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ABSTRACT

MODELING OF THE IONOSPHERE’S DISTURBANCE USING DEEP
LEARNING TECHNIQUES

RAHEM ABRI ZANGABAD

Doctor of Philosophy, Computer Engineering Department

Supervisor: Assoc. Prof. Dr. Harun ARTUNER
September 2021, 158 pages

The ionosphere drives an essential role in the atmosphere and earth. Solar flares due to

coronal mass ejection, seismic movements, and geomagnetic activity cause deviations in the

ionosphere. The main parameter for investigating the structure of the ionosphere is Total

Electron Content (TEC). This thesis converges the importance of ionosphere TEC data to

evaluate seismic events. The dataset assessed in this thesis contains the ionospheric variabil-

ity during moderate and severe earthquake events of varying strengths for 2012-2019 years

in Chile station. TEC values obtained from GPS stations provide a powerful technique for

analyzing the ionospheric response to earthquakes and solar storms. TEC data gathered from

GPS stations (Dual-Frequency GPS receiver) is used to investigate the ionospheric variability

through moderate and severe earthquakes. This thesis has three main contributions.

In the first contribution, our goal is to analyze the relations between earthquakes and TEC

data. We concentrate on extracting features from earthquakes and classification over the

ionospheric TEC data. In this phase, we do not focus on predicting earthquakes with previ-

ous days. The proposed model uses Deep Autoencoders to extract features from TEC data.

As the ionospheric TEC data is a high-dimensional factor, reducing dimensionality to obtain
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a compressed feature set is an essential step in the feature extraction phase. The collected

features served as input to dense neural networks to perform classification. The classification

model results are compared against the LDA(Linear Discriminant Analysis), SVM(Support

Vector Machine) and Random Forest classifier models to evaluate the proposed model. The

results report that the proposed model improves in distinguishing the earthquakes at an ac-

curacy rate of about 0.94 in the target station zone.

In the second contribution, we propose a classification model to detect earthquakes in pre-

vious days. The LSTM methods handle this issue with the solution to short-term memory.

The proposed models use LSTM-based (Long Short-Term Memory), deep learning models

to classify earthquakes days by analyzing TEC values of the last seven days. The variant

versions of the LSTM models are proposed to enhance the contribution of this research. The

LSTM-Based classification models are compared against the SVM, LDA and Random For-

est classifier models to evaluate the proposed models. The results reveal that the proposed

models improve in detecting the earthquakes at an accuracy rate of about 78-80 and can be

used as a successful tool for detecting earthquakes based on the previous days.

In the last contribution of this thesis, we develop a hybrid version of deep autoencoders and

LSTM to detect earthquakes in previous days. This model proposes to improve the stacked

LSTM-based earthquake classification introduced in the second model. The suggested model

uses a deep autoencoder to derive beneficial features from ionospheric TEC data and perform

Stacked LSTM to classify earthquakes days by analyzing TEC values of the last seven days.

To analyze the contribution of the suggested DAE-STCK-LSTM model, we used Stacked-

LSTM, LDA, and SVM classifiers. Our evaluation test results prove approximately 81-84

accuracy-based performance in the two test sets of the earthquakes, including moderate and

severe earthquakes.

Keywords: Inosphere, Total Electron Content, Deep Autoencoder, Long Short-Term Mem-

ory, Linear Discriminant Analysis, Support Vector Machine, Random Forest
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ÖZET

İYONOSFER BOZULMALARININ DERİN ÖĞRENME TEKNİKLERİ
KULLANILARAK MODELLENMESİ

RAHEM ABRI ZANGABAD

Doktora, Bilgisayar Mühendisliği

Danışman: Doç. Dr. Harun ARTUNER
Eylül 2021, 158 sayfa

İyonosfer atmosferde ve dünyada önemli bir rol oynar. Koronal kütle atımı, sismik hareketler

ve jeomanyetik aktiviteye bağlı güneş patlamaları iyonosferde sapmalara neden olur.

İyonosferin yapısını araştırmak için ana parametre Toplam Elektron İçeriğidir (TEC).

Bu tez, sismik olayları değerlendirmek için iyonosfer TEC verisinin önemini araştırmaktadır.

Bu tezde, 2012-2019 yılları arasında Şili istasyonundaki orta ve yüksek şiddetli depremler

sonucunda ortaya çıkan iyonosfer anomalilerini içeren bir veri seti değerlendirilmiştir. GPS

istasyonlarından elde edilen TEC değerleri, depremlere ve güneş fırtınalarına karşı iyonos-

ferik tepkiyi analiz etmek için güçlü bir yöntemdir. GPS istasyonlarından (çift frekanslı GPS

alıcısı) elde edilen TEC verileri, orta ve yüksek şiddetli depremlerin sebep olduğu iyonos-

ferik anomalileri araştırmak için kullanılır. Bu tezin modeli üç ana bölümden oluşmaktadır.

İlk bölümdeki amaç, depremler ile TEC verileri arasındaki ilişkiyi analiz etmektir. Deprem

verilerinden öznitelikler çıkarmaya ve iyonosferik TEC verisini sınıflandırmaya

odaklanılmıştır. Bu aşamada depremleri önceki günlerin bilgisini kullanarak tahmin etmeye

odaklanılmamıştır. Önerilen model, TEC verilerinden öznitelik çıkarmak için Derin Otomatik

iii



Kodlayıcı kullanmaktadır. İyonosferik TEC verisi yüksek boyutlu olduğundan, öznitelik

çıkarma aşamasında boyut azaltma işlemi yalın öznitelik seti elde etmek için kritik öneme

sahiptir. Çıkarılan öznitelikler, sınıflandırma yapmak için kullanılan sinir ağlarına girdi

olarak verilmektedir. Sınıflandırma modelinin sonuçlarını değerlendirmek için, LDA

(Doğrusal Diskriminant Analizi), SVM(Destek Vektör Makinesi) ve Random Forest (Rast-

gele Orman) sınıflandırma modelleri ile kıyaslama yapılmıştır. Elde edilen sonuçlar, önerilen

modelin belirlenen hedef istasyonda 0.94 doğruluk oranı ile depremleri ayırt edebildiğini

göstermektedir.

İkinci bölümdeki amaç, geçmiş günlerdeki depremleri tespit etmek için bir sınıflandırma

modeli önerilmiştir. LSTM yöntemleri, bu sorunu kısa süreli bellek(short-term memory)

çözümü ile ele alır. Önerilen modeller, son yedi günün TEC değerlerini analiz ederek de-

prem günlerini sınıflandırmak için LSTM tabanlı (Uzun Kısa Süreli Bellek), derin öğrenme

modellerini kullanır. LSTM modellerinin farklı versiyonları, bu araştırmanın doğruluğunu

arttırmak için önerilmiştir. LSTM tabanlı sınıflandırma modelleri, önerilen modelleri

değerlendirmek için SVM, LDA ve Random Forest sınıflandırıcı modelleri ile karşılaştırılır.

Sonuçlar, önerilen modellerin depremleri yaklaşık yüzde 78-80 doğruluk oranında tespit

etmede geliştiğini ve önceki günlere göre depremleri tespit etmek için başarılı bir araç olarak

kullanılabileceğini ortaya koymaktadır.

Bu tezin son kısmında, önceki günlerde depremleri tespit etmek için derin otomatik kod-

layıcıların(deep autoencoders) ve LSTM’nin hibrit bir versiyonu geliştirildi. Bu model, ik-

inci modelde tanıtılan yığın LSTM(stacked LSTM) tabanlı deprem sınıflandırmasını

geliştirmeyi önermektedir. Önerilen model, iyonosferik TEC verisinden faydalı özellikler

çıkarmak için derin bir otokodlayıcı kullanır ve son 7 günün TEC değerlerini analiz ederek

deprem günlerini sınıflandırmak için yığın LSTM uygular. Önerilen DAE-STCK-LSTM

modelinin amacını analiz etmek için Yığın-LSTM, LDA ve SVM sınıflandırıcıları kullanıldı.

Değerlendirme test sonuçları, orta ve şiddetli depremler dahil, iki test kümesinde yaklaşık

yüzde 81-84 doğruluk tabanlı(accuracy-based) performans göstermiştir.
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1. INTRODUCTION

1.1. Motivation

As we gradually rise above the ground, we will encounter an atmospheric classification in

terms of elevation, some of which will be of particular importance. The nature of molecules

or ions that depend on the Earth’s gravitational field changes the absorption of solar radiation

and, therefore, temperature, density, and ionization. The boundaries of spatial layers are not

constant, neither spatially nor temporally, because their interfering parameters are not fixed

either. When moving away from the Earth’s atmosphere, it is reached a layer from 48km to

965km (600mi) that is ionized to a plasma phase called the ionosphere layer.

A major measurable parameter that indicates a characteristic of the ionosphere is Total Elec-

tron Content (TEC). TEC provides an effective means to probe the structure of the iono-

sphere. In the literature, TEC is defined as the line integral of electron density along a ray

path or as a measure of the total electrons along a ray path. The unit of TEC is given in

TECU(TEC Unit), where 1 TECU = 1016 electron/m2 defined by Arikan et al. and Nayir

et al. [1, 2]. The fluctuations and turbulences of the ionosphere layer can be captured ade-

quately and efficiently by calculating and watching TEC Values. Over the past few decades,

the Global Positioning System (GPS) provides a cost-effective explanation in calculating and

assessing TEC and observing the ionospheric layer turbulences over a notable proportion of

global landmass as conducted work [2].

Overall, the ionosphere layer’s temporal and spatial variability directly relates to the earth’s

daily (each day) and annual rotation and the pattern of magnetic field lines of the geomagnetic

dipole. As discussed in [3], earth’s magnetic field even when no existence of geomagnetic

activities is scarcely quiet. The standard intermittent alterations generate the dynamics of the

quiet ionosphere. The ionosphere’s quiet conditions are impacted by the variations in the ge-

omagnetic and solar activity and seismicity. So, these consequences can cause disturbances

in parameters like earthquakes.
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Empirically, discovering precursory signals in strong earthquakes is the subject of most

case studies on earthquake prediction in the literature. Nevertheless, the precursory sig-

nals through long time periods are not investigated. The main motivation of this thesis is

to investigate models to analyze the relationship between earthquakes and ionospheric TEC

data. The foremost aim of the recommended models is predicting an earthquake by analyzing

previous days of the earthquake using ionospheric TEC data.

TEC values obtained from GPS stations are a powerful technique for analyzing the iono-

spheric response to earthquakes and solar storms. TEC data gathered from GPS stations

(Dual-Frequency GPS receiver) is used to investigate the ionospheric variability through

moderate and severe earthquakes. For this research, TEC data has been collected from two

GPS stations. This data has been collected from the IONOLAB group (Hacettepe Univer-

sity of IONOLAB is an organization of electrical engineers to investigate hurdles of the

ionosphere.) The ionospheric variability during moderate and severe earthquake events of

varying strengths for 2012-2019 years is discussed in this thesis.

This thesis uses different deep learning techniques and algorithms to extract relations be-

tween TEC data. For this purpose, it aims to use supervised and unsupervised learning meth-

ods based on deep learning techniques. In the unsupervised learning methods, we use Deep

Autoencoder and LDA method. On the other hand, we use deep, dense neural networks,

Long short-term memory, and support vector machine in the supervised learning methods.

Furthermore, as the TEC data related to days is large enough, we need a feature extraction

mechanism to reduce valuable features. Therefore, classification models are developed to

handle extracted features to predict earthquake days or quiet days in the dataset.
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1.2. Contribution and Outline

1.2.1. Main Contributions

The contributions of the thesis are as bellows:

• To estimate the potential for predicting earthquakes, exploring the characteristics of

the ionosphere to achieve a correct prediction process. For this purpose, TEC features

are examined in several aspects.

• In this framework, new classification models are proposed using hybrid deep learning-

based algorithms to extract the relations between TEC data and earthquakes. In this

way, we can overcome the noise problem related to TEC data with deep autoencoders

to extract the features for earthquake days and quiet days and perform classification to

increase earthquake prediction accuracy.

• After feature extraction of TEC data, we use different algorithms such as deep dense

neural networks or variants of LSTM to perform classification based on supervised

learning methods for predicting earthquake days and quiet days.

• In the process of feature extraction and classification, we use two GPS stations TEC

data for 2012-2019 years. The first station is located in coordinate (Lat : −20.15, Lon :

−70.13) Iquique in Chile and the second station is located in coordinate (Lat : −20.85,

Lon : 117.1) Karratha in the Pilbara region of Western Australia.

• Finally, our contribution in this thesis is divided into three main models. In the first

model, we focus on interpreting earthquakes based on ionosphere disturbances using

deep neural networks. In the second contribution, we propose a classification model

to detect earthquakes in previous days using time series recurrent neural networks.

Finally, In the last model, we develop a hybrid version of deep autoencoders and LSTM

to detect earthquakes in previous days.
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1.2.2. Thesis Outline

An outline of the chapters in this thesis includes an overview of the related works of iono-

sphere characteristics and anomalies, Scenario-based ionosphere anomalies, Earthquake sce-

narios based on ionosphere fluctuations, and machine learning algorithms for classification

and feature extractions. Following that, three chapters detail our contributions and describe

the foremost models related to predicting and classifying moderate and severe earthquakes

based on the anomalies that occurred in the ionosphere layer. The organization of the thesis

is as follows:

Chapter 2. describes the background information about atmosphere layers, especially iono-

sphere layers and their characteristics, machine learning methods, and deep learning algo-

rithms based on supervised and unsupervised learning methods. Chapter 3. presents the

related works on Scenario-based ionosphere irregularities, earthquakes based on ionosphere

changes, and machine learning algorithms for classification ionospheric anomalies.

The dataset related to earthquakes and TEC values of GPS stations and preprocessing steps

are presented in the Chapter 4.. Chapter 5. discusses learning parameters and evaluation

metrics used for evaluation and helps better understand the metrics required to do a quality

evaluation. Using the evaluation methodology, performances of our proposed models and

the other classifier models are evaluated.

The models of predicting and classyfing are discussed in chapters 6., 7. and 8. These chap-

ters include our main contributions about feature extraction, classification and predicting

earthquake days. Every contribution in the previous chapters is organized to compare and

examine the performance metrics of the proposed classification models.

In Chapter 6. , we concentrate on interpreting the relations between earthquake days and

quiet days based on ionosphere disturbances using deep neural networks. Chapter 7. pro-

pose a classification model to detect earthquakes in previous days using time series LSTM

models. Chapter 8. describes a hybrid version of deep autoencoders and LSTM to detect
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earthquakes in previous days. Finally, in the last part of the thesis in Chapter 9., we includes

the concluding and future works remarks.
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2. BACKGROUND INFORMATION

This chapter focus on the background information about atmosphere layers and artificial

intelligence based algorithms that are used in this thesis.

2.1. Atmosphere Layers Characteristics

As we gradually rise above the ground, we will encounter an atmospheric classification.

Earth’s atmosphere has a sequence of layers; every layer has its own specific characteristics.

The atmosphere is divided into file layers, as depicted in the Figure 2.1.. These layers are

identified as the troposphere, stratosphere, mesosphere, thermosphere, and exosphere.

Figure 2.1. Layers of the atmosphere.
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2.1.1. Troposphere Layer

The troposphere is the most inferior layer in the Earth’s atmosphere. The troposphere is

identified between the Earth’s surface and about 12km above sea level. Approximately all

kinds of clouds are observed in the troposphere layer, and nearly all weather happens inside

this layer. This layer is the wettest layer between the atmosphere layers. The air in the

troposphere layer consists of 78% nitrogen, 21% oxygen, and 1% of argon, water vapor, and

carbon dioxide.

2.1.2. Stratosphere Layer

The layer directly above the troposphere is named Stratosphere. The borderline between the

troposphere and the stratosphere is termed Tropopause. The second layer in the atmosphere

is the stratosphere layer that starts is around 12 km (7.3 miles or 38,000 feet) above sea level

at middle latitudes. However, the height of the starting point of the stratosphere varies with

latitude and with the seasons. For instance, the start boundary of the stratosphere layer is

decreased to about 11 km at the poles in winter. The stratosphere layer is ended at 50 km

(31 miles). In contrast to the troposphere, where the temperature decreases when we move

upwards, in the stratosphere the temperature increases as we move upwards.

2.1.3. Mesosphere Layer

Beyond the stratosphere is the mesosphere layer that stretches upward to a height of approx-

imately 85 km (53 miles) over the sea level on Earth. Unlike the stratosphere, as it rises

through the mesosphere, the temperature reduces once again. The coldest temperature in the

Earth’s atmosphere, approximately -90 ° C (-130 ° F), is the top of the mesosphere layer. The

mesosphere layer is challenging to analyze, so more limited is comprehended about this layer

than other layers in the atmosphere. For example, Satellite orbits are beyond the mesosphere

and cannot undeviatingly estimate traits of this layer.
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2.1.4. Thermosphere Layer

The layer above the mesosphere is the Thermosphere layer. The thermosphere layer absorbs

son’s High-energy X-rays and UV radiation. The amount of energy originating from the Sun

is a dominant impact on the height of the top of this layer and the temperature within it. The

thermosphere can be observed anyplace between 500 and 1,000 km (311 to 621 miles) above

the sea level on Earth.

2.1.5. Exosphere Layer

Despite the fact that some specialists accept the thermosphere to be the uppermost layer of

our atmosphere, others examine the exosphere to be the real upper layer of the Earth’s atmo-

sphere. The upper bound of the exosphere is no clear because the exosphere subsequently

fades gone into space. Exobase is the name of the bottom of the exosphere. The lower bound

of the exosphere is deviates.

2.2. Ionosphere Layers Characteristics

In the atmosphere layer classification, the ionosphere is not a distinguished layer like the

other layers discussed above. Alternatively, the ionosphere layer is a range of precincts in

parts of the mesosphere and thermosphere. In this layer, high-energy radiation from the

Sun has beaten electrons unhitched from their origin atoms and molecules. The electrically

charged atoms and molecules produced in this manner are called ions. As a collection, these

areas are collectively named the ionosphere layer.

The Sun’s high-energy X-rays and ultraviolet uniformly crash by gas molecules and atoms

in Earth’s atmosphere. As mentioned, some of these crashes beat electrons and generate

electrically charged ions (atoms with missing electrons) and free electrons. These ions and

electrons flow and act abnormally, electrically neutral atoms and molecules. In the litera-

ture, the mentioned ions and free electrons transpire at various altitudes, as a group, as the

ionosphere.
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2.2.1. Ionosphere Layers

There are three principal areas of the ionosphere, named the F layer, the E layer, and the D

layer. Depend on the different seasons, and during the progression of a day, the regions(D,

E, and F layers) have various boundaries. By way of explanation, the regions have not clear

boundaries.

Figure 2.2. Layers of the ionosphere.

As depicted in the Figure 2.2. The lowest region in the ionosphere is the D layer that begins

from 60 to 70 km (37 to 43 miles) above the sea level of the ground. The next layer after

layer D is the E region or layer that is started at around 90-100 km (56-62 miles) and is ended

approximately 120-150 km (75-93 miles). The next and the last region of the ionosphere is

the F layer. This layer is the topmost area of the ionosphere that rises about 150 km and

continues far higher, occasionally as high as 500 km over the Earth.

The mentioned sub-layers of the ionosphere layer are ionized areas installed within the stan-

dard atmospheric layers. As quoted, D region regularly appears in the uppermost portion of

the mesosphere layer. The E region rises in the lower of the thermosphere layer, and the F

region is located in the uppermost stretches of the thermosphere layer.

In different regions, the portion of ionized particles and the height are varied over time in

various seasons. The ionosphere layer is entirely dissimilar in the daytime versus night. The
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Figure 2.3. Detailed information of ionosphere layers.

ratio of ion production is higher than their elimination during the day as depicted Figure 2.3..

Its means that more ions are created throughout the day in the three regions. Due to the

absence of high-energy X-rays and ultraviolet from the sunlight, the recombination process

takes over, and the number of ions is dropped during the night. The D region vanishes

completely at night, and the E region declines with the number of ions in that layer. As

solar X-rays and UV light appearance, the D and E regions are repopulated with ions every

morning. F layer usually divides into a lower F1 layer and an upper F2 layer during the day.

however, the F region sticks almost throughout the night.

Radio communication systems frequently practiced the ionosphere to extend the range of

their transmissions. Radio waves usually move in direct lines, so just a big transmission tower

in terms of height can recognize the top of a receiver transmission tower. Consequently, the

Earth’s curvature restricts the range of radio transmissions to transmission stations that are

not over the horizon. Nevertheless, parts of the frequencies of radio waves reflect off or jump

the electrically charged particles in particular ionosphere regions. Before communication

through satellites is popular, Radio communication systems used the advantage of this aspect,

jumping radio waves off to the sky to extend the range of the signals.
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As show in the Figure 2.4. 1 , due to the variations or removal of the regions between day

and night in the ionosphere layer, Radio operators should consider the regular variations in

the ionosphere layer to effectively benefit these mirroring reflections of radio waves.

Figure 2.4. Radio communication with the ionosphere.

The ionosphere layers can reflect the signals as explained above, or the radio waves can

be bend or absorb with regions in the ionosphere. Consequently, the particular behavior of

radio signals depends on the frequency of the signal and the properties of the ionosphere

layer involved.

Global Positioning System (GPS) satellites radio signals to arrange situations or locations,

so the power of GPS signals be seriously decreased when the signals bend as they pass

within ionosphere layers.Some of these signals depend on their frequency, can be absorbed

entirely. Scientists regularly aim to produce calculator models of the fluctuations ionosphere

so that radio operators in radio communications can predict disruptions. They monitor the

constantly evolving ionosphere to handle radio waves in different directions, radar systems

on the Earth, and on satellites.

2.3. Deep Neural Networks

Deep Learning is a subgroup of machine learning algorithms involved with methods inspired

by the construction of the human brain named artificial neural networks. The theory of

deep learning arose from the investigation of artificial neural networks (ANNs) [4]. ANNs

have grown rapidly during the past few decades [5–9]. Nodes are small pieces of the neural
1Taken from https://qrznow.com/
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network that are grouped into layers. The procedure is required to process layers of data

between the input and output to solve a problem. In some problems, the more layer is needed

to obtain the proper results, the deeper the network is supposed. It is named deep neural

networks when we have more than two layers. In a deep neural network, there is the input

layer that receives information, a number of hidden layers, and the output layer that stores

estimable outcomes. It has been summarized the required information about deep neural

networks for better understanding this thesis. This information has been separated as below.

• Theory of Deep Neural Network

Figure 2.5. Deep Neural Network layers.

As illustrated in Figure 2.5., The Deep Neural Network is assembled from 3 types of

layers. Input layer regularly is remarked as vector X. The nodes in the hidden layers

represent the activation nodes and are usually stated as . The output layer is the values

in the case of multiple predicted outputs. Each connection has a demanding weight

that can be observed as the node’s impact on the node from the next layer. Each node

in the network looks as below.

For instance in a hidden layer node, all the input layer nodes are connected to it. As

depicted in Figure 2.6., all nodes from previous layer are multiplied with their connec-

tion weight. The output is passed from “activation” function. The activation function

decided the node to be active or not. The node with value 1 is named “bias” node.

• Activation Functions

The activation function determines if each node ought to be “activated” or not depend

on the weighted sum. Activation functions are a crucial component of the architecture
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Figure 2.6. Node from Neural Network.

of a neural network. Successful training in the learning phase has a direct relation with

the choice of correct activation function in the hidden layer. The activation function

in the output layer should depend on the type of predictions the model has to perform.

As a consequence, the activation functions in each layer should be chosen carefully

to obtain the proper results in each problem. The activation functions that are used in

thesis are Rectified Linear Unit (ReLU), Sigmoid and Softmax.

• Bias Node

A bias node provides more varieties of weights to be deposited. Biases add a more

harmonious description of the input space to the model’s weights. It is true that ANNs

can work without bias neurons. Nevertheless, they are usually added and counted as an

essential element of the overall model. In summary, a bias value provides to shift the

activation function to the left or right. The shifting of the activation functions promotes

gaining a more desirable fit for the data.

• Loss Function

The error or lost function describe the total of the error, difference between the pre-

dicted value and the original value. Loss functions are used to evaluate the error of the

model; therefore, depending on the loss, the weights can be modified to decrease the

loss on the next evaluation. As a deep neural network determines a mapping from the
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input layer to the output layer, we need to choose a suitable loss function depends on

the particular problem, such as classification or regression.

• Backpropagation Algorithm

Backpropagation is the principle of the neural network training phase. It is a conven-

tional process of training neural networks. This approach aims to fine-tune the weights

using the loss rate achieved in the past iteration. The suitable adjusting of the weights

permits the model to decrease loss rates and get a more reliable model.

Backpropagation approach attends to estimate the gradient of an error function using

all the weights in the network. As illustrated in Equation 1, it aims to decrease the

cost function utilizing the optimal values for weights in order to calculate the partial

derivative of cost function C(W). The calculated value is used to estimating the new

weights (W) values for the network that reduce the cost function.

wj = wj − α
∂

∂wj

C(w) (1)

Where C(w), is the cost function using the optimal values for weight.

2.3.1. Design of the DNN Architecture

The machine learning algorithm can be possibly scaled up. These methods not only have

been prosperous in such scale-up, but they have grown more robust[10]. For example, con-

volutional neural networks (CNN) [11] and recurrent neural networks [12] are the main sub-

fields in deep learning neural networks (DNNs).

Deep neural networks are much more complex in terms of configuration. So there are a huge

number of configuration hyperparameters and topologies during experimentation. In DNNs,

accomplishment frequently depends on obtaining the proper architecture for the problem.

Much of the contemporary literature in deep learning has concentrated on introducing various

on-demanded designed architectures to new different problems [13–16].
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The main problems of applying a DNN architecture are abstracted as three issues. The first is

related to how we can design the components in the model. The second is how we can put the

components together into network topology, and the last issue is how the set hyperparameters

for the components in the leading architecture. These issues are needed to be optimized

independently for every new problem. In conclusion, a novel idea of conceiving about such

a design has begun to appear. Humans are held for the hand-level design of the architecture

in these methods.
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3. LITERATURE REVIEW

In this chapter, we review related works based on the conducted research. This section

presents the related works for monitoring the ionospheric disturbances expresses that ge-

omagnetic activity like storms and earthquakes can cause intense disorders in the electron

density distribution and TEC. The satellite-based measurements from GPS stations have im-

plemented a useful study to investigate the seismo-ionospheric anomalies as described in

[17–19]. The articles [20, 21], investigated the ionospheric perturbation that storms can

cause strong turbulence in the ionosphere’s TEC values. Furthermore, the paper [22] re-

ported earthquakes and seismic activity could cause the changes in electromagnetic signals

and the chemical composition of the atmosphere in the lithosphere with the troposphere and

ionosphere.

One of the initial research that proved the relationship between ionosphere fluctuations and

seismic movement was published in [23]. This research analyzed preliminary data gathered

from satellites that identified the consequences of an upcoming earthquake on the ionosphere

layer. The research results revealed that the seismic flows cause some acute effects on the

ionospheric layer, such as changing the attributes of ionospheric plasma in terms of heating,

composition, and concentration.

Authors in [24], declared the consequences of a long-term investigation of fluctuations in the

ionosphere in seismic movement regions before an earthquake. The research was aims to

discover the foremost features of ionospheric precursors in earthquakes. The main goal was

conceived to recognize features that could recognize earthquake precursors from changes that

had different reasons. In this study, the critical frequency of the F2 layer of the ionosphere

layer (foF2 parameter) is based. The results show that precede earthquakes can be recog-

nized within five days and several hours before the earthquake. It means that earthquakes

of magnitude five or higher can be detected. The main outcome was the determination that,

given the measurement point and the location of the earthquake’s epicenter, ionospheric pre-

cursors features will be alike for all consequent earthquakes with a near epicenter.
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The research [25], related to the variances of foF2 were statistically validated. This study

aims to extract event of irregularities in foF2 is related to a consequent earthquake and

examines the effectiveness of foF2 irregularities as an earthquake precursor. In the statistical

p-value test, foF2 irregularities ere earthquakes evets was discarded with p-value ≤ 0.0052.

The test also verified the feasibility of the predictive model for earthquakes based on foF2

differences. The test also verified the feasibility of the predictive model for earthquakes

based on foF2 differences. There are some studies related to foF2 values or the F2-layer

critical frequency are exists to show that ionospheric precursors of earthquakes [26]. The

value of foF2 depends on the geomagnetic and solar activity, seasons, and time of day. The

value of foF2 rely on the geomagnetic and solar activity, seasons, and time of day.

Some researches are related to the defines the algorithms for detecting variations of foF2.

For example, the authors in the papers [27, 28], proposed the matrices Aij , which have 24

rows six columns, where the value of the i row and j column symbolizes the variation of

foF2 by the middle value for the i hour of the j day. When the matrices are computed for

six days before an earthquake, it turns out to be alike for earthquakes happening in the same

areas. Therefore, the earthquakes are predicted when foF2 variation matrices are created for

earlier earthquakes by the current matrix.

The writers in [28], also revealed the earlier defined approach that utilizes foF2 deviation

matrices. In the newer research [29], they used foF2 deviation matrices with trivial adjust-

ments. It is estimated ten days before and four days following an earthquake. It means the

deviation matrices was calculated from the mean of 15 past values. This article is based on

earthquakes in two regions of Italy and Greece. The results indicate the earthquake holds a

pattern that repeats for a particular area.

The method suggested by the writers in [30], considers two ionosondes. The first one is in the

earthquake preparation zone, and the other is about 500-700 km close to the first ionosonde

(Outside that zone). Data are collected from these ionosondes and compared with each other

in the earthquake days or the absence of any seismic movement. The result shows that the

data will be extremely correlated in the lack of any seismic activity. In contrast, when an
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earthquake happened, the correlation indicator is diminished. The main benefit of this work

is that there is no necessity to process past data.

3.1. Scenario based Earthquake Prediction

Plenty of research like conducted works in [31–34] focus on statistical analyses about the

experimental relationship between the ionospheric based irregularities and earthquakes. For

example, the authors in [31] investigated statistically the TEC related to 20 strong (Magni-

tude ≥ 6.0) earthquakes in Taiwan during the four years (1999–2002). They find out abnor-

malities that indicate the TEC value are decreased within five days before the earthquakes

through the other quiet days. Besides, Le et al. [32] illustrates the relation between iono-

spheric TEC based irregularities and strong earthquakes (Magnitude≥ 6.0) during nine years

(2002–2010). Moreover, they confirmed a high rate of abnormalities is happens in the iono-

sphere through earthquakes with Magnitude ≥ 7.0 and depth ≤ 20 km.

Recently Ulukavak, Pundhir, and Oikonomou et al. [35–37] have reported abnormal fluctua-

tions in the ionospheric layer based on TEC values last days and several hours before severe

or strong earthquakes. The TEC data has gathered from a GPS station in the earthquake zone.

There are some uncertainty issues about generating such anomalies at the epicenter of the

strong earthquakes. Tariq et al. [38], and Shah et al. [39] also stated direct relations between

the ionosphere diversity and the existence of earthquakes. Their research demonstrated TEC

values collected from the GPS receiver is fluctuated and increased before Magnitude ≥ 6.0

earthquakes occur during the long term of 1998–2014. As referred by authors in [32], severe

or intense earthquakes according to their magnitudes were listed based on the ionospheric

TEC irregularities.

In later times, the papers were presented to utilize other aspects of the ionosphere as earth-

quake precursors [40, 41]. Thus, for instance, the research [40], proves anomalies in TEC

(total electron content). This research aims to extract anomalies by several days (2–9) before

three earthquakes of magnitude ≥ 7.2. The authors in [41], just like in the earlier paper, a

notable deviation was identified former to an earthquake. The results show foF2 parameter

18



would not be the exclusive earthquake feature. However, there is a demand for analytical

support of observations that are only for singular events.

Following the conducted research in this field, we aim to analyze the prior days of the earth-

quakes using TEC values in the ionosphere layer and then classify the quiet and earthquake

days in the target station zone. The main goal of this research is predicting the upcoming

earthquakes in the prior days.

3.2. Precursors based Earthquake Prediction using Machine Learning

and Statistical Models

Suggested approaches in the literature based on earthquake prediction can divide into two

principal sections [42]. The first is model-based approaches that hypothesize a machine

learning model or a statistical model to connected the earthquakes with seismic activities.

The second is precursor-based approaches that focus on consideration of variations in the

earthquake precursors.

The statistical models proposed in paper [43], that based on fault line strain to handle a peri-

odicity in the earthquake. They believed that an earthquake depends on the strain collected

close to a fault since a prior earthquake, and this manner reappears many times. The authors

in [44], use Lucas and Fibonacci numbers in the happening times of previous earthquakes

to forecast the expected earthquakes. In [45], it has been proposed a connection model that

corresponds to happening times of earthquakes pattern throughout the fault zones. The older

research is related to the empirical probabilistic model that has been introduced to predict

the magnitude of forthcoming earthquakes [46].

The are plenty of researches using machine learning methods based on earthquake predic-

tion by past seismic activity data like epicenter or magnitude [47–52]. Various machine

learning approaches are used on past earthquakes to detect upcoming seismic activity based

on seismic waveforms. These models are used random forest, k-nearest neighbors, support

vector machine (SVM), and artificial networks. (Asencio-Cortés et al. [53]; Mahmoudi et
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al. [54]; Moustra et al. [55]), In this research, we are focus on the most powerful Recurrent

Neural Networks approaches such as LSTM-models to perform classification on quiet and

earthquake days.

Some research depends on the measurement of variations in the earthquake precursors us-

ing the ionosphere layer fluctuations called precursor-based methods [56–60]. Some other

precursor-based methods use various factors instead of the ionosphere layer, such as strange

lights, unknown animal action, the chemical construction of underground water, radon gas

emissions, and temperature [61–67].

The purpose of the author in [68] is to recommend possible methods between the electromag-

netic state of the ionosphere and the seismic motion before the earthquake. The proposed

model extracts the potential processes between the earth’s ionosphere and the lithosphere.

Gaseous radon outpouring ionizes the air in the atmosphere, leading to anomalies in the F2

layer ionospheric parameters, for example total electron (TEC), maximum ionization critical

frequency (foF2) and maximum ionization height (hmF2). Another approach that depends

on radon emissions is proposed in [69]. This work links the ionospheric anomalies to the

Atmospheric Planetary Boundary Layer habits. The research believed that the lowest height

of the upper boundary in the PBL causes the increase of radon gas that freed in the surface

layer. This is the cause of the increase in the ionization quantity of the ionosphere layer at

night. There are comprehensive examinations describing feasible correspondences between

the noticeable irregularities in F2 layer ionospheric parameters and seismic movements. [27]

study performed the statistical analysis on foF2 important frequencies estimated at Taiwan

Island. It is explained ionospheric precursors to magnitudes greater or equal to four earth-

quakes between the time from 1978 to 1986.

There are additionally various researches that support anomaly detection approaches based

on the ionospheric disturbances in ion temperatures, foF2, and TEC had been examined prior

to severe earthquake nearby some country [70–81]. These studies based on machine learning

and statistical models have been applied to impact seismic movements on the ionospheric

layer irregularities, such as variation analysis and TEC difference or correlation investigation
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among TEC and foF2 or various combinations of GPS receivers. The authors in [82] aim

to perform objective research on the precursor detection of a TEC-based earthquake. The

study reported similarity among ionospheric TEC irregularities and severe earthquakes using

threshold TEC anomaly signals.

As mentioned, the machine learning algorithms are performed on ionospheric data to extract

the relationship between earthquakes and them [83–89]. The research [90] was conducted to

review the correlation between earthquakes and ionospheric magnetic field disturbances that

supervised machine learning methods are used to identify active seismic areas from the mag-

netic field in the ionosphere. The model is based on Random Forest and K-Means to detect

potential relationships among magnetic disturbances in the ionosphere and seismic move-

ments. Another research related to earthquake precursor detection [85] applies correlation

methods to identify the influence of severe earthquake movement on the ionosphere layer.

The study aims to detect anomalies connected with geomagnetic storms and earthquakes that

correlate with GPS stations. However, the method can be executed for severe earthquakes.

The research, based on genetic algorithms, is applied [86], to detect earthquake precursors,

and another study [87], has been used Artificial Neural Network to detect earthquake pre-

cursors by TEC data. The reason of using machine learning techniques to detect earthquake

precursors is to consider the TEC data of the learning pattern. In some scenarios utilizing

machine learning, an irregularity on TEC data may happen before the earthquake. Apply-

ing machine learning techniques based on N-Model Articial Neural Network for detecting

earthquake precursors has been made in Indonesia, particularly Sumatera [84].

The authors in [91] present a novel system that is called QuakeCast that detect short-term

earthquake using global ionosphere TEC data. The proposed method using a classical logistic

regression model and deep learning ConvLSTM autoencoder investigates whether signals

foretell earthquakes in a TEC dataset of the ionosphere layer.

In the study [92], a gradient boosting-based technique called LightGBM is performed with a

k-fold cross-validation test to discriminate electromagnetic pre-earthquake disturbances. The
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study has been used the low-altitude satellite DEMETER for ionospheric disturbance inves-

tigation. The DEMETER reported various instances of ionospheric disturbances seen on

the occasion of severe seismic phenomena. The conclusions of the research exhibit that the

electromagnetic pre-earthquake data are discriminated adequately with the proposed method.

Many investigations have been used DEMETER data to detect many perturbations before se-

vere earthquakes happen. The authors in [93], used the DEMETER data to found many iono-

spheric perturbations before the Kii island earthquake with a magnitude of 7.3. The study

[94] is related to the Wenchuan earthquake on 12 May 2008. The approach pronounced that

the ion mass approached its lowest rates within three days before the Wenchuan earthquake.

Studies in [95] and [96], discovered plasma disturbance across the region of earthquakes and

observed related plasma irregularities with electric field disturbances about 4-7 days before

the earthquake. Ryu et al. [97] investigate the relationship between prior days of earthquake

and ionospheric data and released that irregularities rose in the equatorial ionosphere approx-

imately 25-30 days before the earthquake and sees the highest value in the eight days before

the main earthquake. Based on the epicenter with the DEMETER data, the authors in the

study [98] perform an analytical consequence of the boxplot model to obtain the outgrowths

of the 1–6 days before the Wenchuan earthquake regarding ionosphere ion temperature and

ion density fluctuations in the daytime and nighttime.

The study [99], and [100], investigated a statistical interpretation of plasma density fluc-

tuations and noted a significant rise in the plasma density before some earthquake scenar-

ios. Zhang et al. [101] mentioned that low-frequency electromagnetic changes are begun to

emerge on a great range of latitudes and accomplished the highest after seven days before

the earthquake. Ho et al. [102, 103] presented the impact concerning the abnormal enhance-

ment of electron density, ion density, and ion temperature throughout the epicenter region

of earthquakes. Additionally to the scenario-based earthquakes, many other investigations

prove that the DEMETER ionospheric disturbances are valuable and fine-tuned for catching

irregularities related to earthquakes [104–109].

The evidence in the literature has been confirmed that ionospheric disturbances are not only
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affected by earthquakes. For instance, in some earthquake scenarios, ionospheric distur-

bances cannot be detected. However, some scholars worked to utilize statistical interpre-

tation to eliminate the electromagnetic disruptions caused by non-earthquake origins. The

authors in [110] and [111], work on a statistical model to examine the connection between

seismic activities and equatorial irregularities recognized by DEMETER has been made ap-

plying equatorial plasma density and electric field measurement. He et al. [112, 113] present

a statistical model to shows the irregularities increase when the magnitude is enhanced and

the electron density raised in the nighttime close by the epicenter. In a similar study related

to the ionospheric ion density, the authors in the [114], exhibits the ionospheric anomalies

five days before an earthquake at 200 km from the epicenter. Other statistical investiga-

tions relating to the ion density peaks in the DEMETER data [115–119], confirmed that the

turbulences are risen and then reduced continuously on the day of the earthquake.

As stated before, investigation on ionospheric irregularities before seismic activities usu-

ally depends on one or different explicit parameters, and complex consequences can be

performed. Accordingly, the electromagnetic features of ionospheric irregularities before

earthquakes need to be thoroughly investigated. Furthermore, numerous studies only refer to

specific earthquakes, lack generality, and may represent various outcomes.

As mentioned, the ionospheric TEC data is a time series parameter. Ionospheric precursors

regularly do not obey a systematic behavior. Consequently, it is commanding to generate

machine learning-based methods for the detection of abnormal patterns in the investigation

of earthquake precursors. A strong earthquake predicting approach depends on the particular

earthquake parameters (magnitude, time, and location) gathered from the perceived iono-

sphere irregularities. The ionospheric TEC anomalies typically occur in the F-layer, E-layer,

and D-layer and may be recognized until ten days before the earthquake [120]. For instance,

the author in [121], develops an approach to identify the abnormal fluctuations of the TEC

data by the severe Solomon earthquake utilizing genetic algorithm. It can be detected some

irregular TEC based fluctuations on earthquake day.
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In this thesis, we perform our purposes with an efficient differentiation interpretation of elec-

tromagnetic pre-earthquake disturbances on a large dataset of consecutive TEC data by han-

dling machine learning and deep learning algorithms that are extensively applied in recent in-

vestigations of predicting earthquakes [122–126]. Furthermore, machine learning algorithms

is suitable for finding out the various prominent features in distinguishing electromagnetic

pre-earthquake disturbances.
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4. Ionosphere TEC Based Dataset

This section has introduced the dataset related to earthquakes and TEC values of GPS sta-

tions. The dataset preprocessing steps are also discussed in the following.

4.1. Dataset

As mentioned in Section 1., TEC values obtained from GPS stations are a powerful tech-

nique for analyzing the ionospheric response to earthquakes and solar storms. TEC data

gathered from GPS stations (Dual-Frequency GPS receiver) is used to investigate the iono-

spheric variability through moderate and severe earthquakes. For this research, TEC data

has been collected from two GPS stations. This data has been collected from the IONO-

LAB group (Hacettepe University of IONOLAB is an organization of electrical engineers

to investigate hurdles of the ionosphere.) 2. The first station is located in coordinate (Lat :

−20.15, Lon : −70.13) Iquique in Chile represented in Figure 4.1.. The second station is

located in coordinate (Lat : −20.85, Lon : 117.1) Karratha in the Pilbara region of Western

Australia represented in Figure 4.1.. The earthquake information is collected via (United

States Geological Survey of Earthquakes) 3.

Figure 4.1. The Iqqe station is located in Coordinate (Lat:-20.15, Lon:-70.13) Iquique in Chile and
the karr station located in coordinate (Lat : −20.85, Lon : 117.1) Karratha in the
Pilbara region of Western Australia.

2Available at http://ionolab.org/
3Available at https://earthquake.usgs.gov/
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The ionospheric variability during moderate and severe earthquake events of varying strengths

for 2012-2019 years is discussed in this paper. The data related to each station has been col-

lected from 2012 to 2019. The data were separated day by day with 2880 TEC samples in a

day. As illustrated in Figure 4.2., the stations are located in the same latitude from the two

hemispheres of the east and west of the earth. Chile region has strong and severe earthquakes;

however, the Karratha region is almost quiet in terms of earthquakes.

Figure 4.2. Iqqe and karr stations located in the same latitude from the two hemispheres of the east
and west of the earth.

4.2. Data Preparation

In the machine learning concepts, the quality of the input dataset is so critical because there is

a direct relationship between the quality of the input data and the performance of the trained

model. Preprocessing of data is consists of data tuning techniques that modifying raw input

data to an acceptable format. Ionospheric TEC data is often incomplete, inconsistent, and it

is possible to contain many errors. Data preprocessing of this research is consists of three

phases, including Cleaning, Transformation, and Reduction.

Since raw TEC data on specific days have missing and noisy values, the cleaning step at-

tempts to eliminate missing values and make regressions with prior and later samples to

smooth noisy values. Besides, the collected data is transformed into appropriate forms of

mining. To perform the normalization, TEC values are scaled to small specified range (0,1.0).

TEC data consists of 2800 samples in a day.
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Table 4.1., illustrates detailed information about the ionospheric and the EQs(earthquakes)

datasets. All earthquakes have gathered from stations that are placed in a radius of 250 km.

The table shows the collected data as details.

Dataset Properties Value
Number of days in uncleaned Dataset 2922
Number of days in cleaned Dataset 2571
Total number of earthquakes≥4.5 141
Total number of earthquakes≥5.0 91

Table 4.1. Prepared data for experimentation.

4.2.1. Similarity Learning Between Stations

The early studies have mentioned the ionosphere is affected by solar flares and other cos-

mic event factors. During the solar flares, X-ray fluxes are intensified that are identified as

the cause of heightened ionization in the ionosphere. As this study focuses on ionospheric

changes and the TEC variations during different earthquakes, it is needed to reduce the ef-

fect of solar flares and other cosmic events effect to recognize more correct earthquakes or

geomagnetic activities.

As mentioned before, the stations are located at the same latitude from the two hemispheres

of the east and west of the earth. Since the solar flares and other similar cosmic events affect

the two hemispheres of the east and west of the earth, it can be calculated the similarity

between two stations. The anomalies in the same days between the stations demonstrate

the solar flares and other similar cosmic events. It can be supposed that have the same

abnormalities due to the solar flares and the other cosmic events in the corresponding stations.

It is required to calculate the similarity between the stations to decrease the effect of these

anomalies. For this purpose, it is estimated the similarity between coincided days in each

station in the dataset. Because of the nature of the dataset, it is considered cosine similarity

to estimate the similarity between coincided days in each station. Cosine similarity is a

metric between two non-zero vectors and is characterized by the cosine of the angles among

the vectors. The cosine similarity is calculated as Equation 2.
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Where x and y are the vectors of the TEC data related to each day in the stations. It is added

Cosine similarity to ionospheric TEC data related to the Iquique station Data as a feature

where the main aim is to interpret and detect earthquakes nearby Iquique Chile stations. As

mentioned, we aim to extract similarities between stations to eliminate other effects except

for earthquakes activities in the ionosphere. This research focuses on pre-earthquake distur-

bances on a large dataset of ionospheric TEC data by handling deep learning algorithms.
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5. Evaluation Metrics Used in Methodology

This section discusses learning parameters and evaluation metrics used for evaluation and

helps better understand the metrics required to do a quality evaluation. Model evaluation

metrics are required to measure the performance of models. The choice of evaluation metrics

are depends on the model.As the nature of data and proposed models, we use Confusion

Matrix to explain the performance of classification models and calculate accuracy, precision,

and recall as performance metrics.

5.1. Related Terminology in Confusion Matrix

• True positives (TP): The circumstances in which the model predicted correctly. The

number of earthquakes that are predicted correctly in the classifier models. That means

the classifier predicted the earthquake day, and it is true.

• True negatives (TN): The number of quiet days that are predicted as quiet days. In

other words, the model predicted the quiet day, and it is true.

• False Positives (FP): The circumstances that the model predicted earthquake day; how-

ever, it is quite a day. It means the model predicted the earthquake day, and it is not

true.

• False Negatives (FN): The number of earthquake days that are predicted as quiet days.

Specifically, the model predicted the quiet day, and it is not true.

5.2. Accuracy Metric in Related Earthquake Classifier

Here accuracy is a common evaluation metric for classification models. It is defined as the

number of correct classified earthquakes to the ratio of all classified days made as presented

in Equation 3.

29



Accuracy =
TP + TN

TP + TN + FP + FN
(3)

5.3. Precision Metric in Related Earthquake Classifier

Precision is the ratio of correctly classified earthquake days to the total classified days as

earthquake days. Precision is calculated as Equation 4.

Precision =
TP

TP + FP
(4)

5.4. Recall Metric in Related Earthquake Classifier

The recall is the measure of our model correctly identifying earthquake days to the total of

earthquake days. Recall is determined as Equation 5.

Recall =
TP

TP + FN
(5)

5.5. Metric Evaluation in Related Earthquake Classifier

Depending on the data and specifications of the classification model, it is needed to em-

phasize precision or recall. The nature of this research is the classification of ionosphere

disturbances based on the earthquakes. The ionospheric disturbances may cause events other

than earthquakes. Therefore in the classification model, the count of false positives is may

be tolerable.
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5.6. F1-score Metric in Related Earthquake Classifier

In generic classification models, between precision and recall values exist an association or

trade-off. F1-score implies a measure of a test set efficiency that reflects both the precision

and the recall to compute the score. The F1-score is the harmonious average of precision and

recall in Equation 6.

F1–score = 2 ∗ precision ∗ recall
precision+ recall

(6)

5.7. Receiver Operating Characteristic (ROC) Metric

It can be beneficial to summarize each classifier’s performance into a single measure to com-

pare different classifiers. Receiver Operating Characteristic (ROC) curve is a common and

standard measure with calculating the area under the curve to compare different classifica-

tion models. As illustrated in Figure 5.2. the ROC curve depicted the relation between the

true-positive rate and the false-positive rate. Classifiers that give curves closer to the top-left

corner indicate a more trustworthy performance.

Figure 5.1. ROC table: detailed information.
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In the ROC table, false positive rate and true positive rate (Sensitivity / Recall) are calculated

as Equation 7 and 8.

True Positive Rate(TPR) =
TP

TP + FN
(7)

False Positive Rate (FPR) =
FP

TN + FP
(8)

5.8. Area Under the Curve (AUC) Metric

AUC (area under the curve) is an effective and combined measure of the true-positive and

the false-positive rates for evaluating the intrinsic efficacy of the classification models. The

larger AUC means diagnostic test is better in differentiating earthquake days from quiet days.

Figure 5.2. AUC table: detailed information.

The area under a curve among two points is obtained by performing a definite integral among

the two points. To measure the AUC, y = f(x) among x = a and x = b, integrate y = f(x).

The area can be determined utilizing integration by given limits as illustrated in Equation 9.
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AUC =

∫ b

a

f(x)dx (9)

5.9. P-value Metric

The P-value is comprehended as the probability rate. It is described as the probability of

obtaining one result representing the same observations or more significant than the actual

observations. The P-value is recognized as the significance level in the hypothesis testing

that describes the possibility of happening the offered event. The P-value is applied as an

option to the denial point to present the most negligible significance of the null hypothesis.

It is more substantial evidence in the alternative hypothesis if the P-value is small.

Ordinarily, the strength of analytical significance is frequently shown in P-value and the scale

between 0 and 1. The P-value test is performed to decide whether the null hypothesis being

tested can be rejected or not. The P-Value is the possibility of observing the effect(E) when

the null hypothesis is true as Equation 10

P V alue = p(E | H0) (10)

The P-value table displays the hypothesis arguments:

• P-value > 0.05 - This range shows the model is not statistically significant, and the

null hypothesis is not rejected.

• P-value < 0.05 - The result proves the model is statistically significant. Regularly,

decline the null hypothesis in the alternative hypothesis.

• P-value < 0.01 - The result confirms the proposed model is extremely significant and

rejects the null hypothesis in the alternative hypothesis.
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5.10. Cross-validation

For estimating the proposed classification methods and extracting machine learning algo-

rithms’ abilities, a statistical technique regularly used is Cross-validation. It is used to an-

alyze and choose a proper model for a machine learning based predictive modeling issue.

Cross-validation techniques are straightforward to implement, uncomplicated to understand,

and usually have a lower bias than different techniques. As the earthquake data sample is

limited count, to evaluate proposed classification models, it is needed to use K-fold cross-

validation and Stratified k-fold cross-validation techniques.

5.10.1. K-fold cross-validation

K-fold cross-validation has been applied to handle the imbalanced classes problem. The

k-fold cross-validation uses the repeated random sampling technique to evaluate model per-

formance by dividing the data into n equal folds and assessing the performance of the model

on each fold.

The value of n in the k-fold is determined such that every train/test group of earthquake

samples is great enough to be statistically representational of the earthquake and ionospheric

TEC dataset. In this thesis, the value for n is set to 10, which has been determined through

experimentation to regularly result in the model ability assessment with low bias a modest

variance.

5.10.2. Stratified K-fold cross-validation

The correct use of the k-fold cross-validation in an imbalanced class distribution problem re-

quires to use of stratified k-fold cross-validation. Specifically, it can split randomly, although

in such a way that keeps the same class distribution in each subset as depicted in the Figure

??. For analysis of the days, a ten-fold cross-validation plan is used for testing. The dataset
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is randomly divided into ten equal folds that each fold is an appropriate representative of the

original dataset.

Figure 5.3. Four folds Stratified Cross Validation
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6. Interpretation of earthquakes based on ionosphere

disturbances using deep neural network

In this chapter, the architecture of the proposed model is presented. Figure 6.1. depicts a

general overview of the proposed model. Due to the large amount of the TEC data related to

each station, it is used deep neural networks. Since the main advantage of Deep Learning is

the investigation and learning of tremendous amounts of supervised and unsupervised data,

so it is valuable for Big Data Analytics, where data is mostly unlabeled. In the proposed

model, unsupervised learning techniques like Deep Autoencoders and deep dense networks

are used.

Figure 6.1. A general overview of the proposed model.

6.1. Feature Extraction

In the data-mining, learning large amounts of input data that include many attributes leads

to impractical or impossible analysis, and the training phase may take long times. Data Re-

duction includes practical techniques to reduce the dataset’s input samples without hazarding

the original data’s integrity. The fundamental feature extraction methods discussed by Liu

et al. [127] are introduced on the basis of projection and data mapping in the original com-

plex input space that has many dimensions to a new output space with lower dimensions by

decreasing data loss. The typical popular projection methods are Principal Component Anal-

ysis (PCA), and Linear Discriminant Analysis (LDA) described by Khalid et al.[128, 129]. In

the PCA method, via maximizing variance, the initial data are projected into its major direc-

tions. This method is categorized as an unsupervised method. In contrast, the LDA performs

optimizing discriminating data from input classes to obtain a linear output space. The LDA
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method is categorized as a supervised learning method. The main issue of the mentioned

approaches is projecting linearly. Sharma et al. [130] offer non-linear kernel functions to

reduce this issue.

As the ionospheric TEC data is a high-dimensional factor, reducing dimensionality to ob-

tain a compressed feature set is considered as an essential step in the feature extraction

phase. Theoretically, the traditional machine learning approaches be capable of acting on

any amount of attributes. In contrast, these models with high-dimensional datasets always

bring some obstacles such as over-fitting of the training set, high computational complexity,

and the curse of dimensionality. For decreasing the input dimensions, autoencoders utilize

neural networks by aiming to minimize reconstruction loss. Therefore, adding hidden layers

to the autoencoders conducts to perform proper dimension reduction process. Deep Au-

toencoders have confirmed their effectiveness in detecting non-linear features across many

complex problems.

Deep Autoencoders are multi-layer neural networks in which the wanted output is the input

itself. In particular, an autoencoder learns a map from the input to itself within a pair of

encoding and decoding steps. Autoencoders have latterly pointed in unsupervised methods

for feature learning. It tries to learn a compressed description of the input while retaining the

most important information.

X̄ = Dcr(Enc(X)) (11)

Where X in Equation 11 is the input TEC data, Enc is an encoding map from the TEC data

to the hidden layer, Dcr is a decoding map function of the code layer to the output layer, and

X̄ is the retrieved a similar version of the TEC data. The objective is to train Enc and Dcr

to minimize the difference between X and X̄ . The encoder and the decoder functions (Enc

and Dcr) are trained simultaneously to minimize the error of reconstruction of input from
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hidden code nodes. Specifically, an autoencoder can be observed as an explanation for the

optimization problems.

min
Dcr,Enc

‖ X −Dcr(Enc(X)) ‖ (12)

In Equation 12, ‖ . ‖ is commonly considered to be the `2 − norm.

Figure 6.2. depicts input, encoder, decoder and the output layer. The smaller reconstruction

error indicates that the autoencoder can render a more compact vector as input vector. An

autoencoder can be established with any activation function. In this research, it is used

Sigmoid and ReLU as defined in Equations 13 and 14.

Figure 6.2. A Deep Autoencoder with five layers.

ϕ(z) =
1

1 + e−z
(13)
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R(z) = max(0, z) (14)

The output of the xth node in the ith layer is obtained sequentially from the output of the

prior nodes in the previous layer as Equation 15 where biasix is bias scalar and Ni represents

the number of nodes in the ith layer, wi
x,n is the weights which connect the xth node in the

ith layer to the nth node in previous layer.

Oi
x = ϕ(netix) = ϕ(

Ni−1∑
n=1

wi
x,nO

(i−1)
n + biasix) (15)

Increasing the layers enhances the ability to learn more complicated patterns, evaluation

time and network’s complexity. As demonstrated in Equation, the matrix of all weights W

are adjusted to minimize the mean square error across the training set.

ε =
N∑
i=1

‖ X −Dcr(Enc(X)) ‖2 (16)

6.2. Classification Method

After the feature extraction with Deep Autoencoder, it is needed to classifying these features.

In the literature, several varieties of classification methods can be applied. The softmax

regression is regularly applied in conjunction with deep neural networks. For this purpose,

it is feasible to combine the classifier with the encoder function. Softmax (multinomial

logistic) regression induces logistic regression. It calculates the probability of the ith class as

in Equation 17.
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Figure 6.3. The general architecture of the proposed DAEclass model.

Probi = Prob(i|I) =
ewiI∑N
n=1 e

wiI
i = 1, ..., N (17)

Where wi are training weights for the ith class and I is the input to the classifier. Then, the

classification is performed by comparing Probi’s. The softmax can easily be combined to

the encoder function and constitute the deep structure of the network.

Block diagram of the proposed autoencoders illustrated in Figure 6.3.. It is a consolidated

model with unsupervised learning and supervised learning. Unsupervised learning is con-

ducted with the encoder that has been trained before in the feature extraction phase, and the

supervised model is a dense softmax classifier. Features at hidden layer two are decreased

and compressed by minimizing the error rate using Equation 16. These features are then

served as input to the next autoencoder layer, and the features at layer three (code layer) are

fed to the softmax classifier, where perform classification with labeled data. The layers of

Deep Autoencoder are trained independently in the feature extraction phase. Hence, the fea-

tures are learned in an unsupervised manner, while classification is conducted as supervised.

Table 6.1. presented the detailed information about network architecture parameters in the

deep autoencoder and classifier.
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Property Deep Autoencoder Dense Classifier
Activation function ReLU and Leaky ReLU Sigmoid
Optimizer Adam SGD
Layer Count 3 2
Loss Function BinaryCrossentropy BinaryCrossentropy

Table 6.1. Detailed information about proposed network architecture.

As stated in the table, it used ReLU and Leaky ReLU in the deep autoencoder as activation

functions. As illustrated in the Figure 6.4., instead of altogether zero in negative values,

Leaky ReLU has a little slop. The reason for using Leaky ReLU instead of ReLU in some

layers in the deep autoencoder is to retaliate against the “dying ReLU” dilemma and speeds

up the training phase. Leaky ReLU raises the training time of the model. It has the “mean

activation” be close to zero, and it does training quicker.

Figure 6.4. Leaky ReLU chart

The optimizer algorithm used in the deep autoencoder side is Adam, and in the classifier

side is stochastic gradient descent (SGD). Adam is an optimizer that has been composed

predominantly for deep neural networks algorithms. Adam optimizer estimates learning rates

for various parameters as known as an adaptive learning rate approach. It is used estimations

moments of the gradient to adaptively optimize the learning rate for every weight of the deep

neural network.

Gradient descent is the favored approach to optimize neural networks algorithms and various

different machine learning methods. Stochastic gradient descent is utilizing single records
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to updates parameters. SGD optimizer requires forward and backward propagation for each

record. So it is slow to coverage.

6.3. Dataset for DAEclass Method

The table shows the collected data as details such as the ratio of the train and test sets. The

splitting of the dataset to train and test set is used to predict the performance of machine

learning algorithms. As mentioned in Table 6.2., For a more considerate interpretation of

the earthquakes, it has been divided the earthquakes to two subsets. The first is the set that

contains moderate and severe earthquakes (EQs ≥4.5) and the second that contains only

severe earthquakes (EQs ≥5.0).

Dataset Properties Value
Train-Test Ratio 80%-20%
Number of days in Trainset 2057
Number of days in Testset 514
Number of EQs ≥4.5 in Trainset 113
Number of EQs ≥5.0 in Trainset 73
Number of EQs ≥4.5 in Testset 28
Number of EQs ≥5.0 in Testset 18

Table 6.2. Prepared data for proposed DAEclass Model.

6.4. Evaluation Methodology

This section discusses learning parameters and evaluation metrics used for evaluation and

helps better understand the metrics required to do a quality evaluation.

The TEC values separated by days are classified with the proposed model in the method sec-

tion. The proposed model is divided into two sub-models. The first sub-model extracts the

features from days using a Deep Autoencoder. When the feature extraction phase is trained

as an autoencoder, it produces a low dimensional representation that encodes a relevant topo-

logical structure of TEC features to reconstruct the high dimensional input. The second is a

softmax dense network that is pinned to the encoder to perform classification tasks. In the
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classifier, the hidden layers are constrained by the earthquake labels of the data. The network

can also be two trained by mixing the autoencoder and classifier.

As stated in Table 6.2., it is apportioned the dataset into train and test sets, with an 80-20

split ratio. In the dataset, there is no proper proportion between the number of quiet days and

the number of earthquake days. Therefore there are only 141 earthquakes (Magnitude≥ 4.5)

between 2012 to 2019. In the classification model, we have a small number of earthquake

class. In the classification model, it has been a small number of earthquake classes, which

causes a problem called the unbalanced classification in the model. The class imbalance

problem occurs when a class is comparatively rare as compared with other classes. Many

methods have been proposed for imbalanced classification by Lopez-Paz, and Makki et al.

[131, 132], and some good results have been reported. For analysis of the days, a ten-fold

stratified cross-validation plan is used for testing. The dataset is randomly divided into ten

equal folds that each fold is an appropriate representative of the original dataset.

To examine the importance of the proposed combination model, we used LDA (Linear Dis-

criminant Analysis) classifier based on the reduction of the features as conducted work by

authors [133, 134]. Linear discriminant analysis is performed utilizing a max function M

being a classification rule.

fi(X) =
1

(2p)
1
2 |
∑
| 12
exp

−1

2
(X − µi)

T

−1∑
(X − µi)

 (18)

M(X) = XT

−1∑
µi −

1

2
µT
i

−1∑
µi + log(pi) (19)

The conditional density of X in class i is fi(X), pi is the probability of class i. It is supposed

that the vector of featuresX is variable and it is distributed with mean vector µi and common
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covariance matrix
∑

. Next, fi(X) can be calculated as demonstrated in Equation 18. M(X)

discriminant function is computed as Equation 19 using the Bayes rule.

6.5. Evaluation Results

Using the evaluation methodology defined in Section 6.4., performances of our proposed

model called DAEclass (Deep Autoencoder Classifier), LDA classifier, SVM (Support Vector

Machine) classifier and RF(Random Forest) classifier are evaluated. This section is organized

to compare and examine the performance metrics of the proposed classification model and

other classifier.

EQs Model Accuracy Precision Recall F1-Score
DAEclass 0.932 0.563 0.753 0.644

≥4.5 LDA 0.894 0.303 0.637 0.408
SVM 0.885 0.253 0.572 0.341
RF 0.863 0.233 0.582 0.338
DAEclass 0.964 0.615 0.836 0.707

≥5.0 LDA 0.946 0.357 0.718 0.474
SVM 0.926 0.263 0.651 0.371
RF 0.913 0.245 0.616 0.346

Table 6.3. Comparison of the DAEclass and other classification models using performance metrics.

Table 6.3. describes the median percentage of performance metrics like accuracy, recall,

precision, and F1-score for the proposed DAEclass model and other classifiers based on

two datasets. The first five rows illustrate the comparison between the proposed model and

the other classifier models based on all earthquakes with dataset that its magnetite ≥ 4.5.

Detailed information about ten-fold cross-validation related to the comparison of DAEclass

and other classification models using performance metrics are presented in Table 6.4. and

6.5..

It is evident that the proposed model has higher performance in all metrics than the other

classifiers. The proposed model boosted its precision and recall much more than the LDA

classifier. The ionosphere layer disturbances reflect all cosmic and seismic activities. As the

false positive count is high due to the imbalanced classes in the dataset, precision is lower
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than recall and accuracy. The last five rows compare the proposed model and other models

based on more strong earthquakes (magnetite-EQs ≥ 5.0). Since strong earthquakes affect

the ionosphere more than moderate earthquakes, they are classified easily. The performance

gap between the two models is smaller than EQs≥ 4.5 dataset.
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Model Count/
Results

Ten Fold Cross Validation
1 2 3 4 5 6 7 8 9 10

DAEclass

EQs≥4.5

TP 21 25 20 18 19 24 17 16 25 23
FP 41 30 20 16 6 11 26 28 5 12
FN 7 3 8 10 9 4 11 12 3 5
TN 445 456 466 470 480 475 456 458 481 474

Precision 0.33 0.45 0.5 0.52 0.76 0.68 0.39 0.36 0.83 0.65
Recall 0.75 0.89 0.71 0.64 0.67 0.85 0.60 0.57 0.89 0.82
Accuracy 0.90 0.93 0.94 0.94 0.97 0.97 0.92 0.92 0.98 0.96

LDA

EQs≥4.5

TP 17 16 19 21 15 15 17 18 20 19
FP 39 56 49 29 71 51 44 42 33 46
FN 11 12 9 7 13 13 11 10 8 9
TN 447 430 437 457 415 435 442 444 453 440

Precision 0.30 0.22 0.27 0.42 0.17 0.22 0.27 0.3 0.37 0.29
Recall 0.60 0.57 0.67 0.75 0.53 0.53 0.60 0.64 0.71 0.67
Accuracy 0.90 0.86 0.88 0.92 0.83 0.87 0.89 0.89 0.92 0.89

DAEclass

EQs≥5.0

TP 16 15 16 14 16 17 12 15 16 14
FP 11 17 12 7 10 5 9 14 9 8
FN 2 3 2 4 2 1 6 3 2 4
TN 485 479 484 489 486 491 487 482 487 488

Precision 0.59 0.46 0.57 0.66 0.61 0.77 0.57 0.51 0.64 0.63
Recall 0.88 0.83 0.88 0.77 0.88 0.94 0.66 0.83 0.88 0.77
Accuracy 0.97 0.96 0.97 0.97 0.97 0.98 0.97 0.96 0.97 0.97

LDA

EQs≥5.0

TP 11 12 14 11 14 13 15 12 15 10
FP 25 38 18 41 16 21 16 20 17 44
FN 7 6 4 7 4 5 3 6 3 8
TN 471 458 478 455 480 475 480 476 481 452

Precision 0.30 0.24 0.43 0.21 0.46 0.38 0.48 0.37 0.46 0.18
Recall 0.61 0.66 0.77 0.61 0.77 0.72 0.83 0.66 0.83 0.55
Accuracy 0.93 0.91 0.95 0.90 0.96 0.94 0.96 0.94 0.96 0.89

Table 6.4. Detailed 10 fold comparison of DAEclass and LDA classification models using perfor-
mance metrics.
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Model Count/
Results

Ten Fold Cross Validation
1 2 3 4 5 6 7 8 9 10

SVM

EQ≥4.5

TP 15 14 16 15 16 18 15 16 17 19
FP 62 51 49 39 47 43 50 47 39 41
FN 13 14 12 13 12 10 13 12 11 9
TN 424 435 437 447 439 443 436 439 447 445

Precision 0.19 0.21 0.24 0.27 0.25 0.29 0.23 0.25 0.30 0.31
Recall 0.53 0.5 0.57 0.53 0.57 0.64 0.53 0.57 0.60 0.67
Accuracy 0.85 0.87 0.88 0.89 0.88 0.89 0.87 0.88 0.90 0.90

RF

EQ≥4.5

TP 16 15 19 16 15 19 16 15 16 17
FP 58 54 50 48 56 54 51 49 47 47
FN 12 13 9 12 13 9 12 13 12 11
TN 428 432 436 438 430 432 437 437 439 439

Precision 0.21 0.21 0.27 0.25 0.21 0.26 0.23 0.23 0.25 0.26
Recall 0.57 0.53 0.67 0.57 0.53 0.67 0.57 0.53 0.57 0.60
Accuracy 0.86 0.86 0.88 0.88 0.86 0.87 0.87 0.87 0.88 0.88

SVM

EQ≥5.0

TP 10 10 12 13 11 9 11 12 15 14
FP 34 45 28 35 28 24 29 34 28 36
FN 8 8 6 5 7 9 7 6 3 4
TN 462 451 468 461 468 472 467 462 468 460

Precision 0.22 0.18 0.3 0.27 0.28 0.27 0.27 0.26 0.34 0.28
Recall 0.55 0.55 0.66 0.72 0.61 0.5 0.61 0.66 0.83 0.77
Accuracy 0.91 0.89 0.93 0.92 0.93 0.93 0.92 0.92 0.93 0.92

RF

EQ≥5.0

TP 11 10 11 11 10 10 12 11 12 12
FP 41 40 34 33 36 29 34 31 29 39
FN 7 8 7 7 8 8 6 7 6 6
TN 455 456 462 463 460 467 462 465 467 457

Precision 0.21 0.2 0.24 0.25 0.21 0.25 0.26 0.26 0.29 0.23
Recall 0.61 0.55 0.61 0.61 0.55 0.55 0.66 0.61 0.66 0.66
Accuracy 0.90 0.90 0.92 0.92 0.91 0.92 0.92 0.92 0.93 0.91

Table 6.5. Detailed 10 fold comparison of SVM and Random Forest classification models using
performance metrics.
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Figure 6.5. Performance metrics of the DAEclass and other classifier models based on two datasets
(EQs≥ 4.5 and EQs≥ 5.0).

Figure 6.5. is the bar chart of performance metrics between four models in terms of two

datasets ( EQs≥4.5 and EQs≥5.0). It can be seen that in Figure 6.5. (A) the DAEclass’s

accuracy grows slightly in the two mentioned datasets. Precision and recall metrics are a

useful measure of success in classification when the classes are imbalanced. Precision is a

measure of classification result relevancy based on earthquakes and false alarms, while recall

is a measure of the classifier’s ability to find all the earthquake days. The comparison between

datasets shows that the DAEclass is more stable than the LDA classifier and other classifiers

in performance. Overall, Figure 6.5. (B)(C)(D) reveals the DAEclass approach notably

increases the precision, recall, and F1-score. Consequently, the improved performance in

the dataset EQs≥4.5 is more extensive than the dataset EQs≥5.0, and the DAEclass is more

reliable in all earthquakes.

As mention in Chapter 5., Receiver Operating Characteristic (ROC) curve depicted the re-

lation between the true-positive rate and the false-positive rate. Classifiers that give curves

closer to the top-left corner indicate a more trustworthy performance. Figure 6.6. depicts the

48



ROC curve of the DAEclass and the LDA classifier models based on two datasets. As shown

in the results, LDA is more accurate than SVM and Random Forest. So In the ROC table,

we compare DAEclass and LDA classifier.

ROC curves related to the DAEclass positioned progressively closer to the upper left angle

in ROC space, So DAEclass has the progressively more prominent discriminant capacity of

earthquake classification. As depicted in the figure, the DAEclass, and the LDA classifier

visually be compared simultaneously, and the results show the DAEclass is more efficient

than the LDA classifier.

Figure 6.6. ROC curve of the DAEclass and the LDA classifier models based on two datasets
(EQs≥4.5 and EQs≥5.0).

The results in Table 6.6. demonstrates AUC values of the model for each dataset. The value

of AUC in the DAEclass-EQs≥4.5 is 0.89, while in the LDA-EQs≥4.5 classifier is 0.79,

which means a keen improvement in the ROC metric. The DAEclass approach has a slight

improvement against the LDA classifier on dataset EQs≥5.0 in AUC values from 0.85 to

0.91.

EQs Model ROC AUC
≥4.5 DAEclass 0.892

LDA 0.794
≥5.0 DAEclass 0.914

LDA 0.856

Table 6.6. AUC values for the DAEclass and the LDA classifier.
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For further inspection of the proposed model, a statistical test is used to search for the level

of significance and improvement. In the test result of the DAEclass model, the difference in

performance over all metrics is significant (p− value� 0.01).

6.6. Conclusion for DAEclass model

This research proposes an approach to interpret earthquakes based on ionospheric TEC val-

ues. Ionospheric TEC data has been collected from two GPS stations. Chile region has strong

and severe earthquakes; however, the Karratha region is almost quiet in terms of earthquakes.

The principal intention of this research is to attain the relationship between earthquakes and

the ionosphere disturbances based on deep learning techniques concerning two sub-tasks of

feature extraction and classification. In the first step, we focus on feature extraction of the

TEC data using an unsupervised learning method. We design a Deep Autoencoder to extract

useful information about the earthquake and quiet days. Then, in the next step, we utilize a

supervised learning method to perform classification using a dense neural network. To in-

vestigate the contribution of the recommended combination model, we used LDA, SVM and

Random Forest classifiers. Our results indicate approximately 90-94 accuracy-based perfor-

mance in the two test sets of the earthquakes, including moderate and severe earthquakes.

The proposed DAEclass has a more trustworthy and reliable performance than other models

in terms of accuracy, recall, precision, F1-score, and ROC curve metrics.

Since in this model the main goal is extracting vital features of earthquakes using TEC values

in the ionosphere layer and classifying the earthquake days in the target station zone, earth-

quake predicting is not the scope and priority of this model. In the fallowing chapters, we

plan to work on a predictive system to predict ionosphere disturbances based on earthquake

using earlier days of earthquakes using LSTM based deep learning models.

50



7. LSTM-based deep learning methods for prediction of

earthquakes using ionospheric data

Our goal is to propose a classification model to detect earthquakes in previous days. The

ionospheric variability during moderate and severe earthquake events of varying strengths

for 2012-2019 years. The proposed models use LSTM-based (Long Short-Term Memory)

deep learning models to classify earthquakes days by analyzing TEC values of the last days.

In this chapter, the architecture of the proposed LSTM based models are presented. Due to

the large amount of the TEC data related to each station, it is used deep neural networks. As

the TEC data fluctuations in prior days of the earthquakes play a critical role in the predic-

tion phase, it is planned to implement a sequential learning approach. In the literature, the

analysis of learning algorithms for sequential data is sequential learning. In our sequential

learning approach, the sequential dependency between TEC data is analyzed at the algorith-

mic level. The sequence learning approaches are most generally based on sliding window

methods and recurrent sliding windows. Sliding window-based methods disregard the rela-

tionship between data points inside the windows. However, model-based approaches, like

the Markov chain defined on the data points that suppose sequential dependency between

consecutive data.

7.1. LSTM-based Sequential Learning Models

Recurrent Neural Network (RNN) is a non-probabilistic model in that nodes satisfy the

Markov-chain assumption. An RNN network predicts the output label given the sequence

of the TEC data from the past. One of the more accurate variants of the RNN methods

is Long Short-Term Memory Networks (LSTM) that learn long term dependencies in se-

quences data. Due to the TEC data sequence related to previous days is long enough, RNN’s

may leave out critical information from the beginning. The LSTM methods handle this issue

with the solution to short-term memory. These methods can adjust the flow of information

with internal mechanisms called gates.
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Figure 7.1. Structure of LSTM neural network cell.

Figure 7.1. demonstrates the typical structure of the LSTM neural network cells is configured

mainly by gates. Input gate takes a new input TEC data, memory in (t-1) time step takes

feedback from the LSTM cell’s output in the last iteration. Deciding when to forget the

output results is the task of the forget gate.

As illustrated in the LSTM cell formula in Equation20, X = (x1, x2, ..., x7) represents our

TEC data separated by days. The proposed LSTM model is planned to use the previous seven

days of the earthquakes and quiet days to perform prediction. The hidden state of memory

cells is calculated in the Equation20 formulas.

it = σ(xtU
i + ht−1W

i)

ft = (xtU
f + ht−1W

f )

ot = (xtU
o + ht−1W

o)

Memory′t = tanh(xtU
g + ht−1W

g)

Memoryt = σ(ft ∗Memoryt−1 + it ∗Memory′t)

ht = tanh(Memoryt ∗ ot)

(20)
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Where i,f,o respectively represent the input gate, forget gate, and the output gates. g describes

the candidate’s internal state. W and U are the weight matrix and recurrent connections

between the prior hidden and current hidden layers. Memory′ is a candidate hidden state

memory based on the current input and prior hidden state. Memory is a combination of

the prior memory multiplied by the forget gate. σ stands for the standard sigmoid function

defined in the previous chapter.

The variant versions of the LSTM models are used to enhance the contribution of this re-

search. For this purpose, deep-bidirectional LSTM [135] and Stacked LSTM [136] are eval-

uated. In the Bi-LSTM model, two LSTMs are applied to the input data. The Bi-LSTM

consists of two operation layers. The first is the forward layer that applied an LSTM on the

input data, and the second is the reverse mode of the input data fed into the LSTM model

called the backward layer. Stacked LSTMs were introduced by Pascanu, et al. [136] for

solving complex sequence prediction problems.

The stacked LSTM structure presents in Figure 7.2. The Stacked LSTM model fed on TEC

sequence input data that some critical memory is kept for further use. The model stack

another dense layer that uses the earthquake labels of input data to perform classification.

Figure 7.2. Structure of Stacked LSTM.

7.2. Dataset For LSTM-Based Models

As stated in Table 7.1., the dataset is distributed into train and test sets, with an 80-20 split

rate. Therefore there are only 79 earthquakes (Magnitude≥ 4.5) between 2012 to 2019. The
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training set consists of 16 earthquakes events within two subsets of the earthquake set. On

the contrary, there are only ten earthquakes in the test set.

Dataset Properties Value
Train-Test Ratio 80%-20%
Total number of earthquakes 79
Number of EQs ≥4.5 in Testset 16
Number of EQs ≥5.0 in Testset 10

Table 7.1. Prepared data for the proposed LSTM based models.

The dataset is used in the proposed LSTM models is balanced. That means a fixed ratio

exists between the number of going to be predicted quiet days and the number of predicted

earthquake days. As depicted in the structure dataset in Figure 7.3., samples in the prediction

process have eight continuous days that will predict the 8th day’s event of an earthquake

or quiet day with examining the previous seven days. Every row in the dataset has eight

continuous days, and each day has 94 ionospheric TEC samples and a cosine similarity field.

Figure 7.3. Dataset structure used in the proposed LSTM based models.

7.3. Evaluation Results

To examine the importance of the proposed LSTM based models, we used SVM (Support

Vector Machine) classifier based on finding a hyperplane in an N-dimensional space. The

most trustworthy hyperplane means the one with the largest margin between the quiet days

and earthquake days. To For more contribution, it has been used various classifiers such as

LDA and Random forest classifiers.
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Using the evaluation methodology defined in Section 5., performances of our proposed

LSTM models and the other classifiers model are evaluated. This section is organized to

compare and examine the performance metrics of the classification models.

EQs Model Accuracy Precision Recall F1-score
LSTM 0.703 0.672 0.793 0.728
Bi-LSTM 0.720 0.697 0.787 0.739

≥4.5 Stacked-LSTM 0.787 0.777 0.812 0.794
SVM 0.659 0.640 0.756 0.693
LDA 0.604 0.590 0.656 0.621
RF 0.640 0.619 0.731 0.670
LSTM 0.750 0.726 0.820 0.770
Bi-LSTM 0.740 0.701 0.840 0.764

≥5.0 Stacked-LSTM 0.806 0.768 0.881 0.821
SVM 0.695 0.678 0.760 0.716
LDA 0.640 0.628 0.691 0.657
RF 0.670 0.653 0.750 0.692

Table 7.2. Comparison of the proposed LSTM models other classification models using performance
metrics.

Table 7.2. describes the median percentage of performance metrics like accuracy, recall,

precision, and F1-score for the proposed LSTM based models and other classifiers based on

two datasets.

The first six rows illustrate the comparison between the proposed models and other classifiers

model based on all earthquakes with dataset that its magnetite ≥ 4.5. It is evident that the

proposed models has higher performance in all metrics than the classifiers. The Stacked

LSTM model boosted its precision and recall much more than the other classifiers. The

ionosphere layer disturbances reflect all cosmic and seismic activities.As the false positive

count is high in some scenarios in the dataset, precision is lower than recall and accuracy. The

last six rows compare the LSTM models and the SVM, LDA and Random Forest classifiers

based on more strong earthquakes (magnetite-EQs ≥ 5.0). Since strong earthquakes affect

the ionosphere more than moderate earthquakes, they are classified efficiently.
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Detailed information about ten-fold cross-validation related to the comparison of proposed

LSTM models and other classification models using performance metrics are presented in

tables 7.3.,7.4., 7.5. and 7.6..
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Model Count/
Results

Ten Fold Cross Validation
1 2 3 4 5 6 7 8 9 10

LSTM

EQs≥4.5

TP 13 14 13 14 14 11 12 13 10 13
FP 5 7 6 8 7 7 5 6 5 6
FN 3 2 3 2 2 5 4 3 6 3
TN 11 9 10 8 9 9 11 10 11 10

Precision 0.72 0.66 0.68 0.63 0.66 0.61 0.70 0.68 0.66 0.68
Recall 0.81 0.87 0.81 0.87 0.87 0.68 0.75 0.81 0.62 0.81
Accuracy 0.75 0.71 0.71 0.68 0.71 0.62 0.71 0.71 0.65 0.71

B-LSTM

EQs≥4.5

TP 12 13 13 14 12 12 13 13 11 13
FP 4 4 4 5 5 8 4 7 6 9
FN 4 3 3 2 4 4 3 3 5 3
TN 12 12 12 11 11 8 12 9 10 9

Precision 0.75 0.76 0.76 0.73 0.70 0.6 0.76 0.65 0.64 0.59
Recall 0.75 0.81 0.81 0.87 0.75 0.75 0.81 0.81 0.68 0.81
Accuracy 0.75 0.78 0.78 0.78 0.71 0.62 0.78 0.68 0.65 0.64

Stacked-
LSTM

EQs≥4.5

TP 13 12 12 13 12 14 12 13 15 14
FP 3 5 5 4 3 5 2 2 4 5
FN 3 4 4 3 4 2 4 3 1 2
TN 13 11 11 12 13 11 14 14 12 11

Precision 0.81 0.70 0.70 0.76 0.8 0.73 0.85 0.86 0.78 0.73
Recall 0.81 0.75 0.75 0.81 0.75 0.87 0.75 0.81 0.93 0.87
Accuracy 0.81 0.71 0.71 0.78 0.78 0.78 0.81 0.84 0.84 0.78

SVM

EQs≥4.5

TP 11 14 12 14 11 12 10 13 11 13
FP 7 8 6 8 4 3 7 10 9 8
FN 5 2 4 2 5 4 6 3 5 3
TN 9 8 10 8 12 13 9 6 7 8

Precision 0.61 0.63 0.66 0.63 0.73 0.8 0.58 0.56 0.55 0.61
Recall 0.68 0.87 0.75 0.87 0.68 0.75 0.62 0.81 0.68 0.81
Accuracy 0.62 0.68 0.68 0.68 0.71 0.78 0.59 0.59 0.56 065

Table 7.3. Detailed 10 fold comparison of the proposed LSTM models and SVM classification mod-
els using performance metrics in the EQs≥4.5 dataset.
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Model Count/
Results

Ten Fold Cross Validation
1 2 3 4 5 6 7 8 9 10

LDA

EQ≥4.5

TP 11 10 10 12 11 9 10 11 12 9
FP 6 7 7 6 8 6 7 9 8 9
FN 5 6 6 4 5 7 6 5 4 7
TN 10 9 9 10 8 10 9 7 8 7

Precision 0.64 0.58 0.58 0.66 0.57 0.6 0.58 0.55 0.6 0.5
Recall 0.68 0.62 0.62 0.75 0.68 0.56 0.62 0.68 0.75 0.56
Accuracy 0.65 0.59 0.59 0.68 0.59 0.59 0.59 0.56 0.625 0.5

RF

EQ≥4.5

TP 12 13 11 12 10 12 11 12 11 13
FP 7 7 6 8 9 7 7 6 9 6
FN 4 3 5 4 6 4 5 4 5 3
TN 9 9 10 8 7 9 9 10 7 10

Precision 0.63 0.65 0.64 0.6 0.52 0.63 0.61 0.66 0.55 0.68
Recall 0.75 0.81 0.68 0.75 0.62 0.75 0.68 0.75 0.68 0.81
Accuracy 0.65 0.68 0.65 0.62 0.53 0.65 0.62 0.68 0.56 0.71

Table 7.4. Detailed 10 fold comparison of LDA and Random Forest classification models using per-
formance metrics in the EQs≥4.5 dataset.
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Model Count/
Results

Ten Fold Cross Validation
1 2 3 4 5 6 7 8 9 10

LSTM

EQs≥5.0

TP 8 7 9 8 7 9 8 9 9 8
FP 1 2 4 3 5 4 3 4 2 4
FN 2 3 1 2 3 1 2 1 1 2
TN 9 8 6 7 5 6 7 6 8 6

Precision 0.88 0.77 0.69 0.72 0.58 0.69 0.72 0.69 0.81 0.66
Recall 0.8 0.7 0.9 0.8 0.7 0.9 0.8 0.9 0.9 0.8
Accuracy 0.85 0.75 0.75 0.75 0.6 0.75 0.75 0.75 0.85 0.7

B-LSTM

EQs≥5.0

TP 9 8 8 9 7 8 9 9 9 8
FP 3 5 5 3 4 4 3 3 2 4
FN 1 2 2 1 3 2 1 1 1 2
TN 7 5 5 7 6 6 7 7 8 6

Precision 0.75 0.61 0.61 0.75 0.63 0.66 0.75 0.75 0.81 0.66
Recall 0.9 0.8 0.8 0.9 0.7 0.8 0.9 0.9 0.9 0.8
Accuracy 0.8 0.65 0.65 0.8 0.65 0.7 0.8 0.8 0.85 0.7

Stacked-
LSTM

EQs≥5.0

TP 10 8 9 9 8 9 10 9 9 8
FP 1 3 3 3 3 2 3 2 3 4
FN 0 2 1 1 2 1 0 1 2 2
TN 9 7 7 7 7 8 7 8 7 6

Precision 0.90 0.72 0.75 0.75 0.72 0.81 0.76 0.81 0.75 0.66
Recall 1.0 0.8 0.9 0.9 0.8 0.9 1.0 0.9 0.81 0.8
Accuracy 0.95 0.75 0.8 0.8 0.75 0.85 0.85 0.85 0.76 0.7

SVM

EQs≥5.0

TP 8 7 8 7 7 8 7 8 8 8
FP 4 3 3 3 4 3 3 3 7 4
FN 2 3 2 3 3 2 3 2 2 2
TN 6 7 7 7 6 7 7 7 3 6

Precision 0.66 0.7 0.72 0.7 0.63 0.72 0.7 0.72 0.53 0.66
Recall 0.8 0.7 0.8 0.7 0.7 0.8 0.7 0.8 0.8 0.8
Accuracy 0.7 0.7 0.75 0.7 0.65 0.75 0.7 0.75 0.55 0.7

Table 7.5. Detailed 10 fold comparison of the proposed LSTM models and SVM classification mod-
els using performance metrics in the EQs≥5.0 dataset.
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Model Count/
Results

Ten Fold Cross Validation
1 2 3 4 5 6 7 8 9 10

LDA

EQ≥5.0

TP 7 7 6 8 7 6 7 6 8 7
FP 4 5 3 4 4 5 4 3 4 5
FN 3 3 4 2 3 4 3 4 2 3
TN 6 5 7 6 6 5 6 7 6 5

Precision 0.63 0.58 0.66 0.66 0.63 0.54 0.63 0.66 0.66 0.58
Recall 0.7 0.7 0.6 0.8 0.7 0.6 0.7 0.6 0.8 0.7
Accuracy 0.65 0.6 0.65 0.7 0.65 0.55 0.65 0.65 0.7 0.6

RF

EQ≥5.0

TP 8 8 9 8 6 7 7 8 7 7
FP 5 5 4 3 3 4 4 3 4 5
FN 2 2 1 2 4 3 3 2 3 3
TN 5 5 6 7 7 6 6 7 6 5

Precision 0.61 0.61 0.69 0.72 0.66 0.63 0.63 0.72 0.63 0.58
Recall 0.8 0.8 0.9 0.8 0.6 0.7 0.7 0.8 0.7 0.7
Accuracy 0.65 0.65 0.75 0.75 0.65 0.65 0.65 0.75 0.65 0.6

Table 7.6. Detailed 10 fold comparison of LDA and Random Forest classification models using per-
formance metrics in the EQs≥5.0 dataset.
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Figure 7.4. Performance metrics of the LSTM models and the SVM classifier based on two datasets
(EQs≥4.5 and EQs≥5.0).

Figure 7.4. is the bar chart of performance metrics between the models in terms of two

datasets ( EQs≥4.5 and EQs≥5.0). It can be seen that in Figure 7.4. (Accuracy), the accu-

racy of the LSTM based grows slightly in the two mentioned datasets. Precision is a measure

of classification result relevancy based on earthquakes and false alarms, while recall is a

measure of the classifier’s ability to find all the earthquake days. The comparison between

datasets shows that the LSTM based models are more stable than the SVM and other clas-

sifiers in performance. Overall, Figure 7.4. reveals the Stacked-LSTM approach notably

increases the precision, recall, and F1-score. Consequently, the improved performance in the

dataset EQs≥4.5 is more extensive than the dataset EQs≥5.0, and the LSTM based mod-

els are more reliable in all earthquakes. As shown in the results, SVM is more accurate than

Random Forest and LDA classifiers. So In the ROC table, we compare proposed LSTM mod-

els and SVM classifier. Figure 7.5. depicts the ROC curve of the LSTM based models and

the SVM classifier model based on two datasets. ROC curves related to the Stacked-LSTM

positioned progressively closer to the upper left angle in ROC space, So the Stacked-LSTM

has the progressively more prominent discriminant capacity of earthquake classification. As
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Figure 7.5. ROC curve of the LSTM based models and the SVM classifier.

depicted in the figure, the LSTM based models, and the SVM classifier visually be compared

simultaneously, and the results show the LSTM based models is more efficient than the SVM

classifier.

The results in Table 7.7. demonstrates AUC values of the models for each dataset. The value

of AUC in the Stacked-LSTM is 0.92, while in the SVM classifier is 0.60, which means a

keen improvement in the ROC metric.

Model ROC AUC
LSTM 0.821
Bi-LSTM 0.831
Stacked-LSTM 0.925
SVM 0.603

Table 7.7. AUC values for the LSTM models and the SVM classifier.

The P-Value is the possibility of observing the effect(E) when the null hypothesis is true.

In the test result of the Stacked-LSTM, the difference in performance over all metrics is

significant (p− value� 0.01).

7.4. Conclusion for LSTM based models

This research propose approaches to detect earthquakes based on ionospheric TEC values.

We proposed a predictive models to predict ionosphere disturbances based on earthquake us-

ing earlier days of earthquakes using LSTM based deep learning models. Ionospheric TEC
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data has been collected from two GPS stations. Chile region has strong and severe earth-

quakes; however, the Karratha region is almost quiet in terms of earthquakes. The principal

intention of this research is to attain the relationship between earthquakes and the ionosphere

disturbances based on deep learning techniques concerning LSTM based classification mod-

els. To investigate the contribution of the recommended LSTM models, we used SVM, LDA

and Random Forest classifiers. Our results indicate approximately 78-80 accuracy-based per-

formance in the two test sets of the earthquakes, including moderate and severe earthquakes.

The proposed Stacked-LSTM has a more trustworthy and reliable performance than other

models in terms of accuracy, recall, precision, F1-score, and ROC curve metrics.
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8. An approach using Deep AutoEncoder and LSTM

Neural Networks for prediction of earthquakes using

ionospheric data

This section aims to improve the stacked LSTM-based earthquake classification model in the

last chapter, which has better results than other LSTM based models.The proposed model

similarly performs classification to detect earthquakes in previous days using ionospheric

variability throughout moderate and severe earthquake events of varying powers for 2012-

2019. The recommended models use a Deep autoencoder to extract useful features from

ionospheric TEC data and perform Stacked LSTM to classify earthquakes days by analyzing

TEC values of the last days.

This chapter presented the structure of the proposed hybrid model based on deep autoencoder

and stacked LSTM as presented in Figure 8.1.. Due to the enormous amount of TEC data

related to each station and day, it is required to perform a feature reduction process. In

the classification phase, as the TEC data variations in prior days of the earthquakes play

a significant role in the forecast phase, it is organized to implement a sequential learning

approach.

8.1. Deep Auto-Encoder Stacked-LSTM Model

This model aims to combine the previous chapters’ successful models. We propose the DAE-

class model to interpret the earthquake days using ionospheric TEC data in the previous chap-

ters. As DAEclass is flourishing in terms of feature reduction and extraction, we determined

to use the deep autoencoder phase with this model. As proposed, the Stacked-LSTM has a

more trustworthy and reliable performance than the other LSTM models and dense neural

networks. It is approved to use the Stacked-LSTM model for the classification process.
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8.1.1. Deep Autoencoder Sub-Model

As mentioned in Chapter 6., the ionospheric TEC data is a high-dimensional factor. Re-

ducing dimensionality to obtain a compressed feature set is considered an essential step in

the feature extraction phase. For interpretation of earthquakes, we designed a robust deep

autoencoder to extract useful information from ionospheric TEC data each day. As stated in

the 6., adding hidden layers to the autoencoders conducts to perform the proper dimension

reduction process. Deep Autoencoders have confirmed their effectiveness in detecting non-

linear features across many complex problems. In other words, an autoencoder gets a map

from the input to itself within a pair of encoding and decoding steps. Autoencoders have

latterly pointed in unsupervised methods for feature learning. It tries to learn a compressed

description of the input while retaining the essential information.

Figure 8.1. The general architecture of the proposed DAE-STCK-LSTM model.

The proposed hybrid model consists of deep autoencoder and the Stacked-LSTM model. As

depicted in Figure 8.1., a deep autoencoder with two hidden layers is used in the unsupervised

learning phase to extract features from ionospheric TEC data. The collected features served

as input to LSTM network to perform classification.
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8.1.2. Stacked LSTM Sub-Model

As specified in the chapter 7., Stacked LSTM is used for solving complex sequence predic-

tion problems. The stacked LSTM structure presents in Figure 8.1. with three LSTM layers.

The Stacked LSTM model fed on TEC sequence input data that critical memory is kept for

further use. The model stack another dense layer that uses the earthquake labels of input data

to perform classification.

Due to the TEC data sequence related to previous days is long enough, RNN’s may leave

out critical information from the beginning. The LSTM methods handle this issue with the

solution to short-term memory.

8.2. Dataset For DAE-STCK-LSTM Model

As stated in Table 8.1., the dataset is distributed into train and test sets, with an 80-20 split

rate. The proposed DAE-STCK-LSTM model has two sub-models in terms of unsupervised

and supervised learning methods. Accordingly, each sub-model uses a distinct dataset for

learning. The unsupervised phase uses 2057 days for learning deep autoencoder and uses

Chapter 7. dataset for supervised phrase. There are only 79 earthquakes (Magnitude ≥ 4.5)

between 2012 to 2019. The training set consists of 16 earthquakes events within two subsets

of the earthquake set. On the contrary, there are only ten earthquakes in the test set.

Dataset Properties Value
Train-Test Ratio 80%-20%
Total number of earthquakes 79
Number of days in Trainset in Unsupervides Learning 2057
Number of EQs ≥4.5 in Testset 16
Number of EQs ≥5.0 in Testset 10

Table 8.1. Prepared data for the proposed DAE-STCK-LSTM model.

Similary with 7. dataset, Samples in the prediction method have eight continuous days that

will predict the 8th day’s event of an earthquake or quiet day with analyzing the previous

66



seven days. Every row in the dataset has eight continuous days, and each day has 94 iono-

spheric TEC samples and a cosine similarity field.

8.3. Evaluation Results

For evaluating the proposed prediction model, we used Stacked-LSTM, SVM (Support Vec-

tor Machine) classifier, and LDA (Linear Discriminant Analysis) classifier. As mentioned

in the previous chapters, the most trustworthy hyperplane means the largest margin between

quiet and earthquake days.

Utilizing the evaluation methodology described in Section 5., performances of the proposed

DAE-STCK-LSTM model and other classifier models are assessed. This section is prepared

to analyze and measure the performance metrics of the classification models.

EQs Model Accuracy Precision Recall F1-score
DAE-STCK-LSTM 0.818 0.798 0.865 0.827

≥4.5 Stacked-LSTM 0.787 0.777 0.812 0.794
LDA 0.627 0.614 0.706 0.657
SVM 0.659 0.640 0.756 0.693
DAE-STCK-LSTM 0.835 0.818 0.870 0.843

≥5.0 Stacked-LSTM 0.806 0.768 0.881 0.821
LDA 0.661 0.664 0.687 0.676
SVM 0.695 0.678 0.760 0.716

Table 8.2. Comparison of the proposed DAE-STCK-LSTM models and other classification model
using performance metrics.

Table 8.2. represents the median rate of performance metrics like accuracy, recall, precision,

and F1-score for the proposed DAE-STCK-LSTM model, Stacked-LSTM, LDA, and SVM

classifier based on two datasets.

The first four rows demonstrate the comparison among the proposed model and other classi-

fier models based on all earthquakes with the dataset that its magnetite ≥ 4.5. It is obvious

that the DAE-STCK-LSTM and Stacked-LSTM model have higher performance in all met-

rics than the SVM and LDA classifier. The DAE-STCK-LSTM model raised its accuracy
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and F1-score slightly more than the Stacked-LSTM classifier. The ionosphere layer irregu-

larities reveal all cosmic and seismic movements. As the false positive count is high in more

scenarios in the dataset, precision is lower than recall and accuracy.

The second four rows compare the DAE-STCK-LSTM model and other classifier models

based on more powerful earthquakes (magnetite-EQs≥ 5.0). As powerful earthquakes affect

the ionosphere more than moderate earthquakes, they are classified efficiently.

We believed that the reason for the higher performance of DAE-STCK-LSTM in comparison

with Stacked-LSTM is accurate feature extraction. As the ionospheric data is very high

dimensional in terms of TEC data, it has noisy data and has other effects than earthquakes.

The deep autoencoder reducts the data properly and extracts the variable features in the data

that they reflect properly whole data. The other classifier like SVM and LDA have lower

performance than LSTM models. They do not focus on the relationship between sequences

in the data. However, the ionospheric TEC data is completely depending on the sequences in

the dataset. It means that one day before the earthquake is more variable than the previous

days of the earthquake day, and the sequence between days is more important.

More comprehensive results about ten-fold cross-validation related to the comparison of pro-

posed DAE-STCK-LSTM model and other classification models using performance metrics

are presented in Tables 8.3. and 8.4..
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Model Count/
Results

Ten Fold Cross Validation
1 2 3 4 5 6 7 8 9 10

DAE
-STCK
-LSTM

EQs>4.5

TP 15 14 13 12 11 15 14 14 16 14
FP 4 4 4 3 4 4 3 1 4 4
FN 1 2 3 4 5 1 2 3 0 2
TN 12 12 12 13 12 12 13 15 12 12

Precision 0.78 0.77 0.76 0.80 0.73 0.78 0.82 0.93 0.8 0.77
Recall 0.93 0.87 0.81 0.75 0.68 0.93 0.87 0.82 1.00 0.87
Accuracy 0.84 0.81 0.78 0.78 0.71 0.84 0.84 0.87 0.87 0.81

Stacked
-LSTM

EQs>4.5

TP 13 12 12 13 12 14 12 13 15 14
FP 3 5 5 4 3 5 2 2 4 5
FN 3 4 4 3 4 2 4 3 1 2
TN 13 11 11 12 13 11 14 14 12 11

Precision 0.81 0.70 0.70 0.76 0.80 0.73 0.85 0.86 0.78 0.73
Recall 0.81 0.75 0.75 0.81 0.75 0.87 0.75 0.81 0.93 0.87
Accuracy 0.81 0.71 0.71 0.78 0.78 0.78 0.81 0.84 0.84 0.78

LDA

EQs>4.5

TP 10 12 11 12 11 11 12 11 11 12
FP 7 9 9 8 5 5 6 8 9 6
FN 6 4 5 4 5 5 4 5 5 4
TN 9 7 7 8 11 11 10 8 7 9

Precision 0.58 0.57 0.55 0.60 0.68 0.68 0.66 0.57 0.55 0.66
Recall 0.62 0.75 0.68 0.75 0.68 0.68 0.75 0.68 0.68 0.75
Accuracy 0.59 0.59 0.56 0.62 0.68 0.68 0.68 0.59 0.56 0.67

SVM

EQs>4.5

TP 11 14 12 14 11 12 10 13 11 13
FP 7 8 6 8 4 3 7 10 9 8
FN 5 2 4 2 5 4 6 3 5 3
TN 9 8 10 8 12 13 9 6 7 8

Precision 0.61 0.63 0.66 0.63 0.73 0.80 0.58 0.56 0.55 0.61
Recall 0.68 0.87 0.75 0.87 0.68 0.75 0.62 0.81 0.68 0.81
Accuracy 0.62 0.68 0.68 0.68 0.71 0.78 0.59 0.59 0.56 0.65

Table 8.3. Detailed 10 fold comparison of the proposed DAE-STCK-LSTM model and other classi-
fication models using performance metrics in the EQs≥4.5 dataset.
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Model Count/
Results

Ten Fold Cross Validation
1 2 3 4 5 6 7 8 9 10

DAE
-STCK
-LSTM

EQs>5.0

TP 8 9 9 10 9 8 8 9 8 9
FP 1 3 2 2 3 1 1 2 3 2
FN 2 1 1 0 1 2 2 1 2 1
TN 9 7 8 8 7 9 9 8 7 8

Precision 0.88 0.75 0.81 0.83 0.75 0.88 0.88 0.80 0.72 0.81
Recall 0.80 0.90 0.90 1.00 0.90 0.80 0.80 0.90 0.80 0.90
Accuracy 0.85 0.8 0.85 0.90 0.80 0.85 0.85 0.85 0.75 0.85

Stacked
-LSTM

EQs>5.0

TP 10 8 9 9 8 9 10 9 9 8
FP 1 3 3 3 3 2 3 2 3 4
FN 0 2 1 1 2 1 0 1 2 2
TN 9 7 7 7 7 8 7 8 7 6

Precision 0.90 0.72 0.75 0.75 0.72 0.81 0.76 0.81 0.75 0.66
Recall 1.00 0.80 0.90 0.90 0.80 0.90 1.00 0.90 0.81 0.80
Accuracy 0.95 0.75 0.80 0.80 0.75 0.85 0.85 0.85 0.76 0.70

LDA

EQs>5.0

TP 7 7 7 6 8 7 6 7 7 6
FP 4 4 2 5 4 4 3 4 2 3
FN 3 3 2 4 2 3 4 3 3 4
TN 6 6 3 5 6 6 7 6 8 7

Precision 0.63 0.63 0.77 0.54 0.66 0.63 0.66 0.63 0.77 0.66
Recall 0.70 0.70 0.77 0.60 0.80 0.70 0.60 0.70 0.70 0.60
Accuracy 0.65 0.65 0.71 0.55 0.70 0.65 0.65 0.65 0.75 0.65

SVM

EQs>5.0

TP 8 7 8 7 7 8 7 8 8 8
FP 4 3 3 3 4 3 3 3 7 4
FN 2 3 2 3 3 2 3 2 2 2
TN 6 7 7 7 6 7 7 7 3 6

Precision 0.66 0.70 0.72 0.70 0.63 0.72 0.70 0.72 0.53 0.66
Recall 0.80 0.70 0.80 0.70 0.70 0.80 0.70 0.80 0.80 0.80
Accuracy 0.70 0.70 0.75 0.70 0.65 0.75 0.70 0.75 0.55 0.70

Table 8.4. Detailed 10 fold comparison of the proposed DAE-STCK-LSTM model and other classi-
fication models using performance metrics in the EQs≥5.0 dataset.
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Figure 8.2. Performance metrics of the DAE-STCK-LSTM model and other classification model
based on two datasets (EQs≥4.5 and EQs≥5.0).

Figure 8.2. is the bar chart of performance metrics between the models in terms of two

datasets ( EQs≥4.5 and EQs≥5.0). As depicted in Figure 7.4. (Accuracy), the accuracy of

the DAE-STCK-LSTM based grows slightly in the two mentioned datasets in compared with

Stacked-LSTM. Precision is a measure of classification result relevancy based on earthquakes

and false alarms, while recall measures the classifier’s capacity to obtain all the earthquake

days. The comparison between datasets shows that the DAE-STCK-LSTM model is more

beneficial than other classifiers in performance. Overall, Figure 8.2. explains the DAE-

STCK-LSTM method prominently increases the precision, and F1-score. Similary with

chapter 7., the enhanced performance in the dataset EQs≥4.5 is more comprehensive than

the dataset EQs≥5.0, and the DAE-STCK-LSTM model are more accurate in all earthquakes

than other LSTM-based and other classifiers.

The ROC curve of the DAE-STCK-LSTM model, Stacked-LSTM, LDA, and SVM classi-

fiers based on two datasets are represented in Figure 8.3.. ROC curves related to the DAE-

STCK-LSTM model are placed progressively closer to the upper left angle in ROC space. It
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Figure 8.3. ROC curve of the LSTM based models and the SVM classifier.

is revealed that the DAE-STCK-LSTM has the progressively more prominent discriminant

ability of earthquake prediction. As depicted in the figure, the DAE-STCK-LSTM model and

the Stacked-LSTM are visually close together. However, The results show the DAE-STCK-

LSTM model is more efficient than the Stacked-LSTM and other classifiers.

The AUC values of the proposed model and other classification models for each dataset are

illustrated in Table 8.5.. The value of AUC in the DAE-STCK-LSTM is 0.92, while in the

Stacked-LSTM classifier is 0.60, which means improvement in the ROC metric.

Model ROC AUC
DAE-STCK-LSTM 0.951
Stacked-LSTM 0.925
LDA 0.651
SVM 0.683

Table 8.5. AUC values for the DAE-STCK-LSTM models and the other classification models.

In the test results of the statistical P-Value test, DAE-STCK-LSTM, the difference in perfor-

mance in terms of all metrics is significant (p− value� 0.01).

8.4. Conclusion for DAE-STCK-LSTM model

This section proposed a hybrid model called DAE-STCK-LSTM model to detect earthquakes

based on ionospheric TEC values. The proposed model performs prediction of earthquakes
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using earlier days of earthquakes using deep autoencoder and LSTM deep learning mod-

els. Ionospheric TEC data has been collected from two GPS stations. The Chile region

has powerful and severe earthquakes; however, the Karratha region is almost quiet in terms

of seismic activities. The primary aim of this model is to attain the relationship between

earthquakes and ionosphere irregularities based on deep learning techniques concerning deep

autoencoder and LSTM based classification models. To examine the contribution of the rec-

ommended DAE-STCK-LSTM model, we used Stacked-LSTM, LDA, and SVM classifiers.

Our results show approximately 81-84 accuracy-based performance in the two test sets of the

earthquakes, including moderate and severe earthquakes. The proposed DAE-STCK-LSTM

model has a more accurate and stable performance than the other classification models in

terms of accuracy, recall, precision, F1-score, and ROC curve metrics.
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9. CONCLUSION

We have believed that monitoring the ionospheric irregularities reveals that geomagnetic

activity like storms and earthquakes can cause significant disturbances in the electron density

distribution and TEC values. The satellite-based measures from GPS stations have performed

a beneficial study to investigate the seismo-ionospheric anomalies. TEC data collected from

GPS stations (Dual-Frequency GPS receiver) is used to examine the ionospheric variability

through moderate and severe earthquakes.

Discovering precursory signals in severe and moderate earthquakes using ionospheric TEC

data to perform prediction is this study’s subject. The primary motivation of this thesis is to

examine models to analyze the relationship between earthquakes and ionospheric TEC data.

The recommended models’ principal aim is to predict an earthquake by analyzing previous

days of the earthquake using ionospheric TEC data. Nevertheless, the precursory signals

through long time periods are not investigated in the literature. The ionospheric variability

during moderate and severe earthquake events of varying strengths for 2012-2019 years is

discussed in this thesis.

This research utilizes various deep learning techniques and algorithms to extract relations

between TEC data. For this purpose, it aims to use supervised and unsupervised learning

methods based on deep learning techniques. In the unsupervised learning methods, we use

Deep Autoencoder and LDA method. On the other hand, we use deep, dense neural networks,

Long short-term memory, and support vector machine in the supervised learning methods.

Our contribution in this thesis is separated into three main models. In the first model, we

focus on interpreting earthquakes based on ionosphere irregularities using deep neural net-

works that we called it DAEclass method. The primary aim of this model is to obtain the

relationship between earthquakes and the ionosphere disturbances based on deep learning

techniques concerning two sub-tasks of feature extraction and classification. In the feature

extraction step, we focus on develop a Deep Autoencoder to extract valuable knowledge

about the earthquake and quiet days. Then, in the classification step, we use a a dense neural
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network to perform interpretation. To review the contribution of the recommended model,

we applied LDA,SVM and Random Forest classifiers. Our results indicate approximately

90-94 accuracy-based performance in the two test sets of the earthquakes, including mod-

erate and severe earthquakes. The proposed DAEclass has a more trustworthy and reliable

performance than the LDA in terms of accuracy, recall, precision, F1-score, and ROC curve

metrics.

The second contribution proposes a classification model that uses time series recurrent neural

networks to predict earthquakes in previous days. As the TEC data changes in prior days of

the earthquakes play an essential role in the prediction phase, it is planned to implement a

sequential learning approach. In our sequential learning approach, the sequential dependency

between TEC data is analyzed at the algorithmic level. Due to the TEC data sequence related

to previous days is long enough, LSTM gets critical information of earlier days. The LSTM

methods handle the problem with the solution to short-term memory. These methods can

adjust the flow of information with internal mechanisms called gates. The variant versions of

the LSTM models are proposed to enhance the contribution of this model. For this purpose,

deep-bidirectional LSTM and Stacked LSTM are evaluated. In the Bi-LSTM model, two

LSTMs are utilized in the input data. The Bi-LSTM consists of two operation layers. The

first is the forward layer that applied an LSTM on the input data, and the second is the reverse

mode of the input data fed into the LSTM model called the backward layer. Stacked LSTMs

for solving complex sequence prediction problems. The Stacked LSTM model provided

on TEC sequence input data that critical memory is kept for further use. The model stack

another dense layer that uses the earthquake labels of input data to perform classification. To

examine the contribution of the proposed LSTM models, we used SVM,LDA and Random

Forest classifiers. Our results indicate approximately 78-80 accuracy-based performance in

the two test sets of the earthquakes, including moderate and severe earthquakes.

Finally, In the last model, we develop a hybrid version of deep autoencoders and LSTM to

detect earthquakes in previous days. This model aims to improve the stacked LSTM-based

earthquake classification proposed in the second model. The recommended model uses a

deep autoencoder to extract useful features from ionospheric TEC data and perform Stacked
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LSTM to classify earthquakes days by analyzing TEC values of the last days. This model

aims to achieve the relationship between earthquakes and ionosphere variations based on

deep learning techniques concerning deep autoencoder and LSTM based classification mod-

els. To analyze the contribution of the recommended DAE-STCK-LSTM model, we used

Stacked-LSTM, LDA, and SVM classifiers. Our evaluation test results prove approximately

81-84 accuracy-based performance in the two test sets of the earthquakes, including mod-

erate and severe earthquakes. The proposed DAE-STCK-LSTM model has a more accurate

and stable performance than the other classification models in terms of accuracy, recall, pre-

cision, F1-score, and ROC curve metrics.
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Appendix A

Heat Maps of TEC based Data Related to

IQUIQUE Station

Appendix A depicted the dataset related to the IQUIQUE station and the earthquakes. The

Iquique station is located in coordinate (Lat : −20.15, Lon : −70.13) in Chile represented

in the figure. TEC data gathered from GPS stations (Dual-Frequency GPS receiver) from the

IONOLAB group (Hacettepe University of IONOLAB is an electrical engineer organization

to investigate the ionosphere hurdles.) 1. The earthquake information is collected via (United

States Geological Survey of Earthquakes) 2. All earthquakes in the dataset are marked with

the red points in the pictures.

1Available at http://ionolab.org/
2Available at https://earthquake.usgs.gov/
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Appendix A. Heat Maps of TEC based Data Related to iqqe Station

Overview of whole 2012-1019 Dataset related to the IQUIQUE GPS Station is represented

as fallow:
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Appendix A. Heat Maps of TEC based Data Related to iqqe Station

January 2012 to June 2012
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Appendix A. Heat Maps of TEC based Data Related to iqqe Station

July 2012 to December 2012
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Appendix A. Heat Maps of TEC based Data Related to iqqe Station

January 2013 to June 2013
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Appendix A. Heat Maps of TEC based Data Related to iqqe Station

July 2013 to December 2013
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Appendix A. Heat Maps of TEC based Data Related to iqqe Station

January 2014 to June 2014
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Appendix A. Heat Maps of TEC based Data Related to iqqe Station

July 2014 to December 2014
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Appendix A. Heat Maps of TEC based Data Related to iqqe Station

January 2015 to June 2015
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Appendix A. Heat Maps of TEC based Data Related to iqqe Station

July 2015 to December 2015
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Appendix A. Heat Maps of TEC based Data Related to iqqe Station

January 2016 to June 2016
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Appendix A. Heat Maps of TEC based Data Related to iqqe Station

July 2016 to December 2016
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Appendix A. Heat Maps of TEC based Data Related to iqqe Station

January 2017 to June 2017
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Appendix A. Heat Maps of TEC based Data Related to iqqe Station

July 2017 to December 2017
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Appendix A. Heat Maps of TEC based Data Related to iqqe Station

January 2018 to June 2018
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Appendix A. Heat Maps of TEC based Data Related to iqqe Station

July 2018 to December 2018
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Appendix A. Heat Maps of TEC based Data Related to iqqe Station

January 2019 to June 2019
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Appendix A. Heat Maps of TEC based Data Related to iqqe Station

July 2019 to December 2019
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Appendix B

Heat Maps of TEC based Data Related to

KARRATHA Station

Appendix B depicted the dataset related to the KARRATHA station and the earthquakes.

The KARRATHA station is located in coordinate (Lat : −20.85, Lon : 117.1) the Pilbara

region of Western Australia represented in the figure. TEC data gathered from GPS stations

(Dual-Frequency GPS receiver) from the IONOLAB group (Hacettepe University of IONO-

LAB is an electrical engineer organization to investigate the ionosphere hurdles.) 1. The

earthquake information is collected via (United States Geological Survey of Earthquakes) 2.

All earthquakes in the dataset are marked with the red points in the pictures.

1Available at http://ionolab.org/
2Available at https://earthquake.usgs.gov/
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Appendix B. Heat Maps of TEC based Data Related to karr Station

Overview of whole 2012-1019 Dataset related to the IQUIQUE GPS Station as fallow:
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Appendix B. Heat Maps of TEC based Data Related to karr Station

January 2012 to June 2012
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Appendix B. Heat Maps of TEC based Data Related to karr Station

July 2012 to December 2012
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Appendix B. Heat Maps of TEC based Data Related to karr Station

January 2013 to June 2013
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Appendix B. Heat Maps of TEC based Data Related to karr Station

July 2013 to December 2013
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Appendix B. Heat Maps of TEC based Data Related to karr Station

January 2014 to June 2014

101



Appendix B. Heat Maps of TEC based Data Related to karr Station

July 2014 to December 2014
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Appendix B. Heat Maps of TEC based Data Related to karr Station

January 2015 to June 2015
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Appendix B. Heat Maps of TEC based Data Related to karr Station

July 2015 to December 2015
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Appendix B. Heat Maps of TEC based Data Related to karr Station

January 2016 to June 2016
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Appendix B. Heat Maps of TEC based Data Related to karr Station

July 2016 to December 2016
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Appendix B. Heat Maps of TEC based Data Related to karr Station

January 2017 to June 2017
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Appendix B. Heat Maps of TEC based Data Related to karr Station

July 2017 to December 2017

108



Appendix B. Heat Maps of TEC based Data Related to karr Station

January 2018 to June 2018
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Appendix B. Heat Maps of TEC based Data Related to karr Station

July 2018 to December 2018
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Appendix B. Heat Maps of TEC based Data Related to karr Station

January 2019 to June 2019
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Appendix B. Heat Maps of TEC based Data Related to karr Station

July 2019 to December 2019
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Appendix C

All Earthquake Detailed Information

All earthquake information is collected via (United States Geological Survey of Earthquakes)
1 related to the IQUIQUE Station.

Earthquake Time Location Earthquake Properties
Latitude Longitude Depth Magnitude

2012-02-28T07:54:11.000Z -21.0220 -69.1010 107.5 4.5
2012-03-10T02:26:57.000Z -19.7380 -69.2500 101 5.3
2012-07-17T02:35:35.000Z -20.2420 -69.1420 94 4.6
2012-07-18T18:24:08.680Z -20.6930 -70.3650 10.9 5.1
2012-07-29T14:06:01.000Z -18.6230 -69.4901 110.8 4.7
2012-08-04T20:35:08.030Z -20.6441 -68.9290 108.1 4.6
2012-08-28T17:32:17.160Z -18.8310 -68.9831 122.1 4.5
2012-09-27T16:39:00.000Z -20.0760 -69.2541 100 4.7
2012-11-13T03:11:24.870Z -20.4370 -68.8910 83.1 4.9
2012-12-16T20:39:24.000Z -19.7961 -69.3871 112.6 4.9
2013-01-13T21:23:26.410Z -20.0581 -69.0491 75.3 5.3
2013-05-12T12:51:53.000Z -20.9960 -68.6731 132.6 5.2
2013-08-05T05:40:56.060Z -20.1808 -70.7121 19.12 5.2
2013-08-28T17:56:29.310Z -20.7472 -68.9566 111.39 4.7
2014-03-02T20:55:14.000Z -19.1660 -69.3281 110.5 4.5
2014-03-14T15:31:18.000Z -19.4861 -69.4820 95.6 4.5
2014-03-17T05:11:34.860Z -20.0168 -70.8837 21 6.4
2014-03-17T05:19:34.290Z -19.9635 -70.8478 10 5.0
2014-03-17T05:21:36.890Z -19.9828 -70.7943 10 5.1
2014-03-17T08:32:35.840Z -19.9851 -70.7581 8 5.2

1Available at https://earthquake.usgs.gov/
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Appendix B. Heat Maps of TEC based Data Related to karr Station

Earthquake Time Location Earthquake Properties
Latitude Longitude Depth Magnitude

2014-03-18T21:26:45.400Z -19.9262 -70.7961 3.32 5.8
2014-03-18T21:33:06.350Z -19.9829 -70.9143 9.14 5.1
2014-03-22T12:59:59.150Z -19.7625 -70.8740 20 6.2
2014-03-22T13:14:58.400Z -19.7701 -70.8804 24 5.2
2014-03-22T13:29:58.410Z -19.7163 -70.9515 17 5.6
2014-03-22T22:14:58.050Z -19.6953 -71.0063 21 5.0
2014-03-23T18:20:01.930Z -19.6899 -70.8538 21 6.3
2014-03-23T20:23:03.290Z -19.8774 -70.8631 16.56 5.1
2014-03-23T22:04:26.320Z -19.8192 -70.7906 23.26 5.1
2014-03-24T11:26:39.400Z -19.8239 -70.7651 22 5.7
2014-03-24T11:32:15.000Z -19.7866 -70.8069 17.81 5.2
2014-03-24T11:40:43.470Z -19.8288 -70.8824 15.19 5.6
2014-03-24T12:32:50.410Z -19.7882 -70.8080 17.85 5.0
2014-03-24T15:45:31.140Z -19.5932 -70.8207 17.05 5.7
2014-03-24T18:43:12.230Z -19.6058 -70.7419 21.87 5.0
2014-03-25T00:15:12.710Z -19.7936 -70.8261 15.39 5.2
2014-03-31T12:53:06.000Z -19.5110 -69.1740 114.5 5.6
2014-04-01T23:46:47.260Z -19.6097 -70.7691 25 8.2
2014-04-01T23:57:31.930Z -20.0509 -70.5674 25.78 5.0
2014-04-01T23:57:58.790Z -19.8927 -70.9455 28.42 6.9
2014-04-01T23:59:57.790Z -19.4928 -70.1661 21.61 5.8
2014-04-02T00:03:13.710Z -19.7831 -70.7191 20.72 5.7
2014-04-02T00:04:50.930Z -19.5481 -70.7269 10 5.6
2014-04-02T00:06:43.900Z -19.7029 -70.9445 10 5.6
2014-04-02T00:11:20.490Z -19.6096 -70.9319 22.04 5.1
2014-04-02T00:14:20.850Z -19.9564 -70.9946 10 5.3
2014-04-02T00:18:51.490Z -19.9224 -70.7432 16.76 5.1
2014-04-02T00:24:45.420Z -19.9147 -70.6776 11.39 5.2
2014-04-02T00:33:43.900Z -20.2757 -70.6454 4.95 5.4
2014-04-02T00:37:49.150Z -19.9898 -70.5676 20.1 5.4
2014-04-02T01:20:58.370Z -19.5893 -71.0127 19.01 5.2
2014-04-02T01:29:41.420Z -20.0390 -70.9675 12.12 5.1
2014-04-02T03:40:15.280Z -19.9322 -70.9580 10 5.4
2014-04-02T04:19:47.290Z -19.8463 -70.9937 10 5.2
2014-04-02T04:46:18.770Z -20.0759 -70.8325 16.53 5.5
2014-04-02T05:02:52.630Z -19.6889 -71.0027 10 5.4
2014-04-02T06:29:16.540Z -20.1248 -70.8304 16 5.1
2014-04-02T08:25:52.310Z -20.2046 -70.7654 17 5.0
2014-04-02T11:07:32.130Z -20.0107 -70.9375 15 5.4
2014-04-02T11:11:34.680Z -19.9884 -70.9525 17 5.1
2014-04-02T19:45:51.090Z -20.3523 -70.4501 26.89 5.3

114



Appendix B. Heat Maps of TEC based Data Related to karr Station

Earthquake Time Location Earthquake Properties
Latitude Longitude Depth Magnitude

2014-04-03T00:01:16.400Z -19.6823 -71.1759 25.5 5.0
2014-04-03T01:58:30.530Z -20.3113 -70.5756 24.07 6.5
2014-04-03T02:43:13.110Z -20.5709 -70.4931 22.4 7.7
2014-04-03T02:56:05.060Z -20.7468 -70.5310 10 5.5
2014-04-03T02:59:53.620Z -20.5309 -70.4580 35 5.0
2014-04-03T03:11:14.470Z -20.6403 -70.7332 10 5.5
2014-04-03T03:11:31.630Z -20.5347 -70.5344 10 5.4
2014-04-03T04:17:55.520Z -20.6173 -70.7220 10 5.2
2014-04-03T05:19:05.520Z -20.5027 -70.5207 24.51 5.1
2014-04-03T05:26:15.700Z -20.7969 -70.5865 25 6.4
2014-04-03T05:34:31.580Z -20.4540 -70.5496 19.4 5.0
2014-04-03T05:51:44.500Z -20.7591 -70.4171 29 5.3
2014-04-03T06:54:31.010Z -20.6266 -70.6749 15.83 5.0
2014-04-03T09:23:22.040Z -20.5231 -70.7154 19 5.4
2014-04-04T01:37:50.570Z -20.6426 -70.6540 13.71 6.3
2014-04-05T04:05:03.290Z -20.7510 -70.6692 22 5.0
2014-04-05T05:44:56.410Z -20.1486 -70.5553 24.2 5.2
2014-04-07T13:43:21.010Z -20.1273 -70.8513 8 5.7
2014-04-07T13:47:33.330Z -20.1294 -70.7879 9.67 5.4
2014-04-07T14:03:43.490Z -20.1239 -70.8984 10 5.1
2014-04-08T10:14:31.580Z -20.5124 -70.9226 6 5.6
2014-04-09T11:14:43.910Z -20.6010 -70.8026 9.9 5.2
2014-04-11T00:01:45.210Z -20.6590 -70.6472 13.77 6.2
2014-04-11T12:00:51.640Z -20.0730 -70.5558 22.3 5.0
2014-04-13T12:11:30.080Z -20.5664 -70.7470 13.37 5.5
2014-04-14T05:56:17.220Z -20.7773 -70.7541 14.88 5.1
2014-04-15T16:09:34.540Z -20.2042 -70.7826 17.61 5.3
2014-04-15T16:21:17.040Z -20.1473 -70.6938 15.44 5.1
2014-04-15T18:59:40.370Z -20.1823 -70.8507 14.95 5.1
2014-04-19T20:54:42.280Z -20.0283 -70.9196 10 5.8
2014-04-21T13:39:05.250Z -19.6254 -71.0423 16.81 5.3
2014-04-24T10:26:47.250Z -19.9896 -70.9706 10.52 5.1
2014-05-05T11:21:17.410Z -20.2139 -70.7746 13.46 5.4
2014-05-14T05:51:47.560Z -19.7058 -71.0580 10 5.2
2014-05-17T09:11:05.390Z -19.9874 -70.8968 5.62 5.6
2014-06-19T09:38:36.080Z -19.9749 -70.9451 11.3 5.7
2014-06-19T19:54:04.910Z -19.8410 -70.8701 10.6 5.8
2014-07-07T22:20:25.000Z -18.8990 -69.2950 125.8 4.5
2014-07-12T06:55:29.000Z -19.7030 -69.1270 111.5 4.5
2014-07-13T20:54:14.560Z -20.2585 -70.3475 33.12 5.5
2014-07-23T21:39:08.470Z -20.2267 -68.6776 118.73 5.6
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Appendix B. Heat Maps of TEC based Data Related to karr Station

Earthquake Time Location Earthquake Properties
Latitude Longitude Depth Magnitude

2014-08-23T04:45:32.670Z -20.1745 -69.0385 100 5.6
2014-08-24T13:55:13.230Z -19.9407 -71.0466 10 4.7
2014-11-22T06:50:53.640Z -20.0679 -71.1275 14.65 5.0
2014-11-29T14:18:07.930Z -19.9973 -71.0688 6.07 5.3
2015-03-03T12:45:19.000Z -20.3580 -69.1450 106.2 5.2
2015-03-24T22:46:52.000Z -20.6801 -70.7850 15.5 5.2
2015-06-09T12:38:51.640Z -20.2057 -70.8210 13.43 4.7
2015-06-09T13:09:47.740Z -20.2671 -70.8474 10 4.5
2015-11-16T04:55:35.510Z -18.7515 -69.7705 78.14 4.7
2015-11-17T05:37:01.000Z -21.1540 -68.4860 130.8 4.7
2015-11-18T06:13:15.990Z -19.3273 -69.2998 99.76 4.7
2016-01-17T15:28:38.980Z -21.3044 -68.7630 90.29 5.0
2016-03-10T08:34:12.440Z -18.8045 -69.6290 94.43 5.0
2016-06-05T15:05:33.750Z -19.4083 -69.0325 97.17 5.1
2016-08-14T13:28:42.520Z -20.2005 -69.1698 100 5.0
2016-08-19T05:59:23.890Z -20.5989 -68.8989 109.8 4.7
2016-12-25T14:01:33.190Z -19.8770 -68.6624 103.32 5.1
2017-01-03T13:41:52.400Z -19.9071 -70.4091 43.13 5.2
2017-01-28T01:27:28.720Z -19.9610 -70.0363 51.76 4.9
2017-02-25T02:31:24.480Z -19.4876 -69.0941 108.46 5.2
2017-04-26T18:12:32.360Z -19.7031 -69.3496 104.68 5.4
2017-05-14T19:44:25.160Z -20.8287 -68.7110 116 5.7
2017-05-28T18:47:11.650Z -21.1834 -68.6823 137.99 4.9
2017-07-22T06:29:49.660Z -21.1751 -69.2364 39 5.3
2018-04-05T11:12:10.600Z -20.3810 -70.5855 44 5.5
2018-09-14T10:50:37.900Z -19.2439 -69.1901 100.53 4.6
2018-09-19T18:42:21.450Z -19.5404 -70.3888 62.58 5.0
2018-11-01T22:19:51.690Z -19.5827 -69.2656 102 6.2
2018-11-06T08:31:01.050Z -19.7194 -69.4141 86.57 4.7
2018-11-07T04:06:41.060Z -21.2617 -68.9007 114.8 4.5
2019-01-07T13:43:28.900Z -19.5722 -68.9156 103.54 4.9
2019-03-07T05:50:36.650Z -18.7902 -69.4234 107.98 4.9
2019-03-17T00:53:37.680Z -20.3718 -68.4290 120.75 5.1
2019-03-25T10:52:40.475Z -21.3137 -70.0005 72.03 5.0
2019-08-28T15:53:02.042Z -20.5823 -70.3895 29.75 4.9
2019-10-25T16:29:37.841Z -19.0541 -69.3486 145.68 4.6
2019-10-29T02:38:16.830Z -19.5766 -69.3058 100.18 4.6
2019-10-29T09:05:55.278Z -18.9629 -69.3633 110.67 4.5
2019-10-29T20:32:07.829Z -21.2686 -68.9314 120.44 4.5
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