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ÖZET

3D YONGA-ÜSTÜ-AĞLAR İÇİN TIKANIKLIĞA DUYARLI
UYARLANABİLEN YÖNLENDİRME ALGORİTMA TASARIMI

Nurettin BÖLÜCÜ

Yüksek Lisans, Bilgisayar Mühendisliği
Tez Danışmanı: Prof. Dr. Süleyman TOSUN

Haziran 2021, 63 sayfa

Entegre devrelerdeki komponent sayılarının artışına bağlı olarak yeni haberleşme yöntemlerinin

geliştirilmesi kaçınılmaz olmuştur. Performans, ölçeklenebilirlik, güç tüketimi gibi metrik-

lerin öncelikli olduğu tasarımcılar daha iyi çözümlere ihtiyaç duymaktadır. Yonga-üstü-

Ağlar(YüA) ölçeklenebilirlik ve paralel çalışabilme özellikleri ile bu ihtiyaçlara çözüm ola-

bilmektedir. Entegre devre teknolojilerindeki ilerleme ile birlikte işlemciler daha fazla işlem

gücüne sahipler ve daha iyi haberleşme sistemlerine ihtiyaç duymaktalar. Entegre sistem-

lerde işlemci sayılarının artması ile beraber YüA sistemleri de daha iyi ve ortalama mesafenin

daha kısa olduğu tasarımlara ihtiyaç duymaya başladılar. 3 boyutlu (3B) YüA mimarileri

olanak sağladıkları hızları, ortalama mesafe ve güç tüketimleri ile bu ihtiyaçları karşılamak

adına geliştirilmişlerdir. Fakat 3B sistemlerin daha karmaşık tasarımları ile birlikte, yönlendirme

algoritmaları problem olmaya başlamıştır. Saptanabilir tasarımların sıkça trafik yoğunlaşması

sorunlarına karşılık, uyarlanabilir yönlendirme algoritmaları daha iyi performans sergile-

mektedir. Bu motivaston ile birlikte 3B Yonga-üstü-Ağlar için Q-Öğrenme tabanlı yönlendirme

algoritma sunmaktayız. Sunduğumuz algoritma içerisinde her anahtar içerisine bir Q-Tablo
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tutmakta ve komşu anahtarlardan aldığı traffik bilgisine göre bu tabloyu güncellemektedir.

Çıkış kanalı anahtarın o anki durumuna ve Q-Tablodaki değerlere göre belirlenmektedir.

Sunduğumuz metod ile saptanabilir yönlendirme algoritması ve Z düzlemi öncelikli batı-

öncelikli yönlendirme kıyaslanmış ve %8 oranında iyileştirme kaydedilmiştir.

Anahtar Kelimeler: Yogca-üstü-Ağ, YüA, Uyarlanabilir Yönlendirme Algoritması, Tıkanıklık

Farkındalığı
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ABSTRACT

CONGESTION-AWARE ADAPTIVE ROUTING ALGORITHM
DESIGN FOR 3D NETWORK-ON-CHIP

Nurettin BÖLÜCÜ

Master of Science, Computer Engineering Department
Supervisor: PROF. DR. Süleyman TOSUN

June 2021, 63 pages

New communication methods have become inevitable due to the continuous increase in the

number of components on the integrated circuits. Designers, who prioritize performance,

scalability, power consumption need better solutions. Network-on-Chip (NoC) architecture

emerged as a solution to these requirements with its parallelism and scalability. As the tech-

nology advances in integrated circuit systems, cores can process more data and require better

communication. As the number of cores increase, NoC desings need to have shorter aver-

age path than classical communication methods. 3D-NoC design has been proposed to meet

these demands due to its architecture, speed, average path, and power consumption. How-

ever, the routing problems for 3D is more complicated than 2D version. Since deterministic

algorithms encounter congestion problems, adaptive algorithms are able to distribute the traf-

fic load to give better results. Motivated by the effectivenes of learning algorithms, in this

thesis, we present a Q-Learning based routing algorithm for 3D-NoCs to solve this type of

problems. In our algorithm, each router node maintains a Q-Table and updates it by receiv-

ing the traffic information from neighboring routers. We select the output port by using the
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state of the router and corresponding Q-Values. We have tested our proposed method with

the deterministic XYZ and 3D elevator-first West-First algorithm under different traffic mod-

els and compared the results. We have observed an 8% average performance improvement

compared to the other routing algorithms.

Keywords: Network-on-Chip(NoC), Q-Learning, 3D-NoC, Routing, Adaptive Routing,

Congestion Awareness
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1. INTRODUCTION

1.1. Overview

Number of transistors has been doubling every two years in the same chip area according to

the Moore‘s law [1]. This made it possible to have a significant number of transistors and also

processing units in a single chip. This phenomenon is known as System-on-Chip(SoC) de-

sign, and every year SoC systems grow exponentially. Traditional SoCs are using bus-based

communications and point-to-point (P2P) links for inter-module communications. These de-

signs are getting inefficient every year, with the number of cores is increasing significantly.

Therefore the classical bus-based and P2P communications becoming unpractical. Addi-

tionally, processing elements are getting more advance and complex over time, and they

now require more efficient, faster communication with less power consumption. Therefore

Network-on-Chips (NoC) design has emerged as a new approach to address higher commu-

nication demands [2].

Figure 1.1. shows the bus-based, P2P, and NoC architectures. P2P communication architec-

ture stands out as the fastest. However, it gets inefficient due to its high power and area con-

sumption as the number of cores increases. Shared bus architecture uses single or multiple

busses to allow communication between the IPs in different time slots. Bus-based communi-

cations require good scheduling to support many connected components. However bus-based

communications are not scalable to the number of cores.

Figure 1.1. (a) Bus-based (b) P2P (c) NoC
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NoC technology is a new approach to modern SoC problems due to its efficiency, scala-

bility, and reusability characteristics. NoCs mainly consist of processing elements, routers,

network interfaces, and links. Processing elements can be a DSP, memory unit, processor,

etc. It allows connecting processors, cores, and other business units with switching routers

to propagate packets using classic network technologies. NoC interconnection technology is

often called as “a front-end solution to a back-end problem”.

In recent years, 3D-NoC designs have emerged as the number of business units continues

to grow. 3D-NoC has significant advantages regarding the length of the path and number of

interconnection compared to 2D-NoC designs. The average number of hops increases expo-

nentially with respect to an increase in the number of nodes in the 2D networks. However,

an increase in the number of hops in 3D networks is more linear [3].

3D-NoC designs connect 2D-NoC layers on top of each other using Through-Silicon-Via

(TSV). Through-Silicon-Via is a type of connection for three-dimensional integrated circuits

and is accepted as the most popular for vertical connection with planes [4]. TSVs enable

connecting ICs vertically with the ability to pass through the silicon. TSVs are fundamental

for 3D-NoCs with their advantage of sort connection. Shorter connections also use less

power, thus they reduce the power consumption as well as the latency.

In 3D architectures, the number of business units assigned to different layers increases the

transistor density. With reducing the length of the connection using TSV, 3D-NoC designs

also aim to reduce the number of clock cycles it takes to transfer a packet. More global

interconnection with shorter connection length allows 3D-NoCs to have higher connectivity,

higher performance while having less latency, and consuming less power compared to its 2D

counterparts [5].

1.2. Contributions

In this thesis, we present a Congestion-aware adaptive routing algorithm design for 3D-

NoCs. Our approach is fundamentally based on designing an adaptive routing algorithm

using the traffic congestion information and selecting the ideal path depending on this in-

formation. In our method, each router keeps a Q-table to store traffic and expected latency

information to send a message to each direction and output channel combination. Addition-

ally, decisions to send the message to the upper or lower layer are made based on the traffic

2



information around the current router and the neighboring routers. H value is used to deter-

mine the congestion information for inter-layer packet transfer, and the H value is calculated

by taking the average of Q-Table values of minimum paths. Although Q-Learning-based

routing algorithms have been used for 2D networks, we have proposed a congestion-aware

routing for interlayer communication while using Q-Learning-based routing for intra-layer

communication.

To avoid deadlock, we have adapted the mad-y model [6]. The mad-y uses two virtual

channels on the Y dimension to be able to restrict some possible turns to avoid deadlock.

The mad-y method is a minimal routing algorithm; it prohibits 180-degree turns and only

allows turns in ascending order. However, a prior study [7] proposed a new routing method

based on mad-y method to allow 180-degree turns. This method modifies the numbering

mechanism of mad-y and allows the 180-degree turns that do not cause deadlock. To be able

to implement adaptiveness, we have adapted our routing algorithm to adapt this numbering

mechanism to avoid deadlock.

The proposed model has been developed using the Noxim Simulation framework [8] to test

and compare against several routing algorithms under uniform and hotspot traffic models.

Noxim is a NoC simulator and developed in SystemC. SystemC is a C++ programming

language extension and gives an opportunity for hardware to be modeled in software. We

have observed that our method outperformed them in terms of latency and throughput.

1.3. Outline of the Thesis

The thesis is structured as follows:

In Chapter 2, the essential background knowledge to ease the understanding of this thesis

for any reader is given. The background knowledge is given under two sections: Network-

on-Chips and Q-Learning background.

Previous studies on NoCs will be given in Chapter 3. In that section, models will be dis-

cussed under two main subjects; adaptive routing algorithms and 3D-NoCs. We also discuss

the partially and fully adaptive routing algorithms for better understandings.

3



In Chapter 4, our proposed Congestion-Aware Adaptive Routing Algorithm Design for 3D

Network-on-Chip will be explained in detail. First, we present turn models that avoid dead-

lock and livelock. Then we will explain the adaptive routing algorithm and information

sharing structure for adaptiveness.

In Chapter 5, the experimental results of the proposed model will be presented along with a

discussion of the results. Results are compared with other approaches in the literature.

Finally, conclusion nad future directions will be given in Chapter 6.
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2. BACKGROUND

2.1. System on Chip

System-on-Chips (SoCs) are integrated circuits that integrate multiple components such as

processors, memories, I/O (Input/Output) ports, and more. Following Moore‘s law, the num-

ber of transistors on a single chip doubles every two years [1]. Figure 2.1. shows the num-

ber of transistors on Intel‘s processors. Multiple cores can run multiple processors on an

SoC with the technology, and these designs are called Multiple Processor SoC(MPSoC).

These advancements of having these many cores on chips bring other issues such as com-

munication, bandwidth, and latency problems. These issues increase the importance of the

connection and communication networks of the chips. Before NoC designs, Point-to-Point

and Bus-based connections were the main approaches for SoC connections. Number of pro-

cessors on a single chip increased while the processing power of each processor improved,

communication has played an essential role in power consumption. Connections use 50% of

the dynamic power, and this share is increasing [9].

2.1.1. Point-to-Point and Bus

Figure 1.1. shows the P2P and Bus-based communications. As seen from the figure, P2P

architecture connects every Processing Element if they need to communicate. This approach

is applicable if a core or Processing Element is requested to communicate with a few Pro-

cessing Elements without using the shared bandwidth. Bus-based communications are one

of the most common ways of communication in an SoC design. Bus-based communication

connects multiple components via a single bus or multiple busses. These busses are acting

as the system’s spine, and all components use these busses for communication. Bus-based

communications have simple architecture, this grants advantages such as simplicity, scala-

bility, cost. However same simple architecture can cause problems since all components use

a single bus. If the network traffic increase, every component will be affected, and this may

cause starvation for some components. Also, if the bus fails, the entire system would crash.

There are several bus-based communication such as AMBA [10], Wishbone [11], Avalon

[12], PowerPC bus [13], etc.
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Figure 2.1. Moore‘s Law 1

2.2. Network on Chip

NoC technology is a new approach to modern SoC problems due to its efficiency, scalability,

and reusability characteristics. NoC interconnection technology is often called as “a front-

end solution to a back-end problem”. In this section, we have explained NoC architectures in

general with their characteristics and their components. This allows shrinking the chip size,

integrating more components, and increasing the SoCs’ processing power.

2.2.1. Components of Network on Chip

As seen in Figure 2.2., a typical NoC consist of processing elements(PE), routers(R), network

interfaces(NI), and links.

2.2.1.1. Processing Elements

1Source : Wikipedia (wikipedia.org/wiki/Tranistor count)
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Figure 2.2. Typical NoC architecture

Processing elements are the main elements of these network designs. Processing elements are

mainly computing cores with varying purposes such as processor cores, memory modules,

DSPs, etc. NoC systems aim to connect these processing elements efficiently with each other

regarding speed and power consumption.

2.2.1.2. Network Interfaces

Network interfaces are the interfaces between processing elements and the routers that pro-

vide, organizes, and handles packet-based communication. Network interfaces are responsi-

ble for communication protocols, assembling and disassembling packets, organizing buffers,

and helping the routers.

2.2.1.3. Routers

Routers manage how packet transfers are executed in the network based on the implemented

routing algorithm, packet selection, and connections. Thus routers perform the flow-control,
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routing, switching functionalities to transfer the packets. Figure 2.3. shows an example

five-port router architecture.

Figure 2.3. Five-port router architecture

2.2.1.4. Links

Links are the elements that connect the routers physically utilized for data transfers. Char-

acteristics of these links are decided regarding the network designs, such as bandwidth and

length.

2.2.1.5. Virtual Channel

Input buffers can be divided into multiple virtual channels, which use a single physical link.

Using various virtual channels allows transferring multiple packets without blocking each

other while a packet is in an idle state. Virtual channels allow improving latency performance

and increase the throughput [14]. Virtual channels can be utilized for deadlock avoidance and

introduced to avoid deadlock for cyclic networks [15] and torus networks [16].
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2.2.2. Features of Network on Chip

Although the architecture and the components are mostly the same for the NoCs, other sig-

nificant defining features include topology, routing algorithm, and flow control.

2.2.2.1. Topology

Topology determines the scheme and the connection between the routers as well as the phys-

ical layout. Topology directly affects scalability, performance, latency, and power consump-

tion. Many topology designs have been proposed to address different routing problems.

Mesh, Torus, Ring, Butterfly, Star, etc., can be given as an example. Figure 2.4. shows the

most commonly used four topologies, which are Mesh, Torus, Ring, and Star. Mesh and

Torus topologies are used as the base architecture for some of the most common network

topologies. 60% of the 2D-NoC topologies use either mesh-based or torus-based topol-

ogy [17]. In mesh networks, every router is connected to the four neighboring routers. In

torus networks, routers are connected to neighboring routers as in the mesh. Unlike mesh

networks, torus uses wrap-around channels to connect the edge routers. Torus networks de-

crease the average number of hops for packet transfer, but due to long wrap-around channels,

transmission delay is significantly higher on these channels.

• Mesh: In Mesh topologies, each device is connected to neighboring routers, consist

of n rows and m columns. The address of the routers is usually defined as coordinates

(x,y). Mesh topologies have the tolerance for having failed links. Also, mesh does not

have to centralize authorities, and adding new devices would not disturb the network.

• Torus: Torus topology also consists of n rows and m columns. Each device is con-

nected to neighboring routers, as well as the wrap-around connections to the opposite

edge. Torus topology has proposed to reduce the latency for mesh topologies while

keeping the simplicity.

• Ring: Ring topologies can be classified as Bidirectional and Unidirectional based

on their output channels. In-Ring topologies, every router is connected to two other

routers and creates a closed circle. Ring topologies are chip to implement but has high

latencies.
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• Star: In Star topologies, every device is connected to a central device or hub. Star

topologies have the disadvantage of having longer cable compare to bus-based topolo-

gies. However, only one device would be affected by the failure in star topologies if a

link fails. If a device wants to send a message to another device, the message needs to

be transferred over the central hub.

For ideal topology selection, several factors need to be considered, such as flow control,

routing, traffic, number of cores, channel load, etc. Topologies are selected based on the

performance and costs with evaluating these factors of the system.

2.2.2.2. Routing Algorithm

The routing algorithm is responsible to determine the path to send the packet to its destina-

tion. The path selection is closely dependent on the topology of the network. The purpose

of routing algorithms is to find the best possible path for the whole network to minimize the

average latency. We can classify routing algorithms with several factors, such as adaptivity

and decision locality.

Routing algorithms can be classified with respect to the location of the routing decision is

made as source routing and distributed routing.

• Source: In source routing, path selection is made before the message is transferred.

Thus, the message will be transferred over the pre-defined path. This type of routing

algorithm is mostly used with minimal routing algorithms.

• Distributed: In distributed routing, every router selects the path according to the in-

formation in the header flit. Path selection can be minimal, non-minimal, or adaptive.

Routing algorithms can be classified as minimal routing and non-minimal routing according

to the minimality. Minimal routing algorithms always send the message in the direction

of the destination. Minimal routing algorithms can be adaptive or deterministic. However,

Non-minimal routing algorithms mostly use fully adaptive routing algorithms for their path

selection strategy.
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Figure 2.4. (a) Mesh (b) Torus (c) Ring (d) Star topologies

• Minimal: In a minimal routing algorithm, the message is always sent closer to the

destination. The biggest advantage of minimal routing is that livelock does not occur

in minimal routing algorithms. Compare to non-minimal routing, and minimal routing

algorithms are more scalable and less complex to implement.

• Non-Minimal: In non-minimal routing, message can be sent to every direction. With

non-minimal routing, congested nodes and fault links can be avoided. Non-minimal

routing algorithms need to handle livelock scenarios.
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Routing algorithms can be categorized as deterministic routing and adaptive routing algo-

rithms depending on their degree of adaptiveness.

• Deterministic: The path is fixed for all source-destination combinations. Does not

rely on the state of the network.

• Adaptive: The path is selected dynamically depending on the faulty links, congestion,

nonhomogenous traffic, etc.

2.2.2.3. Flow control

Flow Control is the main feature to efficiently use the network’s resources, such as buffers

and channels. Flow control refers to control of the message flow between routers and re-

source allocations [18]. A good flow control design must avoid deadlock and distribute the

resources evenly to avoid long waits for packets. Most common flow control approaches are:

store-and-forward, wormhole, and virtual cut through

• Store-and-Forward: For each packet, every flit is stored in the buffers, and the router

waits until each flit is received to forward it to the next router. This approach causes

higher per-packet latency and also requires larger buffers to be able to store bigger

messages.

• Virtual Cut Through(VCT): VCT requires to store every flit of a packet before send-

ing it to next router. Unlike Store-and-Forward, it allows forwarding the stored flits

to the next router when the next router is available to store the whole packet. This

approach also requires larger buffers but has reduced per-packet latency compare to

the store-and-forward approach [19, 20].

• Wormhole: Wormhole approach is the one of the most common flow control. The

message packet is divided into three types of flits (header, body, tail), while header

flits generally store the communication information. Flits are sent to the next router if

there is a free buffer slot. Thus, the Wormhole approach has lower latency than other

approaches with better buffer management and less buffer space requirement. Thus,

with wormhole switching, the buffer size can be reduced, which also reduces the power

consumption and the buffering area cost [21].
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2.2.2.4. Deadlock, Livelock and Starvation

Deadlock, livelock, and starvation are all defined as a state in a packet that cannot reach

its final destination due to a lack of resources.An ideal routing algorithm is expected to be

deadlock and livelock free.

Deadlock:
Deadlock occurs when two or more packets hold a resource while waiting for another re-

source in cyclic order. Figure 2.5. shows an example where P1, P2, P3, and P4 is sent to R3,

R4, R1, and R2 respectively. Every packets are requesting an output channel that is hold by

another packet.

Figure 2.5. Deadlock Example

Livelock:
Livelock can occur in non-minimal adaptive routing algorithms. Livelock occurs when a

packet does not blocked but travels in a circular path and does not reach its destination.

Minimal routing algorithms can avoid it; however, for adaptive routing algorithms, livelock

detection or avoidance algorithms need to be implemented.

Starvation:
Starvation occurs when a message waits for a resource that is always granted for other pack-

ets.
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2.3. Q-Routing

Q-Routing is Q-Learning-based adaptive routing. It uses Q-Learning for optimal path se-

lection for the network, and each node decides which direction it should be sent the packet.

Q-Routing offers more flexible and quick adaptiveness compare to regular adaptive routing

algorithms. In regular adaptive routing algorithms, latency or congestion information is sent

back to the sender after reaching the final destination. In the Q-Routing approach, each node

holds local or global information depending on the design, which allows the network to be

updated more quickly.

Q-Learning is an algorithm of model-free reinforcement learning in the machine learning

proposed by Christopher Watkins [22]. Q-Learning is worked by learning with Q-Functions

to model the environment and take action accordingly. Q-Learning approach has Q-Tables

that hold state-action pairs Q(s, a) to utilize its actions. Based on the algorithm, Q-Learning

updates its Q-Values at every step. Figure 2.6. shows the Q-Learning algorithm process.

Q-Table can be explained as simply a lookup table where we store the calculated expected

reward for action at each state.

Figure 2.6. Q-Learning algorithm process

Q-Function uses the Bellman equation for calculating the Q-Values iteratively. Using equa-

tion (1) Q-Values are updated. α is given as the learning rate to update the Q-Value with the

14



feedback message r. With respect to the action (a), state-action Q-Value is updated with α

and r.

new Q-Value︷ ︸︸ ︷
Q(s, a) = (1− α) ∗

old Q-Value︷ ︸︸ ︷
Q‘(s, a) +

learning rate︷︸︸︷
α ∗

reward︷︸︸︷
r (1)

Q-Routing stores a Q-Table in each node that stores congestion information. Congestion

information can be stored for each destination or each direction. Figure 2.7. shows example

Q-Tables for 4x4 2D-NoC. Storing expected latency information for each node can be more

reliable to find the optimal path. However, as seen from Figure 2.7. storing expected latency

information for each node increases the size of the Q-Table.

Figure 2.7. Q-Table for (a) Node-based and (b) Direction-based
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3. RELATED WORK

Multi-core designs became inevitable due to the increase in demand for processing power

over time. Communication between the multi-core designs plays an essential role in perfor-

mance.

In this chapter, we present some of the related work focusing on 3D-NoC designs and routing

algorithms that use reinforcement learning for better communication performance.

3.1. Related Work on 3D-NoC Designs

3D networks are rising for their multiple benefits such as lower power consumption, smaller

area usage, shorter average path between source and destination pairs. Many routing algo-

rithms have been proposed for 3D architectures.

Some of these routing algorithms can be categorized as deterministic routing algorithms,

such as XYZ, while many of them are adaptive routing algorithms such as 3D-FAR [23] and

DyXYZ [24].

DyXYZ[24] is a fully adaptive routing algorithm implemented proposed for 3D networks

and proven deadlock-free. DyXYZ routers use 4, 4, 2 virtual channels on X, Y, and Z dimen-

sions and divide the network into eight subnetworks. DyXYZ guarantees deadlock freedom

by using different virtual channels to connect subnetworks as seen in Table 3.1. 3D-FAR

[23] routing algorithms reduce the virtual channels to 2, 2, and 4 on X, Y, Z dimensions,

respectively.

3D-FAR algorithm use four subnetworks as ((X+)(Y +)(Z∗), (X−)(Y +)(Z∗), (X+)(Y −)(Z∗),

(X−)(Y −)(Z∗)) where “+”, “−” represents the channels on positive and negative direction

and “ ∗ ” mean “dont-care”.

Feero et al. [25] has worked on 3D-NoC architectures to evaluate the benefits of 3D designs

with respect to Latency, Throughput, Energy, and Area. In their evaluation, Feero et al.

showed that the 3D designs increase the number of links by 29%, allowing more flits in the

network and decreasing hops by 40%, which drops average packet energy proportionally.
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Subnetwork Virtual Channels
ENU X0,Y0,Z0
ESU X2,Y0,Z1
END X1,Y1,Z0
WNU X0,Y2,Z2
ESD X3,Y1,Z1
WND X1,Y3,Z2
WSD X3,Y3,Z3
WSU X2,Y2,Z3

Table 3.1. Virtual Channel Assignments for DyXYZ

LA-XYZ routing algorithm has been proposed Ahmed et al. LA-XYZ aim to minimize the

latency by pre-computing the next port [26]. Look-Ahead routing improves the efficiency

of pipelining to reduce the latency. LA-XYZ routing algorithm is implemented with 3D-

OASIS-NoC router architecture [27].

Akbari et al. proposed AFRA deadlock-free routing algorithm for 3D networks [28]. The

proposed algorithm mainly focused on faulty links on vertical links. If there are no faults

detected on the path, the algorithm uses the ZXY path. The algorithm gives X-direction

priority and uses the XZXY path in case of any fault on the vertical link. AFRA does not

tolerate faults on horizontal links, and AFRA is not congestion aware. Ebrahimi et al. have

improved AFRA algorithm in their proposed algorithm HamFA [29]. They have added a

feature to tolerate faulty links on horizontal links as well. In addition, faulty information is

distributed to all vertical links of the same row.

HamFA [29] uses Hamiltonian-based path selection to simplify complexity of the fault-

tolerant algorithm. Table 3.2. show the potential output ports with respect to destination

port.

Charif et al. proposed a routing solution for 3D-NoC designs using TSV in [30]. The pro-

posed model partially connects the layer to form 3D-NoC. To avoid deadlok without increas-

ing the complexity, the First-Last method includes two virtual channels for the east and north

direction and one virtual channel for other directions. The channel designs give the ability

to support any topology, such as asymmetric topologies. With FL-RuNS [31], an improved

version of the First-Last method has been proposed. FL-RuNS supports fault tolerance to

17



Destination Positions Y=Even Y=Odd
N, D, ND, SD, WN, EN, END, WND Z=Odd D,N,E,D D,N,W,D
N, U, NU, SU, WN, EN, ENU, WNU Z=Even U,N,E,U U,N,W,U

U, EU, WU, ENU, WNU Z=Odd U,W,S,U U,E,S,U
D, ED, WD, END, WND Z=Even D,W,S,D D,E,S,D

ED, WD, ESD, WSD Z=Odd D,E,N,D D,W,N,D
EU, WU, ESU, WSU Z=Even U,E,N,U U,W,N,U

S, NU, SU, ES, WS, ESU, WSU Z=Odd U,S,W,U U,S,E,U
S, ND, SD, ES, WS, ESD, WSD Z=Even D,S,W,D D,S,E,D

W Z=Odd W,S,U,N W,N,D,S
W Z=Even W,S,D,N W,N,U,S
E Z=Even E,N E,S
E Z=Odd E,N E,S

Table 3.2. Output port options for HamFA [29]

overcome the failures of vertical TSV links with keeping the performance of the First-Last

model.

HLAFT [32] uses local information as well as the look-ahead information to improve Look-

Ahead-Fault-Tolerant [33] routing algorithm. LAFT ensures that calculated routes do not

cross congested areas. LAFT uses Random-Access-Buffer(RAB) to ensure deadlock-freedom.

RAB detects the flits that cause the deadlock and drops the flit to process the next flits to en-

counter the deadlock scenarios.

3.2. Related Work on Adaptive Routing

In recent years, with traffic congestion becoming a major issue after the processing elements

become more powerful and the number of cores increased in an integrated circuit, adaptive

routing algorithms draw more attention. There have been many researches and improvements

on adaptive routing algorithms to avoid congestion. Adaptive routing algorithms can be

divided into two categorize as partially and fully adaptive routing algorithms.

3.2.1. Partially Adaptive Routing

Partially adaptive routing algorithms aim to improve power and energy consumption perfor-

mance while using less area. These algorithms generally solve the problem of deadlock but

do not present fully adaptive routing to avoid congestion.
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Turn restriction based routing algorithms can be examples of these algorithms such as Odd-

Even(OE) routing [34], Negative-First routing algorithm [35], Planar-Adaptive routing algo-

rithm [36]. To explain more detailly, the Negative-First routing algorithm arranges directions

to give west and south directions(negative directions) priority. If the destination is on the

northwest or southeast of the source, the algorithm sends the packet non-adaptively and uses

the shortest path otherwise.

DyAD [37] routing algorithms benefit from the advantages provided by both deterministic

and partially adaptive routing algorithms. DyAD switches between adaptive and determin-

istic routing depending on the traffic load of the network. Each router makes its decision on

using either deterministic or adaptive routing. When the network becomes more congested,

the algorithm avoids using congested links.

Gratz et al. has proposed Regional Congestion-Aware(RCA) [38] routing algorithms to prop-

agate local congestion information with all nodes in the same row and column. At each hop,

congestion information is propagated in the network. With the RCA routing algorithm, every

node in the network has a sense of traffic load information on the network. The problem with

RCA is in the path selection phase routing algorithm to evaluate all nodes’ congestion infor-

mation in the same direction. Assess the traffic congestion of nodes that is not in the path

can cause non-optimal path selection. DBAR [39] routing algorithm has been proposed by

Ma Sheng et al. to solve this problem. DBAR uses destination location as a metric for path

selection to avoid using the congestion information beyond nodes. DBAR routing algorithm

uses both local and regional traffic information and offers a more effective routing algorithm.

NoP [40] routing algorithm uses the congestion information from the nodes on the minimal

path to the destination and within two hops. NoP algorithm does not have enough information

to be able to select optimal paths for all scenarios.

CATRA [41] routing algorithm is another regional algorithm. Unlike other regional algo-

rithms, which uses congestion information of neighboring routers on the same row or col-

umn, CATRA uses the congestion information in the trapezoid positions. CATRA method

aims to efficiently distribute the traffic load by using both local congestion information and

global traffic load information.

CATRA, NoP, and DBAR are all based on the mad-y [6]. Mad-y is minimal adaptive routing

algorithm uses two virtual channel on Y dimension. The mad-y method restricts some of
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the possible turns to avoid deadlock in the system. Mad-y uses a numbering mechanism and

only allows turns in ascending order to prove deadlock freedom.

3.2.2. Fully Adaptive Routing

Fully adaptive routing algorithms decide the route between destination and current node at

run time depending on the routing information collected from the neighboring routers or the

routing table. In these routing algorithms, routers share network and traffic information with

each other. Storing and updating these routing tables takes power and energy. Thus power

consumption is higher compare to different routing algorithms.

An adaptive routing algorithm DyXY [42] has also proposed to use local congestion in-

formation to propagate messages in either X or Y direction depending on the allocation of

the input buffers. Analyzing the usage rate of the input rates gives local information of the

neighboring routers in that direction. To improve the DyXY routing algorithm, the Enhanced

DyXY routing algorithm EDXY [43] has been proposed. In EDXY, congestion information

is shared to its row and column nodes with additional wires.

Routing algorithms such as HARAQ [7], CARM [44], FDWR [45] use global information

of the network to utilize fully adaptive routing algorithm with using Q-Tables to perform

routing.

Congestion Adaptive Routing Method (CARM) [44] is a congestion aware non-minimal rout-

ing algorithm. CARM is proposed based on the mad-y [6] while increasing the efficiency of

the virtual channels. CARM expands and updates the restrictions of the mad-y method as

seen in Figure 3.1.

HARAQ [7] is another fully adaptive routing algorithm that uses Q-Learning. HARAQ uses

Q-Tables for congestion awareness. HARAQ uses two virtual channels on the Y dimen-

sion and uses the structure to prohibit some turns to avoid deadlock. Although prohibited

turns are determined using the mad-y method, they also analyzed all possible turns to detect

any possible cycles and allow some of the 180-degree turns by taking the numbering into

considerations.

Puthal et al. use another approach to use Q-Learning in their proposed C-Routing algorithm

[46]. In C-Routing network is divided into clusters to reduce the Q-Table size and save space.
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Figure 3.1. Turn models for (a) Mad-y and (b) LEAR (c) CARM

C-Routing uses both deterministic and adaptive routing algorithms. Deterministic routing is

used for the north direction to avoid deadlock and livelock situations. The clustering-based

approach divides the Q-Table into two sections: cluster part and switch part as seen from

Figure 3.2. Cluster part have a size of c×m×k where c, m and k are number of clusters,

number of output channels and size of each entry respectively. (l+c)×m×k is the total size

of Q-Table where l represents the number of switches.

Figure 3.2. Q-Table formats for (a) Q-Routing and (b) C-Routing
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Ebrahimi et al. proposed LEAR based on the mad-y method. LEAR utilize two virtual

channel on Y dimension. LEAR uses the same turns as mad-y and imports 180-degree turns

from virtual channel 1 (vc1) to virtual channel 2 (vc2) as these turns do not create cycles.

The turns that LEAR allows can be seen from Figure 3.1.
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4. CONGESTION-AWARE ADAPTIVE ROUTING ALGORITHM

Improving the performance of the NoC routing in 3D mesh topologies is the main objective

of this thesis. Previously Q-Learning-based routing algorithms are used in 2D topologies

using a deterministic approach for the third dimension. This thesis aims to improve the

latency performance of 3D-NoCs by adapting a partially adaptive routing algorithm in the Z

dimension. This chapter introduces the congestion-aware highly adaptive routing algorithm

for 3D-NoCs.

This chapter introduces the proposed model, deadlock avoidance approach, and the used

routing algorithm. In section 4.1. proposed model and its operation, in general, is introduced.

The approach for deadlock avoidance is explained in section 4.2. Section 4.3. explains the

routing algorithm and usage of Q-Learning and Q-Table.

4.1. Introduction

In this work, Congestion-Aware Adaptive Routing Algorithm Design for 3D Network-on-

Chip is proposed that uses reinforcement learning to distribute the traffic load, avoid conges-

tions to find the optimal paths for the health of the whole network. The proposed method is

developed based on 3D Mesh topology as seen in Figure 4.1. with using Wormhole packet

switching for packet transfer.

Figure 4.1. 4x4x4 NoC Example.
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4.2. Deadlock Avoidance

In 2D-NoC, each router has five output ports (north (N), south (S), east (E), west (W), local

(L)). Each incoming packet to a router has three possible turns to reach the destination. If

an adaptive routing is selected, unbalanced traffic may cause deadlock problems. To avoid

deadlock, we use one channel on the x dimension while there are two virtual channels (VC)

on the y dimension based on the mad-y method [6]. Figure 4.2. illustrates the router used

in the mad-y network (North-VC1 (N1), North-VC2 (N2), South-VC1(S1), South-VC2(S2),

East(E), West(W), and Local(L)). In 3D-NoC, the routers have also up (U) and down (D)

ports to send packets to different layers in the z dimension.

Figure 4.2. Router representation for the mad-y method in 2D-NoC.

There are sixteen possible 90-degree turns with six channels. Deadlock can occur in 0-

degree, 90-degree, and 180-degree turns. The mad-y method prohibits some possible turns

to avoid deadlock in 2D-NoC. These turns may cause eight cycles, as shown in Figure 4.3.

If we eliminate at least one turn from each cycle as shown in Figure 4.4.a, we can prevent

cycles in 90-degree turns resulting in at most twelve possible turns. When it comes to 0-

degree turns, two types are possible; turns that change the virtual channel and the turns that

do not. All combinations of the former 0-degree turns are allowed in mad-y routing. For the

latter, it only turns that transit from VC1 to VC2 is permitted, as shown in Figure 4.4.b.
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Figure 4.3. Eight possible cycles with 90-degree turns.

Figure 4.4. Allowed turns for (a) 90-degree, (b) 0-degree, and (c) 180-degree.

The mad-y method is a minimal routing algorithm; it prohibits 180-degree turns and only

allows turns in ascending order. However, authors of [7] proposed a new routing method

allowing 180-degree turns. This method modifies the numbering mechanism of mad-y and

allows the 180-degree turns that do not cause deadlock. The numbering mechanism can be

seen in Figure 4.5. Figure 4.4.(c) shows the allowed 180-degree turns.

With allowing turns with ascending orders, we ensure that no cyclic dependency can occur

between any channels. Thus, proving that this method is deadlock-free. Also, after a message

is transmitted in the east direction, the message can no longer be routed to the west direction.

Therefore, the message can move in the east direction after reaching the leftmost column for
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the worst-case scenario. This proves that the message can reach its destination after several

hops, and it is livelock-free.

Figure 4.5. Channel numbering for (a) mad-y method and (b) HARA method.

Prohibiting the turns solves the potential deadlock problem. However, it does not guarantee

that there will be an ideal path to the destination. To avoid such situations, a lookup table

introduced after analyzing all combinations of input channels and destinations. Table 4.1.

shows all potential output channels for all varieties.

Deadlock may also occur in intra-layer communication in 3D-NoCs. To avoid this, we pro-

hibit the turns to the previous layer. In other words, if a packet is sent from layer A to B, it

can never go back to layer A.

Although prohibiting some turns helps avoid deadlock, it may also increase the latencies. Ad-

ditionally, uneven traffic loads on the network may further increase the latencies. In section

4.3. we present our Q-Learning-based routing algorithm that tries to find the best possible

path by learning the previous network loads.

To avoid such situations, we analyzed all combinations of output channels and destinations.

We used a lookup table to guarantee that the ideal path will not be prohibited on the sent

router. Table 4.1. shows potential output ports for each message configuration. Figure 4.12.

shows the output channel selection algorithm for packet transfers.
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Table 4.1. Potential output channels for each input channel and destination.

Input Chn.
Destination

N S E W NE NW SE SW

L N1, N2, S1, W N1, S1, S2, W N1, N2, S1, S2, E, W N1, S1, W N1, N2, S1, S2, E, W N1, S1, W N1, N2, S1, S2, E, W N1, S1, W
N1 N1, N2, S1, W N1, S1, S2, W N1, N2, S1, S2, E, W N1, S1, W N1, N2, S1, S2, E, W N1, S1, W N1, N2, S1, S2, E, W N1, S1, W
N2 N2 S2 N2, S2, E - N2, S2, E - N2, S2, E -
S1 N1, N2, W N1, S2, W N1, N2, S2, E, W N1, W N1, N2, S2, E, W N1, W N1, N2, S2, E, W N1, W
S2 N2 - N2, E - N2, E - N2, E -
E N1, N2, S1, W N1, S1, S2, W N1, N2, S1, S2, E, W N1, S1, W N1, N2, S1, S2, E, W N1, S1, W N1, N2, S1, S2, E, W N1, S1, W
W N2 S2 N2, S2, E - N2, S2, E - N2, S2, E -

4.3. Routing Algorithm and Q-Table

Q-Learning is in the family of reinforcement learning. This machine-learning algorithm

learns the environment from the previous actions and makes the next move based on this

learning. The steps in our routing problem are decided based on the traffic rates of the

destination region in an attempt to minimize the latency of the traveling packet. Routing

algorithms that use Q-Learning are called Q-Routing [47]. The main goal of these routing

algorithms is to reduce latency. Q-Learning-based routing algorithms use Q-Tables in each

switch to select the ideal output channel with respect to Q-Values. Q-Tables store Q-Values

which are the expected latency for a message to be delivered to the destination.

4.3.1. Q-Table Format

We keep a Q-Table that store expected latency information for all output channel to select the

output channel with respect to this congestion information. Each cell of the Q-Table contains

a value for the direction of the destination and possible output channels. The higher the value

in a cell, the more congested the region of the output channel. The highest potential value in

a cell can be fifteen. The Q-Table values represent the latency for sending a packet from the

selected port to the corresponding direction as seen in example Q-Table 4.2.. Every router

has a Q-Table to choose the shortest path.

We have used Region-based routing (R-Routing) to reduce the Q-Table size compare to Q-

Routing and C-Routing. Q-Table size is fixed for each router regardless of the network size.

The Q-Table size is 8x6 for eight different destinations (N, S, E, W, NE, NW, SE, SW) and six

different output channels (N1, N2, S1, S2, E, W). Q-Tables size of Q-Routing is nxm where

n corresponds to the number of nodes in the network, and m corresponds to the number of

output channels.
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Initially, the Q-Table cells are set to zero for the minimal path output channels and set to eight

for others to force minimal path routing for congestion-free networks. As we can see from

Table 4.2. some cells have no entry since some turns are not allowed in the mad-y method.

The possible directions are selected by the channel selection algorithm given in Figure 4.12.

The tables are initialized to encourage the minimal path for non-congested networks. To use

minimal paths nor low traffic scenarios, non-minimal paths are not allowed to have a value

less than eight.

4.3.2. Feedback Message

Q-Routing model uses run time information to learn network information based on the feed-

back messages and information from the neighboring routers. After processing the tail flit of

each incoming message, every router generates a feedback message to send back to the last

router with the information of its expected latency for sending the message to the destination

and the time spent for the previous hop. Feedback messages are created for the messages

from North, South, East, and West with the additional link in 2D. Feedback messages con-

tain local latency (L), global latency (gL), direction (Dir), and virtual channel (VC). The

latency(L) value uses 3-bit information to indicate the waiting time between reaching the

input buffer and successfully transmitted to the next router or local processing unit. Latency

value is encoded as shown in Figure 4.6. Global latency (gL) uses 4-bit information indi-

cating its expected latency to send the message to its destination. Q-Table has a maximum

value of 15. Thus Global latency used 4-bit data. Virtual channel (VC) information shows

which virtual channel has been used to receive the message. VC uses 1-bit information (“1”

indicates virtual channel 2). Direction(Dir) shows where the router should send the message

for the first router and encoded as shown in Figure 4.7. The reason for storing the output

channel and direction information to store minimum information for each message in the

router.

Figure 4.8. Feedback packet.
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Figure 4.6. Encoding the latency information

Delay : Wai t i ng t ime between r e a c h i n g t h e i n p u t b u f f e r
and s u c c e s s f u l l y t r a n s m i t t e d t o n e x t r o u t e r

AMT : Average Message Time
L : La tency
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
i f ( Delay < 1xAMT)

L = 0 ;
e l s e i f ( Delay < 2xAMT)

L = 1 ;
e l s e i f ( Delay < 3xAMT)

L = 2 ;
e l s e i f ( Delay < 5xAMT)

L = 3 ;
e l s e i f ( Delay < 9xAMT)

L = 4 ;
e l s e i f ( Delay < 15xAMT)

L = 5 ;
e l s e i f ( Delay < 27xAMT)

L = 6 ;
e l s e

L = 7 ;

Figure 4.7. Encoding the direction information

Enumera t ion {
NORTH : 0 ,
SOUTH : 1 ,
EAST : 2 ,
WEST : 3 ,
NORTHEAST : 4 ,
NORTHWEST : 5 ,
SOUTHEAST : 6 ,
SOUTHWEST : 7

}

For example, when router 0 is trying to send a message to router 5 for the given network

in Figure 4.9. Let’s assume router 4 gets the message first from the S2 input channel and

selected the East channel to send the message. Let’s assume the time spent from router 0 to

router 4 is 5xAMT, and the Q-Table value for sending a message to router 5 with the East

output channel is 12. Router 4 will create a feedback packet as follows :

• Lateny : The Latency information encoded as shown in Figure 4.6. (3).

• Global Lateny : Expected latency information to send a message from router 4 to

router 5 (12).
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Table 4.2. An example Q-Table.

Direction
Output Chn.

N1 N2 S1 S2 E W

N 3 4 8 8 8 8
S 8 8 6 5 8 8
E 8 8 8 8 2 8
W 8 8 8 8 8 3
NE 7 7 8 8 6 8
NW 4 4 8 8 8 5
SE 8 8 4 4 5 8
SW 8 8 5 5 8 7

• Direction : Router 5 is on northeast of router 0 (4):

• VC : The virtual channel which router 0 used to transfer the message (1):

Figure 4.9. 2D Network

When the message arrives at the router X from router Y, it updates its Q-Table using the

following equation. We have compared different learning rate values to select the optimum

value. Figure 4.10. and Figure 4.11. shows the learning rate comparisons under different

traffic models. In this equation, 0.25 is the learning ratio. The learning ratio has been selected

as 0.25 to give a higher value to long-term cumulative value rather than short-term spikes and

short trends in the network. This approach has advantages for stable networks in that each

processing element primarily working with the same intensity over time. However, it also

has disadvantages for volatile networks and has a slow response for flexible systems.

QX [Dir][OutC] = 0.25 ∗ (gLY + LY ) + 0.75 ∗QX [Dir][OutC] (2)
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Figure 4.10. Learning rate comparison under uniform test model.

Figure 4.11. Learning rate comparison under hotspot test model.

4.3.3. H Value Transfer

Each router stores an H value. H value is the average value of minimal path values on

Q-Table. H values reflect the congestion information for each router and its neighboring

nodes. H values and transferred to the neighboring router if the message received from Up

or Down. We decide if the message will move on the same layer or be sent to the next layer
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based on the traffic loads using H value. If the traffic rate of the router on the destination

layer direction (i.e., H[Up] and H[Down] in Figure 4.12.) is smaller than the current router

(i.e., H[Local]), the packet is sent to the next layer. Otherwise, it is sent to the neighbor router

in the same layer, which is selected based on our Q-Learning-based algorithm. We call this

layer selection procedure elevator-first since we give priority to send packets to intra-layer

routers first if possible. H value uses 6-bit value have more resolution. So if the average

value is 9.6, the H value will be 9.6 ∗ 4 = 38.

4.3.4. Elevator First

In a 3D-NoC routing, based on the destination node’s location and the node with the message,

both can be in a different layer. We have proposed an Elevator-first routing algorithm to send

the messages using the traffic load information for interlayer messages.

Figure 4.12. shows the proposed channel selection algorithm for adaptive packet transfer.

If the router is the destination router, the message is sent to the local channel. If the (x,y)

coordinates are the same as the current node while the destination is on different layer, the

message uses the vertical links as output channel with respect to the location of the destina-

tion. If the destination is on a different layer and the (x,y) coordinates of the current node is

different, the output channel is selected based on the traffic rates.

4.4. An Example

In Figure 4.14. we give an example of how output channels are selected and Q-tables are

updated for the network shown in Figure 4.13.

Figure 4.13. shows an example of a 3D-NoC. The darker nodes represent higher traffic loads.

In this figure, node 0 in layer 0 generate a message and select destination node as node 43 in

layer 2. As node 0 receive the message from the local processor, node 0 can select all possible

output channels (N1, N2, E, U). Since the U port has a higher traffic rate (i.e., H value), the

North sends the message via virtual channel 1(vc1). Router 4 examines the H values of

both itself and the upper layer to decide between intra-layer and inter-layer transfer. Upon

examination, router 4 select the output channel with the lowest latency from the potential

output channels(N1, N2, S1, S2, E). After processing the message to the output channel,
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Figure 4.12. Output Channel Selection Algorithm

Dir : D e s t i n a t i o n D i r e c t i o n
InCh : I n p u t Channel
OutCh : P o t e n t i a l Outpu t Channel L i s t
Des t x , Des t y , D e s t z : x , y , z c o o r d i n a t e s o f d e s t i n a t i o n node
Curr x , Cur r y , C u r r z : x , y , z c o o r d i n a t e s o f c u r r e n t node
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
i f ( Di r == Loca l ) {

OutCh = Loca l ;
} e l s e i f ( ( D e s t x == C u r r x ) && ( D e s t y == C u r r y ) ) {

i f ( D e s t z > C u r r z )
OutCh = U

e l s e
OutCh = D

} e l s e i f ( ( D e s t z > C u r r z ) && (H[ Up ] < H[ Loca l ] ) ) {
OutCh = U

} e l s e i f ( ( D e s t z < C u r r z ) && (H[Down] < H[ Loca l ] ) ) {
OutCh = D

} e l s e {
i f ( InCh ==(L or N1 or S1 or E ) )

OutCh += W + N1 ;
i f ( InCh ==(L or N1 or E ) )

OutCh += S1 ;
i f ( Di r ==(E or NE or SE ) )

OutCh += E ;
i f ( Di r ==(N or E or NE or SE ) )

OutCh += N2 ;
i f ( ( InCh != S2 ) && ( Dir ==(S or E or NE or SE ) ) )

OutCh += S2 ;
}

router 4 creates a feedback message with local latency and expected latency information.

Router 0 uses this information to update its Q-Table for packet transfer to NE direction for

N2 output channel with the Equation (2). Router 0 will send the message to the neighboring

less congested routers in the same layer until the upper router is less congested, which is

router 5. When the message is processed by router 5 since the upper neighbor is now less

congested than horizontal neighbors, router 5, will send the message to the upper layer from

channel U. This will continue until the message arrives at its final destination.
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Figure 4.13. Example for path selection.

Figure 4.14. Example for updating Q-Table.
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5. EXPERIMENTAL RESULTS

To evaluate and compare the proposed method, many simulations have been conducted over

a virtual simulation environment for both the proposed method and the HARAQ method.

To have an understanding of the experiment results, the simulation environment and the

performance metrics are described in section 5.1. The results are given in section 5.3. with

discussions of the outputs.

5.1. Simulation Environment

The proposed model has been developed using the Noxim Simulation framework [8]. Noxim

is a cycle-accurate NoC simulator developed in SystemC. SystemC is a C++ programming

language extension and gives an opportunity for hardware to be modeled in software. Noxim

is a flexible simulator organized in 2D mesh topology with features like employing and

generating different routing algorithms, having simple source code. Based on the routing

algorithm and PE module, Noxim can simulate a network and analyze the performance by

calculating the performance metrics such as latency, average latency, throughput, total packet

transfer, expected packet transfer, etc.

In this work, Noxim has been modified to support 3D topology and select several virtual

channels for each direction. And a new router and new routing algorithm have been designed

to evaluate the proposed method.

An additional channel is implemented for sending feedback messages without interfering

with the routing channels. This would reduce the impact on bandwidth usage and create a

more scalable and configurable approach for future works and more improvements. How-

ever, we can see that this approach would also increase the complexity of the hardware design

and power consumption while reducing the software complexity. Feedback channels use two

buffer locations on each input.

5.2. Performace Metrics

• Latency (L)
Latency is the time spent until the packet is delivered to its destination. The latency
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can be calculated by difference between the time that packet generation and the time it

arrives to the destination PE.

L = Ta − Tg (3)

• Throughput (T)
Throughput is the rate of successfuly delivered message over time. Expected through-

put can be calculated as in Equation (4). PIR is packet injection rate, Nf is number of

flits per packet, Npe is number of nodes in the network.

T = PIR ∗Nf ∗Npe (4)

The packet size is assigned to be ten flits long for the test environment, and the band-

width is one flit per cycle. Additionally, every input channel has a buffer with a size of 8

flits. Each test is conducted to increase the number of injected packets per node per cycle

(flit/node/cycle). The network is warmed up for 10.000 cycles to generate the Q-Table

values ideally, and the tests are performed over 100.000 cycles to obtain the average per-

formance outputs. To test the proposed routing algorithm and developed environment, both

uniform and hotspot tests are conducted to monitor the performance for both best-case sce-

narios and stressed and congested networks.

5.3. Results Analysis and Comparison

To compare and evaluate the proposed method, 3D deterministic routing algorithm and

elevator-first West-First [48] routing algorithm implemented. To understand the benefits

of the third dimension for the adaptive routing algorithm, 2D HARAQ is also implemented

with the same processing elements. West-First routing algorithm has been developed for 3D

networks prioritizing inter-layer message transfer if the destination is not on the same layer.

5.3.1. Uniform Traffic Test

Uniform traffic tests have equal packet injection rates for every router, and each node has the

same probability of being a destination. This method equally distributes the traffic load to the

network and allows to analyze the best-case scenario. Figure 5.1. and Figure 5.2. shows the
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latency and throughput performances under uniform traffic test. All algorithms have similar

performance under low traffic as expected. As the injection rate increases, we can observe

that 3D-NoC starts to outperform 2D-NoC.

The throughput results in Figure 5.2. show the same characteristic for the three methods.

Figure 5.1. and Figure 5.2. show that our method achieves approximately 8% of improve-

ment against 3D deterministic routing and 4% against the West-First routing algorithm for

latency performance. The throughput performance of the proposed algorithm is 1.5% better

than the 3D deterministic and 1% better than the West-First routing algorithm.

Figure 5.1. Latency under uniform traffic test.

5.3.2. Hotspot Traffic Test

In hotspot traffic, multiple processors are assigned to have higher injection rate. We used a

coefficient value k to multiply the injection rate for the specified processors. The nodes in

the coordinates (2,3,2) and (2,3,3) for 3D-NoC and (4,3) and (4,4) for 2D-NoC have higher

injection rate. We have conducted our tests when k = 5. Figure 5.3. and Figure 5.4. shows

the latency and throughput results for all algorithms. As seen from the figures, we have ob-

served similar performance under low traffic loads. On relatively lower injection rates, we

have started observing performance gain for non-deterministic routing algorithms. Similarly,
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Figure 5.2. Throughput under uniform traffic test.

our method outperforms other methods in terms of latency and throughput values, with ap-

proximately 8% improvement obtained compared to 3D deterministic and approximately 3%

improvement obtained compared to the West-First routing algorithm.

Figure 5.3. Latency under hotspot traffic test.
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Figure 5.4. Throughput under hotspot traffic test.
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6. CONCLUSION

6.1. Conclusion

In this work, we have proposed a traffic-aware highly adaptive routing algorithm for 3D-

NoCs inspired by the Q-Learning algorithm for its path selection algorithm. The proposed

method uses two virtual channels on the Y dimension for a better cost and performance ratio.

We have proposed a congestion-aware communication for inter-layer communication while

already used a Q-Learning-based routing algorithm for 3D networks. This approach also

aims to avoid deadlock and livelock probabilities. To avoid congested areas, the Q-Learning

system has been used to estimate the latency from each output to each 2D direction. Traffic-

Aware routing has been used for path selection for interlayer packets.

Compared to similar works, the proposed congestion-aware adaptive routing algorithm shows

latency and throughput improvements for 3D networks. Using two virtual channels for only

the Y dimension and using Q-Learning as a reinforcement learning approach allows a simple

and modern design for improving the current NoC routing algorithms.

6.2. Future Research Directions

The proposed method is open to improvement with a fully adaptive routing algorithm on the

Z dimension that allows 180-degree turns. Increasing the size of Q-Table to 26x8 for 26

different destinations (N, S, E, W, U, D, NE, NW, SE, SW, UN, US, UW, UE, DN, DS, DW,

DE, UNE, UNW, USE, USW, DNE, DNW, DSE, DSW) and six different output channels

(N1, N2, S1, S2, E, W, U, D) can allow fully adaptive routing algorithm while increasing the

cost for Q-Table size. Another improvement can be accomplished by increasing the Q-Table

size for the 2D table to increase the resolution for the destination.

We are using an additional link not to share the bandwidth of the data link in our proposed

method. This approach can cause hardware complexity for the network. Optimized commu-

nication can be developed to use the same link for data and feedback transfer.
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