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ABSTRACT

REINFORCEMENT LEARNING BASED ADAPTIVE ACCESS CLASS
BARRING FOR RAN SLICING IN 5G NETWORKS

Master of Science, Computer Engineering Department

Machine-to-Machine (M2M) communication is one of the major drivers of 5G networks

as M2M traffic might soon surpass Human-to-Human (H2H) traffic. Network slicing is

a promising technique for supporting M2M traffic on 5G networks as there is a need to

concurrently support varying Quality-of-Service (QoS) requirements of M2M devices. A

major bottleneck for M2M traffic is the Random Access Channel (RACH) procedure, which

has to be performed for all devices, which results in the same latency for all service types.

Due to the event-driven simultaneous access behavior of M2M devices, this procedure

can cause severe congestion. Legacy congestion control schemes such as Access Class

Barring (ACB) are not adequate to handle the overload in bursty traffic scenarios, which can

happen frequently in M2M communications. There is also no clear guideline to adjust ACB

parameters dynamically in such situations. Here we propose a multi-rate ACB algorithm

using Reinforcement Learning (RL) to tune the barring rates and barring times of different

service classes. Our priority-based algorithm not only reduces the congestion but also slices

the RACH among different service types. Comprehensive simulation results show that our

proposed algorithm maximizes the RACH utilization. In the meantime, based on each service

priority, it reduces the delays and increases the access probability even when the connection

requests exceed the RACH capacity.
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ÖZET

5G AĞLARINDA RAN DİLİMLEME İÇİN PEKİŞTİRMELİ
ÖĞRENME TABANLI UYARLANABİLİR ERİŞIM SINIFI

ENGELLEMESİ

Yüksek Lisans, Bilgisayar Mühendisliği

Makineler arası (M2M) iletişimi etkin bir şekilde sağlamak 5G ağlarının öne çıkan

özelliklerinden biridir. Makineler arası trafiğinin yakın zamanda insandan insana (H2H)

trafiğini geçebileceği ön görülmektedir. Ağ dilimleme, makineler arası trafiğini karşılamak

için ve aynı zamanda bu cihazların değişen hizmet kalitesi (QoS) gereksinimlerini

destekleme ihtiyacı olduğundan umut verici bir tekniktir. Tüm hizmet türleri için aynı

gecikmeyle sonuçlanan ve tüm cihazlar için gerçekleştirilmesi gereken rastgele erişim

kanalı (RACH) prosedürü, M2M trafiği için muazzam bir darboğazdır. Makineler arası

cihazlarının olaya dayalı eşzamanlı erişim davranışı nedeniyle, bu prosedür ciddi tıkanıklığa

ve gecikmelere neden olabilir. Erişim sınıfı engelleme (ACB) gibi eski tıkanıklık

kontrol şemaları makineler arası iletişimlerde sıklıkla meydana gelebilen, yoğun trafik

senaryolarında aşırı yükün üstesinden gelmek için yeterli değillerdir. Ayrıca bu durumlarda

ACB parametrelerini dinamik olarak ayarlamak için net bir kılavuz bulunmamaktadır. Biz,

bu çalışmada farklı hizmet sınıflarının engelleme oranlarını ve engelleme sürelerin ayarlamak

için pekiştirmeli öğrenme (RL) tabanlı, çok oranlı bir ACB algoritması öneriyoruz.

Önceliğe dayalı algoritmamız sadece tıkanıklığı önlemiyor aynı zamanda RACH kullanımını

farklı hizmet türleri arasında dilimliyor. Yapmış olduğumuz kapsamlı simülasyonların

sonuçları, önerilen algoritmamızın RACH kullanımını maksimize ettiğini göstermektedir.
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Bununla birlikte, önerilen algoritmamız hizmet önceliğine göre bağlantı isteklerinin RACH

kapasitesini aştığı durumlarda gecikmeler azaltmakta ve erişim olasılığının arttırmaktadır.

Keywords: Pekiştirmeli Öğrenme (RL), RAN Dilimleme ,Geniş Ölçekli Nesnelerin

Interneti, Tıkanıklık Kontrolü, Erişim Sınıfı Engellemesi (ACB)

iv



CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
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1. INTRODUCTION

From tigers’ stripes to the hexagons that make up honeycombs to the ripples in windblown

sand, the natural world is full of order and regularity [2]. Orderliness is an integral part of

the world and life which sometimes surprises and sometimes makes humankind think. Even

most scriptures point out a natural order and rhythm in the universe and encourage humanity

toward the discipline. The orderliness that surrounds us underpins all of our knowledge.

From Mathematica to Astronomy, from Physics to Music tell us about the many aspects of

orderliness.

Natural or artificial, orderliness lies in the various layer of the world and each aim to provide

different goals. Engineering also does prefer to perform any task or operation based on

predefined order. For instance, to increase the CPU performance, a comprehensive pipeline

has been considered. When it comes to traffic and chaos, order and regulations are the

well-known solutions.

New generation cellular networks are meant to deliver higher data transmission speed,

ultra-low latency, more reliability and massive network capacity. They aim to provide

connectivity for everything, such as machines, objects, devices and vehicles, in coexistence

with H2H communications. Besides, extended coverage, security, robust management and

lower deployment costs are some of the main advantages and encouragements for preferring

this technology in machine type communication. The number of IoT connections is predicted

to reach around 27 billion by 2026 [3]. Therefore, there will be a severe challenge to handle

the massive number of connections generated by an enormous number of M2M devices.

Physical channel resources in the Random Access (RA) procedure have their fundamental

limitations, which might result in extreme congestions and chaos.

In another perspective, different services that will be offered in this architecture will have

various and variable QoS requirements based on their acceptable delay budget and drop

rate. These QoS requirements may vary from ultra-reliable low latency communications

to high transmission data rates. Although these requirements have been accommodated
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in the data transmission phase, the RACH procedure is not currently suitable for service

differentiation. Slicing the RACH resources besides controlling the congestion is essential

to meet the desired service requirements.

There are a few congestion control approaches in the literature for the RACH. ACB is one of

the accomplished and common ones which is suggested in 3GPP specifications. To alleviate

the congestion, ACB redistributes the network access requests of User Equipment (UE) over

time. For this purpose, it broadcasts both Barring-Rate and Barring-Time parameters. Yet,

there are no manifest instructions to adjust these parameters under highly dynamic scenarios,

which is most likely to happen considering the event-driven bursty traffic raised by M2M

communications.

There have been several works in the literature for dealing with the congestion issue in

the connection establishment process over the RACH. The performance evaluation of the

ACB in [4] shows the suitability of this scheme for M2M applications. ACB method

parameter optimization is another active research area in [5], [6], [7] and [8]. Although

priority requirements have not been concerned, these studies have used different approaches

like backlog size estimation, Q-learning, or deep RL to achieve a dynamic ACB parameter

adjustment. On the other hand, there have been attempts to implement service differentiation

without using artificial intelligent approaches [9]. The work in [10] focuses on the prioritized

RA procedure, in which the IoT devices are separated by groups with different priorities

using a novel pricing scheme. Chen and Smith [11] present a DQN-based MAC mechanism

for managing channel access of heterogeneous radios, in which each radio requires a different

QoS. They have defined their RL reward function based on fixed acceptable delay thresholds

for each service. However, reasonable thresholds can change due to the channel state.

Therefore, to achieve better results, these thresholds should be chosen dynamically.

Some of these works offer complex procedures, use questionable assumptions for getting

high performance, or do not conform with LTE-A specifications. Also, in some of these

studies, the retry limits have not been considered. In almost all earlier works, the authors
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only test scenarios that are below the RACH capacity, which traffic control is not required in

these scenarios.

1.1. Scope Of The Thesis

This thesis mainly focuses on congestion control in the course of random access procedures,

especially in massive type communications. We start by surveying the RACH capacity

under the suggested network configuration in the 3GPP specification [12]. Then we

continue by determining congestion thresholds under various traffic models. We study the

ACB capability to control these congestions, even in bursty traffic scenarios. Then, we

implement reinforcement learning to adjust the ACB parameters intelligently, dynamically

and continuously. In the next step, we try multiple reward functions to achieve maximum

RACH utilization. The most important stage is implementing the multi-rate mechanism

powered by the RL agent. Our study continues by adjusting the barring time parameter.

Finally, we compare our results with the theoretical optimum approach and previous works

to evaluate the performance.

1.2. Contributions

In this research, we cover these deficiencies by proposing a novel, simple and efficient

approach. The main contributions of this paper can be summarized as follows:

• We propose a dynamic multi-rate ACB scheme tuned by RL. Our novel reward

function makes it possible to use the RACH effectively while considering the QoS

priorities.

• Unlike most of the previous works, we consider scenarios significantly exceeding

channel capacity and show the effectiveness of the proposed algorithm under heavy

load.
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• For the first time, we attempt to tune the barring time parameter with constant or

dynamic schemes. We use our multi-rate RL-based agent to adjust the barring time

dynamically.

• We introduce a perfect control method to compare our proposed approach.

• Our simulation results show that the proposed technique approaches the perfect-control

outcomes, confirming that the proposed scheme not only maximizes the RACH

utilization but also minimizes the delay for higher priority classes through its slicing

feature.

1.3. Organization

The organization of the thesis is as follows:

• Chapter 1 presents our motivation, contributions and the scope of the thesis.

• Chapter 2 provides the general background about random access procedures and access

class barring.

• Chapter 3 gives a brief overview of previous works and related studies on congestion

issues over the RACH and different approaches to overcoming this problem.

• Chapter 4 introduces our novel RL-based mult-rate approach in detail.

• Chapter 5 demonstrates achieved simulation results and evaluates the performance of

our proposed method in detail, considering various KPIs.

• Chapter 6 states the summary of the thesis and possible future directions.
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2. BACKGROUND OVERVIEW

2.1. Random Access Channel

In LTE-A networks, data transmissions require a connection established by UE through the

RA procedure. For high priority and regular equipment, two different modes, contention-free

and contention-based, are operated in this procedure. Performing a RA procedure is essential

under any of these situations [1]:

• to acquire initial access to the network.

• to re-establish the connection after the failure of a radio link.

• to hand over from one eNB to another.

• to update the user equipment location.

• to make scheduling requests.

In this study, our focus is on contention-based mode, which consists of the following four

steps in figure 2.1:

eNodeB UEStep1: RA Preamble Transmission

Step4: Contention resolution

Step3: Connection request

Step2: RA Response (RAR)

Figure 2.1 Random Access Procedure

1. RA preamble transmission: Each UE transmits a preamble as an access request to

the eNodeB(eNB) for a dedicated time or frequency resource block in the upcoming

RA Opportunity (RAO). This preamble is selected randomly from a pool of up to 64

orthogonal preambles known to both UEs and eNBs.
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2. RA Response (RAR): The eNB acknowledges the successfully detected preambles by

the identification of the related preamble and uplink grant for the next step.

3. Connection request: UE requests a connection with its ID using the uplink resource

guaranteed in the corresponding received RAR. If multiple UEs select the same

preamble in the first step, they would each receive the RAR, so all will be granted

the same resource block for the connection request, which will result in a collision in

the multiple selected preambles.

4. Contention resolution: The eNB broadcasts contention resolution message including

the ID of related UE. Then eNB allocates the required data resources for UE. UE

restarts the procedure if it does not receive a response to a preamble or a request. Each

UE repeats this procedure until establishing a connection or reaching the maximum

number of preambles retransmissions.

The RA procedure ends up successfully for a UE when the eNB can detect the received

connection request properly, and it is possible if and only if the preamble is selected by just

one UE in an RAO.

2.1.1. Backoff Procedure

In case of failure during the RACH procedure due to collisions or insufficient transmission

power, the UE must perform a backoff step before re-transmit a new chosen preamble in the

next RAO. 3GPP recommends this method to improve the success chance of establishing a

connection [13]. In order to reduce the collision, UEs chose the backoff times T BO randomly

based on the LTE-A standard as follows.

T BO = U(0, Bi), Bi ∈ [0, 960]ms (1)

where U(.) stands for uniform distribution, and Bi is the backoff indicator broadcasted by

the eNodeB in the RA Response. The RA Response is read by all UEs which transmit a
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preamble in the previous RAO. There is also an exponential backoff scheme to deal with the

congestion problem [10].

2.2. Access Class Barring

ACB is one of the well-known solutions for the congestion problem in the RACH. 3GPP

introduced this control method to alleviate RACH pressure by limiting the maximum number

of UEs that simultaneously access the eNB. Sixteen different Access Classes (ACs) 0 to 15

are defined based on service requirements. Each UE is categorized into one out of the first

10 ACs (0 to 9). Also, it can be assigned to some of the five special categories (11 to 15). In

this approach, the eNB broadcasts a Barring Rate P ACB ∈ {0.05, 0.1, ..., 0.95} and Barring

time T ACB ∈ {4, 8, 16, ..., 512s} through System Information Block Type 2 (SIB2) for the

upcoming RAO.

Yes

if q < PACB

Start Random Access
procedure

No q < PACB ?

No (Collision)Success ?Yes Success ?

increase attempt
count by 1

Yes

Noattempt < max ?

Random BackoffDecode SIB2 
Choose Random q in [0, 1)

Wait for
TACB * (0.7 + 0.6 * rand)

Set Attempt count = 0 max = Maximum	number	of
preamble	transmission

Drop

End

Start

Figure 2.2 Access Class Barring flow chart
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Barring factors are commonly applied to ACs 0-9, while the special categories are exempted

from the barring process. In the first step of the RACH procedure, each UE generates a

random number q, between 0 and 1. If q is less than P ACB , then a random preamble will be

selected, and the remaining steps will carry on. Otherwise, the UE is barred temporarily for

a random time calculated as follows:

T barring = (0.7 + 0.6× rand )× T ACB , rand ∈ [0, 1] (2)

Figure 2.2 visually demonstrates the ACB flowchart.

This process is repeated until the UE generates a random number lower than P ACB and sends

its preamble. In this way, ACB reduces the number of access requests per RAO.

3. RELATED WORK

With the spread of machine-to-machine communication on cellular networks, numerous

leading standardization organisms have stepped in and updated their standards toward

MTC requirements. International Telecommunications Union (ITU), the European

Telecommunications Standards Institute (ETSI), 3GPP and the Telecommunications Industry

Association (TIA) have announced standards and protocols for insuring coexistence fo M2M

and H2H communications.

Several studies have also been conducted on congestion and overload solutions for M2M

applications in wireless communication. The number of these studies is so large that various

surveys have been done in this context. Laya et al. investigate the suitability of random

access channels for MTC by surveying current and alternative solutions [14] They compare

multiple approaches based on four main KPIs, including access success probability, preamble

collision rate, access delay and device energy consumption. They also categorize different

methods under the main eight categories, which the access class barring scheme is one of

them.
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Althumali and Othman survey M2M communications over LTE networks, covering M2M

architectures, LTE structure, deployment challenges, and access control requirements on

their survey [15]. They divided random access techniques into three main categories. They

made a comparison of different methods based on various KPIs.

Solutions to RACH overload
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Figure 3.1 Classification of different mechanisms suggested to solve the access traffic by [1]

The severity of traffic issues raised by MTC made Soltanmohammadi et al. perform a

comprehensive survey in this respect [1]. They have looked at the different aspects of

problems, proposed solutions, pros and cons of each method, and left challenges that need
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to be addressed in order to empower and enhance MTC. Their congestion control solutions

classification is provided in figure 3.1

In this section, we cover some of these categories and give some examples of each kind.

However, most of the covered studies can be characterized under estimation-based or

RL-based approaches.

3.1. Load Estimation Based Approaches

The optimal barring rate of ACB can be determined if the competitive UE count is known.

Based on this fact, Tavana et al. defined and derived a function called conditional probability

distribution function (PDF) to reduce the overall service time [16]. They used both slot

information and the system dynamics to predict the number of backlogged MTC devices

within their scheme. To regulate the ACB factor adaptively, they contributed a maximum

likelihood estimator by using the PDF. Lastly, to enhance the accuracy of prediction, they

used the Kalman filter. The performance of their method further gave optimal results since it

was observed that the results were quite close to the optimal situation.

From an innovative perspective, some studies aim to estimate the number of contending UEs

in each RAO (named Preamble Transmission Rate (PTR) herein). Tello-Oquendo et al. [17]

designed a series of maximum likelihood and Bayesian estimators for this purpose. Guan

et al.[18] propose a Priority-Based Random Access (PBRA) approach to provide service

differentiation over the RACH. They classified the UEs into the three different priorities

inspiring from access delay requirements suggested in [19] and [9]. Then they split the

preambles and assigned each group to the declared priority classes. Using a primitive

load estimator and a classic ACB mechanism, they have tried to provide different QoS in

the RACH. It is noticeable that they have applied ACB to only UEs of the low priority

class. Assigning a larger slice of the preamble for higher priority classes reduces the RACH

utilization. Maximizing the RACH utilization and handling the congestions are the main

missing issues with this approach. Besides, PBRA is not applicable for a various number of

priority classes.
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Bui et al. underline the lack of prioritization in baseline ACB for urgent traffic during the

RACH procedure [20]. They recommend using Distributed Queueing (DQ) with a novel

load estimator method for MAC-layer. Furthermore, they offer dynamic access prioritizing

mechanism based on information from the DQ process about congestion levels.

Another estimation-based approach is called the adaptive attractor-selection-based

congestion control scheme, which lies on resource separation [21]. The ASCC technique

calculates the base station–selection probability to be selected using the predicted load value

and available preamble sequences.

3.2. RL Based Approaches

With the proliferation of artificial intelligence, particularly reinforcement learning, and the

success of these methods in handling complicated issues, RL has made a quick entry into the

field of communication. RL is initially used for resource management and various resource

slicing. We survey the most thriving applications of this approach in this subdivision.

Raza et al. propose an RL-based slice admission strategy to reduce the penalty a RAN

infrastructure provider faces while providing services with varying latency requirements

[22]. One of the recent researches in this area is [23], which offers a combined

energy-efficient subchannel assignment and power management strategy. They use a

multi-agent RL to tackle the massive access management challenge considering energy

efficiency. To make the optimization issue, they turned the delay requirement into a data

rate constraint. For heterogeneous wireless networks, Yu et al. introduce DLMA, a universal

MAC protocol based on DRL [24]. Nassar and Yilmaz suggest a network slicing model based

on a cluster of fog nodes to utilize the restricted resources at the network edge optimally [25].

In order to learn the optimal slicing policy adaptively, A DRL beside a Markov decision

process for problem formulation is used. They target to achieve efficient resource allocation

using grade of service as a key performance indicator in their study.

Another RL-based RAN slicing approach is suggested by Raza et al [26]. In the presence

of services with varying priorities, they offer a slice admission method based on RL. A 5G
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flexible radio access network (RAN) is being proposed, in which slices of multiple mobile

service providers are virtualized over the same RAN infrastructure.

A Q-learning-based method is proposed by El-Hameed and Elsayed to take care of the

congestion issues over the RACH [27]. Their main target is to ensure that the H2H

communications and its QoS requirement are not affected by the coexistence of MTC.

Their approach assigns the available preambles between M2M and H2H devices such that

the H2H devices receive adequate service while the number of active M2M devices is

maximized. Their reward function is based on actual calculated blocking probability and

blocking probability threshold value. Based on this reward value, the RL agent changes the

number of assigned preambles for M2M.

They proposed Q-learning-based uplink resource allocation techniques in work [28] to

optimize the number of serviced IoT devices in NB-IoT networks in real-time. For

the single-parameter single-group situation, they initially created tabular-Q, LA-Q, and

DQN-based methods, which exceed the traditional LE-URC and FSI-URC approaches in

terms of the number of serviced IoT devices. They studied the multi-parameter multi-group

scenario provided in the NB-IoT standard to handle traffic with various coverage needs,

which presented the high-dimensional configurations challenge.

3.2.1. ACB Parameters Optimization Using RL

One of the most suitable applications of RL is ACB parameters optimizations to improve

the RACH performance. General targets of all these approaches are increasing the success

probability and reducing the delay. In this subsection, we try to cover each research

perspective and also its advantages and disadvantages. One of the pioneers in this regard

is Chen et al. In the first phase of their study, authors in [11] propose a novel DRL algorithm

to tune the barring rate factor dynamically. In the second phase, they enhance their algorithm

to manage RACH for heterogeneous machine-type communication devices requiring various

levels of quality of service. The details of this study also are discussed in section 5.2.1.
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Authors in [29] have used the RL to cope with the congestion problem arising from MTC.

They have targeted to minimize both the collision rate and the access delay in their study.

Their Q-learning algorithm makes use of a reward function based on the collision rate and the

delay in the previous RAO. Although they reduce the collision rate however the low success

rates are striking at first glance.

For tuning ACB parameters, Jiang et al. proposed using deep deterministic policy gradients

for continuous action selection [30]. They also use a deep Q-network to handle the back-off

mechanism’s discrete action selection. The DRL-based solutions significantly outperform

traditional heuristic solutions, especially in heavy traffic scenarios, and the DRL-based ACB

scheme outperforms the DRL-based BO and DQ schemes, according to their results.

Tuning both barring rate and barring time parameters of the ACB mechanism is suggested

in work [31]. Bui and Pham feed the RL agent with channel state, and their reward function

is based on a ratio of successful preambles. Their RL method, known as the dueling deep

Q-network, is equivalent to our single rate approach, while their main concern is energy

consumption. The conspicuous lack in this study is that they did not consider service

differentiation among the UEs.

3.3. Other Approaches

The authors in [32] investigate the aggregations of UEs under different groups to coordinate

the RACH procedure via group coordinators. The suggested model recalls a gateway in

the networking design concept. They also proposed a local group update mechanism to

overcoming the RA traffic. The group-based approach reduces the collision chance in the

channel; however, it introduces coordination cost.

Vural et al. presented a ”multi-preamble random access” algorithm to dynamically discover

the size of the preambles in distinctive load situations[33]. By doing so, they aimed to

reduce the collision probability and increase successful random access probability. At the

end of the study, they conclude that the adapted algorithm can efficiently provide preamble

discrimination in various service classes and support a high rate of RA load. The authors also
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put forward a concept called ”vPreamble” as a virtual network function, and various ideas

in this concept that each vPreamble example can be instantiated and configured for service

classes such as IoT and mobile services.

Klymash’s technique is unique in that it chooses the primary mobile node using the Voronoi

diagram and fuzzy logic approaches [34]. They cluster, aggregate and classify UEs to enables

more efficient use of the cellular network’s radio resource. The main node delegates the

communication, resulting in a reduction in signal load on the eNB.

Nwogu et al. deal with congestion problems in heterogeneous LTE via a three-way

partitioned resource booking method [35]. Through a mixed static/dynamic resource

utilization strategy, their technique reduces random access latency considering various QoS

requirements. They also suggest a dynamic resource sharing scheme for a class between the

URLLC and non-URLLC priorities.

Phuyal et al. compared the performance of both ACB and E-ACB within their simulations

based on models suggested by 3GPP [36]. While most of the works concentrate on single-cell

scenarios, Lien et al. present the cooperative ACB for global stability and access load sharing

to remove significant flaws in the usual ACB method [37]. The Strong coding scheme is one

of the overload control categories, and the work in [38] uses this approach to cope with the

MTC through RACH attempts. The authors compare their results against E-ACB.

In another approach, A novel ACB configuration based on the ratio of idle preambles in the

channel is proposed to feed an adaptive filtering algorithm [39]. Real-time ACB parameter

adjustment is used to deal with MTC congestion issues in this research.
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4. PROPOSED METHOD

Efficient RACH congestion control through the ACB mechanism requires making sequential

decisions about the barring rate and barring time at each RAO. The control problem is

potentially intricate and uncertain, considering the randomness factor in the fundamental

design of the ACB. Above all, the effect or feedback of the decision taken may appear at

any time interval since each UE independently and randomly can select a backoff period.

Therefore, the reaction of a decision taken mixes with other decisions. The major complexity

of the RACH congestion control is due to this distributed and mixed feedback structure.

Besides, not the competing UE count nor their access time distribution is available to the

eNB. Channel state is the only available information to eNB, which includes; idle, collided

and successful preamble count. On the other hand, there is no explicit accuracy evaluation

method for these consecutive decisions. All these characteristics make RL suitable for ACB

parameter optimization. In specific for this purpose, we have implemented the Trust Region

Policy Optimization [62] approach, which is an iterative procedure for optimizing policies

with guaranteed monotonic improvement.

4.1. Priority Assignment

Service providers and regulators are meant to deliver a wide variety of QoS to their

customers. Priority classification is either in favor of meeting these QoS requirements or

based on internal regulation policies. Prior studies on prioritised random access divide the

UEs based on their access delay sensitivity. [18], [19], [9] are used high, medium and low

priority traffic in their work, while authors in [11] prefer to use high, low and scheduled

priorities in their categorization. All these works aim to separate the emergent and high

priority traffic like healthcare applications, fire sensors, public safety devices. Although this

level of emergency shows a rare frequency of occurrence, it requires minimum delay and

maximum channel access success chance. On the contrary, low priority class represents

regular and settled data transmitters whose data loss and delay are tolerable. The medium

category stands in between based on its QoS requirement.

15



Also, some works suggest five different categories including, H2H, low priority, high priority,

scheduled and emergency [63], [64]. These works also follow the same idea and attempt to

provide priority-based access in more diverse levels.

We support multiple levels of prioritization to cope with different QoS concurrently. Our

proposed priority classification is configurable for any service provider and regulator to meet

their requirements since there is no limitation on the number of classes. Therefore service

differentiation is applicable in desired degrees. Assuming that n separate classes are required,

the class number should assign form 1 to n from low to high priorities, respectively. The

higher priority classes will provide low latency and high success rates in respect to lower

priority classes.

4.2. Reinforcement Learning

Reinforcement learning is an area of machine learning concerned with how software agents

evolve by interacting with the environment by observing it, taking actions and receiving

immediate reward feedback to maximize some notion of cumulative reward.

Figure 4.1 represents the RL approach in which the RL agent observes the environment

through the state space, while the reward value acts as a feedback mechanism for the agent.

Environment

Agent

Action atReward rtState st

rt+1

st+1

Figure 4.1 Typical framing of the RL scenario

We propose three different strategies to determine the barring time. In the first strategy, we

use a single constant barring time powered by RL to dynamically and continuously tune

the barring rates. In the second strategy, we introduce our constant multiple barring times

scheme besides our multi-rate RL agent. And in the last strategy, we use the RL to tune the

barring rates and barring times concurrently.
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4.3. Multi-Rate Dynamic ACB Method with Constant Single Barring

Time

We describe the environment via channel state at each RAO, including the number of idle NI ,

collided NC and successful NS preambles individually for each priority class. The priority

class of successful UEs is retrievable since their ID already has been decoded in the fourth

step of the RACH process.

s = {NI , NC , N
PC1
S , NPC2

S , ...., NPCn
S } (3)

RL agent controls the traffic of each priority class by broadcasting multiple P PCn
ACB ∈ [0, 1]

rates simultaneously. Therefore, the action space count is equal to n, which is the number of

defined priority classes in the system.

a = {P PC1
ACB , P

PC2
ACB , ...., P

PCn
ACB } (4)

The eNB informs the UEs about changes in the barring rates through the SIB2 messages

before each RAO. In the constant single barring time phase, we choose T ACB = 0.3s based

on exhaustive optimization search results while we have considered the delay requirements

of 5G Networks for massive type communications.

The reward function describes how the RL agent ought to behave. Since we aim to increase

the success possibility of higher priority classes, we define the immediate reward for previous

RAO based on the successful UE count of each priority class as follows:

r = N PC 1 × C1 +N PC 2 × C2 + .....+N PC n × Cn (5)

N PC n represents the number of successful preambles that belong to each priority class, while

Cn is the coefficient of each priority class which we choose to be equal to the priority class
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number. The priority classes should be assigned from 1 to n, where n indicates the highest

priority class. The RL agent aims to achieve a higher reward in each iteration and the whole

episode. Therefore, the coefficient differences encourage the agent to give priority access to

classes with higher coefficients.

Our RL-based method only benefits from available information at eNB. Multiple barring

rates in the action set and priority-based coefficients in the reward function grant the desired

privileged slicing over the RACH usage. The provided results in the section 5. confirm the

efficiency of our approach.

4.4. Multi-Rate Dynamic ACB Method with Constant Multiple Barring

Times

Our study shows that the Barring Rate alone is not capable of controlling the congestion over

the RACH. In the fact of the matter, a non-zero Baring Time is essential alongside the Barring

Rate to form well-organized traffic management over the channel. However, determining this

Barring Time is so critical. Assigning a long period as Barring Time may cause high delays,

while a short period may cause an overload in the channel.

One of the principal considerations in this study is service differentiation. Although our

proposed multi-rate approach is quite capable of this purpose, different priority classes still

have to wait the same amount of time regardless of randomness in the barring time calculation

process. By definition, each UE enters a backoff period after a collision occurs for that UE

preamble transmission. We propose to send different barring times to reduce the delay for

UE in higher priority classes. Therefore, it is possible to send a lower amount of barring

times for higher priority classes.

The RL agent still benefits from the same state definition set, the reward function and the

action set. The constant Barring Times for each priority class is calculated using the equation

(6).
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T PC n =
CC − Cn + 1

CC
× 0.6 (6)

In this equation, CC represents the total priority class count in the system, and Cn is the

priority class number from 1 to n, where n indicates the highest priority class. The constant

value of 0.6 seconds is the result of the exhaustive optimization search. This value is achieved

with the same comprehensive search approach in the Constant Single Barring Time phase.

For instance, in a scenario consisting of three different priority classes, the barring times will

be respectively 0.2, 0.4 and 0.6 seconds for high, mid and low priority classes.

Provided results in the evaluation section prove that using multiple barring rates alongside

the multi-rate RL-based approach can reduce the delay for higher priority classes while the

RACH utilization is maximized.

4.5. Multi-Rate Dynamic ACB Method with Dynamic Multiple Barring

Times

In the context of using individual barring time for each priority class, we use the RL

capabilities to tune the baring times dynamically. Therefore, the RL agent dynamically

adjusts not only the barring rates but also the barring times. Since using a dynamic barring

rate increases the complexity of the congestion control problem, the RL agent needs to be

fed more detailed information about the environment.

s = {NI , NC , N
PC1
S , DPC1 , NPC2

S , DPC2 , ..., NPCn
S , DPCn} (7)

In addition to the channel state information, DPCn the mean delay of each priority class

is used to explain the environment to the RL agent. The RACH delay of UE is also

another retrievable information for the eNB after decoding the id of the successfully received

preamble.
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The action space consists of both barring rates and baring times separately for each priority

class. Each pair of the ACB parameters are meant to control UE in the different priority

classes. In this way, the RL agent can control the behavior of each priority class without

affecting other service types. This control infrastructure allows the RL agent to give full

access to higher priority classes while partially banning the lower priority classes.

a = {P PC1
ACB , T

PC1
ACB , P

PC2
ACB , T

PC2
ACB , ..., P

PCn
ACB , T

PCn
ACB } (8)

After trying various reward functions, including the threshold restriction in counting the

successful preambles, we use the same coefficient-based reward function in the first phase,

as it can encourage the RL agent to properly prioritize classes.

r = N PC 1 × C1 +N PC 2 × C2 + .....+N PC n × Cn (9)

Achieved and presented results in the evaluation section emphasize the capability of the RL

approach to handling the congestion control problem. The RACH utilization maximization

and service differentiation goals are achieved. Moreover, the mean delay of higher priority

classes is reduced.

5. EXPERIMENTAL RESULTS

A comprehensive simulator is designed for observing the congestion in the network. It

can simulate a simplified version of the RACH procedure in different conditions. In this

study, we implement the network configuration and the traffic models suggested in the 3GPP

specification [12]. A test scenario, also called an episode, consists of 2000 RAOs of 5ms

long, so each episode duration is 10 seconds. Only 54 preambles from a 64 shared preamble

pool are specified for the contention-based RA procedure. The successive unsuccessful

preamble transmission limit, preambleTransMAX, is set to 10. Table 5.1 lists additional

parameters used throughout the network configuration.
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Parameter Setting

Cell bandwidth 5 MHz

Periodicity of RAOs 5 ms

Subframe Length 1 ms

PRACH Configuration Index 6

Total number of preambles 54

Maximum number of preamble transmission 10

Number of UL grants per RAR 3

Number of CCEs allocated for PDCCH 16

Number of CCEs per PDCCH 4

Ra-ResponseWindowSize 5 subframes

mac-ContentionResolutionTimer 48 subframes

Backoff Indicator 20ms

HARQ retransmission probability for Msg3 and Msg4 10%

Maximum number of HARQ TX for Msg3 and Msg4 5

Table 5.1 RACH configuration suggested in 3GPP specifications

Suggested traffic models for Machine Type Communication (MTC) in 3GPP specifications

are presented in table 5.2 ”Traffic model 1” represents a uniform distribution of UEs over the

time to simulate a non-synchronized access behavior of UEs in the network. As the extreme

scenarios ”traffic model 2” can be granted, in which a massive number of UEs request to

access the network simultaneously in a highly synchronized manner.

Characteristics Traffic model 1 Traffic model 2

Number of MTC devices 1000, 3000, 5000, 10000, 30000 1000, 3000, 5000, 10000, 30000

Arrival distribution Uniform distribution over T Beta distribution over T

Distribution period (T) 60 seconds 10 seconds

Table 5.2 Suggested traffic models for MTC in 3GPP specifications

We define Preamble Transmission Rate (PTR) as the count of UEs that simultaneously trigger

the handshake process. PTR determines the connection success rate at each RAO. Low PTR

increases the success probability of an RAO, while high PTR reduces it. The average results
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of one billion independent random preamble selection are provided in figure 5.1. Achieved

outcomes are similar to the study in [8]. The success rate probability has a parabolic behavior

in respect to PTR change. The maximum chance is reachable when the PTR is equal to the

available preamble count (54), which is in line with the theoretical optimum calculations.

However, the collision rate is also critical due to the drop mechanism.
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Figure 5.1 Channel state under different PTR

In the best case, only 54 UEs can establish a connection simultaneously, provided that each

UE has chosen a different preamble in the handshake process. However, as nodes choose

their preambles randomly, it is impossible, and according to [8], the highest successful UE

count is about 21. The higher PTR, the higher the collision chance in the channel. By

exceeding a critical PTR level, congestion starts due to this inherent limitation in the RACH.

As it can be seen in figure 5.1, in a channel with PTR higher than 300, the success share is

almost zero, while all 54 preambles face collision.

In a simple experiment, the number of UEs is increased gradually to examine these intervals

in a network without any congestion control policy. There is also no backoff mechanism

while the drop mechanism is active. Achieved results are demonstrated in figure 5.2. Our

results are consistent with the results given in the 3GPP specification [12] provided in table

5.3.
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Figure 5.2 Congestion starting intervals in the different distributions over a pure network, without
any congestion control policy

Traffic Model Performance measures
Number of MTC devices per cell

5000 10000 30000

1 Access Success Probability 100% 100% 100%

2 Access Success Probability 100% 100% 29.5%

Table 5.3 3GPP Simulation results for RACH capacity for LTE FDD

Congestions in the episodes and drops in success rates start when UE count exceeds about

38000, 18000 and 14000 respectively for Uniform, Beta(3, 4) and Beta(4, 6) distributions.

The achieved results emphasize that only one test scenario faces congestion in the traffic

models suggested in the 3GPP specification [12] and also almost all previous works. The

remaining cases can be handled even without any congestion control policy. We extend the

3GPP traffic models to make the traffic more challenging and to prevent overfitting in the

learning process. Therefore, we add Beta(4, 6) distribution and increase the UE count in the

episode. Each episode is constructed with a random distribution and UE count to make the

simulation more realistic. Besides, UEs are assigned to different priority classes randomly,

so an almost equal number of each priority class exists in an episode.
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5.1. Perfect Control Benchmark

At each RAO, the optimal value for the Barring Rate can be calculated as

P ACB = min(1,M/n) (10)

according to [5], [11] and [65]. In this equation, M is the number of available preambles,

while n is the candidate count for preamble transmission in the upcoming RAO. In the

theoretical optimum approach, the main target is to limit the PTR equal to the available

preamble count M = 54, assuming that eNB is aware of the value of n. In practice, due to the

essential probability properties, PTR is fluctuating around the desired optimum value. Since

benchmarking is the only purpose here, we relax the assumption for the first improvement.

Therefore, we assume that eNB knows all random numbers (q) generated by candidate UEs

in each priority class in the upcoming RAO. In this way, using a simple sort operation, the

eNB can determine the P ACB such that exactly 54 UEs have the opportunity of preamble

transmission.
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Figure 5.3 Performance comparison of the perfect control mechanism applying different fixed PTR
policies

When the value of the broadcasted barring rate is equal to one, the eNB grants access to

all contending UEs, and basically, there is no restraint for the upcoming RAO. If n is equal

or less than M , the equation returns one as the barring rate value. Regarding these facts,
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the theoretical optimum approach essentially tries to limit the number of contending UEs

to the available preambles count, which is 54. In a single RAO, the theoretical optimum

approach results in the maximum success rate in the RACH procedure. However, there

is also a noticeable collision probability. Considering the sequential RAOs, this collision

probability may result in connection request failures and packet losses due to the drop

mechanism. Based on the standard, each UE stops preamble transmission after ten successive

unsuccessful connection attempts. We have applied an exhaustive search over the PTR value

to minimize the drops and define the perfect control mechanism. As figure 5.3 shows, the

theoretical optimal (PTR = 54 No Drop) achieves the highest success rate, while the drop

mechanism is disabled. However, by enabling and applying the drop mechanism in the

simulation, the mean success rate of the theoretical optimal method decreases, especially in

the range 20000 and 30000 in Beta distributed scenarios. The PTR = 46 accomplishes a

higher overall performance in various test cases. It is worth mentioning that these details

have not been noticed in the previous works since they rarely test heavy traffic scenarios, and

the drop mechanism has not been considered in most of these studies.

Our novel perfect control approach not only outperforms the theoretical optimum approach

but makes it possible to implement multi-rate perfect control. To do so, starting from the

highest priority class, eNB allocates the preambles by choosing the proper barring rate. Then

remaining capacity is used to specify the barring rate for the next priority class, and so on.

5.2. Performance Evaluation

In evaluating our proposed multi-rate ACB scheme, many Key Performance Indicators (KPI)

have been considered: throughput, success probability, PTR, drop, backlog, number of

attempts, delay and delay standard deviation. Although success probability and delay are

the most important KPI factors for our study, we observe other KPIs as well. Our dynamic

proposed method can tune the barring rate for each ACs 0 to 9 individually. We have tested

the proposed method with different numbers of priority classes like 3, 5 and 10 levels. In all

of these cases, the multi-rate approach has shown robust performance and consistent channel
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usage, even under heavy loads. Nevertheless, due to lack of space, we present the result

of three and five different priority class scenarios under a limited UE count. We compare

multi-rate RL-based simulation average results with a benchmark with no ACB mechanism

as the lower bound, a dynamic single rate ACB adjusted by RL, DRL approach (suggested by

Chen et al.), and the perfect multi-rate control as the upper bound. Our multi-rate RL-based

outperforms the theoretical optimum results due to the drop mechanism. Therefore, as it is

explained in the previous section, we developed perfect control inspired by the theoretical

optimum approach.

5.2.1. Chen’s DRL Approach

Among the previous studies, the DRL approach suggested by Chen et al. is one of the

pilot RL-based methods which has considered the service differentiation in the RACH

procedure. Therefore we also compare our method against their DRL approach. There are

some fundamental configuration differences between our and Chen’s research. First of all,

we assume that there can be any arbitrary priority class in the scenario, while their work

is limited to three different priority classes. Secondly, in their configuration, a constant

value of UEs exists in the test case. In our work, the UE count and distribution are chosen

randomly just before each episode. They consider a lower ratio of total UEs in higher priority

classes, while in our study, each priority class has an equal number of UEs, which makes the

control more challenging. Above all, our configuration includes test cases with higher UE

than models suggested in 3GPP. We have implemented their proposed method using their

recommended threshold values 1, 5 and 10 seconds from high to low priority classes.

In the following subsections, we start by presenting the efficiency of our method in tuning

the barring rate parameter in an environment with three coexistence priority classes. For

this purpose, all KPI factors and statistics achieved from simulations are presented in detail.

Results are presented in both figures and tables to benefit the simplicity of visualization and

numbers precision. Then we demonstrate the assessment of our multi-rate RL-based dynamic

approach under five various classes. Finally, we explain our developments on adjusting
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barring time via constant and dynamic methods. For uniform distribution, we have only

presented scenarios with more than 33000 UEs in them. The scenarios with a lower number

of UEs result in all UEs being successful regardless of the control mechanism, as explained

in figure 5.2.

5.2.2. With 3 Various Priority Classes

5.2.2.1. Success Rate Results Figure 5.4 and table 5.4 demonstrate the overall success

rate probability in Uniform, Beta(3, 4) and Beta(4, 6) distributed scenarios for varying

numbers of UEs. The overall mean success rate probability is the foremost important KPI

in our study. Achieved results confirm that using RL or DRL is an efficient method to

maximize the RACH success rate. Thus all the RL-based methods, including single-rate,

Chen and multi-rate, have very close results to the perfect control approach. As opposed

to what might be expected, using a multi-rate ACB rather than a single rate ACB does not

reduce the performance, as the results prove the fact. For instance, when the UE count is

equal to 40000 and arrival distribution is Beta(3, 4), the overall success rates are 0.22, 0.86,

0.87, 0.87 and 0.88 for No-ACB, Chen DRL, RL(single rate), RL(3-rate) and perfect control

approaches, respectively.

Method Priority
Beta [3,4] Beta [4,6] Uniform

10K 15K 20K 25K 30K 35K 40K 10K 15K 20K 25K 30K 35K 40K 33K 35K 37K 39K 41K 43K 45K

Chen

Overall

99.98 99.98 99.68 98.66 98.09 96.30 86.36 99.99 99.90 98.98 98.51 98.27 95.51 84.80 99.78 99.68 99.38 98.25 93.86 89.43 85.47

RL (Single Rate) 100 99.99 99.58 98.52 98.38 97.98 87.87 100 99.87 98.68 98.41 98.34 97.35 86.35 99.90 99.80 99.55 98.80 95.59 91.05 87.02

RL (3-Rate) 100 99.99 99.79 99.58 99.29 97.85 87.33 100 99.92 99.62 99.29 98.75 96.84 85.70 99.88 99.76 99.39 97.67 93.61 89.47 85.70

Perfect Control 100 99.99 99.71 99.45 99.40 99.39 88.99 100 99.89 99.48 99.41 99.39 99.12 87.55 99.91 99.82 99.67 99.38 96.89 92.43 88.34

Chen

Low

99.93 99.95 99.66 98.52 97.81 96.65 86.52 99.97 99.88 98.89 98.31 97.98 95.85 85.45 99.65 99.54 99.15 98.03 94.05 90.21 85.88

RL (Single Rate) 100 99.99 99.58 98.53 98.37 97.99 87.88 100 99.87 98.68 98.41 98.35 97.35 86.36 99.90 99.80 99.55 98.80 95.59 91.04 87.01

RL (3-Rate) 100 99.99 99.79 99.65 99.60 96.86 65.93 100 99.92 99.70 99.62 99.53 94.46 61.70 99.83 99.60 98.74 94.07 82.05 69.65 58.29

Perfect Control 100 99.99 99.71 99.47 99.45 99.43 68.27 100 99.89 99.50 99.46 99.44 98.64 63.93 99.91 99.83 99.67 99.30 92.17 78.80 66.54

Chen

Medium

100 99.99 99.69 98.61 98.14 96.34 88.75 100 99.91 98.98 98.51 98.27 96.17 86.47 99.87 99.76 99.52 98.48 94.85 90.76 87.87

RL (Single Rate) 100 99.99 99.58 98.52 98.38 97.97 87.89 100 99.88 98.68 98.41 98.34 97.34 86.35 99.90 99.80 99.55 98.80 95.59 91.05 87.01

RL (3-Rate) 100 99.99 99.78 99.55 99.13 98.37 98.20 100 99.92 99.58 99.12 98.45 98.33 98.33 99.91 99.84 99.71 99.46 99.38 99.39 99.40

Perfect Control 100 99.99 99.70 99.44 99.38 99.37 99.37 100 99.89 99.47 99.39 99.36 99.36 99.37 99.91 99.82 99.67 99.42 99.25 99.24 99.24

Chen

High

100 99.99 99.70 98.86 98.32 95.91 83.82 100 99.91 99.09 98.70 98.55 94.52 82.49 99.84 99.73 99.48 98.25 92.69 87.33 82.64

RL (Single Rate) 100 99.99 99.58 98.51 98.38 97.98 87.85 100 99.87 98.67 98.41 98.34 97.36 86.35 99.90 99.80 99.55 98.80 95.57 91.06 87.03

RL (3-Rate) 100 99.99 99.78 99.54 99.14 98.34 97.84 100 99.92 99.58 99.11 98.26 97.73 97.07 99.91 99.84 99.71 99.47 99.39 99.40 99.41

Perfect Control 100 99.99 99.70 99.45 99.38 99.36 99.34 100 99.89 99.48 99.39 99.36 99.34 99.34 99.91 99.82 99.67 99.42 99.25 99.24 99.25

Table 5.4 Numeric presentation of success percentages of different congestion control mechanisms
in a network consisting of 3 various priority classes
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Figure 5.4 Overall and priority-based success rate comparison of different congestion control
mechanisms in a network consisting of 3 various priority classes

On the other hand, analyzing priority-based results exhibit our multi-rate method’s

difference. Since there is no service differentiation in No-ACB and RL(single-rate)

approaches, their Class-based results are the same as their overall results. Although Chen’s

DRL method can improve RACH utilization, it does not show suitable functionality in service

differentiation, especially in episodes with a high UE count. In contrast, in the multi-rate

approach, higher priority classes have almost complete success rates. In High UE counts

like 40000, in which the PTR is high, and congestions occur, the multi-rate method chooses

to restrict only the lower priority class, and therefore after exceeding the capacity, only the

success rate of the low priority class falls.

Continuing with our exemplary 40000 Beta(3, 4) scenario, in the RL(3-rate) approach,

success rates are 0.97, 0.98 and 0.65 for high, medium and low priority classes, respectively.

Simulation results are close to the perfect control results, which are 0.99, 0.99 and 0.68.

The results of the single rate method are 0.87, 0.87 and 0.87, which is equal to the overall

success rate of the single rate approach. Figure 5.5 presents a closer look at the success share
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of each priority class under mentioned methods. The bars represent the overall success of

these approaches, while red, yellow and blue colors represent the high, mid and low priority

classes. The bars almost have the same height, indicating a near success rate. However, in

the Perfect control and multi-rate bars, the red color has a larger portion, which symbolizes

the higher success share of higher priority classes.
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Figure 5.5 Priority-based success-share distribution of different congestion control mechanisms

The same priority-based results are achieved with different UE counts and distributions. As it

can be seen, our multi-rate method maintains the maximum channel utilization, while access

opportunities are distributed based on priority classes.

Scrutinizing the multi-rate results shows that in some scenarios, the success ratio of the

mid-class is slightly higher than the high priority class. However, this negligible difference

does not literally mean that the mid-class achieves a higher priority in the RACH procedure.

The delay results prove that higher priority classes have superiority over the medium priority

class.

As a matter of fact, not only our multi-rate RL-based approach but also the perfect control

method faces the same situation. The drops are the keys to explain these abnormal result
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points. The priority-based approaches intend to increase the success rate of higher priority

classes. Meanwhile, this policy raises the collisions chance in these classes too. Although the

collision chance is not high enough to reduce the success chance, it may result in undesired

drops due to the maximum attempt count constraint. Therefore we closely trace the drop

results, which are presented in figure 5.6. The drop ratio is one of the information that eNB

can not collect throw the standard RACH mechanism. Therefore we do not use this data for

training purposes.
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Figure 5.6 Overall and priority-based drop rate comparison of different congestion control
mechanisms in a network consisting of 3 various priority classes

An example of this situation can be seen in a Beta(3, 4) distributed 40000 UEs test case.

The Success ratio of the high priority class is 0.9784, while the mid-priority achieves a

chance of 0.9820 in the channel. However, the mean delays are 13 milliseconds against 865

milliseconds for high and mid classes, respectively. In fact, according to the delay results, a

UE of a higher priority class manages to establish connection 66 times faster than mid-class

equipment in this scenario.
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5.2.2.2. Delay Results In the priority-based access control, the delay importance is as

high as the success rate. Observed delay statistics are in line with the success rate outcomes,

as figure 5.7 shows. The overall average mean delay of the listed methods exposes a

negligible difference. Analyzing RL(single rate) and Chen’s methods priority-based, results

do not show a considerable difference between priorities. UE of any priority classes senses

the same delay before connection establishment under these methods. On the contrary, in our

multi-rate strategy, except for the low priority class of the uniform distribution, delay results

overlap with the perfect control approach. For higher priority classes, the delay is reduced as

much as possible to the perfect control benchmarks.
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Figure 5.7 Overall and priority-based delay comparison of different congestion control mechanisms
in a network consisting of 3 various priority classes

Table 5.5 provides a closer look at obtained delay results. The stable delay result of both the

perfect and RL(3-rate) approaches is noticeable in the uniform distribution. Regardless of

the existent UE count, the delay is in the range of 8 to 11 ms for the high priority class. In the

medium priority class, this range is slightly higher, 8 to 20 ms. However, the RL(single rate)

and Chen’s methods can cause a delay up to 600 ms depending on the traffic rate for medium
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and high priority classes. Analyzing the low priority class validates that the RL(single rate)

and Chen’s methods manage the traffic with the same delay for higher priority classes. While

perfect and RL(3-rate) approaches keep UE of low priority classes on hold for a higher

period.

Method Priority
Beta [3,4] Beta [4,6] Uniform

10K 15K 20K 25K 30K 35K 40K 10K 15K 20K 25K 30K 35K 40K 33K 35K 37K 39K 41K 43K 45K

Chen

Overall

9 13 53 328 768 1228 1390 10 25 224 654 1157 1599 1704 23 31 51 106 242 378 522

RL (Single Rate) 5 6 24 280 720 1215 1397 6 9 185 606 1105 1611 1721 8 10 14 32 129 307 472

RL (3-Rate) 6 7 45 350 774 1227 1260 6 15 239 648 1138 1599 1610 10 16 33 100 216 292 324

Perfect Control 5 6 17 277 720 1225 1273 6 8 184 603 1104 1627 1622 8 9 10 15 117 254 321

Chen

Low

12 15 43 273 647 1097 1325 12 24 177 558 1038 1525 1617 24 29 45 82 174 278 422

RL (Single Rate) 5 6 24 280 720 1215 1398 6 9 185 606 1105 1611 1720 8 10 14 32 129 307 472

RL (3-Rate) 6 7 116 1021 2236 3338 3698 6 28 690 1854 2981 3931 4197 14 29 80 286 707 1086 1379

Perfect Control 6 6 34 811 2119 3349 3769 6 8 531 1762 2944 3995 4278 8 9 11 24 347 866 1247

Chen

Medium

8 13 52 294 765 1226 1377 10 25 213 640 1111 1492 1718 25 33 52 108 232 372 521

RL (Single Rate) 5 6 24 280 719 1215 1397 6 9 185 606 1105 1611 1722 8 10 14 32 129 307 472

RL (3-Rate) 6 6 10 18 67 361 865 6 8 18 72 400 936 1562 8 9 10 14 17 18 20

Perfect Control 5 6 8 10 30 313 820 6 8 10 36 360 892 1522 8 9 9 10 11 11 11

Chen

High

7 11 63 415 885 1367 1494 8 26 281 761 1314 1792 1793 22 31 56 128 328 517 664

RL (Single Rate) 6 6 24 280 720 1215 1397 6 9 185 606 1105 1610 1721 8 10 14 32 129 307 471

RL (3-Rate) 6 7 9 10 11 13 13 6 8 10 11 13 13 14 8 9 10 11 11 11 11

Perfect Control 6 6 8 10 10 11 11 6 8 10 10 11 11 11 8 9 9 10 11 11 11

Table 5.5 Numeric presentation of mean delay of different congestion control mechanisms in a
network consisting of 3 various priority classes ( Millisecond)

The same policy is trackable for the Beta(3, 4) and Beta(4, 6) distributed scenarios. In

a test case built of 35000 UEs with Beta(4, 6) pattern, the overall delay is approximately

1600 milliseconds using any of the advanced algorithms in the comparison. Also, with these

methods, the mean delay of low, medium and high priority classes slightly fluctuates around

1600 milliseconds. With significant improvement, our RL(3-rate) scheme delay results are

13, 936, 3931 for high, medium and low classes, respectively. The results are competitive

with perfect control results, which are 11, 892 and 3995 milliseconds.

The delays are shifted from higher priority classes to lower priority classes, while the overall

mean delay is the same for both the single rate and multi-rate approaches. We can conclude

that the UEs in the high priority class manage to connect immediately and experience no

delays, while the highest waiting period belongs to the lowest priority.

Diagram 5.8 demonstrates the delay standard deviation. The overall delay standard

deviations of all intelligent approaches are close. Desired service differentiation is reflected
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in success rate and delay results. Desired service differentiation is strongly reflected in the

success rate and delay results. Delay standard deviation, especially in high priority class,

supports this outcome. As it can be seen, in the high priority class Delay standard deviation

of RL(3 Rate) and Perfect Control schemes are almost zero. On the other hand, Delay STD

shows a rising trend in the single rate and Chen’s outcomes. This increase is directly related

to the number of equipment.
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Figure 5.8 Overall and priority-based delay standard deviation comparison of different congestion
control mechanisms in a network consisting of 3 various priority classes

5.2.2.3. Mean Attempt Count Results Efforts on reducing energy consumption rely on

minimizing the attempt count of UEs during the connection establishment process. In other

words, these studies interest in increasing the success probability at the first attempt. For

this reason, the total attempt count of UEs during the RACH is another important KPI. We

analyzed the attempt count and frequency of both successful and unsuccessful equipment.

However, since the only retrievable information in eNB gathers from decoded preambles, we

do not include this extra information in our reward development or training process. Figure
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5.9 represents the mean attempt count of successful UEs, while figure 5.10 demonstrates the

mean attempt of all UEs in the scenario.
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Figure 5.9 Overall and priority-based successful UE attempt count comparison of different
congestion control mechanisms in a network consisting of 3 various priority classes

With a glance at the attempt count charts, it can be said there is a rising trend, which has a

direct relation with the UE count in the environment. However, after a threshold, a certain

decline can be observed in the diagrams. We can explain this abnormal behavior considering

the backlog statistics in figure 5.11. Since the episodes are restricted to 2000 RAO, therefore

in some test cases, UEs may remain in the backlog. Each UE at backlog has already had

at least one unsuccessful RACH attempt. These turning points of the attempt count curves

exactly overlap with the start point of accumulation in the backlog. For instance, the Beta

distribution attempts counts are in the range of 1.2 to 2.6. The curve turns down at 35000

UEs, which is equal to the increasing point of backlog ratio in figure 5.11.

There is a trade-off between minimizing the attempt count and maximize RACH utilization.

This study targets to control congestion, maximize RACH utilization, and provide service
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Figure 5.10 Overall and priority-based attempt count comparison of different congestion control
mechanisms in a network consisting of 3 various priority classes

differentiation. Therefore we do not aim to train the agent to push the attempt count toward

one.

The second inference from the graphs is that the attempt count of unsuccessful UE is higher

than the successful UE, which results in an upward shift in the entire UE results of figure

5.10, comparing to figure 5.9. Since the attempt count of dropped UEs is ten by definition,

and since the total mean attempt count includes the dropped UEs too, this upward shift can

be explained.
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Figure 5.11 Overall and priority-based Backlog rate comparison of different congestion control
mechanisms in a network consisting of 3 various priority classes

5.2.2.4. Exemplary Episodes Analyzes In the final stage of the performance evaluation

of our RL-based multi-rate approach under three different priority classes, we demonstrate

details of some sample episodes to demonstrate our service differentiation strategy. These

sample episodes (figures 5.12, 5.13, 5.14, 5.15, 5.16, 5.17) help to explore the operation of

each control mechanism.

At each RAO of these episodes, various principal parameters such as arrival count, PTR,

barring rate change, channel state, and success share are demonstrated. Some episode

statistics are provided as well in the last row of these diagrams. These visual episode

presentations are helpful in examining the following questions.

• How an approach handles the congestion using the barring rate, and how does barring

rates change?

• What is the instant effect of this barring over the channel state?
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• What is the success share of each priority class at each RAO?

Figure 5.12 represents a sample episode under different control mechanisms. In this

exemplary episode, there are 35000 UEs distributed by Beta(3, 4). In all four methods,

since the UE count and their distribution are identical, the arrival rate is the same, and all

episodes are faced with an equal load (figure 5.12.a). In the first column, where there is no

ACB or any other control approach, the channel is severely congested. The sharp increase

in PTR and collisions in the channel state diagrams are indicators of this heavily congested

situation. In the RL(single rate) case, channel utilization has been maximized by the RL

agent. However, the success shares of all priority classes are the same for this standard

method. The 3-rate RL-based mechanism takes the channel control one step further. In this

way, our approach provides service differentiation in addition to the utilization maximization

goal. As mentioned, ACB controls the channel traffic through the barring rates. In our

method, the lower priority class is barred in the first place after the start of the congestion.

Then as the traffic increases, the middle priority class is also started to be barred. During

this process, there is no barring for high-priority classes. The barring rate adjustments

show similar behavior in our method and the perfect control method (figure 5.12.b). The

channel state row of the diagram (figure 5.12.c) shows how the proposed methods can keep

the channel stable and maximize utilization, while the success share row (figure 5.12.d)

demonstrates the service differentiation properties. It shows how each approach distributes

the load for different priority classes, considering that all priority classes have an equal share

in the arrival phase.

Figure 5.13 displays an excellent example of a highly congested channel. In this test case,

40000 pieces of equipment compete to establish a connection during 10 seconds. This

scenario includes 10 thousand more equipment than the most crowded model suggested in

3GPP. The dynamics and policies are still the same as in the previous example. Congestion

control, channel utilization maximization, and priority-based access requirements are being

met.
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Figure 5.12 Visual comparison of different congestion control mechanisms operation over an
episode which is consists of 35000 UE Beta [3, 4] distributed, with three various priority
classes

We tried to prevent the overfitting problem by adding the Beta(4, 6) distribution to our

random scenario creator. The Beta(4, 6) distribution also causes a high PTR in respect to

the other patterns, which results in a higher degree of congestions to the channel. As can

be seen in figures 5.14 and 5.15, in the NO ACB method, the PTR exceeds 500 and 600 at

their peak points. Therefore handling the extra pressure imposed by this type of distribution
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Figure 5.13 Visual comparison of different congestion control mechanisms operation over an
episode which is consists of 40000 UE Beta [3, 4] distributed, with three various priority
classes

challenges the efficiency of the control method in an event-driven scenario. Using the Beta(4,

6) distribution as the arrival pattern of user equipment reduces the success rate of the channel

without a congestion control policy.

RL-powered congestion control mechanisms still are able to keep the maximum channel
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Figure 5.14 Visual comparison of different congestion control mechanisms operation over an
episode which is consists of 35000 UE Beta [4, 6] distributed, with three various priority
classes

usage under this pattern. Especially our proposed multi-rate approach shows persistent

priority-based management. It maximizes channel utilization like the single-rate approach.

Besides, it slices the access permission among the priority classes like the perfect control

approach.

We also consider extremely congested scenarios under the uniform distribution, which

consist of more than 40000 UEs. In the ideal case in which only 54 UE transmits preamble
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Figure 5.15 Visual comparison of different congestion control mechanisms operation over an
episode which is consists of 40000 UE Beta [4, 6] distributed, with three various priority
classes

simultaneously, the mean success attempt count is about 20. According to the network

configuration, each episode consists of 2000 RAO. Thus in the best case, only 40000 UE

can successfully establish a connection under this configuration. Figures 5.16 and 5.17 show

the operation of the different control approaches under permanent overloads.

Since the failed UEs keep repeating the RACH procedure, the PTR cumulatively increases

and reaches around 200 in the NO ACB scheme. Congestion control policy-based approaches
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Figure 5.16 Visual comparison of different congestion control mechanisms operation over an
episode which is consists of 43000 UE Uniform distributed, with three various priority
classes

manage to remain the PTR in a safe boundary. In the service-differentiated schemes, only

the barring rate of the low priority class is adjusted. The RL agent and the perfect control

grant full access to other priority classes by announcing their barring rate as 1.
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Figure 5.17 Visual comparison of different congestion control mechanisms operation over an
episode which is consists of 45000 UE Uniform distributed, with three various priority
classes
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5.2.3. With 5 Various Priority Classes

Since service differentiation is one of the main concerns of this study, it is critical to evaluate

the performance of our multi-rate approach under different numbers of coexistence priority

classes. So far, we have presented the results of our RL-based ACB under an ecosystem of

3 priority classes. The multi-rate approach is used over 5, 7 and 10 distinct priority classes.

In this section, we present results for a network with five coexistence priority classes. By

definition, these classes are numbered from 1 to 5, from the lowest to the highest priority

classes. These class numbers are used as the class coefficient in the reward function as well

(Equation 5). The perfect control approach is able to manage an arbitrary number of classes

in the channel, as is explained in section 5.1. While the perfect control method simulates the

the-state-of-art in the comparisons, a single RL-based approach is helping to demonstrate the

service differentiation.

We are content to describe only success rates and mean delays in this section since all KPIs

show similar behavior to a system with three priorities. Graphical and numerical presentation

of the success rate is provided in figure 5.18 and table 5.6.

Method Priority
Beta [3,4] Beta [4,6] Uniform

10K 15K 20K 25K 30K 35K 40K 10K 15K 20K 25K 30K 35K 40K 33K 35K 37K 39K 41K 43K 45K

Perfect Control

Overall

100 99.99 99.69 99.46 99.41 99.39 89.00 100 99.87 99.48 99.40 99.39 98.96 87.70 99.90 99.82 99.69 99.40 96.78 92.43 88.28

RL (5-Rate) 99.82 99.91 99.85 99.58 99.18 97.51 86.80 99.85 99.89 99.67 99.21 98.56 96.25 83.33 99.82 99.63 97.76 93.87 90.29 87.14 84.46

RL (Single Rate) 100 99.99 99.57 98.52 98.28 97.93 87.81 100 99.87 98.69 98.42 98.35 97.27 86.24 99.90 99.80 99.56 98.88 95.68 91.02 87.03

Perfect Control

Lowest

100 99.99 99.69 99.52 99.49 99.46 47.56 100 99.88 99.49 99.46 99.49 97.48 41.12 99.91 99.82 99.67 99.25 86.93 65.24 44.50

RL (5-Rate) 100 99.99 99.93 99.88 99.77 94.72 44.05 100 99.96 99.92 99.83 99.71 91.55 38.66 99.62 98.86 89.88 70.60 52.83 37.46 24.57

RL (Single Rate) 100 99.99 99.56 98.52 98.27 97.93 87.77 100 99.87 98.67 98.40 98.36 97.25 86.26 99.90 99.80 99.55 98.88 95.68 91.02 87.03

Perfect Control

Low

100 99.99 99.69 99.42 99.42 99.39 99.39 100 99.88 99.48 99.39 99.41 99.35 99.37 99.90 99.82 99.71 99.43 99.22 99.25 99.24

RL (5-Rate) 99.08 99.57 99.64 99.33 98.80 98.21 98.07 99.26 99.64 99.36 98.83 98.67 98.20 96.60 99.90 99.82 99.68 99.59 99.55 99.43 99.19

RL (Single Rate) 100 99.99 99.57 98.53 98.30 97.92 87.84 100 99.86 98.69 98.43 98.35 97.28 86.27 99.90 99.79 99.57 98.90 95.66 91.02 87.04

Perfect Control

Medium

100 100 99.69 99.45 99.35 99.37 99.37 100 99.86 99.50 99.41 99.32 99.34 99.40 99.90 99.83 99.70 99.44 99.25 99.24 99.28

RL (5-Rate) 100 99.99 99.90 99.57 99.11 98.19 97.27 100 99.95 99.69 99.15 98.16 97.43 96.79 99.92 99.86 99.76 99.72 99.69 99.63 99.50

RL (Single Rate) 100 99.99 99.58 98.50 98.28 97.92 87.84 100 99.87 98.70 98.44 98.36 97.26 86.21 99.90 99.80 99.56 98.87 95.67 91.00 87.03

Perfect Control

High

100 99.99 99.67 99.45 99.41 99.35 99.33 100 99.88 99.45 99.38 99.35 99.32 99.35 99.91 99.83 99.69 99.43 99.27 99.24 99.24

RL (5-Rate) 100 99.99 99.90 99.56 99.12 98.22 97.28 100 99.95 99.68 99.14 98.11 97.03 92.37 99.77 99.73 99.73 99.71 99.68 99.61 99.50

RL (Single Rate) 100 99.99 99.58 98.52 98.27 97.93 87.82 100 99.87 98.69 98.43 98.33 97.27 86.28 99.91 99.80 99.55 98.89 95.68 91.04 87.05

Perfect Control

Highest

100 100 99.70 99.42 99.40 99.39 99.34 100 99.86 99.47 99.35 99.39 99.32 99.34 99.91 99.81 99.68 99.43 99.26 99.24 99.22

RL (5-Rate) 100 99.99 99.90 99.56 99.12 98.20 97.30 100 99.95 99.68 99.11 98.12 97.03 92.24 99.91 99.85 99.76 99.71 99.69 99.63 99.51

RL (Single Rate) 100 99.99 99.57 98.53 98.29 97.92 87.80 100 99.86 98.70 98.42 98.36 97.27 86.21 99.90 99.80 99.55 98.88 95.71 91.02 87.00

Table 5.6 Overall and priority-based success rate comparison of different congestion control
mechanisms in a network consisting of 5 various priority classes
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Figure 5.18 Overall and priority-based success rate comparison of different congestion control
mechanisms in a network consisting of 5 various priority classes

According to the results, our Muti-Rate policy provides priority-based connection

establishment as is expected. The first four higher priority classes are guaranteed full access
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chance in almost all scenarios. The drop mechanism causes a negligible loss, as explained in

section 5.2.2.1. with details. Meanwhile, the lowest priority class is restricted in overloaded

situations like 40000 UE in Beta(3, 4) and Beta(4, 6). In comparison, in a single rate

RL-based tuned approach, the success rate of all priority classes is equal.

Recorded mean delay results in the same test cases corroborate the capability of the proposed

approach in priority-based traffic control over the RACH. As it can be seen in figure 5.19, the

overall delay of the multi-rate scheme is close to single-rate and perfect control approaches.

Class base results reveal the difference between the single rate and multi-rate methods.

The UEs in the highest and high priority classes can establish a connection in less than

20 milliseconds, even in the most crowded scenarios (table 5.7). This achievement plays

an important role in QoS guaranteed services. RL agent shifts the delays to lower priority

classes, like in the three coexistence priority scenarios in the previous section.

Method Priority
Beta [3,4] Beta [4,6] Uniform

10K 15K 20K 25K 30K 35K 40K 10K 15K 20K 25K 30K 35K 40K 33K 35K 37K 39K 41K 43K 45K

Perfect Control

Overall

5 6 19 275 724 1226 1264 6 8 184 604 1107 1627 1616 8 9 10 14 113 191 189

RL (5-Rate) 13 14 99 394 808 1244 1266 12 35 283 684 1160 1613 1649 22 49 148 225 233 207 165

RL (Single Rate) 6 7 24 281 720 1214 1396 6 10 186 609 1106 1609 1720 8 10 14 32 133 310 472

Perfect Control

Lowest

6 6 59 1298 2784 3981 4152 6 9 870 2287 3477 4568 4608 8 9 12 31 577 1284 1765

RL (5-Rate) 6 14 431 1758 2997 4081 4209 7 121 1258 2490 3613 4593 4604 70 201 755 1428 1883 2220 2450

RL (Single Rate) 6 7 24 282 720 1213 1398 6 10 188 608 1105 1609 1724 8 10 14 32 133 310 473

Perfect Control

Low

5 6 9 42 797 2002 3063 6 8 21 704 1849 2845 3716 8 9 9 11 12 12 14

RL (5-Rate) 22 14 27 157 954 1997 2965 19 19 109 835 1831 2739 3562 13 18 26 29 33 41 62

RL (Single Rate) 6 7 24 281 719 1213 1395 6 10 185 609 1106 1608 1721 8 10 14 32 133 310 471

Perfect Control

Medium

6 6 9 10 12 111 592 6 8 10 12 174 755 1482 8 9 9 10 11 11 11

RL (5-Rate) 20 14 15 23 48 215 723 17 14 21 54 282 856 1612 9 10 11 11 12 13 15

RL (Single Rate) 6 7 24 281 720 1212 1395 6 10 186 610 1107 1609 1719 8 10 14 32 133 310 473

Perfect Control

High

5 6 9 10 10 11 11 6 8 10 10 11 11 18 8 9 9 10 11 11 11

RL (5-Rate) 10 21 13 13 14 14 16 11 13 12 13 15 15 23 13 11 11 11 11 12 12

RL (Single Rate) 6 7 24 281 721 1214 1396 6 10 186 607 1107 1610 1719 8 10 14 32 133 311 472

Perfect Control

Highest

6 6 9 10 11 11 11 6 8 10 10 11 11 11 8 9 9 10 11 11 11

RL (5-Rate) 7 7 9 12 14 15 17 7 8 11 14 17 19 30 9 10 10 11 11 11 12

RL (Single Rate) 6 7 24 281 721 1215 1396 6 10 187 609 1107 1608 1718 8 10 14 32 133 310 471

Table 5.7 Overall and priority-based delay comparison of different congestion control mechanisms
in a network consisting of 5 various priority classes

Our results in a network configured by 7 and 10 priority classes show the same consistency,

and it can be concluded that our multi-rate RL-powered congestion control approach

provides priority-based service differentiation besides utilization maximization in the RACH

procedure.
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Figure 5.19 Overall and priority-based delay comparison of different congestion control
mechanisms in a network consisting of 5 various priority classes
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5.2.4. Barring Time Adjustment Results

The key to control the congestion is to make some of the UEs wait long enough to prevent

the traffic. On the other hand, the key to minimizing the pre-connection delay time is to

reduce the backoff processes time without causing an overload on the channel. Striking a

balance between these two goals is of utmost importance, which brightens the significance

of choosing a proper barring time. In this part of the study, we assume that three distinguished

priority classes coexisted in the network. Under this assumption and the prementioned

network configurations, we provide the experimental results of the following barring time

adjustment approaches:

1. RL-Based Multi-Rate approach with Single Constant Barring Time

2. RL-Based Multi-Rate approach with Multi Constant Barring Time

3. RL-Based Multi-Rate approach with Multi Dynamic Barring Time

4. Multi-Rate Perfect Control

The first competitive approach is using a single constant barring time in the entire episode

and all test cases. This fixed duration is determined using an exhaustive search and is applied

for every three priority classes. The Multi Constant scheme uses equation 6 to determine

the barring times for each priority class separately. Based on our scenario configuration,

the values are calculated 0.2, 0.4 and 0.6 seconds for high, mid and low priority classes,

respectively. As explained in section 4.5 , the RL agent is used to tune the barring rate and

barring time parameters concurrently in the Multi Dynamic method.

Although there is no manifest theoretical approach to determine the optimum barring time

at each RAO, the perfect control method can be accepted as a benchmark in this matter. In

fact, the barring time in the perfect control approach is zero, and the backoff mechanism is

applied using the barring rate. All the UEs are allowed to transmit their preamble if they

satisfy the barring rate condition. The UEs do no enter the backoff phase at all. Instead,
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the eNB broadcasts a barring rate such that exactly desired number of UEs have a preamble

transmission turn, as explained in the perfect control section.

5.2.4.1. Success Rate Results Figure 5.20 demonstrates the success rate comparison of

these four methods, and the detailed results are provided in table 5.8. The performance of

these approaches shows diversity in different UEs distributions. In the uniformly distributed

scenarios, the highest results are achieved by Multi Constant scheme after the perfect control

method. For instance, in a test case of 45000 UEs, the overall success rates are 0.85, 0.86,

0.84 and 0.88 in the listed order. This slight outcome preponderance comes from the low

priority class, as the high and mid priority classes results are very close. The low priority

class results are 0.58, 0.60, 0.54, 0.66, while the other classes’ results are higher than 0.99.
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Figure 5.20 Overall and priority-based success rate comparison of different BT adjustment
approaches in a network consisting of 3 various priority classes

On the other hand, Multi Constant scheme does not perform in Beta(3, 4) and Beta(4, 6)

distributions as adequately as other methods. Figure 5.20 shows that, In test cases formed

with over 30000 UEs, there is an explicit gap between the success rate of the Multi Constant
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scheme and the other approaches. Based on the numerical results, we can conclude that the

Multi Dynamic method is more successful in Beta(4, 6), while in Beta(3, 4) distribution, the

Single Constant scheme works better.

Method Priority
Beta [3,4] Beta [4,6] Uniform

10K 15K 20K 25K 30K 35K 40K 10K 15K 20K 25K 30K 35K 40K 33K 35K 37K 39K 41K 43K 45K

Single Constat BT

Overall

100 99.99 99.79 99.58 99.29 97.85 87.33 100 99.92 99.62 99.29 98.75 96.84 85.70 99.88 99.76 99.39 97.67 93.61 89.47 85.70

Multi Constat BT 100 99.99 99.78 99.50 98.85 95.67 84.55 100 99.92 99.56 98.85 96.97 94.16 82.73 99.88 99.78 99.49 97.98 94.16 90.18 86.46

Multi Dynamic BT 99.95 99.98 99.85 99.70 99.37 97.03 87.17 99.93 99.91 99.74 99.40 98.79 96.15 85.66 99.89 99.74 99.22 96.59 92.20 88.19 84.52

Perfect Control 100 99.99 99.71 99.45 99.40 99.39 88.99 100 99.89 99.48 99.41 99.39 99.12 87.55 99.91 99.82 99.67 99.38 96.89 92.43 88.34

Single Constat BT

Low

100 99.99 99.79 99.65 99.60 96.86 65.93 100 99.92 99.70 99.62 99.53 94.46 61.70 99.83 99.60 98.74 94.07 82.05 69.65 58.29

Multi Constat BT 100 99.99 99.81 99.68 99.72 96.66 65.96 100 99.93 99.73 99.77 99.74 93.88 61.47 99.87 99.68 99.09 95.06 84.04 72.14 60.98

Multi Dynamic BT 100 99.99 99.89 99.79 99.68 94.33 65.93 100 99.95 99.85 99.76 99.57 92.59 62.01 99.84 99.54 98.24 90.75 77.69 65.63 54.67

Perfect Control 100 99.99 99.71 99.47 99.45 99.43 68.27 100 99.89 99.50 99.46 99.44 98.64 63.93 99.91 99.83 99.67 99.30 92.17 78.80 66.54

Single Constat BT

Medium

100 99.99 99.78 99.55 99.13 98.37 98.20 100 99.92 99.58 99.12 98.45 98.33 98.33 99.91 99.84 99.71 99.46 99.38 99.39 99.40

Multi Constat BT 100 99.99 99.76 99.41 98.42 94.80 93.37 100 99.91 99.47 98.41 95.48 94.09 93.00 99.88 99.81 99.69 99.43 99.21 99.19 99.19

Multi Dynamic BT 99.86 99.94 99.80 99.64 99.21 98.39 97.83 99.79 99.84 99.68 99.22 98.46 98.13 97.82 99.91 99.84 99.71 99.49 99.44 99.46 99.44

Perfect Control 100 99.99 99.70 99.44 99.38 99.37 99.37 100 99.89 99.47 99.39 99.36 99.36 99.37 99.91 99.82 99.67 99.42 99.25 99.24 99.24

Single Constat BT

High

100 99.99 99.78 99.54 99.14 98.34 97.84 100 99.92 99.58 99.11 98.26 97.73 97.07 99.91 99.84 99.71 99.47 99.39 99.40 99.41

Multi Constat BT 100 99.99 99.76 99.41 98.40 95.54 94.31 100 99.91 99.46 98.38 95.70 94.52 93.71 99.91 99.84 99.70 99.44 99.24 99.21 99.20

Multi Dynamic BT 100 99.99 99.85 99.66 99.22 98.37 97.75 100 99.94 99.69 99.22 98.32 97.71 97.16 99.91 99.85 99.72 99.52 99.47 99.48 99.47

Perfect Control 100 99.99 99.70 99.45 99.38 99.36 99.34 100 99.89 99.48 99.39 99.36 99.34 99.34 99.91 99.82 99.67 99.42 99.25 99.24 99.25

Table 5.8 Numerical success results of different Barring Time adjustment approaches in a network
consisting of 3 various priority classes

It is worth underlining that some of the test cases are exaggerated, and in suggested traffic

models by 3GPP, the Multi Dynamic method achieves the closest scores to the perfect control

approach. Nevertheless, other KPIs like delay have a critical impact in specifying the most

suitable control approach.

5.2.4.2. Delay Results Figure 5.21 compares the mean delay results between the four

barring time adjustment approaches. At first glance, it can be said that the high-priority class

does not face any latency, while delays are more noticable in low priority class.

This outcome is due to service differentiation among the priority classes. The statistical

results in table 5.9 show that all RL-based approaches introduce almost the same delay as the

perfect control method in the high priority class.

In the mid-priority class, delay results of the Multi Constant scheme and Multi Dynamic

method are lower than the Single Constant approach. For instance, in Beta(3, 4) and 40000

UEs, the perfect control has a delay of 820 ms. The Single Constant approach result is 865

ms, while Multi Constant scheme and Multi Dynamic method results are 813 and 839 ms.
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Method Priority
Beta [3,4] Beta [4,6] Uniform

10K 15K 20K 25K 30K 35K 40K 10K 15K 20K 25K 30K 35K 40K 33K 35K 37K 39K 41K 43K 45K

Single Constat BT

Overall

6 7 45 350 774 1227 1260 6 15 239 648 1138 1599 1610 10 16 33 100 216 292 324

Multi Constat BT 6 7 44 335 767 1241 1280 7 16 230 643 1155 1619 1627 11 17 35 107 218 297 332

Multi Dynamic BT 7 8 70 402 815 1217 1275 8 25 281 685 1163 1587 1622 14 29 71 172 274 327 342

Perfect Control 5 6 17 277 720 1225 1273 6 8 184 603 1104 1627 1622 8 9 10 15 117 254 321

Single Constat BT

Low

6 7 116 1021 2236 3338 3698 6 28 690 1854 2981 3931 4197 14 29 80 286 707 1086 1379

Multi Constat BT 6 7 114 976 2222 3352 3743 6 31 664 1848 2997 3957 4241 14 31 84 308 706 1081 1373

Multi Dynamic BT 6 8 192 1181 2381 3394 3792 6 58 819 1986 3074 3961 4270 25 68 194 528 949 1287 1548

Perfect Control 6 6 34 811 2119 3349 3769 6 8 531 1762 2944 3995 4278 8 9 11 24 347 866 1247

Single Constat BT

Medium

6 6 10 18 67 361 865 6 8 18 72 400 936 1562 8 9 10 14 17 18 20

Multi Constat BT 7 8 10 15 47 324 813 7 9 15 51 370 892 1514 10 10 10 12 14 14 15

Multi Dynamic BT 11 9 11 14 45 334 839 12 11 14 54 378 918 1539 8 9 11 13 14 14 14

Perfect Control 5 6 8 10 30 313 820 6 8 10 36 360 892 1522 8 9 9 10 11 11 11

Single Constat BT

High

6 7 9 10 11 13 13 6 8 10 11 13 13 14 8 9 10 11 11 11 11

Multi Constat BT 6 7 9 11 12 15 19 7 8 10 12 16 20 24 8 9 10 11 11 11 11

Multi Dynamic BT 6 7 9 10 11 12 13 6 8 10 11 13 13 14 8 9 10 10 10 10 10

Perfect Control 6 6 8 10 10 11 11 6 8 10 10 11 11 11 8 9 9 10 11 11 11

Table 5.9 Numerical delay results of different Barring Time adjustment approaches in a network
consisting of 3 various priority classes
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Figure 5.21 Overall and priority-based delay comparison of different BT adjustment approaches in a
network consisting of 3 various priority classes

Although Multi Constant scheme causes lower delay than the others, however, the success

rate of this approach was lower than the others. There is the same pattern in the Beta(4, 6)

distribution with 40000 UEs. The delay results are respectively 1562, 1514, 1539 and 1522
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ms. Again considering both success rates and the delay results, the multi dynamic method

preforms a better control over the channel.

5.2.4.3. Delay Standard Deviation Results The delay standard deviation results are

provided in figure 5.22 and table 5.10 to support the mean delay results and future

examination.
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Figure 5.22 Overall and priority-based delay standard deviation comparison of different BT
adjustment approaches in a network consisting of 3 various priority classes
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Method Priority
Beta [3,4] Beta [4,6] Uniform

10K 15K 20K 25K 30K 35K 40K 10K 15K 20K 25K 30K 35K 40K 33K 35K 37K 39K 41K 43K 45K

Single Constat BT

Overall

8 13 177 829 1457 1936 1949 9 66 599 1211 1714 2104 2109 35 64 128 310 613 829 949

Multi Constat BT 16 19 182 810 1457 1950 1971 15 77 589 1215 1729 2117 2123 41 74 142 340 627 843 967

Multi Dynamic BT 25 29 290 949 1538 1950 1983 30 140 707 1285 1761 2107 2132 77 150 292 560 822 978 1055

Perfect Control 2 3 38 663 1379 1924 1949 3 6 455 1145 1669 2114 2106 5 6 8 19 279 644 852

Single Constat BT

Low

8 17 293 1176 1760 2064 2208 8 111 876 1469 1782 1981 2124 57 108 214 496 972 1339 1592

Multi Constat BT 2 14 303 1160 1761 2057 2195 3 128 869 1474 1781 1964 2103 65 124 238 546 992 1354 1603

Multi Dynamic BT 3 33 478 1336 1836 2064 2185 4 231 1028 1538 1802 1953 2076 131 255 484 905 1335 1625 1823

Perfect Control 2 3 62 944 1663 2020 2166 3 7 664 1383 1729 1939 2066 5 6 10 30 412 969 1323

Single Constat BT

Medium

4 5 27 69 194 606 1077 4 12 66 203 625 1072 1443 8 13 23 41 56 63 70

Multi Constat BT 23 23 25 46 143 543 1017 21 22 43 149 577 1024 1409 24 22 21 27 34 37 39

Multi Dynamic BT 35 23 33 52 151 624 1114 45 35 52 166 646 1106 1481 14 17 26 42 48 45 46

Perfect Control 2 3 6 7 47 453 951 3 5 7 59 488 958 1354 5 6 6 7 8 8 8

Single Constat BT

High

8 10 16 18 19 22 20 10 13 19 18 21 20 21 14 14 16 18 20 19 19

Multi Constat BT 9 8 9 12 14 19 26 8 10 12 15 21 27 33 8 8 8 9 10 10 10

Multi Dynamic BT 13 14 14 15 15 15 15 13 14 15 16 17 14 16 13 11 9 9 10 10 10

Perfect Control 2 3 6 7 7 7 7 3 5 7 7 7 7 8 5 6 6 7 8 8 8

Table 5.10 Numerical standard delay deviation results of different Barring Time adjustment
approaches in a network consisting of 3 various priority classes

6. CONCLUSION

By considering the rising trend of IoT devices, especially within the 5G networks, this work

has targeted the congestion issue in the RACH procedure. We have proposed an RL-based

Adaptive ACB to slice the RACH resources among the UEs of different priority classes.

We aimed to control the congestion by intelligently adjusting the barring parameters of

ACB to reduce the instant overload. In addition to the RACH utilization maximization,

we considered the priority-based passage using the available information in eNB.

Our proposed method has scored 99.6 percent similar values to the results of the perfect

control approach, even in extremely congested scenarios. In this way, the maximum number

of handshake processes take place without causing congestion in the channel. On the other

hand, provided service differentiation has been proved through the mean delay results.

Regardless of the existent UE count, the delay is in the range of 8 to 11 ms for the high

priority class, which overlaps with prefect control results. Using our novel approach UEs

in higher priority classes can establish a connection up to 100 times faster than a single

rate approach. In the medium priority class, this range is slightly higher depending on

the simulation load. However, delays in mid-class are still lower than in the lower priority
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class. This apparent difference among the class-based delay results proves the priority-based

access control mechanism in our approach. Reducing the delays, attempts count by each

UE, and therefore energy consumption has been other advantages of our proposed method.

Our approach is following the standard design named Extended ACB introduced in 3GPP

[12]. Consequently, easy implementation and future cellular network applicability are other

encouragements.
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