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Radyo erişim ağı dilimlemedeki en büyük zorluklardan birisi, ağa erişmek için bağlantı ku-

rulma aşamasında birden fazla cihazın aynı radyo erişim kanalını kullanmalarından kay-

naklanmaktadır. Halihazırda, rastgele kanal erişiminde yaşanan sıkışıklık, dağınık şekilde

cihazların kanala aynı anda çıkmaya çalışmaları durumunda çok ciddi bir boyuta varmak-

tadır. Bu tarz durumlar, kanala erişmeye çalışan tüm cihazların iletişiminde önemli se-

viyelerde gecikmeye neden olmaktadır. Bu nedenle, radyo erişim ağı dilimlenmesine olanak

sağlanabilmesi ve kaynakların dinamik yönetilebilmesi için, rastgele kanal erişimi kaynakları,

farklı servis tipleri için dağıtılabilir hale gelmelidir.

Rastgele kanal erişimi sırasında, cihazlar bir senkronizasyon sinyali seçerek yayınlarlar. Eğer

birden fazla cihaz aynı sinyali yayınlarsa baz istasyonunda çakışma meydana gelir. Kanal

erişimi sırasında bir servis sınıfını diğerinden izole edebilmek için uygulanan yöntemlerden



biri de senkronizyon sinyallerini alt gruplara ayırdıktan sonra servislere bu alt grupları paylaştırmaktır.

Statik paylaşım, servislerden gelen trafiğin dinamik olarak değiştiği durumlarda verimsiz

hale gelmektedir. Bu yüzden dinamik paylaşım, gecikmeyi ve çakışmayı istenen seviyelerde

tutabilmek için uygun bir yöntemdir.

Bu tez çalışması, senkronizasyon sinyallerinin alt gruplara dinamik olarak ayrılması için de-

rin takviyeli öğrenme ve genetik algoritma temelli yöntemler önermektir. Önerilen yöntemler,

kısıtlı sayıdaki senkronizasyon sinyallerini farklı servis sınıflarına, servislerin önceliklerine

ve ağdaki trafiğin durumana göre dağıtarak servis sınıfları arasında sanal bir izolasyon yarat-

maktadırlar. Çalışma kapsamındaki sonuçlar, önerilen yöntemlerin, değişen trafik ihtiyaçlarına

uyum sağlayarak senkronizasyon sinyallerini gruplara dinamik şekilde dağıttığını göstermektedir.

Anahtar Kelimeler: Derin Takviyeli Öğrenme, Genetik Algoritma, Senkronizasyon Sinyali

Paylaştırma, Ağ Dilimleme, 5G, Radyo Erişim Ağı, Makineler Arası İletişim
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ABSTRACT

ARTIFICIAL INTELLIGENCE BASED FLEXIBLE PREAMBLE
ALLOCATION FOR RADIO ACCESS NETWORK SLICING IN 5G

NETWORKS

Ahmet Melih GEDİKLİ

Master of Science, Computer Engineering Department
Supervisor: Assoc. Prof. Dr. Sevil ŞEN

Co-Supervisor: Assoc. Prof. Dr. Mehmet KÖSEOĞLU
June 2021, 112 pages

One of the most difficult challenges in Radio Access Network (RAN) slicing occurs in

the connection establishment phase where multiple devices use a common Random Access

Channel (RACH) to gain access to the network. It is now very well known that RACH con-

gestion is a serious issue in case of sporadic arrival of machine-to-machine (M2M) nodes and

may result in significant delay for all nodes. Hence, RACH resources are also needed to be

allocated to different services to enable RAN slicing so that the resources can be dynamically

allocated.

In the RACH procedure, the nodes transmit a selected preamble from a predefined set of

preambles. If multiple nodes transmit the same preamble at the same RACH opportunity,

a collision occurs at the eNodeB. In order to isolate one service class from others during

this phase, one approach is to allocate different preamble subsets to different service classes.
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Static allocation of those subsets, however, may result in inefficiencies when the traffic gen-

erated by each service changes significantly over time. Hence, dynamic allocation is more

suitable to be able to keep the delay and collision probabilities around the desired levels.

This work proposes adaptive preamble subset allocation methods using Deep Reinforcement

Learning (DRL) and Genetic Algorithm (GA). The proposed methods can distribute pream-

bles among different service classes according to their priority and the traffic in the network,

providing a virtual isolation of service classes. The results indicate that the proposed mech-

anisms can quickly adapt the preamble allocation according to the changing traffic demands

of service classes.

Keywords: Deep Reinforcement Learning, Genetic Algorithms, Preamble Allocation, Net-

work Slicing, 5G, Radio Access Network, M2M
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Sevil ŞEN and Assoc. Prof. Mehmet KÖSEOĞLU who have always encouraged me and

guided me with their valuable contributions and criticisms at all stages of my dissertation.

Besides I would like to thank my thesis committee members for insightful comments for this

thesis.

Finally, I thank my beloved wife and family for their continued support throughout my edu-

cational life.

v



CONTENTS

ÖZET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

SYMBOLS AND ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

1. INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. 5G Requirements.................................................................................................. 3

1.2. 5G RAN ............................................................................................................... 7

1.3. 5G Core Networks (5G CN) ................................................................................ 9

1.4. Network Slicing Based Network Architecture of 5G .......................................... 9

1.5. Major Contributions of the Thesis ....................................................................... 10

1.6. Organization of the Thesis ................................................................................... 12

2. BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1. PRACH Preamble ................................................................................................ 14

2.1.1. Contention-free RACH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.2. Contention-based RACH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.3. Random Access Opportunity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2. Deep Reinforcement Learning ............................................................................. 17

2.2.1. Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.2. Deep Reinforcement Learning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3. Genetic Algorithm................................................................................................ 22

2.3.1. Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.2. Crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.3. Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.4. NEAT Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

vi



3. RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1. RACH Congestion Control .................................................................................. 26

3.2. RL in Wireless Networks ..................................................................................... 28

3.3. RAN Slicing......................................................................................................... 30

3.4. GA in Wireless Networks .................................................................................... 31

3.5. Discussion ............................................................................................................ 32

4. MODEL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1. DRL-based Model................................................................................................ 34

4.1.1. The Model Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.2. The RL States, Actions and Reward Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2. NEAT-based Model.............................................................................................. 38

4.2.1. The Model Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.2. The Fitness Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3. Reward Function Analysis ................................................................................... 39

5. EXPERIMENTS AND RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1. Traffic Distribution............................................................................................... 47

5.1.1. The Distribution on Increase of Arrival Rate of Only High-priority Slice

Scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1.2. The Distribution on Dynamic Environment Scenario . . . . . . . . . . . . . . . . . . . . . . 47

5.2. DRL Training ...................................................................................................... 47

5.3. NEAT Training..................................................................................................... 51

5.4. Benchmarks for Simulations................................................................................ 53

5.5. The Performance of the Methods Using Traffic Distribution in Sec. 5.1.1. ........ 55

5.5.1. 2-slice Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.5.2. 3-slice Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.6. The Performance of the Methods Using Traffic Distribution in Sec. 5.1.2. ........ 67

5.6.1. 3-slice Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.6.2. 5-slice Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.6.3. General Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.7. The Performance of the Method When Comparing with the Method in [1] ....... 76

vii



6. CONCLUSION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.1. Limitations of the Study....................................................................................... 93

6.2. Future Work ......................................................................................................... 93

A APPENDIX : NEAT CONFIGURATION FILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

viii



TABLES

Table 4.1. System model notations.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Table 5.1. Training model parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Table 1.1. The parameters and their values in the NEAT-python configuration file. . 95

Table 1.2. The parameters and their values in the NEAT-python configuration file

contd. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

ix



FIGURES

Figure 1.1. The 5G triangle [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Figure 1.2. The 5G usage scenarios with the different level of need of key capabil-

ities [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Figure 1.3. The architecture of C-RAN based cellular networks [3] . . . . . . . . . . . . . . . . . . . 8

Figure 1.4. The network architecture based on network slicing in 5G [4] . . . . . . . . . . . . . 11

Figure 2.1. The steps of contention-based and contention-free RACH [5].. . . . . . . . . . . . 16

Figure 2.2. The PRACH configuration index and RAO sub-frame relation. . . . . . . . . . . . 16

Figure 2.3. Conceptual schema of the reinforcement learning model. . . . . . . . . . . . . . . . . . 18

Figure 2.4. Actor-Critic reinforcement learning model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Figure 2.5. Deep reinforcement learning structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 2.6. The relationship between the operators and individuals in GA. . . . . . . . . . . . 23

Figure 4.1. RACH process of BS simulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Figure 4.2. Interaction between DRL agent and network environment when J = 5. . 36

Figure 4.3. Interaction between NEAT individual and network environment when

J = 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Figure 4.4. Change in the SRF as m1 changes for k1 = 1 and k2 = 2 for different

arrival rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Figure 4.5. Change in the PRF as m1 changes for k1 = 1 and k2 = 2 for different

arrival rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 4.6. Change in the CRF as m1 changes for k1 = 1 and k2 = 2 for different

arrival rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Figure 5.1. Training scenario of the DRL-based model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Figure 5.2. Training scenario of the NEAT-based model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Figure 5.3. Preamble allocations computed by the exhaustive search against the

DRL-based approach in 2-slice scenario for the PRF. . . . . . . . . . . . . . . . . . . . . . 53

x



Figure 5.4. Preamble allocations computed by the ideal algorithm against the DRL-

based approach in 2-slice scenario for the PRF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Figure 5.5. Preamble allocations computed by mathematical analysis against the

DRL-based approach in 2-slice scenario for the PRF. . . . . . . . . . . . . . . . . . . . . . 55

Figure 5.6. Preamble allocations computed by the exhaustive search against the

DRL-based approach in 2-slice scenario for the CRF. . . . . . . . . . . . . . . . . . . . . . 56

Figure 5.7. Preamble allocations computed by the ideal algorithm against the DRL-

based approach in 2-slice scenario for the CRF.. . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Figure 5.8. Preamble allocations computed by the mathematical analysis against

the DRL-based approach in 2-slice scenario for the CRF. . . . . . . . . . . . . . . . . . 58

Figure 5.9. Preamble allocations computed by the exhaustive search against the

NEAT approach in 2-slice scenario for the PRF. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Figure 5.10. Preamble allocations computed by the ideal algorithm against the NEAT

approach in 2-slice scenario for the PRF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Figure 5.11. Preamble allocations computed by mathematical analysis against the

NEAT approach in 2-slice scenario for the PRF. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Figure 5.12. Preamble allocations computed by the exhaustive search against the

NEAT approach in 2-slice scenario for the CRF. . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Figure 5.13. Preamble allocations computed by the ideal algorithm against the NEAT

approach in 2-slice scenario for the CRF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Figure 5.14. Preamble allocations computed by the mathematical analysis against

the NEAT approach in 2-slice scenario for the CRF. . . . . . . . . . . . . . . . . . . . . . . . 64

Figure 5.15. The ratio of dropped messages to all transmitted messages for 2-slice

scenario while the arrival rate of second slice consistently increased

using CRF-based DRL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Figure 5.16. The ratio of dropped messages to all transmitted messages for 2-slice

scenario while the arrival rate of second slice consistently increased

using PRF-based DRL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

xi



Figure 5.17. The ratio of dropped messages to all transmitted messages for 2-slice

scenario while the arrival rate of second slice consistently increased

using CRF-based NEAT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Figure 5.18. The ratio of dropped messages to all transmitted messages for 2-slice

scenario while the arrival rate of second slice consistently increased

using PRF-based NEAT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Figure 5.19. The ratio of dropped messages to all transmitted messages for 2-slice

scenario while the arrival rate of second slice consistently increased

using ideal algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Figure 5.20. The average waiting time for 2-slice scenario while the arrival rate of

second slice consistently increased using CRF-based DRL.. . . . . . . . . . . . . . . 70

Figure 5.21. The average waiting time for 2-slice scenario while the arrival rate of

second slice consistently increased using PRF-based DRL. . . . . . . . . . . . . . . . 71

Figure 5.22. The average waiting time for 2-slice scenario while the arrival rate of

second slice consistently increased using CRF-based NEAT. . . . . . . . . . . . . . 72

Figure 5.23. The average waiting time for 2-slice scenario while the arrival rate of

second slice consistently increased using PRF-based NEAT.. . . . . . . . . . . . . . 73

Figure 5.24. The average waiting time for 2-slice scenario while the arrival rate of

second slice consistently increased using ideal algorithm. . . . . . . . . . . . . . . . . 74

Figure 5.25. The number of reserved preambles of the CRF-based DRL for 3 net-

work slices while the arrival rate of third slice consistently increased.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Figure 5.26. The ratio of dropped messages to all transmitted messages of the CRF-

based DRL for 3 network slices while the arrival rate of third slice

consistently increased. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Figure 5.27. The average waiting time of the CRF-based DRL for 3 network slices

while the arrival rate of third slice consistently increased.. . . . . . . . . . . . . . . . . 77

Figure 5.28. The number of reserved preambles of the ideal algorithm to 3 network

slices while the arrival rate of third slice consistently increased. . . . . . . . . . 78

xii



Figure 5.29. The ratio of dropped messages to all transmitted messages of the ideal

algorithm to 3 network slices while the arrival rate of third slice consis-

tently increased. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Figure 5.30. The average waiting time of the ideal algorithm to 3 network slices

while the arrival rate of third slice consistently increased.. . . . . . . . . . . . . . . . . 80

Figure 5.31. The number of reserved preambles of the CRF-based NEAT for 3 net-

work slices while the arrival rate of third slice consistently increased.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Figure 5.32. The ratio of dropped messages to all transmitted messages of the CRF-

based NEAT for 3 network slices while the arrival rate of third slice

consistently increased. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Figure 5.33. The average waiting time of the CRF-based NEAT for 3 network slices

while the arrival rate of third slice consistently increased.. . . . . . . . . . . . . . . . . 83

Figure 5.34. The timeline simulation graphs for 3-slice CRF-based DRL. . . . . . . . . . . . . . 84

Figure 5.35. The timeline simulation graphs for 5-slice CRF-based DRL. . . . . . . . . . . . . . 85

Figure 5.36. The timeline simulation graphs for 3-slice CRF-based NEAT. . . . . . . . . . . . . 86

Figure 5.37. The timeline simulation graphs for 5-slice CRF-based NEAT. . . . . . . . . . . . . 87

Figure 5.38. The timeline simulation graphs for 3-slice using the ideal algorithm. . . . . 88

Figure 5.39. The timeline simulation graphs for 5-slice using the ideal algorithm. . . . . 89

Figure 5.40. The timeline simulation graph for 2-slice using the two priority sce-

nario for DRL-based method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Figure 5.41. The timeline simulation graph for 2-slice using the ideal algorithm in [1]. 91

xiii



SYMBOLS AND ABBREVIATIONS

Abbreviations

IoT Internet of Things

RL Reinforcement Learning

DRL Deinforcement Reinforcement Learning

RAN Radio Access Network

RAO Random Aaccess Opportunity

CN Core Network

NS Network Slicing

M2M Machine to Machine

H2H Human to Human

PRACH Physical Random Access CHannel

RACH Random Access CHannel

VNF Virtual Network Function

eMBB enhanced Mobile BroadBand

uRLCC ultra Reliable Low Latency Communications

mMTC massive Machine Type Communications

IMT International Mobile Telecommunications

QoS Quality of Service

LTE-A LongTerm Evaluation - Advanced

SDN Software Defined Networking

NFV Network FunctionVirtualization

BBU Baseband Unit

RRH Remote Radio Head

C-RAN Cloud - Radio Access Networking

cap-ex capital-expenditure

op-ex operational-expenditure

API Application Programming Interface

xiv



Abbreviations

SBA Service Based Architecture

V2X Vehicle to Everything

GA Genetic Algorithm

ACB Access Class Barring

NEAT NEuroevolution of Augmenting Topologies

ANN Artificial Neural Networks

TRPO Trust Region Policy Optimization

PPO Proximal Policy Optimization

BS Base Station

xv



1. INTRODUCTION

Internet of Things (IoT) are becoming more prevalent in a wide range of usage areas such as

smart grids, personal communications, controlling traffic flow on roads, smart driving, and

smart healthcare [6]. It was recently reported that a total of 75 billion IoT devices are ex-

pected to be in operation globally by 2025 [7]. Communication among these IoT devices are

named as machine-to-machine (M2M) communication and the connections resulting from

M2M communication are expected to be more than half of the global connected devices and

connections by 2022 [8]. Hence, M2M communication is one of the main drivers of the

evolution from 4G to 5G. While nearly half of these connections are resulted from home

applications, the number of connections resulting from connected work and connected cities

applications are showing an increasing trend in recent years.

M2M communication is the main driver of fully-automated production lines and connected

cities. It has different characteristics than human-to-human communication (H2H) who has

been main driver of Long-Term Evolution (LTE). In H2H, most of the traffic is carried on

the downlink, sessions are longer and less frequent. On the other hand, M2M devices mostly

utilize the uplink and sessions are shorter and more frequent. For example, a smart meter

may wake up, send its data, and then immediately go back to sleep, thus, just for a short data

transmission, an uplink physical resource allocation request has to be made. In short, these

devices generally require low bandwidth, however, due to large number of them and their

wake-up nature the up-link physical resource allocation for them are different from H2H [9].

5G has not only pledged to provide services for above described H2H and M2M types but

pledged more, yet, up-to LTE it was sufficient. Therefore, LTE and 3G generally divided

the service characteristics into two as M2M and H2H. However, with the 5G concept at least

three but up to 5 different service characteristics are defined [10, 11]. The priorities of these

service types may differ from each other. For example, while a remote surgery service should

have the highest priority since it must be ultra reliable and provide ultra low latency [12], an

IoT service which collects sensor data can have the lowest priority in a network. Thus, the

increasing number of devices and services with changing characteristics cause us to review

the bottlenecks of the communication.
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One of the bottlenecks in Radio Access Network (RAN) communication is the Physical Ran-

dom Access Channel (PRACH) allocation procedure [13]. This period is called Random Ac-

cess Opportunity (RAO) and the whole procedure is maintained by base stations (BSs). The

limited number of orthogonal distinguishable signals (preambles) arise the need of dynamic

distribution of them to the services. In both LTE and 5G there are 54 PRACH preambles

each one selected by devices randomly and transmitted for channel allocation requests. If

multiple nodes transmit the same preamble at the same RAO, a collision occurs at the BS. To

isolate one service class from others during this phase, one approach is to divide RACH re-

sources to different service classes. Static allocation of those resources, however, may result

in inefficiencies when the traffic generated by each service changes significantly over time.

Hence, slicing the resource into dynamic groups is more suitable to be able to keep the delay

and collision probabilities around the desired levels.

The Network Slicing concept arose from changing environment and diversified service re-

quirements of devices ranging from delay-tolerant smart metering systems to mission critical

smart driving applications [14]. The need for supporting applications with different service

requirements on a single network has led to the development of the network slicing approach.

It is an assignment of network resources to separate services such that a service can be run

virtually independent of other applications in the network. RAN slicing is a challenging

aspect of network slicing due to the shared nature of the wireless spectrum.

One of the most difficult challenges in RAN slicing occurs in the connection establishment

phase where multiple devices use a common random access channel (RACH) to gain access

to the network. It is now very well known that RACH congestion is a serious issue in the case

of sporadic arrival of M2M nodes and may result in significant delay for all nodes. Hence,

RACH resources are also needed to be allocated to different services to enable RAN slicing.

These fundamental architectural need of changes and the increasing number of IoT devices

with new requirements make LTE and 3G incompatible, since these devices need massive

M2M communication [15].

The predecessor of 5G, LTE Advanced (LTE-A) standard is not designed to support vari-

ous M2M communication services [16], rather it is designed for wide-band communication.

Therefore, many problems arises with the current infrastructure for such types of communi-

cation services. While some well defined requirements such as 1ms latency for low latency

services and 10Gbps for mobile broadband services etc. are implemented already, the service

types can not utilize all the features brought by these requirements at the same time. Thus,
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in order to provide those requirements in a combined and dynamic manner a new approach

for random access mechanism should be discussed, so that, each service type must have

completely separated random access channel portion on the side of physical random access

resources. These portions can be named as preamble allocation subsets. The resources of

preamble allocation subsets must be dynamic in order to support real-world scenarios. For

example, in power outage and restore case IoT devices may try to re-connect to network at

the same time if no other prevention is conducted since all wake up at the same time. How-

ever, the devices of other services usually are not affected from power outage. As a result

there may be overload in up-link resources of IoT service class in RACH. For a short amount

of time, it is needed to increase the reserved resources of preamble allocation subset for IoT

service.

In order to increase or decrease the resources we need to have flexible preamble subset al-

location methods for changing environment like the scenario given above. Since immediate

response is also a 5G requirement, allocating preamble subsets must be as fast as possible.

The channel requirement for different services may change over time, so the preamble count

for such services needs to be changed dynamically. However, the balance between such

service types should be preserved and the channel should be fairly shared.

In this thesis, artificial intelligence based flexible preamble allocation methods are proposed

for radio access network slicing in 5G. These methods are instantiable Virtual Network Func-

tions (VNF) in any BS which use Network Slicing concept to slice PRACH preambles. The

5G concepts define the technical needs, limits and definitions to set the new boundaries and

introduce new capabilities. Therefore, while H2H related aspects of network design may re-

main same, there should be fundamental changes and new concepts come with 5G to support

M2M devices. In this manner first, 5G is explored step by step to explain how it enables

network slicing in detail, than Reinforcement Learning (RL) and Genetic Algorithms (GA)

are explored in order to divide channel using network slicing for any number of slices and

any prioritization levels.

1.1. 5G Requirements

The global operators started to use 5G networks in late 2019. Its world-wide access is ex-

pected to be available in 2021 [17]. Meanwhile the mobile and streaming data are increasing
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every day. The mobile data traffic is 200 times more in 2020 than in 2010 and it is expected

to be 100 times more in 2030 than in 2020 [18]. Moreover, with the increasing of data traffic,

the new era requires higher number of connected devices with new service types for regular

users or for industry. Therefore, 5G has to deliver us increased operational networking per-

formance. The key factors in order to deliver such performance in 5G are listed as latency,

connection density and throughput [19]. Combining the performance enhancement on those

factors makes us one step closer to the new era. In the following, some use cases and enabler

requirements of those use cases of mobile internet within the concept of 5G currently are

given:

• Ultra HD and 3D video streaming

Requirement: 1 Gbps of transmission rate

• Online gaming and game streaming

Requirement: Imperceptible latency

Some other use cases and related requirements in IoT are listed below:

• Smart agriculture

Requirement: Massive device communication

• Automotive driving/Internet of vehicles

Requirement: %100 Reliability

Combining all above it is clear that 5G has to support variety of use cases, which needs dif-

ferent requirements. These combination of use cases and requirements formed the magic 5G

triangle. Each corner of the triangle given in Fig. 1.1. represents the communication types

which differs from other ones with their different use case scenarios. These communication

types are Enhanced Mobile Broadband (eMBB), Ultra Reliable and Low Latency Commu-

nications (URLLC) and Massive Machine Type Communications (mMTC). In the use case

scenarios of eMBB, a stable channel with large payload transmission is required in order to

make possible to have capacity enhancement of using the existing bandwidth. On the other
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Figure 1.1. The 5G triangle [2]

hand, whereas in mMTC use case scenarios massive connectivity of devices is required, no-

loss & no-latency small payload transmission on communication are required in URLLC

[20].

5G aims to support these three generic communication types given in Fig. 1.1.. Whereas

each representative corner in the triangle focuses on a set of use cases, the combination of

different aspects of these types are usually needed in real life. For example, online gaming

and game streaming requires a communication type that resides between eMBB and URLLC.

The key capabilities with their different levels of need by three types can be seen in Fig. 1.2..

It is clear that the highest effect of connection density is on mMTC among all these three

types. This connection density creates a bottleneck at the RAN side.

5



Figure 1.2. The 5G usage scenarios with the different level of need of key capabilities [2]
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1.2. 5G RAN

RAN is an essential part of cellular network infrastructure which provides wide-area access

network for the connection. The radio resource management, mobility management and

data encryption are handled in RAN side. It has been in use since the beginning of cellular

technology. Up to LTE, the RAN was providing business as usual approach wide-area access

network to mobile phones mostly [21]. The arrival of LTE and especially the control plane

enhancements paved the way for differentiated QoS [22]. With the extreme and diverse

requirements in the new era, the demand for new business models is shown up.

Although 5G RAN is integrated with LTE-A, to support new demands and flexibility software

defined networking (SDN) is proposed. To have this ability, the control and user plane of

networking has been separated. The control and user plane of wireless networks define and

specify network functionalities which orchestrate the whole network. While the user plane is

responsible for forwarding the payload from source to destination, the control plane controls

the user plane by defining new routing path, mobility actions, radio resource management

etc. [23]. The benefits of separating the user plane from the control plane are listed briefly

as below:

• The tight coupling of these planes brings difficulties of upgrading and changing one

plane without changing the other. The separation paves the way of updating/upgrading

the planes without affecting the other.

• The independent evolvement of the planes allows us to build new and target-specific

network functions in a short amount of time.

• The idea is one of the important steps in order to enable the network slicing concept.

The Cloud Radio Access Network (C-RAN) is another important step for network slicing

by introducing a paradigm shift using horizontal functional splitting idea [3, 23]. In the tra-

ditional cell architecture, each BS owns a dedicated Remote Radio Heads (RRH) and Base

Band Unit (BBU). Generally, while RRHs perform all RF functionality like transmitting,

receiving, filtering and amplification, the BBU process digitizes signals. Due to new require-

ments in the M2M and IoT era, the densification problem has introduced a scalability issue.

This challenge is solved by requiring new BSs. On the other hand, increasing number of
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Figure 1.3. The architecture of C-RAN based cellular networks [3]

BSs will increase also the capital expenditure (cap-ex) and operating expenditure (op-ex).

C-RAN solves this problem by horizontal functional splitting. Basically, it creates central-

ized virtual BBU pool which can be used by all BSs in the RAN as shown in Fig. 1.3.. The

BBUs are virtually deployed and clustered into the pools. While op-ex decreases due to the

centralization and BSs cap-ex decreases due to removing the process of deploying physi-

cal BBUs. Furthermore, the virtualization of BBUs facilitates network slicing concept by

enabling virtualization of RAN functions [24, 25]. Thereby, the radio resources can be ab-

stracted to create multiple independent slices. These independent multiple virtualized slices

can be dynamically adjusted on demand of changing user requirements or environmental

fluctuation.
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1.3. 5G Core Networks (5G CN)

The major difference between the 5G Core (5GC) and the core of former cellular networks

is that the functionality of Network Functions (NF) that is provided and accessed via Appli-

cation Programming Interface (API) [26]. This results in Service Based Architecture (SBA)

which provides loosely coupled set of services. Thanks to SBA, with NFs new combinable

services can be dynamically and independently instantiated. The ability to orchestrate these

core NFs allow us to instantiate NFs which can be very close to subscribers and service con-

sumers. These capabilities led to emerge the Edge Cloud concept which is also needed for

the requirements of mMTC and URLLC. For example, mMTC service which needs compu-

tational resources and have low battery capabilities can offload their computational needs to

the edge cloud in order to reduce power consumption. URLLC service which needs ultra low

latency communication can fetch the content immediately since the resources are moved to

edge cloud [27]. Also, the burden of backhaul is decreased since the data is processed in the

edge. Hereby, the service providers are able to offer mMTC and URLLC services with the

invention of the Edge Cloud concept.

1.4. Network Slicing Based Network Architecture of 5G

5G aims to provide multi-tenant and service-tailored connection. Due to the very nature of

services, constructing a physical infrastructure in order to support all service types is not

feasible. Even if that kind of infrastructure is built up for all existing services up to now,

5G implies that the service consumers may need on demand new service types with different

characteristics in the future [28]. Besides, users may expect to have privilege and access

rights on a portion of network resources, meanwhile, they may want ultimate flexibility of

using these resources with also scalable dynamic payment plans [29]. These specifications

conclude on new and dynamic service capabilities which support wide range of requirements.

The network slicing concept has emerged as a solution for these varying requirements and

provides end-to-end, on-demand and tailored connection. As pointed out earlier in Section

1.1. and 1.2., the softwarization and virtualization of network components enable network

slicing. In brief, with the separation of hardware and software, network functions became

independent from underlying physical resource. The new virtualized network functions are

interconnected with each other so that they form a network service. The new formed network
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is managed from a centralized point. This centralization is called SDN. In this context,

network slicing can be defined as a unification of virtual network functions which are specific

to a service or a customer over a common network infrastructure and also instantiated and

chained using SDN. Network slices must be mutually isolated, independently controllable

and on-demand [30].

Fig. 1.4. shows an example system architecture of 5G using network slicing. As shown in

the figure, since eMBB requires both low-moderate latency and extreme data throughput, the

eMBB service slice has cache and data unit VNFs on edge cloud On the other hand, for the

IoT slice which serves vast amount of devices, application and data unit VNFs are placed on

the core cloud to support external services demanded by different customers. Finally, for the

uRLLC service slice autonomous driving use case is given as an example. In order to support

ultra reliable and low latency communication requirements of vehicle to everything (V2X),

this VNF is placed in both the edge and core cloud. Hence, the old-fashion traditional CN is

evolved to core cloud in this new architecture. The core cloud is responsible for orchestrating

the slicing, mobility and interference management etc. The architecture tries to separate

the user and control plane as possible as it could be and moves content storage and data

processing functions to edge cloud.

1.5. Major Contributions of the Thesis

The increasing significance of RAN resource allocation in 5G highlights flexible preamble

allocation. This study aims to find a solution to the RAN slicing problem that takes into

account services with varying prioritization. It explores the use deep reinforcement learning

(DRL) in order to solve the optimum resource allocation problem in RAN slicing. The

proposed methods could be integrated with other proposed methods like 3GPP proposed

Access Class Barring (ACB). The main contribution of the thesis are listed below.

• DRL is proposed in order to solve the preamble allocation problem in 5G. As far as we

know, this is the first study in the literature that explores the use of DRL for solving

the preamble allocation problem for network slicing.

• The proposed method is evaluated thoroughly with 2, 3 and 5 slices using on simulated

network scenarios where traffic could increase or decrease suddenly or constantly. The
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Figure 1.4. The network architecture based on network slicing in 5G [4]

experimental results show that the proposed DRL based method improves the overall

performance of the slices significantly by carrying out the prioritization dynamically.

• The proposed method is compared with the approach proposed in [1] by using a sce-

nario conducted in [1]. The results show that the proposed method generates close

results to the approach proposed in [1] . Moreover, the ideal algorithm mentioned

in [1] is also used as one of the comparison basis in order to show the success of

the proposed method. The results show that the proposed method can generate more

successful results than the ideal algorithm for some scenarios.

• Three reward functions, namely Successful Preambles Reward Function(SRF), Propor-

tional Reward Function (PRF) and Collision Penalizing Reward (CRF) are proposed
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for the reinforcement learning formulation and mathematically analyzed. The most

successful one is shown to be CRF, since it penalizes collisions and incentivize meth-

ods to prevent collision.

• A NEAT-based approach is also proposed as another promising solution. It is partially

successful since it can prioritize slices successfully while only using CRF with fewer

than 3 slices.

1.6. Organization of the Thesis

The organization of the thesis is given as follows:

Chapter 2 presents the essential background knowledge. It firstly presents the procedures

of up-link channel allocation. Here, the main definitions used throughout the thesis such

as preambles, RACH, RAO are given. Then, the DRL and GA methods used in the thesis

are introduced. Finally, the main motivation behind using of DRL and GA for the preamble

allocation problem in the study is given.

Chapter 3 presents the related studies in the literature. Especially the proposed approaches

for RACH congestion control and RAN slicing are reviewed. In addition, the studies that use

artificial intelligence for allocation of resources other than PRACH such as CPU and power

are given. The discussion of related studies are also presented at the end of the chapter in

order to highlight the difference of the proposed approach from the related studies. The study

used for comparison [1] is also introduced in this chapter.

Chapter 4 describes the proposed approach based on DRL in order to dynamically allo-

cate the preambles to the subsets of services. The DRL framework which uses Trust Re-

gion Policy Optimization (TRPO) and GA framework called Neuroevolution of Augmenting

Topologies (NEAT) are presented. The reward and fitness functions and analysis of them are

provided.

Chapter 5 introduces the training and testing experiments carried out in the thesis. The

performance of the proposed methods using simulations is presented. Extensive simulations

are conducted for 2,3 and 5 slices with different reward and fitness functions. The analysis

of experimental results are discussed thoroughly.
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Chapter 6 concludes the thesis with a brief summary of the proposed approach. The chapter

ends with the limitations and possible future topics related to this study.
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2. BACKGROUND

The introduction to the thesis is given in the previous chapter. After explaining the require-

ments of 5G and why these requirements need virtualization of network infrastructure in the

first chapter, in this chapter, the background information is given in order to base upon a

comprehensible foundation for the work in this thesis. First of all, the concept of preamble

allocation is given in Section 2.1., following the RAO procedure is given in Section 2.1.3..

Finally, the general information about the methods used in this thesis, namely DRL and GA,

are given in Section 2.2. and 2.3. respectively.

2.1. PRACH Preamble

The cellular network synchronizes BSs with UEs while they communicate. The synchroniza-

tion in down-link (from BS to UEs) is easy to handle since it is managed from a single source

and the sync signal can be broadcast from BS device to everybody periodically [31]. There

is no interference in this type of signal since the BS is established in this manner. However,

the case for the up-link synchronization is not the same, since, there can be many UEs in the

environment, the synchronization process cannot be dedicated to only one UE. Therefore,

the up-link synchronization needs additional care.

The PRACH procedure is used in cellular networks in order to allocate radio resources to

users. The up-link in PRACH is used by users to initiate access requests. A PRACH preamble

is the generated signal from an UE to BS to conduct RACH procedure. The signal carries

a “signature” which is recognized by BS. There are in total 64 distinctive preamble signals

available for UEs in 5G as were in LTE-A. UEs randomly select one of these preambles to

generate signals.

The signals have mainly two purposes. The first one is to have up-link synchronization

between UE and BS and the second is obtaining the radio resource to communicate. In

LTE-A, not all 64 preambles are reserved for contention-based RACH, the 10 preambles are

reserved for contention-free access by BS. In this type, BS specifically informs a UE to use

a reserved preamble so that no collision occurs. As a result, there are left 54 preambles

reserved for contention-based. Since, UEs randomly select a preamble from 54 preambles,

there is a possibility that multiple UEs may select the same preamble. The possibility of
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collision is the reason why this procedure is called contention-based RACH. In this approach,

immediately after the contention process, there is also contention resolution process. The

contention free and contention-based RACH are explained more in the subsequent sections.

2.1.1. Contention-free RACH

Even though the focus of this thesis study is not contention-free RACH, yet, in order to fully

understand the contention-based RACH the steps of contention-free RACH is also given in

this section. Fig. 2.1. shows the steps of both contention-free and contention-based RACH.

There are 3 messages in contention-free RACH and the first message is from BS to UE. With

the first message BS assigns a specific preamble to the UE, following that, UE sends the

assigned preamble. In RA response, the connection is granted.

2.1.2. Contention-based RACH

In contention-based RACH, there are 4 steps as seen in Fig. 2.1.. In the first step, UE

randomly selects a preamble and sends it. For example, if more than one UE sends the same

preamble in this step, BS device sends the same random access response to these devices.

In this scenario, these UEs get the same resource allocation (time/frequency domain). As a

result, they transmit the exact same information on the same time/frequency domain on the

3rd step (RRC connection request). The first and most probable possibility is the interference

of these messages so that BS is not able to decode them. Since, the 4th step is not reached

anymore, the UEs get back to the first step and try the RACH procedure from the beginning.

As a result, none UEs are successful allocating the up-link resource also a limited resource,

preamble, is wasted. The focus of this work is to propose a solution for the contention-

based RACH procedure. Rather than changing the mechanisms of contention-based RACH,

the aim is to make use of network slicing and network virtualization and create a dynamic

model.

2.1.3. Random Access Opportunity

In time domain, the transmissions in LTE are divided into 10ms length radio frames each of

which is also divided into ten sub-frames of 1ms length. The PRACH procedure is an interval

15



Figure 2.1. The steps of contention-based and contention-free RACH [5].

Figure 2.2. The PRACH configuration index and RAO sub-frame relation.
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which takes one sub-frame. The PRACH configuration index specifies in which sub-frame

UEs can send PRACH preamble. This configuration is broadcast by BS and the devices

around the BS sends their preambles with respect to this information. The time interval in

which the devices can send their preambles is called RAO. Fig. 2.2. shows on which sub-

frame(s) RAO is held with respect to configuration index in LTE/LTE-A. For example, when

the PRACH Configuration Index is equal 3 the RAO is held every 10ms, when the index is

equal to 6 it is held every 5ms. In Fig. 2.2. the first 6 configuration index relation is shown

but there are a lot more than 6 configurations in both LTE and 5G. The PRACH preamble

format and PRACH configuration index properties for 5G is nearly same with LTE-A. In this

thesis, the configuration index 3 is employed to have a single RAO in 10ms interval.

2.2. Deep Reinforcement Learning

In this thesis study, DRL based approach is proposed in order to solve the preablem alloca-

tion problem in 5G. Since DRL is based on Reinforcement Learning (RL), firstly the main

components of reinforcement algorithm is explained below.

2.2.1. Reinforcement Learning

Reinforcement Learning (RL) is a field of machine learning where the machines can learn

from their actions by using the results of their actions. In the standard reinforcement learn-

ing model there exists an agent connected to the environment surrounding it. There is/are

input(s) to the agent which represent the current state of environment. The response to these

states that generated by an agent is called actions. The iterative actions and states evolve

environment in time.

In each iteration, the action of agent is evaluated and some reward/punishment signal is

generated. The agent should choose the actions such that in time the sum of reward signals

must increase and the sum of punishment signals must be decreased [32]. Fig. 2.3. shows the

interaction of the entities of the standard model which consists a discrete set of environment

states(st), a discrete set of actions(at) and a set of reinforcement signals(Rt). As it is called

Markov Decision Process (MDP), so that, the aim of agent is to develop a policy π mapping

the states to actions so that the overall reinforcement signals will be maximized in long run.
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Figure 2.3. Conceptual schema of the reinforcement learning model.

There are two main approaches while solving problems using RL. There exist methods based

on value function and methods based on policy search. Another third approach is the hybrid

of value function and policy search methods and is called the actor-critic approach.

2.2.1..1 Value Function: The majority of reinforcement learning algorithms try to esti-

mate the value functions. In detail, the value is expected return in a given state(st). Therefore,

the value function is a function of states which measures the level of quality to be in given

state. Recalling π is a mapping from states to actions, the state value function V π(s) is the

expected return. E denotes the expected value when agent follows the policy π.

V π(s) = E[R|s, π] (1)

If the optimal policy π∗ has value function V ∗(s) than the optimal state-value function

V ∗(s) = max(V π(s)) for every state. To retrieve the optimal state-value return in state

st an action must be selected that maximizes the next expected return. Since the underlying

transition dynamics can not be known due to very high dimensional observations of the envi-

ronment, another state-action or quality function Q(s, a) defines the value of taking action a

in the state s under the policy π. The quality function is provided with an initial action unlike

the state-value function. The policy proceeds from only the current succeeded state [33].

Qπ(s, a) = E[R|s, a, π] (2)

To learn Qπ(s, a), MDP is used and the function is defined as Bellman equation. The equa-

tion has a recursive form which emphasizes the value of the current state is related with

successive states so that Qπ can be used to improve the future estimates. This leads us to

well known Q-learning and State Action Reward State Action (SARSA) algorithms. While
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SARSA is an on-policy algorithm where the behavioral policy and target policy are same,

Q-learning is an off-policy algorithm in which those two are different.

2.2.1..2 Policy Search: These types of methods do not need to evaluate a value function

model. It starts with random policy and it tries to find the value function of that policy at

the policy evaluation step. In the policy improvement state, it will find a new policy using

the previous value function. These two steps repeat until the convergence. With the value

function and policy search, value based and policy based reinforcement learning show up.

The key difference is while value based methods do not need to explicitly build a policy

function, policy based methods store representation of policy and keeps it while learning.

Policy based algorithms use policy gradients to get learning signal along with REINFORCE

algorithm given in Algorithm 1. A basic trajectory τ = (s1, a1, s2, a2, s3, a3, ..., st, at) shows

state/action pairs. To compute the expected return, an average plausible trajectories retrieved

by the current policy parametrization is needed to be calculated. This procedure requires

stochastic approximation in model-free approach using Monte Carlo roll out to compute the

rewards. However, since the gradient based learning has difficulties under the stochastic

policy due to one small change can completely alter the results, the REINFORCE algorithm

is used as an estimator of gradient. Formally, REINFORCE algorithm can be used to compute

the expectation over all the possible paths that agent can take and using the computation it

estimates of action values to evaluate the policy. The REINFORCE algorithm performs

trajectory roll-out using with the current policy. Then log probabilities with rewards are

stored. Following, discounted future reward is estimated. Finally, the policy gradient is

computed and the policy parameter is updated. These steps are followed in a loop.

Algorithm 1 REINFORCE algorithm.
1: initialize policy paramater θ arbitrarily
2: for each episode {s1, a1, r2, s2, a2, r3, s3, a3, ..., sT−1, aT−1, rT} ∼ πθ do
3: for t = 1 to t = T − 1 do
4: θ ←− θ + α∆θlogπθ(st, at)vt

5: return θ

Value based methods require total coverage of state space and function approximation to

the value function. However, in high-dimensional state space a small change in policy may

cause a major change in the value function. This results in unstable behaviour. On the other

hand, policy search methods generally find local optima and work well with continuous
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Figure 2.4. Actor-Critic reinforcement learning model.

features. Since it improves the current policy, it gently improves the performance. While

value iteration based methods are called critic-only methods generally, policy search methods

are called actor-only methods [34].

2.2.1..3 Actor-Critics: In actor-critic methods an explicit policy is evaluated. At the

same time, a value function is also used to not to select actions but to decide when the policy

needs to be updated. The value function observes the consequences of the actor and then,

the policy evaluation decision is made. Fig. 2.4. shows the structure of the actor-critic

reinforcement learning model. Temporal Difference (TD) error represent how different the

new value from the old prediction. Using this feedback, the policy is updated and the learning

process is accelerated. The policy gradient based actor-critic algorithms are more common

and they have generally good convergence properties [35].
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2.2.1..4 Natural Policy Gradients: Policy gradients constitute the largest part of the

actor-critic algorithms. The policy gradients are divided into standard and natural policy

gradients [35]. Standard policy gradient fits to the cost function with a single local min-

ima and whose gradients are isotropic in magnitude with respect to any direction away from

this minimum [36]. However, real life problems involves multiple local minimums and in

those the cost function is not relied on the choice of coordinate system instead they may

have curved state space. Standard policy gradient fails in the curved state space so that the

natural policy gradient comes into prominence [37]. The natural policy gradients guarantee

performance improvement unlike greedy policy iteration [38].

2.2.1..5 Trust Region Policy Optimization(TRPO): Trust Region Policy Optimization

is an on-policy model-free actor-critic scalable algorithm for optimizing the policy by using

natural policy gradient. It works for both continuous and discrete action space. It updates the

policy by taking largest step possible to improve the performance calculating how the dis-

tance between the old and new policies using Kullback–Leibler divergence which is measure

of distance between probability distributions. Thus, it guarantees monotonic improvement

[39]. In this work, TRPO method is used in DRL model, how it is used will be mentioned

later in Chapter 4..

2.2.2. Deep Reinforcement Learning

Deep learning combined with RL is used for scaling decision making problems that were

unable to be solved due to high dimensions of state and action space [40]. The pioneer DRL

method was used to play Atari from directly the pixels of the game [41]. Later, the very

famous AlphaGo system based on DRL has defeated a human world champion at Go [42].

Following, DRL has been applied to so many problems from finance to robotics [43, 44].

The key difference DRL from RL is that deep neural networks are used to approximate to

components of RL in DRL [45]. Fig. 2.5. shows the symbolic representation of a DRL

schematic. The deep neural networks in the agent may be in any component of RL. For

example, it can be used in value function, policy or even in the state to action transition

model.

21



Figure 2.5. Deep reinforcement learning structure.

2.3. Genetic Algorithm

Genetic Algorithms (GA) are a subset of Evolutionary Computation algorithms which are

basically the family of all algorithms based on natural evolution. Other than GA, there are

ant colony optimization, genetic programming, particle swarm optimization algorithms and

etc. under the class of Evolutionary Computation algorithms. GA is specifically a search

based optimization technique which uses the natural selection mechanism in the evolution

[46]. Some definitions related to GA are given below:

• Genes are the basic parameters that form individuals (chromosomes). The individuals

are represented by strings. Generally binary strings that consists of 0s and 1s are

employed.

• Individual or Chromosome represents a candidate solution for the problem at hand.

• Population represents group of all individuals.

• Fitness function determines how fit an individual for the problem.

• Crossover is the process of exchanging the genes between the chromosomes randomly.

After offsprings are created and added to the new population.
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Figure 2.6. The relationship between the operators and individuals in GA.

• Mutation is the process of randomly mutating some of genes in the chromosomes.

Algorithm 2 shows the pseudo code of the classical GA. The input to the GA is the candi-

date solutions for the problem at hand. These solutions, which form the first population are

usually initialized randomly at the beginning of the algorithm. The possible solutions are

represented as binary strings as shown in Fig 2.6.. The solution should be represented by

this kind of fixed size strings in the GA algorithm. They are called artificial chromosome

whose genes are associated with each of variables of the problem [47]. Then, the fitness

function is employed to evaluate each solution in the population. The algorithm selects the

parent solutions based on their fitness values in order apply genetic operators such as se-

lection, crossover and mutation, and so new offsprings are created. For a given problem,

having a well defined fitness criteria is very important. Since the natural selection is based

on fitness function, if it is poorly designed the individuals that may generate higher fitness

in a well constructed architecture may be eliminated. The convergence may take a long time

or even GA may not find global optimum. Fig. 2.6. shows how operators work on individu-

als in generations. Newly created individuals are included into the new population by using

replacement strategies for the next generations. The algorithm continues until it reaches to

the maximum number of generations or until it reaches to a satisfied solution. As shown in

Algorithm 2, the parameters such as population size, maximum iteration number, mutation

or crossover probability are set at the beginning of the algorithm.

The main genetic operators in GA, which are selection, crossover and mutation, are explained

in details below.
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Algorithm 2 Genetic algorithm.
1: START
2: Set initial parameters
3: Choose an encode method for individuals
4: Generate the initial population
5: while Iteration < MAX ITERATION and Best Fitness < MAX FITNESS do
6: Compute fitness
7: Selection
8: Crossover
9: Mutation

10: return Best Individual

2.3.1. Selection

Selection is the process of selecting parents which reproduce and create offsprings for the

next generation. It is also a crucial part of the GA since better parents drive the individuals

to generate higher fitness results. There are several different methods to select the parents

like elitist, roulette wheel, tournament etc. For instance, in one of the most used methods,

in the roulette wheel selection, a circular wheel is created and divided proportionally to the

fitness results of each individual. Since the individual with highest fitness gets larger pie on

the wheel it is more likely to be selected for the reproduction.

2.3.2. Crossover

Once the parents have been selected, they are used to produce the offsprings in the crossover

phase. There are too many different crossover methods in GA. The most common one is

single point crossover in which a crossover point is selected, then the right or left side of

the point is swapped between the parents. In Fig. 2.6. the single point crossover is applied.

In the next generation, if those individuals are kept in the new population, both S5 and S6

offsprings have genetic information from their parents.
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2.3.3. Mutation

Following the selection and crossover operators, a new population including new members

is created. Since the population size must to be fixed, some replacement strategies are em-

ployed. Depending on the strategy used, new population might include some copied individ-

uals from the previous population along with new offsprings. To provide additional genetic

diversity and prevent to get stuck in a local maximum mutation operation is applied on genes

with a probability. Basically, the string representing the gene is replaced with a newly gen-

erated string.

2.3.4. NEAT Algorithm

In this study, Neuro-Evolution of Augmenting Topologies (NEAT) algorithm is applied in or-

der to integrate GA with DRL. NEAT is a GA used in evolving and creating neural networks.

There are numerous works that use this algorithm such as flappy bird, cartpole balancing

games [48, 49]. So that, NEAT has proved itself by training ANN models for dynamic envi-

ronments. In this work, as a second approach NEAT based model is used. How it is used for

the problem at hand will be explained in details later in Chapter 4.. Here, only an introduction

to NEAT is given.

NEAT is a GA for evolving and altering ANN that is introduced in [50]. The main aim of the

algorithm is to find effective connection weights, biases and even sometimes ANN topology

for the problem. Each genome consists of two types of genes which defines ANN. Each

neuron is represented with node gene and each connection is represented with connection

gene [51]. To evolve the model user provides a fitness function which generates a single real

number. NEAT evolves ANNs over generations and creates more complex and better ANN

architectures for the problem in time.

Since the genome itself is an ANN in NEAT, reproduction and mutation operations are a bit

more complex. For example, the results of these operations may add or delete new ANN

nodes and connections to architecture. The crossover is applied on two networks. NEAT

keeps track of each origin of node with an identifier. The nodes having common ancestors

are matched up for crossover or the connections are matched up for crossover if the nodes

connected by that connection have same ancestor.

25



3. RELATED WORK

In this section, studies on RACH congestion control, RL in wireless networks and RAN

slicing in the literature are reviewed.

3.1. RACH Congestion Control

The most well known proposed congestion control technique, ACB, prevents UE to access

RACH resources when there is congestion in the network. The BS periodically distributes a

probability factor and barring time. Then, the UEs select a random number. If the selected

random number is lower than the probability factor, the UE is permitted to access RACH re-

sources. Otherwise, UE waits a random amount of time based on the barring time distributed

by the BS.

Although some ACB methods separate the service classes into two as delay-tolerant and

delay-constrained for service prioritization, it doesn’t fulfil 5G network requirements which

may define more than 2 RAN service types [52]. For instance, [11] exemplifies 5 different

service types for 5G RAN. To support multiple services, Extended Access Barring (EAB) is

proposed as an extension of ACB for service differentiation among different M2M devices.

In this scheme, the main aim is to reduce the number of collisions among delay-tolerant

M2M devices, so generally the delay is higher than ACB [53]. There are also few studies

to incorporate service differentiation into random access channel by distributing multiple

barring factors to different service classes in combination with different techniques [54–56].

Back-off adjustment schemes proposed by 3GPP works well in low congestion circumstances

[57]. There are two main approaches in back-off adjustment schemes, the first one assigns

different back-off timers to different M2M devices and prioritizes them [58, 59] and the

second one increases the back-off time interval each time a collision occurs [60]. While the

first method aims to achieve different QoS for different service types, the second method aims

to prevent collisions in RACH. It is reported that back-off adjustment schemes cannot prevent

high average access delay for peak congestion scenarios [61]. Authors in [62] propose a

dynamic backoff collision resolution method for massive M2M communication by adjusting

backoff indicator which is a parameter indicating the time delay between a PRACH and

the next PRACH. In another dynamic backoff collision method, collaborative distributed
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Q-learning is used to utilize RACH congestion level for IoT devices [63]. In the work,

each device has Q-values corresponding to RA slots and these values are updated based on

transmission results.

Slotted random access is another mechanism which allows M2M devices to access RACH in

a reserved time slots [64]. The reserved random access slot can be used by only same clas-

sified M2M devices. However, if the class has multiple devices, since the access procedure

is random, collisions in these scheme reduces the overall performance of the mechanism.

Therefore, pre-allocation of resources to each device increases the success rate dramatically.

Also, estimating the number of arrivals and optimizing the time slots with respect to estima-

tion is quite successful in peak congestion scenario [65].

Clustering the M2M devices and assigning a head to these groups who interacts with the

BS is another suggested mechanism. These groups can be formed with respect to different

concerns like geographic proximity, functionality, intended purpose of use. M2M devices

don’t send their preamble allocation requests directly to BS instead they send their data to

the head M2M node. The head node send the buffered information through the BS. The

environment changes and information sent by BS is broadcast by the head node to other

M2M devices [66].

There are also a limited number of studies proposing to prioritize RACH access through

preamble separation [56, 67–69]. Most of these studies propose a fixed preamble separation

configuration which divides the preambles into two groups. For example, the total set of

preambles are divided into two groups in [67, 68], one group is exclusively reserved for H2H

devices and the other group is either reserved for M2M or can be used by both M2M and H2H

devices. The authors in [69] proposed to partition the preambles into 3 groups by introducing

a higher priority traffic type for smart grid but the groupings are not adaptive. Another static

approach where PRACH (Physical Random Access Channel) slots are assigned to different

service classes is also proposed in [56]. The issue with these works is that the preamble

groupings are static which may be inadequate to respond to changes in the traffic of different

service classes.

To overcome this problem, the use of dynamic preamble subset allocation is proposed in

[11]. The main difference between the approach in [11] and this work is that the authors

use heuristic algorithms for subset allocation whereas we use reinforcement learning. Be-

sides they consider a setup where nodes transmit multiple consecutive preambles whereas we
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consider single preamble transmission as in the LTE standard. Another dynamic preamble

separation method which is combined with binary exponential back-off with respect to three

different priority classes is proposed in [70]. A load adaptive dynamic preamble allocation

method called LATMAPA [71] is proposed for prioritizing in the context of 5G Random

Access. However, it proposes a solution for only 2 slices which are delay tolerant and delay

intolerant.

Very recently, an online control method for dynamic preamble distribution over prioritized

preamble groups is proposed in [1]. At first, the number of active devices in each priority is

estimated in a recursive Bayesian way. Then, together with this estimation, a heuristic novel

algorithm that distributes the preambles over the service groups with respect to their priority

levels in a dynamic manner is applied. Finally, they extend their approach with ACB. In

terms of separating the preambles and prioritizing the services, [1] shows similarity to the

proposed approach in this current study. For example, while they classify the devices into

different priorities by assigning priority weights, priority coefficients are employed in this

study. Furthermore, both study support any number of services. Therefore, the proposed

approach is compared with this approach by using a scenario given in [1]. Moreover, the

ideal algorithm given as the baseline in [1] is used in the experiments of this thesis. Another

adaptive method proposes to allocate a dynamic number of preambles to contention-based

RACH [72]. In this study, the number of preambles is varied instead of using a fixed number

of preambles but different service classes are not taken into consideration.

Code-word expanded random access scheme is a distinctive collision decreasing method

without affecting the physical layer [73]. The study uses more than one sub-frames to send

preambles and by combining these multi preambles, a distinguishing code-word is created.

Doing so, the contention space has been expanded to code domain and the probability for

collision drastically decreases. However, it is denoted in the research during the low load

conditions the method affects badly to performance because of code ambiguity.

3.2. RL in Wireless Networks

RL-based approaches have recently been proposed for several problems in RAN. In general,

these works are focused on optimizing the allocation of resources and increasing the QoS.

One relevant study on RACH proposes ACB barring rate adaptation using Q-learning to
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increase the success probability of M2M communications with low impact on H2H commu-

nication [74]. Another study employs RL to optimize the joint allocation of fiber and radio

resources for Cloud RANs. The authors note that RL improves performance with respect to

genetic and tabu search algorithms [75].

There are also several studies about mobile edge computing (MEC) to optimize the allocation

of network and computing resources [76–78]. Another application of RL is to improve the

energy efficiency of heterogeneous networks through user scheduling and resource allocation

[79]. A Q-learning based DRL is used for dynamic resource optimization for both commu-

nication and computational down-link resources like CPU usage [80]. A multi-agent RL

method is used to assign distributed cooperative sub-channels and control power to improve

transmission success probability in massive access scenario[81].

A RL-based slice admission controller which makes its decisions based on resource availabil-

ity is also proposed in [82]. A DRL-based method, specifically a DQL-based radio resource

management and priority based CN slicing method is proposed in [83]. The authors spec-

ify that rather than using demand-prediction methods, demand-aware DRL methods could

implicitly incorporate more deep relationship with demand and supply of limited resources.

Similarly, there are several DRL based resource allocation methods using network slicing

concept in very recent [84–86].

A dynamic resource scheduling method uses DRL to extract user experience related data

while user interacting with network environment to understand the user behavior [87]. Using

extracted information, dynamic adjustment of the resource to the slices are enabled. CPU

usage, storage, bandwidth, and the like are named as network resources and quantified with

resource units. These units are assigned to VNFs in the experiments. Authors in [88] first

introduce the problem of capacity management in heterogeneous satellite network which

is composed of LEO, MEO and GEO satellites, then they construct a network model and

a low-complexity method for calculating the capacity between the satellites in this model.

Finally, based on Q-learning, they propose a long-term capacity optimal allocation method

to optimize long-term utility.

To the best of my knowledge, RL has not been applied to the problem of preamble allocation

for network slicing. The advantage of using RL with respect to methods based on heuristic

methods is that there is no assumption on the traffic model in RL. RL can learn to maximize

channel performance regardless of the traffic distribution.
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3.3. RAN Slicing

Network slicing is also gaining popularity as a key enabler technology for the 5G vision

and RAN slicing is one of its main components. The main aim of RAN slicing is to enable

dynamic on-demand allocation of radio resources among multiple services. A run time slic-

ing method that isolates RAN slices and a set of algorithms in order to partition inter-slice

resources are proposed in [89]. Another RAN slicing method allocates radio resources be-

tween enhanced mobile broadband and vehicle-to-everything services using RL combined

with a heuristic algorithm to maximize utilization [90]. A two-layer scheduler approach is

proposed in [91] to manage the isolation and efficiency balance where the first layer is used

to allocate resources to each slice and the second one is used to allocate resources for each

user. A dynamic up-link resource allocation scheme for RAN slicing is proposed in [92]

in order to improve service quality of eMBB service and to reduce power consumption of

URLLC service using Lyapunov optimization.

Authors in [93] proposes service provisioning in RAN slicing using a unified framework for

access control and bandwidth allocation with the aim of maximized resource utilization and

guaranteed QoS. Another study focuses on spectral efficiency on RAN slicing [94]. The

authors propose Powell–Hestenes–Rockafellar method in order to allocate resources for two

slices (URLLC and eMBB). In [95], a RAN slice selection and optimization method based on

transmission rate, blocking rate and delay is proposed. The optimization problem is proved

to be a 0-1 knapsack problem.

DRL is also widely used in RAN slicing optimization. One example formulates RAN slicing

as joint optimization problem with content caching and mode selection [96]. The dilemma

between limited resources and user demands drives authors to use DRL in cloud server in

order to make decisions on content caching and mode selection to maximize the reward

under the dynamic environment. Another RAN slicing optimization method proposed in

[97] uses DRL for intelligent hand-off policy since authors formulates hand-off problem as

the Markov decision process. An efficient device association for the RAN slicing method

uses hybrid federated DRL to improve network throughput while reducing hand-off cost

[98]. The individual devices use federated DRL since transferring data or models from an

agent to another agent is not allowed due to privacy of data [99].

30



A Q-learning method proposes a dynamic resource optimization solution for RAN slicing in

[100]. Each slicing request remarks latency, rate, and CPU usage requirements. The method

assigns both communication (frequency-time blocks) and computational resources (CPU us-

age) to these slicing requests for down-link communications. Authors in [101] proposes a

DRL approach for multi-tenant cross-slice resource orchestration for RAN slicing. They

formulates the problem as stochastic game between service providers (tenants), who are try-

ing to maximize long-term pay-off from the competition with other service providers. The

service providers offer their users communication and computation slices over same RAN

infrastructure. The DRL is proposed to find optimal abstract policies between the service

providers.

Fog-RAN has been proposed to assure the requirements of URLLC. Since the URLLC de-

vices can not accommodate large delays, fog node is invented to be deployed to physically

near places to these device and it is equipped with computing, processing and storage capa-

bilities for immediate need. The authors in [102] formulates Fog-RAN resource allocation as

the Markov decision process and employ various RL methods. They claim that RL methods

always achieve the best results.

Another Q-learning based method proposes resource allocation scheme for C-RAN slicing

[103]. The authors create a two-layer framework which is divided into upper and lower layer.

In the upper layer, the mapping of virtual protocol stack functions is applied; in the lower

layer, RRH association, subchannel and power is managed. The DRL is also proved itself in

real-time resource allocation of RAN slicing in [104].

3.4. GA in Wireless Networks

There are a few proposed GA based resource optimization and allocation methods under the

concept of network slicing. One study combines Q-learning with GA [105]. While they use

Q-learning in order to control cross-slice congestion, for admission strategies they use GA

as complementary method to Q-learning [105]. While admission refers issuing new slice

requests and handling the resource allocations to the new slice, cross-slice control refers the

maintenance of newly created slice until it is released. Radio resource isolation is one of the

most important QoS property that must be maintained when any change occurs in the slices.

Inter-cell interference is a dominating factor that breaks the isolation rule.
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A novel approach used GA for finding dynamic spectrum allocation for slices in order to

perform radio resource isolation and utilization [106]. They represent the resource alloca-

tion schemes of the cells as genes. A very similar online GA slicing method [107] proposes a

strategy optimizer in order to maximize the network utility in long-term. The method encodes

slicing strategies into binary sequences for GA to handle request-decision mechanism. Au-

thors of [108] proposes a virtual network resource allocation method named GSO-RBFDM

which is based on dynamic resource pricing idea. They chain Group Search Optimization,

Radial Basis Function and GA algorithms in order to form a dynamic solution. Instead of

the classical Dijkstra Algorithm, GA is used to find low-cost network mapping.

3.5. Discussion

Generally, optimization studies other than allocation resources for RACH focused on initi-

ating and maintaining the network resources for network slices. On the other hand, unlike

down-link resource allocation, dynamic allocation of up-link resources for the RACH pream-

ble is a more challenging problem as the BS has limited information about the number of

nodes waiting for different services. Previous studies on service differentiation in the RACH

context either focused on heuristics methods or analytical models. This study focus on DRL

and GA based approaches for this complex and dynamic problem.

DRL methods have the advantage of being able to operate without exact system models.

Moreover, they have the ability to adapt to changes in an environment and to give a suit-

able action automatically with the help of their reward mechanism. These features make

DRL very attractive for dynamic preamble allocation and suitable for changing service re-

quirements over time. GA based model is used in order to compare the results with DRL

and baseline. Therefore, in this study, the use of DRL and GA for dynamic RAN slicing is

investigated.
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4. MODEL

This chapter presents the proposed adaptive preamble subset allocation methods based on

DRL and GA in details. The both methods can distribute preambles among different service

classes according to their priority providing a virtual isolation of service classes. Besides,

several reward functions for the DRL algorithm are proposed and the behavior of these func-

tions are mathematically analyzed. This chapter also introduces these reward functions.

In a typical LTE-A and 5G configuration, 64 preambles are used in the random access pro-

cedure, however, while 10 of them are reserved for contention-free access, 54 preambles are

allocated for contention-based access [109]. Hence, it is assumed that the total number of

available preambles is 54. A system is considered as there are N slices with different service

requirements with an ideal channel where the preamble losses only occur due to collisions.

Therefore, 54 preambles used in the random access procedure are divided into N different

groups. Each preamble group is assigned to a slice and a UE is only allowed to select a

preamble from the group of its service class. Hence each slice is isolated from the rest of the

slices in the sense that the preamble transmitted by a UE can only collide with the other UEs

in the same slice.

In the next RAO, the nodes which have been collided will remain backlogged in the system

and will attempt to transmit a new preamble in the next round. The preamble groupings are

adaptive and assumed to be announced by the BS before each RAO. Hence, the backlogged

nodes will follow the new preamble groupings announced by the BS in the next round. As

well as the backlogged nodes, newly arriving nodes will also be attempting to transmit in the

next slot. A sample RAO is shown in Fig. 4.1.. In the figure, the BS has announced that 9

preambles reserved for 1st slice, 12 preambles are reserved for 2nd slice, etc. There were

22 UEs transmitted a preamble from 1st slice and four of them became successful as they

are the ones that did not experience a preamble collision. Hence, the number of backlogged

UEs are reduced to 18 after the RACH opportunity. In this thesis, the maximum number of

preamble retransmissions (W) by a single node is set to 10. The notations used throughout

in this thesis are listed in Table 4.1..
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Figure 4.1. RACH process of BS simulator.

Table 4.1. System model notations.

M Total number of available preambles for contention-based RACH (54)

W Maximum number of allowed preamble transmission attempt (10)

J Number of slices(services)

mj Number of preambles reserved to slice j

cj Number of collided preambles at a RACH opportunity for slice j

sj Number of successful preambles at a RACH opportunity for slice j

uj Number of unused preambles at a RACH opportunity for slice j

nj Number of new arrivals at a RACH opportunity for slice j

λj Normalized arrival rate for slice j

rj Collected reward in a RACH period for slice j

kj Reward or priority coefficient for successful transmission of preamble for slice j

4.1. DRL-based Model

In recent years, there has been a tremendous increase in the use of DRL in order to solve

highly-complex problems. Here, it is used for the adaptive selection of the preamble groups.

In this section, the proposed model is explained.
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4.1.1. The Model Layout

In RL, an agent learns suitable actions to take in an environment in order to maximize the

cumulative reward. One of the main advantages of RL with respect to supervised learning is

that it does not require labeled input-output pairs. Hence, the agent learns only by interacting

with the environment. In this problem, the learning agent is the BS and the action in RL

corresponds to the preamble groupings for each slice. More specifically, the BS decides on

the number of preambles for each slice such that their sum will be 54. Before each RAO, the

BS distributes the groupings by publishing them.

The environment is the RACH where a number of UEs are waiting to transmit a preamble.

Based on the announced preamble groupings, each UE transmits one of the preambles from

their respective preamble group. Each node randomly selects its preamble and the number of

UEs transmitting is not known to the BS. Moreover, the number of UEs waiting to transmit

a preamble changes as new UEs arrive at the channel over time. Hence, the environment is

stochastic.

In a classic policy gradient RL implementation, the policy of the agent maps the state to

actions and the REINFORCE algorithm optimizes the policy. Here, Trust Region Policy

Optimization (TRPO) which has recently achieved state-of-the-art results in various AI tasks

is employed in RL [110]. In the TRPO algorithm, the two dependent neural networks shown

in Fig. 4.2. are used for approximating the value function and the policy function. From

the TRPO perspective, the value network is used to calculate the expected future reward

from the current policy. The policy network is used for approximating the policy function.

This network gets the current state of the environment as input and produces the probability

distributions of each action using the value function, then, the algorithm selects the most

probable action [111].

In this thesis, an open implementation of TRPO [112] is used as the DRL framework which

uses ADAM optimizer for both neural networks due to its fast convergence [113, 114]. Fig.

4.2. illustrates the interaction between the agent and the simulation environment. Specifically

for this problem, the policy network plays the actor role and produces the action space to the

environment. Meanwhile, the value network produces state values by assigning each state a

score calculated using the sum of rewards and the state of the previous round so that the states

with higher rewards have more value in the network. Actions which results in a better state
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Figure 4.2. Interaction between DRL agent and network environment when J = 5.
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is preferred since it produces a higher reward. Using neural networks for the approximations

make TRPO a DRL algorithm.

4.1.2. The RL States, Actions and Reward Function

The most crucial aspect in the RL framework is the reward function. The reward function

defines the objective of the problem. In this study, the reward is defined as a function of

the number of successful preambles and collided preambles for each service class. For each

service class j, a reward function is calculated as follows:

Rj(t) = sj ∗ kj − cj (3)

where sj and cj are the number of successful and collided preambles from class j, respec-

tively. kj is defined as the reward or priority coefficient for class j which is used to prioritize

among different slices. Higher the priority of the slice, the higher its reward coefficient

should be. Then, the total reward is calculated as the sum of rewards for all service classes.

R(t) =
∑
j

Rj(t). (4)

The selection of this (CRF) reward function is discussed in detail in Sec. 4.3.. The state of

the environment is the number of UEs from each service class waiting to transmit a preamble.

However, this information is not available to the BS, rather, it uses the most recent observa-

tion about the channel in terms of successful and collided preambles. In detail, BS can only

know if a preamble is successful or not without knowing how many UEs have sent the same

preamble in failure. Than, the state is defined as:

S(t) =
⋃
j

Sj(t) (5)

where

Sj(t) = {cj, sj}. (6)
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4.2. NEAT-based Model

In this model, NEAT is used for the adaptive selection of the preamble groups. In this section,

the proposed technique is explained.

4.2.1. The Model Layout

An individual corresponds to a candidate ANN model based solution in this model. The

ANN model used in this work has as number of input nodes as twice number of slices J .

These inputs are number of collided preambles cj and number of successful preambles sj for

each slice. These were the states S(t) of the DRL agent given in Equation 6. Similarly, the

current state of the environment is also given as ANN inputs in this model. Two hidden layer

is defined in the configuration since it achieves better performance compared to a single layer

[115, 116]. There are as number of slices as output nodes to determine number of preambles

reserved to each slice. The detailed information of configurations used for training the NEAT-

based model is given in Appendix A. The default configuration file of the cart-pole game

[117] is used as the configuration file in this thesis.

Fig. 4.3. illustrates the interaction between the NEAT individual and the simulation envi-

ronment while training or testing. In the figure, there exists 5 slices; J = 5. The NEAT

individual provides preamble distribution actions to the network environment, in return, it

gets the state of that round as inputs. In each generation, genetic operators are applied to

ANN solutions. Firstly, two ANN solutions are selected as parents. By applying crossover,

new ANNs which are completely or partially different from their parents are generated. In

crossover, the connections, weights or nodes may be transferred between the parents. Muta-

tion operator also works on the same parameters and changes them with a given probability.

4.2.2. The Fitness Function

As the reward function in RL, a well defined fitness function in GA is the most important part

of the problem. In GA, the fitness function of an individual measures how well any black

box model works in an environment relative to other individuals in a solution pool while

each individual aiming the same predetermined objective. It is used by GA as an indicator

for survival of that individual. Basically, the individual with a higher fitness value has a
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higher chance to propagate in the next round. In RL, the reward function is a direct signal

for the model to learn since the policy is preserved until the end of training. Still, both fitness

function and reward function indicate how well a model performs in an environment [118].

Therefore, the fitness function of GA in this study is same with the reward function of RL.

For each service class j, fitness function is calculated as follows:

Fj(I, t) = sj ∗ kj − cj (7)

where sj and cj are the number of successful and collided preambles from class j respec-

tively. kj is defined as reward coefficient for class j who gives the priority level of slice.

Than, the computed fitness for the given individual I at time t for j slices is equal to sum

fitnesses of all slices.

F (I, t) =
∑
j

Fj(I, t) (8)

4.3. Reward Function Analysis

In this section, the problem in RL context is formulated and, then, the RL algorithm that is

used to solve the problem at hand is described. The reward functions explained in this section

are used in GA model as well. Each formulation here also constructs the fitness function used

in NEAT.

Reward function is the objective function used for evaluating the model that has to be max-

imized over successive steps. The choice of the reward function is crucial, since a poor

selection may result in suboptimal allocation of resources. In this part, analytical expres-

sions are derived for several possible reward functions for a two-slice scenario, J = 2. Then,

the behavior of these functions is evaluated. Finally, these analytical results are compared

with the experimental results presented in Sec. 5..

Let m1 and m2 are the number of preambles assigned to each slice such that M = m1 +m2.

Let n1 and n2 are the average number of arrivals per RACH opportunity for each slice. First

the case where n1 < m1/e and n2 < m2/e is considered. In this case, all incoming traffic

can be supported because the capacity of the RACH with m preambles is approximated as

m/e [119].
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Figure 4.3. Interaction between NEAT individual and network environment when J = 5.
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Figure 4.4. Change in the SRF as m1 changes for k1 = 1 and k2 = 2 for different arrival rates.

When there are bi nodes randomly selecting preambles from a set with size mi, the expected

number of successful preambles is given by [120]:

si = bi(1−m−1
i )bi−1. (9)

Similarly, the expected number of unused preambles can be found as [120]:

ui = mi(1−m−1
i )bi . (10)

The remaining preambles are collided:

ci = mi − si − ui. (11)

When the RACH is stable, the expected number of successful preambles must be equal to the

average number of arrivals in the long run, i.e., si = ni. To satisfy this equality, the number
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Figure 4.5. Change in the PRF as m1 changes for k1 = 1 and k2 = 2 for different arrival rates.

of attempting nodes at each slot needs to increase to a level bi > ni. This value can be found

by solving (9) which gives bi = −miW (−ni/mi) where W () is the principal branch of the

Lambert W function [119]. Using the approximation (1 − 1/x)n ≈ e−n/x, u and c can be

further simplified as

ui ≈ mie
−bi/mi = mie

W (−ni/mi) (12)

and

ci ≈ mi(1− eW (−ni/mi))− ni. (13)

4.3.0..1 Successful preambles reward function (SRF) The most intuitive and simple

reward function is the number of successfully transmitted preambles at each RACH oppor-

tunity. In this case, the reward for a slice is ri = si and the total reward can be defined as the

weighted sum of rewards of each slice:

rsucc = k1r1 + k2r2 = k1s1 + k2s2 (14)
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Figure 4.6. Change in the CRF as m1 changes for k1 = 1 and k2 = 2 for different arrival rates.

where k1 and k2 are used to prioritize different slices. This reward function, however, has

some undesirable properties. For any choice of m1 and m2 which satisfies n1 < m1/e and

n2 < m2/e, RACH is stable and the number of successful preambles equal to the number

of arrivals, si = ni. Hence, the reward function is flat in this region. For n1 > m1/e and

n2 < m2/e, all preambles will be unsuccessful for 1st slice and all traffic can be supported

in 2nd slice, again leading to a flat reward function. In general, the reward function can be

written as:

rsucc =



k1n1 + k2n2 if n1 < m1/e, n2 < m2/e

k1n1 if n1 < m1/e, n2 > m2/e

k2n2 if n1 > m1/e, n2 < m2/e

0 if n1 > m1/e, n2 > m2/e

(15)

The behavior of this reward function is illustrated in Fig. 4.4. for n1 = n2 = 5. As the reward

function is flat for the stable region, the RL agent does not have any incentive to change the
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groupings as long as the RACH is stable. This behaviour may bring the system very close

to instability when the number of preambles reserved for one slice is barely sufficient for the

traffic of that slice. In that case, a slight increase in traffic may result in serious congestion

which could have been easily avoided if the agent used a more robust allocation of preambles.

Hence, a reward function which would “steer” the system towards a better operating point is

needed.

4.3.0..2 Proportional reward function (PRF) Another intuitive reward function for the

RACH channel is the ratio of successful preambles among the number of transmitted pream-

bles. Weighting each ratio corresponding to each slice, it is possible to differentiate pream-

bles among slices according to their priority. Let k1 and k2 denote the priority coefficients of

each slice. Then, for n1 < m1/e and n2 < m2/e, total reward for a single RACH opportunity

is given by

rpr = r1 + r2 = k1
s1

m1 − u1

+ k2
s2

m2 − u2

(16)

For n1 > m1/e, there are not enough preambles for 1st slice which will result in a growing

backlog and all preambles will collide resulting in r1 = 0. Similarly, for n2 > m2/e, r2 = 0.

Hence,

rpr =



∑2
i=1

kini

mi(1−eW (−ni/mi))
if n1 < m1/e, n2 < m2/e

k1n1

m1(1−eW (−n1/m1))
if n1 < m1/e, n2 > m2/e

k2n2

m2(1−eW (−n2/m2))
if n1 > m1/e, n2 < m2/e

0 if n1 > m1/e, n2 > m2/e

(17)

For a given n1, n2, k1 and k2, this function can be numerically maximized to find the values

of m1 and m2 such that m1 + m2 = m. The behavior of the PRF is shown in Fig. 4.5.

for n1 = n2 = 5. This reward function does not suffer from the problem mentioned in the

previous part. The optimum values of m1 for different priority coefficients is 25, 24 and 23

for (n1, n2) = (5, 4), (6, 6) and (7, 8), respectively. Even the traffic of lower priority traffic is

higher than the traffic of higher priority traffic, this reward function allocates a lower number

of preambles to the lower-priority traffic.
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4.3.0..3 Collision-penalizing reward function (CRF) Another reward function can be

defined as ri = siki − ci where ki is the reward coefficient. Hence, the total reward for

n1 < m1/e and n2 < m2/e can be written as:

rcp =r1 + r2 (18)

=k1s1 + k2s2 − c1 − c2 (19)

=(1 + k1)n1 −m1(1− eW (−n1/m1))+ (20)

(1 + k2)n2 −m2(1− eW (−n2/m2)) (21)

For n1 > m1/e and n2 < m1/e, all preambles reserved for 1st slice will experience colli-

sions, c1 = m1 and s1 = 0. Hence, the reward will be

rcp =k2s2 −m1 − c2 (22)

=(1 + k2)n2 −m1− (23)

m2(1− eW (−n2/m2)). (24)

Similarly, for n2 < m2/e:

rcp =k1s1 −m2 − c1 (25)

=(1 + k1)n1 −m2− (26)

m1(1− eW (−n1/m1)) (27)

For the case n1 > m1/e and n2 > m1/e, all preambles will be collided:

rcp = −m1 −m2. (28)

The behavior of the CRF is shown in Fig. 4.6.. For k1 = 1 and k2 = 2, the optimum values of

m1 for different priority coefficients is 30, 27 and 25 for (n1, n2) = (5, 4), (6, 6) and (7, 8),

respectively.
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5. EXPERIMENTS AND RESULTS

In this chapter, the both proposed techniques are evaluated using simulations. Different

models are trained and tested for each reward and fitness function for different number of

slices. The models are trained by using only CRF and PRF since the agent cannot distribute

preambles successfully and cannot handle the load of the higher priority slices effectively

when SRF is used. Therefore, a higher number of dropped preamble requests and longer

waiting times are observed in comparison to CRF and PRF. Hence, only the results of the

models trained by using CRF and PRF are demonstrated in the results. For the NEAT the

same reward functions are used as fitness functions as explained in Chapter 4..

In the previous Chapter 4., three different reward functions are analyzed for the 2-slice sce-

nario since the complete state space is relatively small. However, with the context of 5G there

are defined at least 3 service types: extreme-mobile-broad-band (xMBB), massive machine-

type-communications (mMTC) and ultra-reliable machine-type communications (uMTC)

[10]. This number, however, can increase up to 5 as delay-tolerant IoT, emergency, high

priority IoT, human-to-human and mobile broadband [11]. On the other hand, increasing the

number of slices also increases the state space drastically and finding the optimum policy

through analysis gets intractable. In order to prove that both methods propose a valid solu-

tion to the problem even in the high number of slices, the simulations are conducted for 3

and 5-slice scenarios besides the 2-slice scenario in this thesis study.

In the simulations, slices are prioritized using their reward coefficients, kj , also called priority

coefficient. Slice numbers are used as the prioritization factor such that kj = j. In other

words, assuming there are n slices, the nth slice has the highest priority. This prioritization

scheme is employed in all simulations through this work. Therefore, the slice numbers in all

figures also indicate their priority. In addition, the first and lowest priority slice will be named

as low-priority slice and the nth and highest priority slice will be named as high-priority slice

in the rest of the study.
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5.1. Traffic Distribution

5.1.1. The Distribution on Increase of Arrival Rate of Only High-priority Slice Sce-
nario

In these simulations, nj preamble requests are generated every 10 ms and these requests are

added to the testing backlogs of each slice. While low priority slices have a constant arrival

rate during the whole simulation, the rate of the high-priority slice is increased every 200

ms. In the 2-slice case, low-priority slice has a constant normalized arrival rate of λ1 ≈ 0.09

where the normalized arrival rate of slice j is defined as λj = nj/M . The normalized arrival

rate for the high-priority slice starts from λ2 ≈ 0.04 and increases up to λ2 ≈ 0.39. In the

3-slice case, the low-priority slice has a constant rate of λ1 ≈ 0.07 and medium-priority slice

also has a constant rate of λ2 ≈ 0.09. The normalized arrival rate of the high-priority slice

starts from λ3 ≈ 0.04 and increases up to λ3 ≈ 0.39. The x-axis of the Figs. 5.3.-5.33.

demonstrate this increase. Since the rate of increase of the high-priority slice is constant, the

x-axis is proportional to the simulation time. Each simulation runs 7 seconds.

5.1.2. The Distribution on Dynamic Environment Scenario

In these simulations, nj preamble requests are generated every 10 ms and these requests

are added to the testing backlogs of each slice like above. Differently from the previous

distribution, in order to test the temporal behaviour, here not only the requests of the high-

priority slice change, all preamble requests to slices may vary in time. The general approach

is having sudden increase of the arrival rate from low-priority to high-priority and the sudden

decrease from high-priority to low-priority respectively in time.

5.2. DRL Training

Here, a scenario where the BS policy is trained online but tested offline with actual traffic

after deployment is assumed. RL algorithms start by exploring the action space. At the initial

state, the first actions are mostly random and their initial behavior could be very far from

optimum. Hence, RL algorithms take a considerable amount of time in order to converge,

especially if the training process starts from scratch.
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Over-fitting is a crucial problem to avoid in all types of machine learning approaches. RL

algorithms are also prone to over-fitting to the environment and the trained policies may not

generalize very well to newer environments [121]. In the scenario, the system could over-fit

to the traffic arrival distributions used in training. In order to avoid over-fitting, the policy

is trained by using a randomly generated traffic model. nj values are randomly generated

in each random access traffic generator period. After the training, the performance of the

optimized policy is evaluated on different traffic arrival distributions which is more realistic

than random arrivals. Thus, the trained policy comes across first time with the actual traffic

pattern in the evaluation phase.

In the experiments, a random number of preamble request generator for slices is created.

First, the objective behind this approach should be revealed. In general, number of successful

transmissions in a round yields to M/e if the number of arrival of preamble requests is

greater than or equal to M [122]. As a result, if the arrival request count is greater than M/e

constantly, the number of backlogged preamble request increases in time. At some point, if

no other mechanism is not implemented, the preamble allocation process becomes unstable

irreversibly.

Considering the above objective, the random preamble request generator generates nearly

M/e preambles requests on average. Fig. 5.1. shows the training flow. In detail, the gener-

ator wakes up in every 10ms (RAO period) and changes nj values on every 5th seconds. On

each 5th second, the number of arrivals per round for each slice is recalculated with respect

to alternating two sub-algorithms. Considering J = 5, in the first sub-algorithm, a random

number is generated between 1 and M/e and the value of the number is distributed over

number of new arrivals such that
∑J

j=1 nj = rand(1,M/e). The distribution of that value

over those 5 numbers is also random. Later, a second random number is generated again

between 1 and M/e that is distributed over change amount values of number of new arrivals,∑J
j=1 n

∆
j = rand(1,M/e). The distribution is again random. Finally, the change amounts

are added to the number of arrivals for each slice, {∀j ∈ {1..J} : nj = nj + n∆
j }. For the

upcoming 5 seconds, generator will generate preamble requests every 10ms and adds these

requests to training backlog of each slice. On the next 5th second, the second sub-algorithm

steps in, the change amounts from previous 5th second are subtracted from the number of

arrivals {∀j ∈ {1..J} : nj = nj − n∆
j }. For the upcoming 5 seconds in every 10ms, those

subtracted number of arrivals will be added to training backlogs as in before.
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Figure 5.1. Training scenario of the DRL-based model.
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In each RAO period, these backlogged preamble requests are evaluated by the BS simulator.

The request which ends up with success or the same request fails consecutive W times is

removed from backlog. This loop continues forever. The infinite training loop with agent

and training environment is shown in Fig. 5.1.. In this figure, the notations given in Table

5.1. are used. The arrival request counts of slices are calculated in the preamble request

generator thread then added to the training backlogs of slices. On the other hand, in testing

environment, these arrival request counts are calculated using preamble request generator

and then are added to the testing backlogs in every 10ms, since the testing environment

simulates the random access procedure in every 10ms as in the real BS device. In the training

environment, these arrival requests are added to the training backlogs in an infinite loop

without waiting 10ms and the training environment simulates random access procedure also

in an infinite loop without waiting 10ms. By doing so, when Ω is 30 the publishing of action

space takes 50ms. Using a lower Ω value would result a shortened publishing action space

duration. However, selecting a lower value may induce a lower accuracy also.

The DRL agent and the training environment is interacting constantly. While the agent feeds

from the state space and sum reward of the previous round, it produces the action space for

the training environment. However, the number of the preambles reserved to slices inside

the action space can fluctuate due to very nature of the DRL algorithms. To avoid from

that unpredictable behaviour, rather than using an action space generated by the agent at an

arbitrary point in the time, moving averages of the number of the preambles reserved to slice

are used to smooth out the fluctuations in the action space. Therefore, while using lower Ω

values has an advantage of shorter period for publishing the action space, higher Ω values

has an advantage of smooth and accurate values in the action space.

The training procedure can be denotable as online-learning since the training data is produced

during the training. The training and testing environment is different as shown in Fig. 5.1..

Generally, the testing data is not random and produced/collected with respect to a real life

scenario. As a result, although the model can be used for testing or for in real life after

training is stopped if the state space is provided by BS, it can also be used for testing while

the model is being trained.
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Table 5.1. Training model parameters.

∆T The time interval to change the training parameters in milliseconds

t Current time in milliseconds

Ω Maximum step count to update the policy and publish the action space

ω Current step count which shouldn’t exceed Ω

L Maximum limit for number of arrivals of preamble requests

btrj Number of backlogged preamble request for slice j used in the training

btj Number of backlogged preamble request for slice j used in the testing

Bj Number of maximum preamble requests backlogged for slice j

n∆
j The change amount of the arrival numbers of preamble requests in every ∆T for slice j

5.3. NEAT Training

On the contrary to DRL, the testing can be done after the training is finished in NEAT. The

finite training loop in NEAT is shown in Fig. 5.2.. The random preamble generator part of

training is same with the DRL training part. Each NEAT individual is an ANN from the

solution pool. The GA operations can be seen in Fig. 5.2. of the NEAT. In each generation,

genetic operators are applied to ANN solutions. Firstly, two ANN solutions are selected

as parents. By applying crossover, new ANNs which are completely or partially different

from their parents are generated. In crossover, the connections, weights or nodes may be

transferred between the parents. Mutation operator also works on the same parameters and

changes them with a given probability. The algorithm runs up to 2000 number of generations.

After the training is finished, an evolved solution pool containing survivors have left for test-

ing. Using the random number preamble request generator and simulation environment, all

possible individuals are tried in each RAO using same environment and producing fitnesses

for that environment for 1000 RAO interval. Finally, the best individual which gives highest

cumulative fitness value is selected among them.
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Figure 5.2. Training scenario of the NEAT-based model.
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Figure 5.3. Preamble allocations computed by the exhaustive search against the DRL-based
approach in 2-slice scenario for the PRF.

5.4. Benchmarks for Simulations

In order to evaluate how the proposed techniques based on DRL and GA get close to the

optimal solution, it is compared with an exhaustive search technique in addition to the anal-

yses presented in Sec. 4.3.. In exhaustive search, all possible preamble allocations for a

given traffic load are searched through and the best preamble allocation is chosen. The same

system parameters are used in the exhaustive search.

The performance of the proposed methods are also compared with an unsliced scenario. In

this scenario, there is only one slice in the system and all preamble requests belong to that

slice. In such a case, nunsliced is the sum of the number of new arrival of preamble requests to

all slices. As a result, the total number of new arrival requests does not change between the

unsliced and sliced scenarios. That gives us a comparison basis between the performances

of slices of our proposed model and the unsliced scenario.
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Figure 5.4. Preamble allocations computed by the ideal algorithm against the DRL-based approach
in 2-slice scenario for the PRF.

Finally, the ideal algorithm given as a baseline in [1] is used for comparison. The ideal

algorithm assumes that the exact number of preamble request counts for a given RAO (bj) is

known for each priority. It is noted that the preamble request count for the next RAO for slice

j, bj , is found by adding the number of new arrivals (nj) to the number of nodes which has

not transmitted W times yet. Then, by using the Equation 29 in [1], the number of reserved

preambles to slice j (mj) in each RAO can be found.

M =
N∑
j=1

mj =
N∑
j=1

bj

− ln(
kj∑N
i=1 ki

)− ln(x)
(29)

Here, x denotes the proportionality factor which satisfies the above equation. Assuming bj
values are known, x is also can be found by solving the equation and hence, mj values are

obtained.
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Figure 5.5. Preamble allocations computed by mathematical analysis against the DRL-based
approach in 2-slice scenario for the PRF.

5.5. The Performance of the Methods Using Traffic Distribution in Sec. 5.1.1.

In this section the simulation results for 2-slice scenario are discussed using Figs. 5.3.-5.24..

All the figures show the same scenario with the different comparison metrics. For 2-slice

scenario both CRF and DRF are used. Likewise, Figs. 5.25.-5.33. are used to discuss the

simulation results for 3-slice scenario. The simulations with 3-slice scenario differs from

2-slice in that they only use CRF, after it is made sure that PRF performs worse than CRF

both in DRL-based and NEAT-based proposals using 2-slice.

5.5.1. 2-slice Scenario

5.5.1..1 The Number of Reserved Preambles
Firstly, the proposed DRL-based approach is compared with the mathematical analysis given
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Figure 5.6. Preamble allocations computed by the exhaustive search against the DRL-based
approach in 2-slice scenario for the CRF.

in Sec. 4.3., the exhaustive search and the ideal algorithm for the scenario with 2 slices. Since

the 2-slice scenario has a smaller state space, it is preferred for a baseline comparison. Figs.

5.3.-5.5. and 5.6.-5.8. plot the optimum number of reserved preambles for each slice that

maximizes the reward functions. The results show that the preamble allocations which yield

maximum rewards for each technique behave very similarly especially when CRF is used.

Also Figs. 5.3.-5.5. and 5.6.-5.8. denote DRL-based approach using CRF behaves more

aggressive than PRF since it allocates almost all preambles to higher priority slice. While

CRF plots a sharper line, PRF follows a smoother path in DRL-based approach compared to

CRF. It is also denoted that, in the beginning of the simulation low-priority slice has more

preamble allocated than high-priority one in mathematical analysis, exhaustive search and

CRF. However, in PRF-based approach high-priority slice gets the majority of the preambles

even in the very beginning the simulation. When λ2 exceeds 0.08 in Figs. 5.6.-5.8., DRL
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Figure 5.7. Preamble allocations computed by the ideal algorithm against the DRL-based approach
in 2-slice scenario for the CRF.

starts to give majority of the preambles for high-priority slice meanwhile, the traffic to low-

priority one λ1 ≈ 0.09 is slightly higher. That is another indicator that CRF take precautions

on right moment and is more chary compared to PRF.

Following, the proposed NEAT-based approach is also compared with the mathematical anal-

ysis given in Sec. 4.3., the exhaustive search and the ideal algorithm for the scenario with

2 slices. The reserved preamble counts for slices using NEAT-based PRF are plotted in

Figs. 5.9.-5.11.. On the contrary to DRL, using NEAT-based PRF approach there exists

prioritization error between the slices in plots. Although the traffic to the high-priority slice

increases in time, NEAT-based PRF allocates the preambles equally to the high-priority and

low-priority slice. Even, small majority of the preambles are allocated for low-priority one.

Also, it is obvious that NEAT-based PRF behaves different from mathematical analysis and

exhaustive search. There is significant performance degradation using it compared to DRL.
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Figure 5.8. Preamble allocations computed by the mathematical analysis against the DRL-based
approach in 2-slice scenario for the CRF.

On the other hand, the result of NEAT-based CRF approach in Figs. 5.12.-5.14. show the

the analysis, exhaustive search and CRF plots overlap. When λ2 exceeds 0.12 in Figs. 5.12.-

5.14., NEAT starts to give the majority of the preambles for high-priority slice. However, the

dynamic behaviour is belated comparing to CRF in DRL. Nevertheless, NEAT-based CRF

successfully allocates the majority of the preambles dynamically for the high-priority slice.

5.5.1..2 The Ratio of Dropped Messages to All Transmitted Messages
Figs. 5.15.-5.19. demonstrate the ratio of dropped messages to all transmitted messages in

each increase of normalized arrival rate of 2nd slice for 2-slice scenario. The results for the

reward and fitness functions CRF and PRF are given for DRL in Fig. 5.15., Fig. 5.16. and

for NEAT in Fig. 5.17., Fig. 5.18. respectively. Fig. 5.19. presents the behaviour of ideal

algorithm for the same scenario.
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Figure 5.9. Preamble allocations computed by the exhaustive search against the NEAT approach in
2-slice scenario for the PRF.

For DRL case, in Figs. 5.15. and 5.16., while the high-priority slice outperforms the unsliced

case for both reward functions, the low-priority slice also gets a considerable amount of

reserved preambles. Fig. 5.15. points out that the high-priority slice using CRF can satisfy

almost all preamble requests so that preamble request messages are nearly not dropped even

when the total load passes (n1+n2)/M = 25/54 ≈ 0.46. On the other hand, the unsliced plot

has a sharp increase after passing the maximum normalized traffic load limit that the random

access channel can handle (1/e ≈ 0.37). Fig. 5.16. shows using PRF-based DRL, even

if high-priority slice outperforms unsliced one, it can not succeed not to drop any preamble

requests.

For NEAT case, in Fig. 5.17., high-priority slice overcomes the unsliced one from λ2 ≈ 0.33

to λ2 ≈ 0.38 using CRF. However, the method can not manage to reduce the ratio after λ2

exceeds 0.38 rather it prefers to reduce the ratio of low-priority slice. The moment when
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Figure 5.10. Preamble allocations computed by the ideal algorithm against the NEAT approach in
2-slice scenario for the PRF.

λ2 ≈ 0.34 in Figs. 5.12.-5.14. is the point where number of reserved preambles for high-

priority slice is maximized, m2 ≈ 43. After that point, even if λ2 increases, the number of

reserved preambles for high-priority slice doesn’t increase contrary it drops from ≈ 42 to

≈ 40. This is the reason why method fails reducing the ratio for high-priority slice.

Fig. 5.18. shows the ratio using PRF-based NEAT. Likewise in Figs. 5.12.-5.14., PRF-based

NEAT method performs worse comparing both DRL and CRF-based NEAT. Although there

is no dropped message observed for low-priority slice, when λ2 exceeds 0.2 the ratio of

dropped messages to all transmitted messages experiences sharp increase up to 1.

The behaviour of the ideal algorithm is demonstrated in Fig. The algorithm slightly priori-

tizes the slices in a way that plots of each slice follows the unsliced plot with small differences

in prioritization. For example, when λ2 ≈ 0.35, both slices have nearly 0.8 ratio of dropped

messages in the ideal algorithm, while these ratios are 1 and 0 respectively for the 1st and

60



Figure 5.11. Preamble allocations computed by mathematical analysis against the NEAT approach
in 2-slice scenario for the PRF.

2nd slices for CRF in Fig. 5.15.. Therefore, the ideal algorithm remarks a fair approach to

the all slices, hence the difference between prioritizing slices is minor.

5.5.1..3 The average waiting time in ms
Figs. 5.20.-5.24. present the average waiting time, which denotes how much time successful

preamble requests waited in the message backlog on average. The results for the reward

and fitness functions CRF and PRF are given for DRL in Fig. 5.20., Fig. 5.21. and for

NEAT in Fig. 5.22., Fig. 5.23. respectively. Also, Fig. 5.24. presents the behaviour of

the ideal algorithm for the same scenario. If there is no successful preamble request in the

RAO, the average waiting time can not be calculated for that RAO. Nevertheless, to show

the performance, the value is set to the maximum average waiting time which is 10 × W

ms. Also, the dropped messages are not taken into the account. For example, assuming that

10 preamble requests are issued from the backlog in a RAO with 9 of them dropped and 1
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Figure 5.12. Preamble allocations computed by the exhaustive search against the NEAT approach
in 2-slice scenario for the CRF.

request on 4th try succeeded, than the average waiting time is calculated as 40ms. Therefore,

the average waiting time performance must be evaluated with the ratio of dropped messages

to all transmitted messages.

For the DRL model, the average waiting time for the high-priority slice almost stays constant

despite the increasing traffic rate. Still, the average waiting time for the high-priority slice for

PRF is higher in comparison to the waiting time of the same slice for CRF in DRL. Moreover,

although PRF scheme distributes the preambles more fairly to two slices compared to CRF

as seen in Figs. 5.3.-5.5., when the total load passes (n1 + n2)/M = 21/54 ≈ 0.39, dropped

preamble requests are observed.

For the NEAT model, the average waiting time for the high-priority slice using CRF stays

constant up to λ2 ≈ 0.34 in Fig. 5.22.. However, it seems CRF-based DRL keep the av-

erage waiting time under control up to higher λ2 values compared to CRF-based NEAT. In
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Figure 5.13. Preamble allocations computed by the ideal algorithm against the NEAT approach in
2-slice scenario for the CRF.

Fig. 5.23., the performance of PRF-based NEAT is given. It shows that, using PRF-based

NEAT both low-priority slice and unsliced have lower average waiting time compared to

high-priority one. Since, the PRF performs worse in all metrics in both DRL and NEAT

comparing to CRF, the results which use only CRF are presented in the rest of the experi-

ments.

The behaviour of the ideal algorithm is demonstrated in Fig. 5.24.. Similar to the results

given in the previous section, Each slice follows the unsliced plot with small differences.

5.5.2. 3-slice Scenario

The simulation results for the 3-slice scenario is given in Figs. 5.25.-5.33.. As noted above,

here the following performance metrics are evaluated for only the CRF. At time t = 0,

n1 = 5, n2 = 4, n3 = 2 and the relation between the number of reserved preambles is
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Figure 5.14. Preamble allocations computed by the mathematical analysis against the NEAT
approach in 2-slice scenario for the CRF.

m1 > m2 > m3. Since the total load is ((n1 + n2 + n3)/54 ≈ 0.20) < (1/e ≈ 0.37),

the proposed method allocates more preambles to 1st and 2nd slices as shown for DRL in

Fig. 5.25. and for NEAT in Fig. 5.31. in order to relieve traffic to the low priority slices

when the high-priority slice easily handles the traffic. As n3 increases, both NEAT and DRL

methods aggressively increase the reserved preambles count for the 3rd slice in order to

avoid dropping messages and long average waiting.

While DRL manages not to drop any preamble allocation requests from the 3rd slice even

the total load passes (n1 + n2 + n3)/M = 26/54 ≈ 0.48 in Fig. 5.26., NEAT can manage

this around (n1 + n2 + n3)/M = 19/54 ≈ 0.36 in Fig. 5.32.. The average waiting time for

the 3rd slice follows a horizontal line up to the normalized arrival rate of 0.3 for DRL. After

that, it slightly increases due to high load on the RACH; yet, the method is able to prevent

a sharp increase as seen in Fig. 5.27.. For the NEAT-based model, the average waiting time

for the 3rd slice follows a similar path to the DRL up to the normalized arrival rate of 0.2 as
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Figure 5.15. The ratio of dropped messages to all transmitted messages for 2-slice scenario while
the arrival rate of second slice consistently increased using CRF-based DRL.

shown in Fig. 5.33.. After that, it sharply increases due to high load on the RACH contrary

to DRL when comparing Fig. 5.27. and Fig. 5.33.. On the other hand, the unsliced curve

also shows a sharp increase after passing the maximum normalized traffic load limit that the

RACH can handle (1/e ≈ 0.37), as in the 2-slice scenario.

There is a major difference between the NEAT and DRL-based models for the 3-slice sce-

nario when comparing Fig. 5.25. and Fig. 5.31.. While DRL model reserves more of the

preambles to 2nd than 1st, NEAT have done the opposite. Since n1 > n2, the prioritiza-

tion interpretation of NEAT may seem more successful than DRL at first. However, Fig.

5.32. simply shows the 2nd slice experience increase of the ratio of dropped messages to all

transmitted messages before the 1st slice, although the prioritization scheme propose slices

should experience increase of ratio of dropped messages to all transmitted messages in order

of priority levels. In Fig. 5.26., as the total normalized arrival rate increases in time, 1st slice

experience increase in ratio of dropped messages to all transmitted messages first, following
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Figure 5.16. The ratio of dropped messages to all transmitted messages for 2-slice scenario while
the arrival rate of second slice consistently increased using PRF-based DRL.

2nd slice experience increase and finally 3rd slice experience increase, as it is supposed to

be.

For the ideal algorithm, Fig. 5.28. shows that for the 3-slice scenario the algorithm prefers

to allocate more number of preambles to the 3rd slice even in the beginning of the scenario

when the total load is much less than 1/e ≈ 0.37 and normalized arrival rate for the 1st

slice is highest. As a result of using the ideal algorithm, there are dropped preamble requests

observed in the 1st slice even at the early stage of the scenario when the arrival rate of the

3rd is slice between 0.05 and 0.1 as and the total load is 0.24 shown as in Fig. 5.29..
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Figure 5.17. The ratio of dropped messages to all transmitted messages for 2-slice scenario while
the arrival rate of second slice consistently increased using CRF-based NEAT.

5.6. The Performance of the Methods Using Traffic Distribution in Sec. 5.1.2.

In this part, the temporal behavior of the proposed methods are presented to show how these

react to changes in the traffic demands and how much time needed to rearrange the preamble

allocations to meet the requirements. Differently from the previous experiments, here not

only the requests of the high-priority service change, all service requests may vary in time.

The simulations are run for the 5-slice scenario in addition to the 3-slice scenario. For these

simulations, only CRF is used . The traffic pattern and the behaviour of the proposed methods

are given in Figs. 5.34.-5.37., the ideal algorithm is demonstrated in Figs. 5.38.-5.39..

The uppermost plots in figures show the normalized arrival rate for each slice over time.

The following below plots show the response of the proposed method to the changing envi-

ronment as reserved preamble counts for each slice. The next below plots demonstrate the

collision rates of each slice in that random access opportunity which is found using cj/mj .
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Figure 5.18. The ratio of dropped messages to all transmitted messages for 2-slice scenario while
the arrival rate of second slice consistently increased using PRF-based NEAT.

Finally, the bottom plots show the ratio of dropped messages to all transmitted messages on

that random access opportunity.

5.6.1. 3-slice Scenario

Figs. 5.34., 5.36. and 5.38. plot the simulation results for the 3-slice scenario for DRL,

NEAT and the ideal algorithm respectively. In Fig. 5.34., from t = 0 to t = 2, the reserved

preamble count for each slice stays almost constant since there exists no congestion and

change in traffic. At t = 2, λ1 increases suddenly while other slices still have the same

normalized arrival rates. After a reaction time of approximately 50ms, the DRL method

gives most of the preambles to 1st slice immediately. First, the collision rate of 1st slice

increases a little, then, immediately drops thanks to the reallocation of preambles.
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Figure 5.19. The ratio of dropped messages to all transmitted messages for 2-slice scenario while
the arrival rate of second slice consistently increased using ideal algorithm.

Similarly, at t = 2.5, λ2 increases to a higher value than λ1. Right after, m2 increases and

2nd slice gets a major part of the preambles. Up until t = 3, m1 and m2 stays around the

same levels with little difference between them. The total load exceeds the total capacity at

t = 3. λ3 increases to 12/54 ≈ 0.22 and λ1 + λ2 + λ3 ≈ 0.39 becomes greater than 0.37.

At this point, since the preamble resources are not enough for all slices, the DRL method

allocates most of the preambles to the high-priority slice, 3rd slice. Therefore, m3 spikes,

m2 is nearly halved and m1 is dropped to zero.

As all slices cannot be supported at the same time, the DRL method sacrifices the low-

priority slice in favor of other slices. The collision rate for the 1st slice oscillate around 1

up to t = 8. The collision rates for the other two slices change between 0.2 and 0.6, yet the

collision rate for 2nd slice is lower than 3rd slice since the traffic to 3rd slice is more than

twice even if 3rd slice has the highest priority. In the last two seconds, λ3 falls of suddenly,

right after, m3 also drops. m1 and m2 increase to their previous values where right before
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Figure 5.20. The average waiting time for 2-slice scenario while the arrival rate of second slice
consistently increased using CRF-based DRL.

λ3 increases. Then, respectively λ2 and λ3 drops to their previous values and the preamble

allocation returns to its initial assignment.

In Fig. 5.36., the same scenario is conducted using NEAT-based method. At t = 2, λ1

increases suddenly, unlike DRL, NEAT does not react to the change. Therefore, the collision

rate of the 1st slice increases a little. Than at t = 2.5, λ2 increases to a higher value than

λ1. Right after, m2 increases and 2nd slice gets a considerable amount of the preambles.

Yet, NEAT allocates more number of preambles to 1st slice. It seems the prioritization is not

implemented correctly. Up until t = 3, m1 and m2 stays around the same levels with little

difference between them. The total load exceeds the total capacity at t = 3. λ3 increases to

12/54 ≈ 0.22 and λ1 + λ2 + λ3 ≈ 0.39 becomes greater than 0.37. At this point, similar

to DRL, NEAT also allocates most of the preambles to the high-priority slice, the 3rd slice.

Therefore, m3 spikes, m1 and m2 is nearly halved.
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Figure 5.21. The average waiting time for 2-slice scenario while the arrival rate of second slice
consistently increased using PRF-based DRL.

Unlike DRL, NEAT can not handle the prioritization between 2nd and 1st slices correctly.

Although λ2 > λ1, NEAT allocates preambles to the 1st slice nearly 2 times more than to

the 2nd slice. In addition, even if the majority of the preambles are allocated to the 3rd slice,

the collision rate for the 3rd slice and 2nd slice oscillate around 1 up to t = 8. After t = 9,

λ2 and λ3 drops to their previous values and the preamble allocation returns to its initial

assignment. However, comparing to DRL, NEAT-based method fails reducing collision rate

and ratio of dropped messages to transmitted messages for the 2nd and 3rd slices.

5.6.2. 5-slice Scenario

Similarly, Fig. 5.35. and 5.37. plot the timeline simulation for the 5-slice scenario for DRL

and NEAT respectively. In Fig. 5.35., from t = 0 to t = 2, there is no congestion and the

preamble allocation of slices does not change. During this period, the number of preambles
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Figure 5.22. The average waiting time for 2-slice scenario while the arrival rate of second slice
consistently increased using CRF-based NEAT.

reserved to each slice is proportional to their priority levels. Normalized arrival rates of slices

are increased starting from the low-priority slice to the high-priority slice. At the end of the

simulation, the rates are decreased in the reverse order. The preamble allocation behavior is

similar to the 3-slice scenario and the DRL agent successfully prioritizes the slices.

The full load is exceeded when the normalized arrival rate of 5th slice increases. In that

case, the majority of preambles are reserved for 5th slice. λ1 increases to 2/54 at t = 2, λ2

increases to 3/54 at t = 2.5, λ3 increases to 4/54 at t = 3, λ4 increases to 5/54 at t = 3.5

and λ5 increases to 7/54 at t = 5 and also reserved preamble count for each slice increases in

similar order. Between t = 3 and t = 4, the total load λ1 + λ2 + λ3 + λ4 + λ5 ≈ 0.39 passes

the channel capacity as in the case of the 3-slice scenario when t is between 3 and 8. Unlike

the 3-slice scenario, when λ1 increase, only a tiny change can be observed in m1. However,

for higher priority slices, the method makes major changes on the reserved preamble counts.
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Figure 5.23. The average waiting time for 2-slice scenario while the arrival rate of second slice
consistently increased using PRF-based NEAT.

This observation can be seen in also collision rate plot. While the line of 1st slice walks

around 1, the other slices walk between 0.2 and 0.6 likewise to 3-slice. At t = 7, t = 7.5,

t = 8, t = 8.5 and t = 9 normalized arrival rates drop respectively and also reserved

preamble counts decreases in the same order. In addition, the ratio of dropped messages to

transmitted messages for high priority slices never increases during the whole simulation.

For the lowest priority 2 slices, the ratio oscillates between 0.6 and 1.

In Fig. 5.37., from t = 0 to t = 2, likewise DRL there is no congestion and the preamble

allocation of slices does not change. However, unlike DRL, during this period, the number

of preambles reserved to each slice is not proportional to their priority levels. Even, there

is no logic behind the preamble allocation mechanism up to t = 3.5. After, the normalized

arrival rate of 4th slice, λ4 increases to 5/54 at t = 3.5. This is the first point that NEAT-

based method reacts to the changes in the normalized arrival rates. Although from t = 3.5 to

t = 7.5 NEAT seems to manage prioritize preamble allocations, the high priority slices 3rd,
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Figure 5.24. The average waiting time for 2-slice scenario while the arrival rate of second slice
consistently increased using ideal algorithm.

4th and 5th slices have the collision rate between 0.6 and 1, also the 3rd and 5th slices have

the ratio of dropped messages to transmitted messages between 0.4 and 1. After t = 7.5, the

preamble allocations return to the initial position.

Figs. 5.38. and 5.39. plot the timeline simulation of the ideal algorithm for 3-slice and

5-slice scenarios respectively. As pointed out above before, the algorithm slightly prioritizes

the slices in a way that the collision rates in each figure are very close to each other, hence

the allocation of each slice j is slightly better than the allocation of slice j − 1. The plots

in the time intervals [2,3] and [8,9] for 3-slice in Fig. 5.38. and, in the time intervals [2,4]

and [7,9] for 5-slice in Fig. 5.39. show that the ideal algorithm can not prevent collisions for

lower priority slices when the total load in the network is less than (1/e ≈ 0.37).
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Figure 5.25. The number of reserved preambles of the CRF-based DRL for 3 network slices while
the arrival rate of third slice consistently increased.

5.6.3. General Discussion

In summary, in timeline simulations, the sudden increase of the number of arrival pream-

ble requests to slices from low-priority to high-priority and the sudden decrease from high-

priority to low-priority respectively is tested. Using DRL, for both the 3-slice and 5-slice

scenarios, when the traffic of the low-priority slice increases the preamble allocation is in-

creased in favour of the low-priority slice. Following, the traffic to slices increases from

lower to higher priority ones respectively and in each increase more preambles are reserved

to the slice having lastly increased traffic. The moment when the traffic to high-priority

slice increased, the total normalized arrival rate reaches 0.39 so that passes the full load

(1/e ≈ 0.37). After that, the DRL method suddenly allocates the vast majority of preambles

to the high-priority slice.
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Figure 5.26. The ratio of dropped messages to all transmitted messages of the CRF-based DRL for
3 network slices while the arrival rate of third slice consistently increased.

Nonetheless, Fig. 5.34. and 5.35. show that the DRL-based method does not neglect perfor-

mances of lower priority slices, while the collision rate of the high-priority slice is kept under

control. With approaching to the end of the timeline, the traffic assigned to slices decreases

starting from the high-priority slice to the low-priority slice respectively. The preamble al-

location of the DRL method acts in a reverse direction. In the end, the preamble allocations

return to the first position. These results confirm the effectiveness and adaptability of the

DRL approach in a dynamic environment. On the contrary, using NEAT, for both 3-slice and

5-slice scenarios high collision rates and drop ratios are observed.

5.7. The Performance of the Method When Comparing with the Method in [1]

The authors in [1] propose to assign weights γi to services based on their priorities. In

this specific scenario they use two services having priority weights γ1 = 2 and γ2 = 1.
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Figure 5.27. The average waiting time of the CRF-based DRL for 3 network slices while the arrival
rate of third slice consistently increased.

For each service, 10.000 devices are activated over 10 seconds (2000 RAO slots each 5ms)

with uniform arrival for the low-priority service and bursty beta arrival for the high-priority

service. They stated that their algorithm produce results close to the ideal case in which the

average delay (slots/device) is close to 0. In addition, they specify the average delay for the

high-priority service is less than for the low-priority scenario. For a fair comparison, the

same scenario is implemented for 2-slice and plotted the results in Figs. 5.40.-5.41.. Please

note that the RAO period is taken as 5ms here, whereas it is taken as (10ms) in previous

experiments. Although the authors use W = ∞ and this value is taken as 10 in this current

study, since no dropped preamble request is observed in these simulations, W has no effect

on comparison.

To sum up, the proposed method can successfully prioritize the slices in a way that the

average delay (slots/device) of each slice is close to 0. Moreover, the high-priority slice has

lower average delay than the low-priority slice. It is also stated in [1] that they obtain average
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Figure 5.28. The number of reserved preambles of the ideal algorithm to 3 network slices while the
arrival rate of third slice consistently increased.

delays (slots/device) close to 0 without specifying exact values. Although the ideal algorithm

manages to keep average delays (slots/device) lower than 1, there is a noticeable difference

between the slices (0.94 for the low-priority slice and 0.13 for the high-priority slice). Even

the ideal algorithm performs slightly better than our proposed approach for the high-priority

slice based on the average delay metric, it drops a few number of preamble requests from the

low-priority slice. As stated above, the proposed approach does not drop any requests.
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Figure 5.29. The ratio of dropped messages to all transmitted messages of the ideal algorithm to 3
network slices while the arrival rate of third slice consistently increased.
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Figure 5.30. The average waiting time of the ideal algorithm to 3 network slices while the arrival
rate of third slice consistently increased.
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Figure 5.31. The number of reserved preambles of the CRF-based NEAT for 3 network slices while
the arrival rate of third slice consistently increased.
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Figure 5.32. The ratio of dropped messages to all transmitted messages of the CRF-based NEAT
for 3 network slices while the arrival rate of third slice consistently increased.
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Figure 5.33. The average waiting time of the CRF-based NEAT for 3 network slices while the
arrival rate of third slice consistently increased.
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Figure 5.34. The timeline simulation graphs for 3-slice CRF-based DRL.
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Figure 5.35. The timeline simulation graphs for 5-slice CRF-based DRL.
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Figure 5.36. The timeline simulation graphs for 3-slice CRF-based NEAT.

86



Figure 5.37. The timeline simulation graphs for 5-slice CRF-based NEAT.
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Figure 5.38. The timeline simulation graphs for 3-slice using the ideal algorithm.
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Figure 5.39. The timeline simulation graphs for 5-slice using the ideal algorithm.
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Figure 5.40. The timeline simulation graph for 2-slice using the two priority scenario for
DRL-based method.

90



Figure 5.41. The timeline simulation graph for 2-slice using the ideal algorithm in [1].
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6. CONCLUSION

With the increasing significance of RAN resource allocation in 5G, flexible preamble allo-

cation becomes an important problem. This thesis aims to find a solution to the RAN slicing

problem by prioritizing slices. It explores the use of DRL and GA in order to solve the opti-

mum resource allocation problem in RAN slicing. Here, three reward functions are proposed

for the DRL formulation and mathematically analyzed. These reward functions are also used

as fitness functions in GA.

In the literature, since, there exists at least 3 service types are defined [10] and there are

works which propose 5 service types [11], in this thesis, 3-slice and 5-slice scenarios are

implemented. The number of reserved preambles, the average waiting time and the ratio

of dropped messages to all transmitted messages metrics are defined and explained. Un-

sliced scenario, exhaustive search and ideal algorithm benchmarks are used in simulations

for comparison. Extensive simulations are conducted to show success or failures of the pro-

posed methods. The results of experiments are first presented and clarified then analyzed

using these different metrics and benchmarks, in order to evaluate the performance. For the

given metrics and benchmarks detailed graphs are plotted for both methods in same way.

In detail, the proposed approaches are compared with exhaustive search and it is shown

that the proposed DRL-based method behaves optimally when compared to the NEAT-based

method and overlap with the exhaustive search. While the DRL-based method can success-

fully distribute the preambles with respect to prioritization levels to the slices such that the

collision rates and drop ratios are kept under control in 3-slice and 5-slice scenario, NEAT-

based method can not. Yet, the results show NEAT-based dynamic model is also a promising

solution. Among the reward functions, it is shown that a reward function which penalizes

collisions in addition to rewarding successful preambles gives the best performance.

The analysis results showed that the DRL agent is tend to distribute preambles over groups

dynamically when only CRF and PRF used. Therefore, SRF is eliminated and not used in

training. In order to compare other two functions and show their success, the exhaustive

search, which yields optimum profile, is used as a comparison basis. The comparison results

showed DRL-based method behaves very closely to the exhaustive search for both functions.

However, only CRF based NEAT follows the exhaustive search. On the other hand, GA and

PRF based NEAT fails to follow exhaustive search.
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Later on, for 2-slice and 3-slice scenarios some performance metrics are plotted with graphs

to demonstrate the success of the DRL and NEAT against unsliced scenario using. For all

metrics the CRF based DRL method performed better than unsliced scenario and successfully

prioritize slices. While CRF based NEAT for some metrics performed better than unsliced, it

fails distributing the preambles with respect to prioritization levels. In addition, it is observed

that CRF has better performance in prioritization when compared to PRF.

In order to evaluate the proposed models in more complex scenarios using higher number of

slices, the timeline simulations are presented to show the flexibility of the proposed methods

in the rapid changing environment. Here, the DRL-based method improves the performance

of the high-priority slices significantly. Also, it is shown that the both proposed methods

adapts to the traffic changes very rapidly by reallocating the preambles to different slices.

To sum up, the proposed DRL-based approach is shown to be a suitable approach for RAN

slicing by adapting changes in the environment in a timely manner.

6.1. Limitations of the Study

In this thesis, the proposed methods are trained and evaluated by using simulated network

traffic. Because, a real word RACH preamble traffic data is not available for training. In

addition, it is hard to collect such data since BSs have limited idea about the outside world.

Rather, in this thesis, the model is trained by using randomly generated traffic for training

due to these reasons. On other hand, having a real world data for different service types

which have various QoS may help training of models more precisely.

6.2. Future Work

The proposed methods can be used as layers that can settle above or between other mech-

anisms. In this thesis, ACB, EAB or any other proposed mechanism is not implemented.

These 3GPP proposed methods and their implementations are available to public. As a fu-

ture study, a multi-layer system model with different mechanisms can be implemented. How

these layers interact with each other and integration of them can also be analyzed.

This study uses TRPO for the DRL based method. There are also other deep policy gra-

dient algorithms that can be used for. For example there is Proximal Policy Optimization

93



(PPO) [110] algorithm which actually perform better than TRPO. While TRPO makes sure

the policy will not be updated a lot by using KL-constrain, PPO removes KL penalty and

makes adaptive updates. As a future implementation, PPO may be used in DRL for dynamic

preamble allocation.

In this thesis, NEAT is used as a secondary model. The exact same reward function and

model layout of DRL are used as fitness function and model layout for NEAT, since both

NEAT and DRL have ANN layout under the architecture. The low success rate of the NEAT

model compared to DRL may be originated using the same exact model layout without any

modification. In addition, rather than using a GA method which uses ANNs as solutions,

forming a new solution may increase the success rate of GA. For example, there are new

approaches which combines evolutionary strategies with RL algorithms like evolutionary

reinforcement learning. These evolutionary reinforcement learning methods may be used as

future work to extend the success of the evolutionary and RL algorithms.
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A APPENDIX : NEAT CONFIGURATION FILE

In this appendix, the configuration file of the NEAT-based model for training is given. The

detailed description is given in [123]

Table 1.1. The parameters and their values in the NEAT-python configuration file.

Parameter Name Value
pop size 200

fitness criterion max

fitness threshold ∞
reset on extinction 0

activation default relu

activation mutate rate 0.0

activation options relu

aggregation default sum

aggregation mutate rate 0.0

aggregation options sum

bias init mean 0.0

bias init stdev 1.0

bias max value 30.0

bias min value -30.0

bias mutate power 0.5

bias mutate rate 0.7

bias replace rate 0.1

compatibility disjoint coefficient 1.0

compatibility weight coefficient 1.0

conn add prob 0.9

conn delete prob 0.2

enabled default True

enabled mutate rate 0.01

feed forward True
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Table 1.2. The parameters and their values in the NEAT-python configuration file contd.

Parameter Name Value
initial connection full

node add prob 0.9

node delete prob 0.2

num hidden 2

num inputs 2*J

num outputs J

response init mean 1.0

response init stdev 0.0

response max value 30.0

response min value -30.0

response mutate power 0.0

response mutate rate 0.0

response replace rate 0.0

weight init mean 0.0

weight init stdev 1.0

weight max value 30.

weight min value -30.

weight mutate power 0.5

weight mutate rate 0.8

weight replace rate 0.1

compatibility threshold 3.0

species fitness func max

max stagnation 20

species elitism 4

elitism 2

survival threshold 0.2
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[52] Patrick Marsch, Ömer Bulakci, Icaro Silva, Paul Arnold, Nico Bayer, Jakob

Belschner, Thomas Rosowski, Gerd Zimmermann, Mårten Ericson, Alexan-
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