73] 

(Figure A.4 in Appendix). Thresholding was applied to local maxima and local minima 

results of the image. Also, in QGIS [84], the histograms (Figure 4.5) of the images were 

visually inspected for the selection of threshold parameters, which were investigated to 

find out the optimum range to detect trees in the images. Accuracy assessment of the 

results were performed using a manually delineated ground-truth maps as reference and 

by comparing the images pixel-wise. 
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Figure 4.5: Histogram of UAV GRVI Image displayed in QGIS 

Otsu thresholding algorithm will be used to detect changes in the images. For validation 

the thresholding results were compared with the ground-truth maps of each dataset to 

ensure high accuracy. For this validation purposes, F-score has been used to evaluate the 

thresholding results. 

 

4.4 Change Detection Method 

In forest areas, the important changes defined by FAO [85] (Food and Agriculture 

Organization) as deforestation, canopy cover, logging and the transformation of forest 

areas into agriculture, pasture, water reservoirs and urban areas.  The study area analyzed 

in this study has been preserved by the university. 

 

Considering the datasets have different temporal properties (i.e. GK-1 images were 

obtained on 12 September 2019, WV-2 images on 7 May 2015 and UAV images on 10 

January 2015), the amount of expected change is higher between GK-1 images and the 

other two. For the change detection, the GRVI results of UAV, WV-2 and GK-1 images 

were compared quantitatively and also compared visually. The decision of the most 

successful vegetation maps from each sensor was based on the visual assessment of the 
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results. The selected maps to be employed in the CD process were achieved by using Otsu 

thresholding algorithm [86]. The images were stored as binary images, where value 1 

represents vegetation and value 0 represent non-vegetation. The image pairs for 

comparison were selected in their chronological order based on the date of the acquisition 

and evaluated pixel-wise using Python. The CD images are composed of a total of four 

classes as following: 

• Unchanged non-vegetation (0→0) 

• Unchanged vegetation (1→1) 

• New vegetation (0→1) 

• Loss of vegetation (deforested) (1→0) 
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5. RESULTS 

 

5.1 Geometric Processing Results 

A major work regarding the geometric processing was to create an orthophoto from the 

UAV images. 125 images were used and the locations of the cameras are shown in Figure 

5.1 with other relative information such as tie points, overlap and camera specifications. 

Camera calibration parameters and the correlation coefficients are shown in Table 5.1. A 

total of 81,344 tie points were produced for the bundle adjustment and the RMSE 

reprojection error 1.46 pixels. 12 GCPs were used for the processing. The overall 

processing time was 30 minutes. The spatial resolution of the orthomosaic is 2 

centimeters. 

 

 

Figure 5.1: Image perspective center locations and the camera parameters. 
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5.2 Radiometric Scaling 

The reduction to 8 bits was carried out by downsampling the datasets for further analysis. 

The processing task was performed by using ArcMap. The input and output image 

histogram of WV-2 Pan image obtained after reduction from 11 bits to 8 bits is shown in 

Figure 5.2. The pixel value distribution is distributed better in 8 bits image. All datasets 

including the vegetation index results were scaled to 8 bits data similarly. 

 

 

 

Figure 5.2: Histograms of WV-2 Pan Image in 11 bits (left) and after the reduction to 8 

bits (right) 

 

5.3 Feature / Texture Extraction Results 

The GRVI and NDVI vegetation indices were produced for identifying the vegetation 

better. The GRVI results of all datasets are presented in Figure 5.3. The NDVI results of 

the satellite images are provided in Figure 5.4. The NDVI was produced only for GK-1 

and WV-2 due to the lack of NIR band in the UAV data.  

 

When the results are compared visually, it can be said that GRVI is a powerful method 

for highlighting vegetation information with high resolution data. The NDVI result of 

GK-1 is more interpretable over GRVI. The differences in the NDVI outputs of WV-2 

and GK-1 can be associated with the differences in the spatial resolution and the satellite 

off-nadir angle. 
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Figure 5.3: The original RGB orthophoto and pan-sharpened WV-2 and GK-1 images 

(above) and the GRVI results (below). Left to Right: UAV, WV-2, GK-1 

 

 

Figure 5.4: NDVI results of WV-2 (left) and right GK-1 (right). 
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The raw Local maxima and local minima results were not meaningful enough to use it in 

the methodology. These images were used for mapping with thresholding. 

  

(a)                                                           (b) 

   

                                (c)                                                                 (d) 

Figure 5.5: Local Maxima results: (a) WV GRVI, (b) WV NDVI, (c) GK-1 NDVI, (d) 

GK-1 GRVI. 

 

5.4 RF Results  

 The input images and the results obtained from RF classification together with the 

training areas are shown in Figures 5.6 – 5.10. When the classification and segmentation 

results between the different sensors are compared visually (Figures 5.6-5.10), the details 
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in the UAV segmentation are higher thanks to the high spatial resolution. The WV-2 

results are superior GK-1 results due to the same reason. When proper methodology is 

applied, it may be possible to count the trees in the UAV data and most trees with the 

WV-2 data. Only an area-based assessment would be possible with the GK-1data. Here, 

the UAV segmentation results can be considered as reference for the evaluation of the 

results obtained from the satellite imagery. The morphological similarity between the 

UAV & WV-2 results is higher when compared with the UAV-GK-1 results. 

 

 

 

Figure 5.6: UAV Orthophoto and GRVI RF result. 

 

 

Figure 5.7: WV-2 Pan-Sharpened image and GRVI result with RF. 
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Figure 5.8: GK-1 Pan-Sharpened image and GRVI results with RF. 

 

The RF results of WV-2 and GK-1 pan-sharpened images with NDVI presented in Figures 

5.9 and 5.10 indicate that the segmentation results of the WV-2 data is in general more 

accurate than the GK-1 results, which can be explained with the spatial resolution 

difference again. The differences between GRVI and NDVI added images are not visually 

detectable. 

 

 

 

Figure 5.9: WV-2 Pan-Sharpened images and NDVI results with RF. 
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Figure 5.10: GK-1 Pan-Sharpened image and NDVI results with RF. 

 

A major problem with the UAV data was the time of the day during the image acquisition. 

The images were captured before noon which caused a shadow problem. The taller trees 

in the area caused large shadow areas which yielded to segmentation errors. The RF result 

of UAV data is shown in Figure 5.11  

 

 

  

Figure 5.11: The UAV orthophoto and GRVI results with RF. 

 

In the WV-2 GRVI and NDVI infused Pan-sharpened RF result (Figure 5.7 and 5.9), the 

vegetation was visible and well separated in the classification.  
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The RF classification with the UAV orthophoto was performed for two classes. The 

amount of shadow affected the classification accuracy.. Trees were mostly correct apart 

from the upper part of the image where shadows are dominant. The RF results with the 

UAV RGB data with GRVI are good enough to identify vegetation and even could be 

possible to distinguish individual trees. Apart from issues that originate from shadows, 

the classification results were successful to identify vegetation.  

  

WV-2 pan-sharpened RF classification does not have large amount of shadows which 

made the classification more efficient. Bare land class was generally good other than the 

inclusion of the saplings in the right section of the image, and some areas between the 

trees were not included in the class. The vegetation class was correct in most of the image, 

there were no trees found in the classification. The differences between GRVI and NDVI 

added dataset results were not significant.  

  

In the GK-1 GRVI and NDVI added pan-sharpened RF results, shadows caused issues in 

the classification and the bare land pixelswere mostly included in the right class. The 

major error was the little corridor between the left section and the right section of the 

image was included in the vegetation class.  

 

The prediction performance results of the RF is given in Table 5.2. In general, GRVI gave 

better result compared to the NDVI results. The pan-sharpened and original images 

produced errors mostly due to the number of shadows in the images and gave poorer 

accuracy results than the rest of the results. 

 

Table 5.2: RF Classification Accuracy Results 

Dataset Classes RF Overall Classification 

accuracy 

RF Class Accuracy 

UAV Orhophoto + 

GRVI 

2 82% Bare Land: 82% 

Vegetation:85% 

WV-2 Pan-

Sharpened +NDVI 

2 92% Bare Land: 93% 

Vegetation: 90% 

WV-2 Pan-

Sharpened + GRVI 

2 93% Bare Land: 93 

Vegetation: 90 
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GK-1 Pan-Sharpened 

+ NDVI 

2 88% Bare Land: 85% 

Vegetation: 88% 

GK-1 Pan-Sharpened 

+ GRVI 

2 93% Bare Land: 93% 

Vegetation: 90% 

 

The manually delineated ground-truth maps were compared with the RF results for all 

datasets. F1 score and the confusion matrices are given in Table 5.3.  

 

Table 5.3: RF classification results obtained from ground-truth data with class confusion 

values and F1- scores. 0: non-vegetation. 1: vegetation 

UAV RGB + GRVI 0 1 F1-scores 

0 53% 16% 0,75 

1 3% 28% 

GK-1 Pan-Sharpened + GRVI 0 1  

0 30% 27% 0,59 
 1 14% 29% 

WV-2 Pan-Sharpened + GRVI 0 1  

0 53% 14% 0,78 
 1 3% 30% 

GK-1 Pan-Sharpened + NDVI 0 1  

0 28% 28% 0,59 
 1 14% 30% 

WV-2 Pan-Sharpened + NDVI 0 1  

0 50% 16% 0,75 
 1 4% 30% 

 

5.5 Image Thresholding Results 

Two thresholding techniques were employed in this study for unsupervised vegetation 

mapping. One method was to manually visualize the data and by testing a different range 

of pixel values within the image and find the optimum range for vegetation. The double 

threshold values used in this method are represented in Table 5.4. The threshold values 

were selected heuristically. GRVI results, NDVI results and the raw images of UAV and 

WV-2 were classified with this method. The results of GRVI and NDVI images are shown 

in Figures 5.12 and 5.13, respectively. The colored GRVI results are also given with 

colors as a better representation of vegetation areas. The UAV GRVI results were in 



 

 38 

general good, except for the shadow areas. On the right side of UAV image, there is a 

shadow area that was caused by a nearby building. On the other hand, the WV-2 GRVI 

result was adequate to detect event the saplings. However, it was not easy to separate 

them from the grass. In GK-1 results, the vegetation was visible but it was difficult to 

evaluate the accuracy of the result due to the lower resolution and shadows. 

 

Table 5.4: Original data range and the double threshold values of datasets. 

Dataset  Original Values (Min – Max) Threshold Values (Min – Max) 

UAV GRVI -0.275168 0.62963 0.015 0.3 

WV-2 GRVI 0.0966507 0.981651 0.3 0.9 

GK-1 GRVI -0.091453 0.327751 0.1 0.3 

WV-2 NDVI 0.015398 0.680676 0.3 0.65 

GK-1 NDVI -0.500169 0.312821 -0.1 0.3 

 

 

 

Figure 5.12: GRVI threshold binary (above) colored (below) representation results. Left: 

UAV, Middle: WV-2, Right: GK-1. 
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The NDVI threshold results from WV-2 are shown in Figure 5.13 in both binary and 

colored. The GRVI results were better to identify the vegetation in both satellite datasets. 

 

          

          

Figure 5.13: WV-2 (left) and GK-1(right) NDVI results. 

 

Further thresholding methods were applied to datasets and their NDVI and GRVI images 

using the scikit-image Python library and the threshold results can be seen in Figures 5.14 

- 5.22. Some of the algorithms did not create any outputs such as the yen algorithm in 

Figure 5.17. Overall, local thresholding provided better results. In most of the data 

isodata, mean and otsu created similar outputs despite their algorithmic differences. 

Overall, WV-2 GRVI (Figure 5.22) results outperformed all others visually. UAV 

orthophoto was good in local thresholding and the trees were easy to distinguish. 

Furthermore, GK-1 provided poorer results compared to the other datasets. 
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Figure 5.14: UAV orthophoto thresholding results with different methods. 

 

 

Figure 5.15: WV-2 pan-sharpened image thresholding results with different methods. 
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Figure 5.16: GK-1 pan-sharpened image thresholding results with different methods.  

 

Figure 5.17: UAV GRVI Masked Threshold (masked image is shown in Figure 5.14) 
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Figure 5.18: UAV GRVI Thresholds 

 

Figure 5.19: GK-1 GRVI Thresholds 
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Figure 5.20: GK-1 NDVI Thresholds 

 

Figure 5.21: WV-2 GRVI Thresholds 
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Figure 5.22: WV-2 NDVI Thresholds 

Assessment of the accuracy of the threshold algorithms is only applied for Otsu algorithm 

due to the usage of this method in CD. The manually delineated ground-truth maps were 

compared with the Otsu results of UAV and WV-2. F-scores of the results are given in 

Table 5.5.  

 

Table 5.5: Otsu threshold results with respect to ground-truth map with class confusion 

values and F1- scores. 0: non-vegetation. 1: vegetation 

UAV RGB ortho with Otsu 0 1 F1- Scores 

0 43 28 0,64 
 

1 2 27 

WV-2 pansharpened with 
Otsu 

0 1  

0 37 29 0,67 
 

1 2 32 
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5.6 Change Detection Results 

The pan-sharpened WV-2 and GK-1 images and the UAV orthophoto are compared 

visually for the CD in ArcGIS Pro. Firstly, UAV and WV-2 are compared by visualising 

in ArcGIS Pro. There are six months of time difference between images which is not 

much difference to allow the change to happen. Furthermore, the study area is within 

Akdeniz University campus which may be protected by the university. The seasonal 

difference can be seen between the images. The bare land in the UAV image was greener 

in the WV-2 image. The visual comparison between GK-1 and other images were 

challenging because of the spatial resolution and the amount of shadow that exists in the 

GK-1 image. Overall, the extent of the area remained unchanged, which is an expected 

result due to the preservation of the area by Akdeniz University. The change between 

vegetation and non-vegetation are relatively small. This result could be caused by the 

variation of methods and platforms.  

 

The CD process was performed by comparing the results of vegetation maps produced 

with GRVI method by applying the Otsu thresholding algorithm. These images were 

presented in Figures 5.16, 5.18 and 5.21. The differences were evaluated as unchanged 

areas and transitions between vegetation (1) and non-vegetation (0) classes. The change 

ratios as percentages of all pixels in the CD maps are presented in Table 5.6. The CD 

images between UAV/WV-2 and WV-2/GK-1 are given in Figure 5.26. 

 

Table 5.6: Change ratio in vegetation areas. 1: Vegetation 0: Non-vegetation. 

Change Image  1-1 0-0 1-0 0-1 Total 

UAV GRVI  → WV-2 GRVI 46.1% 28.9% 8.9% 16.1% 100% 

WV-2 GRVI → GK-1 PAN 49.0% 22.8% 12.5% 15.7% 100% 
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Figure 5.24: CD maps between UAV/WV-2 (left) and WV-2/GK-1 images periods 

obtained from the pixel-wise comparison of Otsu-thresholded binary GRVI data of all 

three sensors data.  
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6. DISCUSSIONS 

 

This study aimed to detect vegetation in different images acquired from the multi-

platform, multi-sensor and multi-temporal images in a small forest area over Akdeniz 

University Campus, and to monitor changes over several years. Many vegetation mapping 

and classification methods have been investigated and evaluated within the limitations of 

time and data restrictions of this thesis. 

 

The multi-platform datasets include UAV aerial imagery, WV-2 and GK-1 satellite 

images obtained at different times. The earliest data was UAV which was obtained in Jan 

2015. The following dataset was WV-2 and the acquisition date was May 2015 and the 

latest dataset, which allows the detect most changes in the study area was obtained in 

September 2019 from Göktürk-1 satellite. In terms of spatial resolutions, the highest 

resolution belongs to the UAV dataset as expected which is 1.6 cm GSD for the raw 

images and 2 cm for orthophoto. The WV-2 dataset involves panchromatic, pan-

sharpened and multi-spectral images. The pan-sharpened image and pan images had 0.5 

m spatial resolution and considered as VHR in remote sensing.  GK-1 pan and pan-

sharpened datasets have 1 m spatial resolution while the MS images have 2.5 m spatial 

resolution. 

 

The study evaluated the potential of the mentioned sensors for vegetation mapping and 

several supervised and unsupervised methods for this purpose. Satellite and aerial 

imagery have been used in many studies on several topics including agriculture, urban 

planning and rural areas. One of the main research topics was if ground-based mapping 

would leave its place to spaceborne and airborne imagery especially in the field of 

vegetation mapping. Ground-based methods have their place as auxiliary data nowadays. 

Satellite imagery and aerial imagery have been used and tested in many types of research 

both together and separately for obtaining data. Even though UAV offers a great 

resolution, it lacks sufficient battery power to scan large areas such as forests and crop 

fields. Furthermore, UAV imagery can be costly for small vegetation communities. 

Satellite imagery on the other hand can be less costly but offers lower-resolution imagery. 

High-resolution satellite imagery can be more costly than UAV imagery but can cover a 

larger area in a short time. Some studies suggest that using both image sources can be 
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beneficial for small and large vegetation communities. The CD was simply the difference 

between images and the simplest method has been used in this study. 

 

Based on the research many methods have come across for vegetation mapping and 

detecting changes. Finding a method that worked on all datasets was challenging. Local 

maxima and minima, local binary pattern, watershed algorithms, grey-level co-

occurrence matrices, vegetation indices, Hough circle, random forest and support vector 

machine methods were used in many of the researches which have been found during the 

literature survey. Even though most of these algorithms were evaluated here, some were 

not presented since the results were not satisfactory. Although implementation issues, 

which could not be solved in the limited time, were experienced in some cases, the 

difference that comes with using multi-platform data was the real problem.  

 

WV-2 data was the most efficient among the other datasets used in this study in terms of 

processing. The pan-sharpened, MS and pan images were filed neatly and there was no 

more processing needed in order to use the data other than aligning with other datasets. 

GK-1 dataset file directory, on the other hand, were mixed and it was always difficult the 

find the image needed at certain times. The original UAV datasets included some 500 

images, but the elimination of about 375 images was needed because the images were 

captured on the same spot which made the processing longer and harder. Also, the images 

lacked initial georeferencing information which made the processing a bit difficult. 

Applications like ArcGIS Pro, DroneDeploy, MapWings, MapsMadeEasy and Open 

Drone Map were not able to process the data because of the missing georeferencing 

information. It could have been possible to integrate the coordinates into the images using 

the interior and exterior orientation parameters but that was not possible due to the time 

limitations. Agisoft Metashape software was able to process the imagery. This part of the 

processing was the most difficult in terms of preparing the data.  

 

GK-1 and UAV imagery were obtained before noon, which created a problem for 

analyzing trees because of the shadows that occurred due to the angle of the Sun. The 

shadows were the main problem in most of the tested methods. Even masking them did 

not solve the problem for feature extraction because masking was not always possible 

because of the resolution of the dataset. Furthermore, the more a method requires manual 

editing the more it lacks efficiency and usability. The geometric accuracy of data is 
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important because the datasets will be compared with each other and the change between 

them will be analyzed. Therefore, georeferencing of the datasets was performed 

meticulously. 

 

Due to the many reasons mention above, vegetation indices were the most useful method 

of all for feature extraction. Due to the missing NIR band in the UAV dataset, during the 

literature research, GRVI was found as one of the most used vegetation indices when 

there was no NIR band in the data. For comparison purposes, GRVI was applied to each 

dataset. The NDVI was only applied to satellite images. GK-1 GRVI result was one of 

the most significant result for GK-1 dataset. The lower image resolution and the shadows 

in the dataset caused difficulties in the determination of vegetation, and the GRVI 

algorithm enhanced the vegetation information to obtain the most successful results of 

GK-1 dataset compared to other tested methods in the study. 

 

For image classification, the RF algorithm was chosen because of the frequent use in 

vegetation mapping. The RF algorithm was used commonly and there were many sources 

available on Internet. Scikit-learn was the most used machine learning library in Python. 

The sample algorithms were easy to adapt to the datasets with some minor twists. The 

classification report in the library was used for the accuracy evaluation. Classes accuracy 

varied between vegetation and non-vegetation classes. In some cases classes were mixed 

between each other. 

 

The ground-truth maps were difficult to delineate manually due to several reasons 

including; image resolution, cursor precision, operator skills, etc.. Nonetheless, ground-

truth maps helped the validate the results of Otsu thresholding and RF classification. F1 

scores of the classification results were higher in the UAV and WV-2 datasets. This may 

be caused by the spatial resolution of the datasets. 

 

The CD was applied at decision level by using the best vegetation map obtained from 

each sensor. Also, the study area was in the University campus and can be considered a 

protected area. Mainly, the growth of vegetation was observed in time. Here, the CD was 

carried out in 2D only. 
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7. CONCLUSIONS AND FUTURE WORK 

 

Overall, this study aimed to identify vegetation using imagery from different platforms. 

GK-1, WV-2 were spaceborne images and UAV data was airborne images. These datasets 

varied in temporal, spatial and spectral resolutions, which made the processing of these 

images together difficult. The geometric processing task was the main step in the data 

preparation for correct detection of changes. Because of the missing coordinate 

information in the UAV dataset, the preprocessing of the UAV data required the longest 

time in processing. With the use of improved direct georeferencing techniques, this time 

may be shortened. This would also create opportunities in testing and validating many 

UAV imagery processing software available in the market nowadays.  

 

Within the study, it was concluded that the timing of the image acquisition is crucial for 

vegetation mapping. Specific purposes like finding vegetation or even counting trees 

require an image that does not contain any shadow. The off-nadir angle during image 

acquisition is also an important parameter. It is suggested to use nadir satellite imagery 

for this purpose.  

 

In UAV imagery, it is suggested to capture images at noon and when there is no wind 

present to make it easier to identify treetops. In terms of methods, RF has resulted well 

overall, but further investigation and testing of other machine learning algorithms might 

be beneficial. The parameterization of RF can be investigation in detail for increasing the 

classification success as future work. In scikit-learn models, there were many options to 

modify the applied algorithm and not all of them were entirely tested in this study which 

can be looked further in the future. On the other hand, although local maxima algorithm 

has resulted great in most studies, its use could not be exploited fully in this study. The 

method can be investigated further in the future. Furthermore, local maxima algorithm 

can be applied to DSM of UAV RGB for tree counting. The GRVI index was found useful 

for the vegetation detection in RGB images and may even outperform NDVI depending 

on the image radiometric properties. Otsu thresholding method was utilized for the 

conversion of GRVI data into a binary vegetation map with vegetated and non-vegetated 

pixels. 
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Vegetation indices used in this study were limited to only two indices which are only the 

tip of the iceberg. There are far more indices available in the literature that can be utilized 

in future studies. The CD could be applied in feature-level methods instead of decision-

level for exploiting the potential of the sensor fusion methods. The results of thesis offers 

potential for future research on the topic.  
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APPENDIX 

APPENDIX 1 – SOFTWARE  

 

 

Figure A.1: Scikit-Image Local Maxima [73] 
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Figure A.2: Mahotas Local Minima Code [76] 
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Figure A.3: Random Forest Classifier code for the UAV image [80] 
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Figure A.4:  Scikit-Image histogram sample code [73] 
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