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Bu çalışma, parçacıklar arasındaki kuantum dolanıklığı korumak amacıyla tam kuantum 

teorisini kullanarak, elektro-opto-mekanik veya optoelektronik dönüştürücü türleriyle çalışan 

kuantum radarlarda parçacıklar arasındaki dolanıklılık halinin sürdürülebilirliğine 

odaklanmaktadır. Kuantum radar, klasik bir radarla aynı şekilde mikrodalga fotonları kullanan 

bir kuantum uzaklık algılama sistemi olarak tanımlanmaktadır. Bu tezde tasarlanan kuantum 

radar, kuantum aydınlatma protokolü kurallarına uymaktadır. Buna göre,  tasarlanan cihaz, 

algılamayı iyileştirmek ve tanımlamayı güçlü bir şekilde gerçekleştirmek amacıyla dolanık 

mikrodalga fotonlar kullanır. Kuantum mekaniği açısından bakıldığında, fotonlar gibi iki 

kuantum parçacığı birbiriyle etkileşmek üzere üretildiğinden ve özellikleri klasik olmayan bir 

şekilde birbirine bağlı olduğundan dolanıklık oluşmaktadır. Kuantum olanıklık halindeki 

parçacıklar arasında paylaşılan özellikler, aralarındaki mesafeden tamamen bağımsızdır. Ne 

yazık ki, parçacıklar arasındaki dolanma davranışı  istikrarsızdır ve bu doğrultuda, parçacıklar 

arasındaki dolanma halini üretmek ve uzun süre korumak çalışmadaki en önemli amaçlardan 

biridir. Ek olarak, gürültü, hızlı bir bozulmaya neden olarak dolaşık durumdaki yapıları 

kolayca etkileyebilmektedir. Bahsedilen önemli hususların bilgisiyle, bu çalışma I. bölümde 

yer verildiği üzere kuantum radar operasyonlarının her aşamasında dolanıklılık durumlarını 

korumayı amaçlamaktadır. II. bölümde mikrodalga ve optik fotonlar arasındaki dolanıklığı 

oluşturmak için tipik bir dönüştürücü kullanılmıştır. Gerekli olan durumlarda dolaşan 
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mikrodalga fotonların yoğunlaştırılması  III. bölümde anlatılmıştır. Son olarak atmosfere 

yoğunlaştırılmış foton yayılımı (zayıflatma ortamı) ele alınarak, hedeften foton saçılması olayı  

IV. bölümde gerçekleşmektedir. Her aşamada, ortam parametreleri dolaşık durumları kritik bir 

şekilde ortadan kaldırabilir. Bu doktora tezinde, dolaşık fotonları oluşturmak için temel bir 

yapı olarak iki farklı dönüştürücüye (elektro-opto-mekanik ve optoelektronik dönüştürücüler) 

sahip bir kuantum radar sisteminin dolanıklık davranışı özellikle vurgulanmaktadır. 

Bahsedilen dönüştürücüler, sırasıyla L-bandında (1.5 GHz'de mikrodalga boşluğu rezonansı) 

ve S-bandında (2.7 GHz'de mikrodalga boşluğu rezonansı) çalışacak şekilde tasarlanmış ve 

böylece, tutulan fotonlar ile geri dönen fotonlar arasındaki dolanıklığı tezin ana görevi olarak 

analiz edilmiştir. 

Kuantum radar sisteminin tasarım aşamaları şu şekildedir: 

I. Dönüştürücünün mikrodalga ve optik fotonlar arasında dolanıklık oluşturacak 

şekilde tasarımı; Bu tezde, özellikle yüksek kalitede bir kuantum radar sistemi 

tasarlayabilmek amacıyla sürdürülebilir dolaşık fotonlar oluşturarak uygun 

dönüştürücü tasarlamaya yoğunlaşılmıştır. Bu adımda, dönüştürücülerin kritik 

parametreleri arasındaki denge belirlenecektir. 

II. Dolanık fotonları yükseltmek için yoğunlaştırıcı ortamın (klasik anlamda 

yükseltici) tasarımı; Bu aşama, geniş menzil tespiti vurgulandığından, klasik 

radarda birincil rol oynamaktadır.  

III. Yayılma kanalının kayıplı bir ortam olarak modellenmesi ve dolanık modlar 

üzerindeki katkıda bulunan etkilerin incelenmesi. 

IV. Hedeften yansıyan dolanık fotonların modellenmesi ve hedef parametrelerinin 

dolanıklık davranışları üzerindeki etkisi. 

V. Kuantum yaklaşımı ile RCS'nin hesaplanması; bu adımda, "dipol yaklaşım 

yönteminin" RCS'yi analiz etmek için doğru ve eksiksiz  bir yöntem olmadığı 

gösterilmiştir.  

 

 

Anahtar Kelimeler: Kuantum radar, Kuantum  Dolaşıklığı, kuantum teori, Optoelektronik 

Dönüştürücü, Elektro-opto-mekanik Dönüştürücü, Radar kesiti. 
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This study mainly focuses on the sustainability of the entanglement in quantum radar working 

with different types of converters, either electro-opto-mechanical or optoelectronic converters, 

using full quantum theory at which the priority is to preserve the entanglement. The quantum 

radar is introduced as a quantum standoff detection system applying microwave photons the 

same as a classical radar. Quantum radar designed in this dissertation obeys the quantum 

illumination protocol. Accordingly, the device uses microwave entangled photons to improve 

detection and enhance identification strongly. From the quantum mechanical point of view, 

entanglement arises since two quantum particles, such as photons, are produced to interact 

with each other, and their properties are non-classically connected to each other. The shared 

properties between the entangled particles are independent of their inter-distance. 

Unfortunately, the entanglement behavior is so unstable, and more importantly, it is a crucial 

task to produce and preserve that for a long time. Additionally, the noise can easily affect the 

entangled states to cause a fast decaying. With knowledge of the crucial points mentioned, this 

study aimed to preserve the entangled states at each stage of the quantum radar operations, 

including I. Using a typical converter to create the entanglement between microwave and 

optical photons, II. Intensifying the entangled microwave photons (if it is necessary), III. 

Intensified photons propagation to the atmosphere (attenuation medium), IV. Photon scattering 
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from the target. At each stage, the medium parameters can critically kill the entangled states. 

This Ph.D. dissertation specifically emphasizes the entanglement behavior of a quantum radar 

system with two different converters (electro-opto-mechanical and optoelectronics converters) 

as a basic substrate to generate the entangled photons. The converters mentioned will be 

designed to operate at L-band (microwave cavity resonate at 1.5 GHz) and S-band (microwave 

cavity resonate at 2.7 GHz), respectively. Thus, we will try to analyze the entanglement 

between retained photons with the returned photons as the main task of the thesis. 

The steps of the design of the quantum radar system are as follows: 

I. Design of the converter to generate entanglement between microwave and optical 

photons; in this dissertation, we specifically focus on designing the suitable 

converter to generate sustainable entangled photons to introduce a quantum radar 

system with high quality. In this step, the trade-off between critical quantities of the 

converters will be determined.   

II. Design of the intensifying medium (amplifier in the classic sense) to amplify the 

entangled photons; This stage plays a primary role in the classical radar since the 

large range detection is emphasized.  

III. Modeling the propagation channel as a lossy medium and study the contributed 

effects on the entangled modes 

IV. Modeling the entangled photons reflected from the target and target‘s parameters 

effect on their entanglement behavior 

V. Calculation of the RCS via the quantum approach; in this step, we show that the 

―dipole approximation method‖ is not a complete method to analyze the RCS.  

 

 

Keywords: Quantum Radar, Entanglement, Quantum theory, Optoelectronic Converter, Electro-opto-

mechanical Converter, Radar cross-section. 
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1. INTRODUCTION 
 

 

Recently, the quantum phenomenon has been used as a novel idea in sensors to improve their 

capabilities and specifications [1-2]. The following studies exemplify the utilization of 

quantum phenomena in sensors: quantum radar systems [1-4], image resolution enhancement 

[5-7], quantum illumination [8-9], quantum communication [9-10], increasing the responsivity 

of plasmonic photodetector [11], engineering the decay rate of plasmonic systems [12], and 

also modification of Raman signals [13]. However, in the following, the emphasis is laid on 

the quantum radar that operates as classic radar using quantum phenomena to enhance some 

performances.   

 

A ―quantum radar‖ system, shown in Figure 1.1, is traditionally introduced as a sensing 

system utilizing the entangled microwave photons regarding ―quantum illumination protocol‖ 

to enhance the radar performances, including detection, identification, and resolution [1,4,14-

21]. This phenomenon (entanglement) is created through the interaction of two photons, 

resulting in an interrelated property independent of the distance between particles.  [5, 19]. 

Using microwave photons via quantum radar enables an effective penetration in the 

atmospheric medium to minimize the losses as classical radar. It has been shown that quantum 

radars using the entanglement phenomenon strongly improve some crucial quantities such as 

the ―signal to noise ratio‖ (SNR) and detection probability compared to a classical radar [1, 2, 

14-18]. Additionally, it has been investigated that the ―effective visibility‖ of a target can be 

enhanced when the quantum radar is employed [1]. Also, countermeasures like jamming are 

efficiently quenched by a quantum radar [1, 2]. The points mentioned above emphasize that 

quantum radar advantages are just because of the entanglement property. Nonetheless, it is 

clear that entanglement is fragile, and it is also challenging to produce and preserve that and 

can be easily affected by the noise sources [12, 13]. Moreover, in a quantum radar system, 

entanglement is naturally strongly distorted because of the losses introduced due to the 

atmosphere channel, as well as scattering from the target. Thus, the entanglement fragility 

becomes worse since employed by quantum radar to propagate into free space to detect the 

target. This critical issue has been studied in detail [14, 15]. For instance, Ref [14] focuses on 
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―microwave-optical entanglement‖, and examines the entanglement affected by ―quantum 

noise‖ and ―quantum Brownian noise‖. As a significant result, the mentioned work shows that 

the radar system using ―quantum illumination protocol‖ has a lower probability of error than 

the coherent-state system. Quantum illumination radar system refers to the quantum radar that 

utilizes the quantum illumination protocol.  

 

Figure 1.1. A schematic of a quantum radar containing transmission of the entangled 

photons and backscattering photons detection [16]. 

 

One of the exciting works contributed to the ―quantum radar‖ system concentrates on the 

entangled microwave photons generation using ―Josephson parametric converter‖ (JPC) [16]. 

The system defined in [16] is schematically depicted in Figure 1.2. After the generation of the 

entangled states, the entangled photons are amplified to increase the probability of the 

detection. The entanglement generation and conservation at low operational temperatures is 

the crucial factor in the system discussed above.  Some other interesting works focus on the 

converters generating the entangled microwave photons [9, 10]. In published works, a typical 

―electro-opto-mechanical‖ converter is employed at which the optical cavity couples to the 

microwave cavity via microresonator operating with frequency in the range of MHz. Thus, the 

photons induced thermally are strongly increased due to the low-frequency operation and then 

confined the entangled photons. Therefore, studies [14-18] mentioned above specifically limit 

the operational temperature at 15 mK.   
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Figure 1.2. Using JPC nonlinearity to generate entangled photons in a typical Quantum 

Radar [16]. 

 

In this Ph.D. dissertation, with knowledge of the above-cited studies, a quantum radar with the 

aim of entanglement preserving is designed and analyzed by employing full quantum theory to 

answer some critical questions:  

I. By which approach is it possible to manipulate subsystems coupling in the converter to 

create entanglement between photons at high temperature? [22- 27] 

II. Is it possible to define and design a converter more robust in entangled photon generation 

by increasing the temperature?  

III. How and by which design can one eliminate the low-frequency part of the electro-opto-

mechanical part that is the original issue of the generation of the thermal photons?  

IV. What is the critical temperature that the design system can generate the entangled photons? 

V. How the active, passive mediums and also scattering from a target can affect the entangled 

states? 

 

As the primary goal, the entanglement properties preservation is highly emphasized at each 

design step. A typical design for a quantum illumination radar system is initiated in this 

dissertation by an electro-opto-mechanical converter (Figure 1.3). This system contains three 

coupled subsystems as ―optical cavity‖ (OC), ―microresonator‖ (MR), and ―microwave 

cavity‖ (MC) to cause the MC modes to become entangled with OC modes. The term ―cavity 
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(e.g., optical or microwave)‖ is a space where the related modes (optical or microwave) can 

resonate.   

To provide entangled states, the subsystems mentioned above are coupled to each other. OC 

modes are coupled to MR via the enforced optical pressure, and then the contributed effect is 

transferred to MC via the changing the capacitance. The system equation of motion is 

analyzed with the quantum canonical quantization approach by which the entanglement 

between the fluctuations of the contributed modes is investigated. By engineering the system, 

the OC and MC modes, which contain optical and microwave photons, become entangled. It 

will be shown that the designed electro-opto-mechanical system has some drawbacks, such as 

operating at shallow temperatures and a strong influence of the thermal noise. Then, another 

converter is introduced to fix the problem. Another system that the dissertation focused on is 

the optoelectronic-based quantum radar to generate entangled states. In the same way, the 

optoelectronic converter containing OC, MC, and photodetector (PD) cavities is theoretically 

designed with full quantum theory. In fact, the low-frequency operating MR subsystem is 

replaced with an optoelectronic-based component such as PD operating at high frequency. 

Operating at high frequency strongly limits the thermally excited photons, representing one of 

the critical cases that destroy the mode‘s entanglement. Using the optoelectronic converter 

shows that it is possible to create entanglement between photons at high temperatures. Also, 

―Simon-Peres-Horodecki criterion‖ is applied to calculate the cavities modes of entanglement.  

  

After generating the entangled photons, to complete the process to detect the target, the created 

entangled photons are intensified (in the first system) and propagated into a real medium to 

interact with a target. Accordingly, quantum electrodynamic theory is utilized to model the 

intensification of the signal, propagation through the atmosphere channel, and also scattering 

from the target‘s surface. In this theory, the quantum electromagnetic field interacts with the 

quantum field of atoms. It is because all real mediums such as active medium for 

amplification, passive medium for attenuation, or the target that reflects the incident photons, 

made of atoms. It is the atoms that interact with the electromagnetic fields. So the atoms are 

considered as the scattering agents. From the quantum electrodynamics perspective, the 

interaction between matter and light is given by a term in energy that couple the particle field 

with the quantum electromagnetic field. 
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Notably, at each step, the entanglement between the OC mode (idler) kept in the laboratory 

should be evaluated with the signal that returned and detected by the detector. The main aim is 

to design a system by which the retained and returned signals is remained entangled after the 

photon detection. This task is a crucial one, and in fact, for a real quantum radar system, the 

returned signals completely lost the entanglement between modes. That means that the 

correlation between retained and returned signals rather than its entanglement should be 

calculated. 

 

Another vital task studied in this dissertation is radar cross-section calculation with the 

canonical conjugate method. In this task, it will be proved that the dipole approximation 

method is not a complete one. The system‘s dynamics equations are analyzed using the theory 

of ―quantum electrodynamics (QED)‖.  

Following a brief introduction about the new converter emphasized in this study, the major 

design steps of a typical quantum radar are presented, and then the introduction section will be 

completed with some critical points about the optoelectronic converter design.  

The major design steps are considered as:  

I. Optical entangled photons generation,  

II. Using converter to create microwave photons entanglement 

III. Intensifying the microwave cavity photons,  

IV. Propagating the microwave photons in the atmosphere, 

V. Scattering the photons from a target 

VI. Analyzing the retained and returned fields entanglement  

Traditionally, the converter illustrated in Figure 1.3 is used in a quantum radar to generate the 

entangled photons by engineering the coupling between subsystems. It can be shown that this 

system cannot operate at high temperatures due to the effect of the MR in the system. In other 

words, there is no more degree of freedom in the previous design to manipulate the system to 

support the generation of the entangled states at high temperatures. Thus, it is necessary to 

introduce another plan to fix the problem.  
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Figure 1.3. Electro-opto-mechanical converter containing three coupled subsystems as OC, 

MC, and MR [18]. 

 

In the second design that the present dissertation emphasizes, the MR subsystem is removed 

and replaced that with an optoelectronic converter to solve the problem. The optoelectronics 

converter is utilized to modify the interconnection between cavities. In fact, the mechanical 

part is removed from the ―electro-opto-mechanical‖ converter [27-31], and rather than, the 

optoelectronic elements are employed to establish coupling between MC and OC modes [26]. 

This system is schematically illustrated in Figure 1.4. The exciting idea contributed to the 

design relates to the subsystems used operating at high frequency. That leads to subside the 

photons induced due to the thermal effect and the associated noises. It is shown that by 

engineering the coupling between converter‘s subsystems, the entanglement modes are 

strongly increased.  

 

In the same way with the first design, QED is used to analyze the quantum radar systems, 

amplifier, propagation in the atmosphere, and target‘s scattering [29,30], and the dynamic 

equation of the quantum illumination radar are derived using ―Heisenberg-Langevin‖ 

equations [31,32]. The indicating equations are usually used to analyze any quantum systems 

and derive the ―equation of motion‖ of the designed system. For a typical system with an 

associated Hamiltonian (H), the Heisenberg equations are defined using dâ/dt = -(j/ħ) [â,H], 

where â is the considered operator. However, to thoroughly analyze a quantum system, it 

needs to consider the system's interaction with the environment that the system is embedded 

into. In other words, the Heisenberg equations require other factors such as noises that affect 
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the system. These terms obeying the Langevin equations called the ―Langevin noise 

operators‖. The mentioned operators are added to the equation of the system motion 

(Heisenberg equations) to complete the analysis. At last, the ―Simon-Peres-Horodecki 

separability criterion‖ is used for separability calculation between the continuous variable 

modes [33-36].  

 

Figure 1.4. Optoelectronic converter contains OC, optoelectronic device [22]. 

 

In the following, before concentrating on the main materials of the work, which is quantum 

theory and the related backgrounds to design the system, it is necessary to shortly and briefly 

discuss the classical radar and its subsystems. It is because any quantum radar uses the 

classical radar approach for operation. Nonetheless, we have to focus on the dissertation's 

main point, which is entanglement sustainability in a quantum radar. This dissertation mainly 

emphasizes designing a system to generate and preserve the entanglement at high 

temperatures.    
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2. CLASSICAL RADAR (a short Review on classical radar subsystems) 
 

 

The term RADAR is an acronym for detection and ranging with the radio wave. Radar as a 

sensing system employs radio frequency waves to analyze the range, angle, and velocity of 

objects. Radars are commonly used to detect aircraft, missiles, and ships [37-39]. A radar system 

is depicted in Figure 2.1 with a block diagram. It, in essence, consists of a transmitter to produce 

electromagnetic waves, an antenna to amplify the signal and broadcast that, a receiving antenna 

with the same role and a receiver to detect the backscattering signal (returned fields) from the 

target, and finally, a processor to analyze properties of the target. In radar applications, the radio 

waves, which can be continuous or pulsed, issue electromagnetic waves from the transmitter, 

reflect the wave of the object, then return to the receiver, and finally, after some processing, give 

some info about the object location, speed and also its properties [38, 39]. 

 

There are also others systems functioning similar to the radar but employing the other spectra of 

the electromagnetic spectrum like visible light. One crucial example is LIDAR (―Light detection 

and ranging‖), which uses infrared spectrum with high-intensity photons. Any detection system, 

either radar or LIDAR, operates essentially based on the reflection from a target. In essence, if an 

electromagnetic wave travels through one material and meets another one, the wave will scatter 

due to the dielectric constant discrepancy in the boundary. That means that any solid object will 

usually scatter or reflect radio or infrared waves from the target surface. It is only valid for 

materials with high conductivity as metal and carbon fiber. However, radar absorbing materials 

have been used for military applications containing resistive and magnetic substances to strongly 

reduce radar reflection [37-39]. This kind of subject has been discussed explicitly in radar cross-

section calculations. The scattering of radar waves from target depends on a variety of 

parameters consisting of wavelength, target‘s shape, the angle of wave propagation, and more 

importantly, depends on the materials of the target. For instance, if the wavelength is comparable 

with- or shorter than the target size, LIDAR, or laser radar applications, the wave will be 

backscattered in the same way as a reflection by a mirror. In contrast, if the incident wavelength 

becomes longer enough regarding the size of the target, the related visibility can be strongly 

distorted because of the poor reflection. With regard to the points mentioned above, the ―Low-

https://en.wikipedia.org/wiki/Acronym_and_initialism
https://en.wikipedia.org/wiki/Radio_wave
https://en.wikipedia.org/wiki/Aircraft
https://en.wikipedia.org/wiki/Guided_missiles
https://en.wikipedia.org/wiki/Marine_radar
https://en.wikipedia.org/wiki/Transmitter
https://en.wikipedia.org/wiki/Electromagnetic_wave
https://en.wikipedia.org/wiki/Radio_receiver
https://en.wikipedia.org/wiki/Data_processing_system
https://en.wikipedia.org/wiki/Electromagnetic_spectrum
https://en.wikipedia.org/wiki/Lidar
https://en.wikipedia.org/wiki/Infrared_light
https://en.wikipedia.org/wiki/Electromagnetic_radiation
https://en.wikipedia.org/wiki/Dielectric_constant
https://en.wikipedia.org/wiki/Electrical_conduction
https://en.wikipedia.org/wiki/Radar_absorbing_material
https://en.wikipedia.org/wiki/Electrical_resistance
https://en.wikipedia.org/wiki/Magnetism
https://en.wikipedia.org/wiki/Stealth_technology
https://en.wikipedia.org/wiki/Mirror
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frequency radar technology‖ is employed just for the detection of the target, not for its 

identification. That is why the low-frequency radar system cannot identify two close targets from 

each other; that is contributed to the radar system resolution. Thus, for increasing the radar 

resolution, the wave‘s wavelength should be shorter enough. The reflective targets for a short 

wavelength have angles around 90° between surfaces that reflect the incident wave. To know 

generally about a classical radar system performance, in the following, the radar range equation 

is introduced by which one can find the relationship between quantities and also find which 

quantity can affect the other.  

 

Figure 2.1. Illustration of radar subsystems with block diagrams; time control, transmitter, 

receiver, signal processing, and duplexer [37]. 

 

2.1 Radar range equation 

A wave is propagated toward the target in a classical radar system, and some portion of the 

incident wave is reflected. Here, the detector's receiving power is analyzed and determined by 

which factors the receiving power will be affected. The receiving antenna gets the backscattering 

power Pr as [37-39]:  
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           (2.1) 

where Pt, Gt, Ar, Ars, λt, Gr, ζ, F, Rt, and Rr are transmitter power, transmitting antenna‘s gain, 

target effective area, receiving effective antenna aperture, transmitted wavelength, receiving 

antenna gain, radar cross-section, the factor of pattern propagation, transmitter-target distance, 

https://en.wikipedia.org/wiki/Reflection_(physics)
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and also target-receiver distance, respectively. In some cases, the transmitter and receiver are 

placed at the same location where Rt = Rr; then the term Rt² Rr² in Eq. 2.1 can be substituted with 

R4.This reveals that the receiving power decreases with the range fourth power, which means that 

the detecting signals from a distant target are relatively small. The factor F relates to the 

interference in the route that the pulse is transmitted to detect the target. However, F = 1 means 

that transmission is in a vacuum without any interference; this is impossible due to the 

environmental effect. To better understand the radar range equation, one can consider Figure 2.2, 

in which the relationship among parameters is clearly shown. 

 

Figure 2.2. Bistatic radar range equation parameters; transmitter antenna gain (Gt), traget 

effective area (Ars), fraction absorbed (fa), spreading loss, receiver effective area 

(Ar) [38]. 

 

From this figure, one can understand the step-by-step of radar performance. The operation starts 

with the transmitter to generate the microwave photons; the microwave photons are amplified 

and broadcasted via an antenna with gain Gt toward the area for detection. After the propagation 

of the signals, the signals suffer a loss due to propagation loss in real medium as 1/4πRt
2
 and then 

interact with the target. All signals cannot reflect toward the radar detector due to the effective 

area of the target Ars and absorption by the target fa. However, the backscattering signal suffers 

one more time due to the effect of the propagation loss as 1/4πRr
2
. Another effect based on the 

schematic is the effective area of the receiver, which means that all of the backscattering signals 

cannot be detected, and it is the effective area of the detector Ar that confined it.   

https://en.wikipedia.org/wiki/Vacuum
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2.1.1. Antenna 

A radar system requires a device to amplify the signal and spread it out in all directions to 

broadcast radio signals. Likewise, a transmitter‘s antenna, the receiver‘s antenna collects the 

backscattering signals equally from all directions and amplifies them again [39, 40]. The 

mentioned device is called an antenna. However, for a monostatic radar, an antenna is used to 

propagate and collect the signals.  

Recently the radar systems have been tended to use omnidirectional broadcast antennas, with 

directional antenna as a receiver to cover various directions. The directional antenna is 

specifically employed to reduce the noise.  

More importantly, in the receiver, the maximum return signals can be detected via an antenna at 

angles correctly aligned toward the target. Thus, the antenna has a significant impact on the radar 

system. The broadcasting signals and receiving signals are amplified, and an effective area of the 

receiving antenna is essential in detecting backscattered signals.  

 

2.1.2. Noise 

Noise is an essential factor that confines the radar system performance [37-39], [41, 42]. Noise 

as an internal source basically refers to random variations of the signal generated by electronic 

devices and also applied by the environment. Backscattered signals (returned signals) from the 

target based on Eq. 1 decline rapidly as distance increases. That means that the amplitude of the 

returned signals is strongly decreased. Thus, the detector's generated noise can strongly introduce 

a radar range limitation because the returned signal amplitude is comparable with the applied 

noise level. The remote targets generate so faint signal for detection, and due to the noise effect, 

the original signal cannot be detected. Usually, a detector requires a signal exceeding by at least 

the defined SNR as:  

 
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where PN, T0, B, and F are receiver noise power, absolute temperature (300 K), the bandwidth 

receiver, and noise figure, respectively.  

 

In the following, it will be suitable to discuss the noises shortly and their types generated and 

confined the electronic-based systems and radar. In the radar system, noise appears as stochastic 

https://en.wikipedia.org/wiki/Omnidirectional_antenna
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variations attached to the backscattered signal detected via the receiver. Thus, it becomes more 

challenging to recognize the signal from the noise if the power of the desired signal is so low. 

Actually, ―noise figure F‖ is a criterion to measure the noise arisen by a receiver compared to an 

ideal receiver, and the radar system designers have tried to minimize that factor. Some noises 

strongly affect the radar systems, such as shot noise [41], flicker noise [42], and thermal noise 

[22].  ―Shot noise‖ generated by electrons in the device occurs in all detectors and receivers. This 

noise is the primary source in most receivers and can firmly be confined by low-temperature 

operation. Another type of noise is flicker noise or 1/f noise generated by electron transit through 

amplification devices. This type of noise is dominant in low and very low frequency. 

Additionally, noise can be externally generated like the background natural thermal radiation 

which surrounds the target. The ―thermal noise‖ is expressed by kBTB; one can consider the 

thermal noise effect in Eq. 2 on SNR. In modern radar systems, especially in quantum radar, the 

internal noises are typically equal to (or lower than) the thermally-induced noise, meaning that 

1/f noise and shot noise can be ignored entirely.  

 

Therefore, in the following, due to the subject of this dissertation which is the design of a 

quantum illumination radar, the focus is briefly shortly laid on the quantum noise that is arisen 

due to the quantization. When a photodetector is utilized in the receiver, it receives the incoming 

signal as a quantized photon, leading to the quantum noise and current fluctuation. In other 

words, whenever discrete particles detect at random times, so some fluctuations occur in the rate 

of detected photons. The numbers of arrivals discrete photons at time duration (td) can be 

supposed to have a distribution like a ―Poisson distribution‖ [22, 41]. Thus, the current ‗i‘ and its 

fluctuation <δi
2
> are calculated as [22, 41]:   
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where e, B, and I are the electron charge, receiver bandwidth, the average current I = <i>, 

respectively. Also, <n> is the photons average number and <δn
2
> is photons number fluctuation. 

The other significant parameter that has to be involved in Eq. 2.3 is the quantum efficiency of 

receiver ζ. The quantum efficiency determines the probability by which every received discrete 

photon creates a free electron. With including ζ, the fluctuation of the current is re-written as: 

https://en.wikipedia.org/wiki/Noise_figure
https://en.wikipedia.org/wiki/Shot_noise
https://en.wikipedia.org/wiki/Flicker_noise
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2 2i e BI                                                                                                                              (2.4)   

Eq. 2.4 shows the dependency of the current fluctuation to receiver quantum efficiency, its 

bandwidth which is arisen due to the quantization. In the design of quantum radar, the effect of 

the quantum noise is considered, and also thermally excited photons. It is shown that these 

factors are crucial that can strongly restrict the retained and returned signals entanglement. 

However, it is noteworthy to indicate that the quantum noise will arise after detecting the signals. 

In contrast, thermally excited photons (thermal noise) can be found anywhere in the quantum 

radar system, such as in converter, amplifier, propagation channel, and also scattering from the 

target. That means that the thermal noise in quantum radar that works with the low-level photons 

is so critical than other types of noises. However, the simulation of a quantum radar needs to 

comprehensively analyze the thermal noise at each design level.     

 

2.1.3. Radar Cross Section (RCS) 

RCS is a criterion of how a typical target can be detected by a radar or detection system [43-50]. 

A larger RCS of an object means that the object is more easily detectable. By incidence of a 

wave toward a target, the illuminated target backscattered a limited rate of the radar‘s incident 

waves backscattering to the detector. This is because of the effective target area and target 

material. Generally, the scattering waves by a target depend on some factors such as [47,48]:  

1. the material of the target 

2. the real target size 

3. the relative size of the target with regarding the incident signal wavelength  

4. the polarization of the transmitted and the received signals 

5. the angle at which the radar‘s wave incidents on a portion of the target, and that strongly 

depends on the target‘s shape and its orientation  

6. the reflected angle by which the scattered beam leaves the target  

From the classical picture, RCS is essential for the detection of the targets; nonetheless, the 

strength of incident pulses and also the distance between radar system and target are not factors 

that affect the calculation of RCS; it is since RCS is arisen by the target's reflectivity property. 

For example, the RCS of some simple geometrics is theoretically calculated and illustrated in 

Figure 2.3. 

https://en.wikipedia.org/wiki/Radar
https://en.wikipedia.org/wiki/Wavelength
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Figure  0.3. RCS of some simple geometric shape analysis with exact method [37]. 

 

In from quantum picture, some other factors intuitively depend on analyzing approach that can 

affect RCS. We will come back to this subject later and compare RCS analysis in the classical 

realm with the case elaborated in the quantum area and study the advantages and disadvantages 

of the considered methods. 

 

2.2. A short comparison between classical radar and quantum radar (a generic view on 

performance) 

After a short discussion about classical radar, before focusing on quantum illumination radar and 

quantum phenomena, it is better to discuss the classical radar's disadvantages. It is a list of 

advantages of quantum radar that can be used for comparison with classical radar.  

1. Non-classical correlation utilized by quantum illumination radar is so complete than the 

classical correlation; it is just a difference between single-photon correlation and wave 

front correlation [1-3]. 

2. SNR is a critical case in the classical radar system [15]; this factor will be strongly 

enhanced in the quantum radar due to the effect of quantum phenomena. 

3. Radar cross-section is improved using quantum illumination radar [51]; using a quantum-

based approach gives us some freedom to enhance the associated parameters.  
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4. Interaction between transmitted wave and medium can be completely analyzed in 

quantum radar [18]; it means that the quantum theory approach is so complete than the 

classic theory.  

5. Due to the non-classicality used in quantum radar, this type of radar is hardly ever 

decoyed [1,16].  

6. Increasing the detection sensitivity by using the entanglement [16].  The preservation of 

the entanglement between retained and returned signals is so challenging.  

7. Quantum entanglement has been employed to enhance the imaging resolution [5].  

8. Able to solve the problem of traditional radar trade-off between resolution and detection 

range [1,2].  

9. Stealthy target detection [1] by quantum radars. 

10. Identification of the target materials [1] can be considered as another advantage of 

quantum radar.  

Now, we are ready to start with the quantum radar and initially focus on providing some general 

information about quantum radar. Thus, some useful tools employed by the quantum theory 

should be introduced, such as quantum mechanics and quantum physics. These will be 

considered as the indispensable elements to design the quantum radar.  
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3. QUANTUM RADAR (a generic definition) 
 

 

Quantum radar is introduced as a sensing system using either microwave photons or optical 

photons and utilizing quantum phenomena (i.e., entanglement) to improve target detection and 

recognition processes. Quantum radar is a remote sensing device that employs quantum 

entanglement and quantum detections. If quantum radar operates well, it will allow the sensing 

device to detect its own signal even when strongly affected by the background noise. Thus, 

quantum radar can detect stealth aircraft, can completely remove the jamming attempts, and can 

operate in areas containing background noise. Some prototype design of a quantum radar has 

been proposed [1, 16]. 

 

Quantum radar offers an approach by which it can improve the classical radar system‘s 

detection, identification, and resolution. Using the entanglement in quantum radar leads to 

enhancing the target detection capabilities. The operation of the system relies on the photon‘s 

quantum states to preserve the entanglement between states. The basic concept of the quantum 

illumination radar system illustrated in Figure 3.1 is as follows: creating the entangled optical 

photons and split them in half using a beam splitter. One half, called "signal beam", coupled to a 

microwave cavity to affect the associated cavity modes in such a way as to preserve the original 

quantum state. This can be done using either an electro-opto-mechanical converter [14, 15] or an 

optoelectronic-based system [18, 22] to produce entangled microwave photons. Then microwave 

signal is broadcasted and received like a classical radar system operating based on the 

microwave signals. When the backscattered signal (returned signals) is received, it has to be 

converted back into optical photons and calculate its correlation with the other half "idler beam" 

of the original entangled beam. The existing nonclassicality correlation between the 

backscattering photons from the target and the photons (idler) held inside the radar improves 

signal detection. With such property, quantum illumination radar offers the possibility of 

strongly improving the detecting, identifying, and resolving small targets [16, 18].  

 

Even though most of the entanglement between photons is lost due to ―quantum decoherence‖ 

when the microwave photons broadcast toward the target and back; however, it may remain 

https://en.wikipedia.org/wiki/Remote_sensing
https://en.wikipedia.org/wiki/Quantum_entanglement
https://en.wikipedia.org/wiki/Quantum_entanglement
https://en.wikipedia.org/wiki/Stealth_aircraft
https://en.wikipedia.org/wiki/Radar_jamming_and_deception
https://en.wikipedia.org/wiki/Radar
https://en.wikipedia.org/wiki/Quantum_decoherence
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enough quantum correlations between the returned signal and the idler [18]. Some studies 

reported that quantum illumination radar employing entanglement photons could significantly 

increase the resolution over non-entangled photons [1]. Furthermore, the target‘s visibility is 

increased when observed with the entangled microwave photons instead of some classical 

microwave photons [1]. However, in this dissertation, we mainly focus on the sustainability of 

the entanglement in the designed quantum radar. For this reason, the focus lies in improving the 

design of the converters traditionally employed by the designer and, at first, producing the 

entangled microwave photons at high temperatures and then preserving that. The introducing 

converter is an optoelectronic-based converter that completely employs the high-frequency 

operation elements. Thus, it is shown that microwave photons entanglement generation at high 

temperatures becomes possible. It will be an astonishing achievement by which the retuned 

signals remained entangled with the retained signals. In fact, this is the main aim of this Ph.D. 

dissertation.  

 

3.1. Quantum Mechanics  

It is significant to note that quantum radar essentially operates like a classical radar but 

significantly differs in the type of signals utilized by the quantum radar. In principle, entangled 

microwave photons are utilized by quantum radar. It is known that quantum entanglement is a 

physical source for an application in communication, and thus, it is no longer merely an 

exposition of quantum mechanics. It should be noted that constructing and detecting the 

entanglement is crucial in every application. To fundamentally know about the entanglement 

mathematics and physics, it needs some quantum mechanics tools to deal with, to understand the 

subject completely [30,52]. In contrast to ―Newtonian mechanics‖, ―Quantum mechanics‖ is a 

group of mathematical postulates describing the microscopic particles and their interaction. For 

this reason, it is necessary to shortly introduce some of the quantum mechanics postulations and 

tools that have been utilized in this thesis. In the following, a short introduction about the 

Lagrangian is presented [52,53] and Hamiltonian mechanics [30,52,53].  
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3.1.1. The mechanics of Lagrangian  

One can generally consider a system with ―n‖ particles; each particle in classical mechanics is 

characterized by its position at any time ―t‖ and the related velocity [52,53]. That means the 

initial condition of a classical system containing particles is the related particles‘ position and 

velocity.  

Lagrangian mechanics starts with constructing a set of generalized position qi (i = 1, 2, … N) that 

describes the classical particles. The associated velocity of the particles is indicated by dqi/dt. 

Thus, the Lagrangian mechanic is described by a single function as: 

1 2 1 2( , ; ) ( , ,... , , ,..., ,; )N NL q q t L q q q q q q t             (3.1) 

The Lagrangian is the difference between a system‘s kinetic and potential energies and is 

generally presented as: 
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Eq. 3.2 defines the Lagrangian for N particles whose kinetic and potential energies are included. 

However, one can derive the associated Hamiltonian from the Lagrangian. In the next part, the 

Hamiltonian mechanics is shortly discussed.  

 

Figure 3.1. General schematic of a quantum radar system; 1. Creation of the entangled optical 

photons (signal and idler) 2. An electro-opto-mechanical subsystem to generate 

entangled photons, 3. Microwave photons propagation in the atmosphere to target 

detection, 4. Scattering from the target [18]. 
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3.1.2. The mechanics of Hamiltonian  

In a general way, one can define the Hamiltonian using the Lagrangian defined in Eq. 3.1. With 

Lagrangian L(qn,dqn/dt;t) the momentum p canonically conjugate to q is introduced as [30, 52, 

53]: 

( , ; )n n
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L q q t
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q





               (3.3) 

It should be noted that the canonical momentum may differ from the mechanical momentum. 

Thus, using the Legendre transformation, one can define the Hamiltonian by: 
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From Eq. 3.4, the space of qn and pn is referred to as phase space. Taking the differential of 

Hamiltonian with respect to p, q, and t: 
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Therefore, using the Euler-Lagrange equation, one can obtain the Hamiltonian equations as: 
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             (3.6) 

In Hamiltonian mechanics, the system is presented by points (q,p) in phase space on a path that 

satisfies the equation of motion derived by Hamiltonian.  

Also, one can consider the time evolution of dynamical variable H(q,p,t) defined by: 

1 1

( , ; ) N N
n i

n nn n n n n n

dq dpdA q p t A A A A dH A dH A

dt q dt p dt t q dp p dq t 

        
        

        
          (3.7) 

where A is a typical variable. From Eq. 3.7, the Poisson bracket is presented as: 

 
1

,
N

n n n n n

A dH A dH
A H

q dp p dq

  
  

  
              (3.8) 

Finally, the time evolution of A can be defined as: 

 ,
dA A

A H
dt t


 


               (3.9) 

In classical mechanics, the Poisson bracket plays the same role that the commutation relation 

plays in quantum mechanics. Upon quantization, the dynamical variable in Hamiltonian 

mechanics is replaced by operators in quantum mechanics as: 
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     
^ ^ ^ ^ ^ ^

: , 0, , 0, , ,

: , 0, , 0, , ,

n m n m n m nm

n m n m n m nm

CM q q p p q p

QM q q p p q p j





  

     
            

         (3.10) 

where CM and QM stand for classical and quantum mechanics, respectively. In the following, 

some suitable tools used in quantum mechanics will be introduced.  

 

3.1.3 Bra-Ket notation and Pauli matrixes 

All of the systems designed in this thesis will be defined as a matrix form and Bra-Ket notation 

(Ket notation |x> and Bra notation <x|) introduced by Paul Dirac for quantum mechanics [52,53]. 

A Bra vector x in a finite Hilbert space (can be defined as complete inner product space) is 

defined as a row vector:  

 1 2| . . nx x x x              (3.11) 

Also, |x> ―Ket vector‖ is the vector conjugate transposition in Eq. 3.11 (|x> = <x|
T
). One can use 

the ―Bra-Ket‖ vector to define ―inner product‖ as: 

 

1

2

1 2 1 1 2 2| . . . . ...

.

n n n

n

y

y

x y x x x x y x y x y

y

 
 
 
      
 
 
  

        (3.12) 

Also, the outer product can be evaluated as: 

 

1 1 1 1 2 1

2 2 1 2 2 2

1 2

1 2

. .

. .

| | . . . . . .

. . . .

n

n

n

n n n n n

y y x y x y x

y y x y x y x

y x x x x

y y x y x y x

   
   
   
     
   
   
      

       (3.13) 

Any Ket vectors such as |φ> can be expressed based on some orthonormal basis functions as 

|φ>= ∑ λn|xn>, where λn and |xn> are eigenvalue and eigenvector (basis function) of the system, 

respectively.  
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Another essential property of quantum mechanics is the Pauli matrixes. Four Pauli matrices, 

addressed in Eq. 3.14, are a basis in the space of Hermitian matrices.  

1 0 1 0 0 1 0
, , ,

0 1 0 1 1 0 0
z x y

j
I

j
  

       
          

        
        (3.14) 

For an atom with two-level energies containing ground state |g> and excited state |s> the Pauli 

matrixes can be re-expressed as: I = |g><g|+|s><s|, ζz = |s><s|-|g><g|, ζx= |s><g|+|g><s|, and ζy= 

j(|s><g|-|g><s|). In this definition, |g> and |s> are the quantum states that will be shortly 

discussed later.  

 

3.1.4. Quantum state  

For each physical system, one can introduce a Hilbert space that describes its states, and a unit 

vector in that space defines each system‘s state. Systems are defined based on the associated 

states. In other words, it is the states of the system that define the system operations. From the 

classical point of view, that is called ―Eigen-state‖. There are two types of states: pure and mixed 

states [53]. When the state associated with a system is unknown, such as |xn> in which ―n‖ can 

be changed, and that is predicted to be one of a collection of states, that type of state is called a 

mixed state. In contrast, a single state such as |x> is regarded as a pure state and known. In 

reality, due to the system interaction with the environment, the noise usually causes a pure state 

to convert to a mixed state, so this study emphasizes working with the mixed state. One useful 

tool to represent the states, either pure state or mixed state, is the density matrix by which one 

can unify the representation of both pure and mixed states. For a pure state, the density matrix is 

defined as ρ = |x><x|, while for a mixed state, it can be defined as ρ = ∑ λn|xn><xn|. The latter 

statement shows that the representation is not unique.  

 

3.1.5. Evolution  

The quantum system evolution is defined using pure state, mixed state, and density matrix 

representation. If the system has no interaction with its implemented space, the system‘s pure 

state at initial time t0 relates to its pure state at time t as |φ(t)> = U|φ(t0)>, where U is a ―unitary 

matrix‖ [52, 53]. However, in the general case, a quantum system time evolution is defined using 

―Schrödinger equation‖ by: 
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         (3.15) 

where H is the system Hamiltonian (time-independent). From Eq. 3.15, the unitary matrix can be 

easily calculated with regard to the system Hamiltonian.  

 

3.1.6. Observable and measurement  

Observability considers as a measurable system property. There is a significant difference 

between observabilities in quantum and classical physics. In classical physics, the observer 

doesn‘t change the observables when attempting to measure them. But the condition is so 

different for microscopic particle and quantum systems. From Copenhagen interpretation [52], 

particles cannot be considered as observables before measurement. That means the state of a 

quantum particle is stochastically collapsed when one tries to measure the states. In quantum 

mechanics, every observable is attained by considering the Hamiltonian. For example, one can 

consider a pure state |x>; the observable that can be measured contains eigenvalue and 

orthonormal eigenvectors as H = ∑ λn|xn><xn|, where λn is the eigenvalue and |xn> are the 

orthonormal eigenvectors. The measurement outcome is λn, and the system collapses |xn>. For 

example, consider a system A collapses |x1> with measurement outcome λ1 and the other system 

named B collapse |x1> with λ2, then one can conclude that [A,B] = 0. This indicates that with 

regard to the basis vector collapsed by A and B, A and B become diagonalized, then A and B 

commute with each other. In contrast, [A,B] ≠ 0 means no basis vector collapsed by two systems 

to be diagonalized by that basis vector. The commutation relation, responsible for quantum 

fluctuation, is a critical factor by which a classical system is distinct from a quantum system. 

 

3.1.7. Constructing a quantum system from classical mechanics  

There are two general methods to construct a quantum system from a classical one. The first 

method is based on producing a Hilbert space, a set of contributed observable and Hamiltonian 

of classical mechanics. The second method is based on the direct calculation of the probability 

amplitude from a classical mechanic‘s system in the Lagrangian approach [30, 52, 53]. For 

example, a classic system with the relating Hamiltonian H(q,p) on a ―phase space‖ can be 

defined as: 



 

23 
 

      
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n m nm p

A q p
q p and A q p H q p

t



 


        (3.16) 

Using the first method suggests that the corresponding quantum system is introduced as: 

   

 

, ,

, ,

p

p p

ClassicalVariable QuantumObservable

q Q

p P

a q p A Q P

j
a b A B









 

     

         (3.17) 

It is clear from Eq. 3.17 that the Poisson bracket relations between a and b as {a,b} for the 

classic system becomes canonical commutation relation as [Ap,Bp] for the quantum system. In 

this dissertation the bold alphabet is used to indicate the operator and also bold-italic alphabet 

stands for the vector.  

 

3.2. A short introduction to quantum physics  

Quantum physics, in essence, contains some properties, which have no relevance in classical 

physics. The properties such as photoelectric effect [54], Wave-Particle Duality [55, 56], 

Compton effect [57], and so forth cannot be effectively and completely defined by the classical 

physics rules. However, one of the interesting phenomena in quantum physics, the main idea 

behind a quantum radar, is entanglement [5, 19, 30]. In fact, entanglement is a crucial property to 

enhancing the quantum illumination radar performance [1, 16, 18]. Here in the following, some 

other valuable properties of quantum physics which have been widely utilized in quantum radar 

will be addressed.  

3.2.1. Quantization of the Electromagnetic mode 

Before quantizing the electromagnetic fields, it is useful to start with the free space 

electromagnetic fields definition classically by Maxwell‘s equations as [30]:  



 

24 
 

0

. 0

. 0

E

B

D
B

t

B
E

c t



  


 
 
 




  
 

             (3.18) 

In this equation, B is the magnetic flux, and D=ε0E is the electric displacement field. Eq. 3.18 

can be reduced to: 

2
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2 2

2
2

2 2

0

0

E
E

c t

B
B

c t


  




  



             (3.19) 

Eq. 3.19 explicitly defines the electromagnetic waves. From electromagnetic theory, it is well-

known that inside an empty cavity that is electromagnetically excited, just a discrete number of 

frequencies can be alive [30, 53]. Each of those discrete frequencies corresponds to the 

electromagnetic modes. In contrast to inside the cavity, there is a continuum of infinite numbers 

of electromagnetic modes in free space, which can be addressed. Now consider a finite optical 

cavity with length L0 and cross-section of A, and also it is supposed that an electric field is 

polarized in x-direction containing discrete mode as [30]:  

0

2
( , ) ( )sin( )n n

x n n

n

m
E z t A t k z

V




            (3.20) 

where νn, V, An, and kn are cavity Eigen-frequency, mode amplitude, and wavenumber, 

respectively.  In this equation, V = L0A, kn = nℼ/ L0, and νn = nℼc/ L0, and also mn is to create an 

analogy between the simple harmonic oscillator and a single-mode electromagnetic. From Eq. 

3.20, it is possible to calculate the magnetic field component perpendicular to the electric field at 

each point in space as:  

0

0

2 ( )
( , ) cos( )n n n

y

n

m dA t
H z t kz

V k dt

 


          (3.21) 

The classical Hamiltonian for the cavity is introduced as: 

 
2 2

0 0( , ) ( , )x y

V

H dv E z t H z t              (3.22) 
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where H (without any subscripts) is the Hamiltonian of the system, and Hy defines the magnetic 

field with polarization in y-direction. By replacing Eq. 3.20 and Eq. 3.21, in Eq. 3.22, the system 

Hamiltonian is quantized in terms of mode numbers as:  

 

2 2
2 2

2 21 1

2 2

n n
n n n n n n n

n n n

d A p
H m A m H m A

dt m
 

 
     

 
 

         (3.23) 

where pn is the canonical momentum of n
th

 mode. Eq. 3.23 expresses the Hamiltonian of the 

system as a discrete number of independent oscillator energies. That means that each 

electromagnetic field‘s mode is equivalent to a simple mechanical harmonic oscillator mode.  

 

3.2.2. Electromagnetic mode quantization 

For quantization of an electromagnetic field, it initially needs to replace the classical fields with 

the quantum operators as E—E and H—H. The classical field replaced with quantum operator 

should satisfy Maxwell‘s equations; that means the relations that are true in classical 

electrodynamics should be held in quantum electrodynamics. To quantize the Hamiltonian 

expressed in Eq. 3.23, An and pn as the operators should obey the commutation relation [An, pn’] 

= jℏδnn‘ which means that there is no a basis vector such as |φ> collapsed by An and pn’ to be 

diagonalized. In other words, An and pn’ cannot be measured simultaneously. Using the 

canonical transformation to define creation (a
+
) and annihilation (a) operators, the quantum 

fields (the quantized electric and magnetic fields), classically expressed in Eq. 3.20 and Eq. 3.21, 

can be represented as the form of quantized version as [30]:  
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        (3.24) 

where ek
(n)

 is the polarization vector. In this dissertation, bold letters are used to indicate a vector. 

The annihilation and creation operator a and a
+
 satisfy the commutation relation as [ak,n,a

+
k’,n‘] = 

δkk‘δnn‘. Thus, the quantum Hamiltonian for free space electromagnetic wave is introduced based 

on the ―annihilation and creation operators‖ as [30]: 

,

1
ˆ ˆ

2k kn kn
k n

H a a  
  

 
             (3.25) 
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In the relations mentioned above, k = (kx,ky,kz) is the wave vector. By considering the periodic 

conditions that are kx = 2ℼnx/L, ky = 2ℼny/L, and kz = 2ℼnz/L; in these relationships, nx, ny, and nz 

are integers, and a set of numbers (nx, ny, nz) defines a mode of electromagnetic.   

For most applications in quantum sensors such as quantum radar, the electromagnetic radiations 

move as a beam in a straight line. Thus, it is applicable to utilize the continuous mode 

quantization of the fields instead of the discrete cavity modes presented in Eq. 3.25. Thus, ―sum‖ 

in the relations should be converted to ―integral‖ as [30]:  

3

3

3 3

2

(2 )

(2 ) (2 )

k

V
dV

a a and a a
V V



  



 

 
           (3.26) 

Therefore, the ―creation and annihilation operators‖ can be simply indicated by a(ω) and a
+
(ω) 

in the continuous form. 

 

3.2.3. Quantum superposition 

Superposition in the quantum realm means that a physical system, always, can be in a 

superposition of two or more states. In the classical sense, a system with two different states as 

|φ1> and |φ2> has been established in a state either at |φ1> or |φ2>. In contrast with the classical 

picture, in quantum, the system state is defined as {|φ1> + |φ2>}/0.7070. This means that the state 

of the system is both |φ1> and |φ2> at the same time. Of course, if one measures the quantum 

system to define its state, the quantum waves function collapses, and it just measures |φ1> or 

|φ2>. Thus, it is found that actual measurement changes a probabilistic quantum system (both 

|φ1> and |φ2>) to a deterministic one (|φ1> or |φ2>). Using the materials mentioned above, in the 

following, the entanglement as a key factor is defined as an essential factor to enhance the 

quantum radar performance.  

 

3.2.4. Entanglement (General definition) 

To generally define entanglement [5, 30, 53], two quantum systems are supposed with two 

different states as |Ψ1> and |Ψ2>, both in superposition states according to: 
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            (3.27) 

If the systems are separable or independent, their total states become [5, 30, 53]:   

   

 

1 2 1 1 2 2

1 2 1 2 1 2 1 2 1 2

1 1

2 2

1

2

V H V H

V V V H H V H H

 



    

   

        (3.28) 

In Eq. 3.28, it is shown that the measurement of the state of ―system 1‖, has no effect on ―system 

2‖ state and vice versa. For example, if a measurement is done and system 1 is in |V1>; using this 

information, one cannot deduce the state of system 2, which can be either |V2> or |H2>. 

However, quantum physics allows the generation of states not as an independent case, which is 

the products of two states, but if the system is entangled, the associated state is defined as [5, 30, 

53]: 

  1 2 1 2 1 2

1

2
V H H V                         (3.29) 

Considering Eq. 3.29, if one measures the related system states, and for example, the result is 

|V1>, then the other system state can be immediately known, which is |H2>. That is true even 

though the system 1 and 2 be far away from each other. By two Eq. 3.28 and Eq. 3.29, the 

difference between two separable and entangled states is expressed.  

―Entanglement‖ is a well-known term used in ―quantum theory‖ [30], describing the way that 

quantum particles can become ―non-classically correlated‖. This is mathematically shown in Eq. 

3.29. Quantum particles, as photons and electrons, can interact with each other and establish a 

type of connection, which can be non-classically correlated in some sense; It has been mentioned 

in the quantum realm that those particles are entangled with each other.  

 

Entanglement is a real phenomenon, which has been theoretically and experimentally 

demonstrated [5,19,33]. The mechanism behind the entanglement has not ever been fully 

explained by any classical theory. One interesting theory proposes that ―all particles on earth 

were once compacted tightly together and, as a consequence, maintain a connectedness‖ [58].  

https://whatis.techtarget.com/definition/quantum-theory
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Much current research has been focusing on how to efficiently employ the potential of 

entanglement to enhance the classical systems in different applications, such as improving 

quantum radar performance [1-4], enhancing the resolution of an imaging system [5-7], systems 

using ―quantum illumination protocol‖ [8], quantum communication [9-10], plasmonic 

photodetector responsivity [11], plasmonic systems [12], and Raman signals [13]. In the next 

part, the generation of the optical entangled photons will be shortly discussed. This is the main 

point that the quantum illumination radar operation starts.  

 

3.2.5. Generation of entangled optical photons 

As a general definition, entanglement is established (Figure 3.2a) as two quantum particles, such 

as photons, interact with the conservation of the frequency and wave vector. Their interrelated 

properties are independent of the distance between them [5, 19, 33]. Figure 3.2a shows that the 

entanglement is created at the intersection of the output photons profile. For simplicity and 

traceability, a few numbers of the profiles are displayed.  The production of the entangled 

photons (called signal and idler) needs a laser interaction with a nonlinear material (OPDC: 

optical parameter down converter) by which the output photons become entangled. That process 

is schematically depicted in Figure 3.2b. The generated output photons have different wave 

vectors (Ks, Ki) and frequencies (ωs,ωi). The wave vectors and frequencies are related to the 

pumping frequency and wave vector, associated with the energy and momentum conservation.  

Accordingly, two important conditions to satisfy entanglement are energy and momentum 

conservation, illustrated in Figure 9b. That means that Kpump = Ks+ Ki and ωpump = ωs+ ωi. In the 

following, some theoretical derivations are presented by which one can find how the energy and 

momentum conservation are employed to define the entangled photons state. The state defined 

for entangled photons is presented in a different way than a single photon. 
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Figure 3.2. An illustration of the generation of the entangled optical photons, b momentum 

conservation that supports the generation of the entangled photons [80]. 

 

Subsequently, the state of the entangled photons is theoretically derived. In a nonlinear material, 

the second-order susceptibility χ
(2)

 plays an important role. The nonlinear interaction 

Hamiltonian (second-order) is expressed as [5, 19, 33]: 

3 (2)
int 0

ˆ ˆ ˆ( ) { ( , ). ( , ). ( , )}inc s i

v

H t d r E r t E r t E r t                                                                      (3.30) 

where Einc, Es, Ei, and v are incident laser field, signal field, idler field, and the interaction 

volume, respectively. To simplify Eq. 3.30, one can express the electrical field in the Fourier 

domain, and the equation is re-written as [5, 19, 33]:

3 (2) 3 3 ( ) ( . ) ( ) ( . ) ( ) ( . )
int 0

ˆ ˆ ˆ( ) { . . } . .inc inc s s i ij t k r j t k r j t k r
s i inc s i

v

H t d r d k d k E e E e E e H C                      (3.31) 

In Eq. 3.31, H.C. indicates the ―Hermitian conjugate‖. To simplify, the incident wave is 

supposed as a plane wave with a wave vector kinc and frequency ωinc. Also, the supposing 

volume in the integration is assumed to be so large. Applying the mentioned assumptions, Eq. 

3.31 is simplified as [5, 19, 33]: 

3 3 (2) ( ) ( ) ( ) ( )
int 0

ˆ ˆ ˆ( ) ( ){ . . } . .inc s ij t
s i inc s i inc sct phH t d k d k k k k E E E e H C                      (3.32) 

Thus, one can use the ―first-order perturbations‖ to calculate the entangled photons state (signal 

and idler) [19]: 

int| ( ) . ( )| 0j dt H t                                             (3.33) 

Substituting Hint(t) into Eq. 3.33, the state of the entangled pair is calculated as [5, 19, 33]: 
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A classical laser beam is considered, and the field of signal and idler is quantized as Es
(-)

 = 

j×√(ћωs/(2ε0v))× as
+
, Ei

(-)
 = j×√(ћωi/(2ε0v))× ai

+
, where as

+
 and ai

+
 are signal and idler photons 

creation operators, respectively. Finally, by substituting the quantized form of Es
(-) 

and Ei
(-) 

in Eq. 

3.34 and by slow varying parameters absorbing, the entangled photon state is deduced as [5, 19, 

33]: 
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        (3.35) 

This equation clearly shows that the signal and idler photons became entangled at both frequency 

and wave vector because of the ―delta function‖ in the relationship.  

 

Figure 3.3. Setup for analyzing the entanglement between optical photons; interaction of laser 

with a nonlinear material and generation of signal (as) and idler (ai) and using BS 

to mix the states and detect the mixed states. 

 

However, one can practically study the entanglement between the generated photons due to the 

high-intensity laser interaction with an OPDC. Therefore, one can consider the setup illustrated 

in Figure 3.3. The generated signal and idler photons are merged using a 50-50 beam splitter, 

which means that each path after beam-splitter (BS) contains the signal and idler field. 

Eventually, the coincidence detection of the sensitive single-photon detectors D1 and D2 
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determine when the emitted photons are entangled or separable [5, 19]. In this set up the distance 

between detectors from BS is a critical factor by which the detection of the entangled photons 

can be easily accomplished. In the next part, some theoretical methods to study the entanglement 

between modes are presented.  

 

3.2.6. Entanglement analyzing methods and procedures 

After a short discussion about the entangled optical photons generation and quantum state of the 

entangled photons theoretically derived in Eq. 3.35, Simon‘s two-mode entanglement criterion is 

introduced [33]. The criterion is derived with regard to the negativity of a bipartite system partial 

transposes. The mentioning criterion establishes a necessary and sufficient condition to analyze 

the separability of the Gaussian state [33, 59-60]. Gaussian state is considered as a simple class 

of a continuous variable system. That is a state whose ―Wigner function (quasi-probability 

distribution)‖ to be as a Gaussian state [60]. Using Wigner distribution leads the quantum 

operators to contribute to their ―phase space‖ variables [36]. It is clear to show that the designed 

converters quantum ensembles ―density matrix‖ is a Gaussian state and can be expressed in the 

form of ―Wigner distribution‖ for a single-mode coherent-squeezed state. The related mean and 

variance information are just sufficient to describe the state of the system. Therefore, it is 

possible for us to use Simon‘s separability criterion [33], as a generalized form of the ―Peres-

Horodecki criterion‖ to measuring the entanglement between two modes. For instance, two 

separable states are expressed by two subsystems density matrices regarding the summation of 

the tensor products as [33]: 

1 2
n n

n

n

P                                                              (3.36) 

where ρ1, ρ2 are subsystem‘s density matrix and Pn stands probability, while the entangled states 

cannot be remarked as the form of Eq. 3.36, and the behaviors of the subsystems correlate non-

trivially to each other. For measuring the entanglement of two-mode using ―Peres-Horodecki 

criterion‖, a two-mode Gaussian state is necessary to be defined through which one can 

completely characterize the corresponding correlation matrix elements as: 

1 21 2

_ _ _ _ __

1 ˆ ˆ ˆ ˆ ˆ ˆ , [ , , , ],
2

( ), 1 2 ( )

nm n m m n n m

n out n out n out n out n outi out

V Y Y Y Y Y Y Y x p x p

x a a p j a a 

        

   
                                               (3.37) 



 

32 
 

Since the correlation matrix (V4×4 = [Av, Cv; Cv
T
, Bv]) is calculated, the measurement of the two-

output modes separability can be accomplished. In the correlation matrix, Av, Bv, and Cv are 2×2 

matrixes that the elements are examined from Vnm as: 
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                             (3.38) 

Finally, the ―Peres-Horodecki criterion‖ simple form to evaluate the separability of the 

continuous states [33, 59] given by: 

2det( )det( ) (0.25 | det( ) |) ( )
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v v
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                       (3.39) 

In this equation J = [0, 1; -1, 0]. In addition to Eq. 3.39, there is another method to analyze the 

two-mode entanglement employing the Symplectic eigenvalue [59] as:  
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        (3.40) 

A bipartite Gaussian system is separable if Symplectic eigenvalue satisfies 2η>1 [59-60] and, 

also, the strength of violation of this criterion (2η>1) is expressed as the two-mode entanglement 

measuring. Thus, to investigate the two-mode entanglement affected by the system, it is 

sufficient to calculate the correlation matrix elements in Eq. 3.38.  

 

So far, all of the necessary elements to design a typical quantum radar were discussed. In the 

following, the emphasis was laid on quantum radar designing and how one can manipulate the 

critical quantities to improve the modes entanglement. It is noteworthy to mention that the main 

goal of this dissertation is to design a quantum radar system employing different types of 

converters to maximally preserve the entanglement between transmitting and backscattering 

modes. 
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4. DESIGN OF QUANTUM RADAR USING QED 
 

 

Quantum radar, in essence, generalizes the concept of the classical radar employing a relatively 

small amount of incident photons. The main reason to develop quantum radar is benefiting the 

quantum phenomenon for system sensitivity enhancing [1, 62]. It is challenging to jam on a 

quantum radar operating with entanglement phenomenon [62]. In a general sense, one can define 

a quantum radar system as a standoff sensing system that employs microwave photons as well as 

quantum phenomena to enhance the capability to detect, identify and recognize the desired 

target.  

Quantum sensing systems are classified with regard to the type of quantum phenomena utilized 

by the system: (1) The quantum sensor transmits un-entangled photons; this type of quantum 

radar is called single-photon quantum radar. This system operates as same as a classical radar. 

As illustrated in Figure 4.1, the quantum system transmits a single-photon pulse toward the 

target, and then the target backscatters the captured photons toward the detector. One of the 

advantages of this system is that when the target is illuminated by a single photon, the related 

RCS is strongly increased. (2) The quantum sensor transmits classical photons and uses a 

quantum-based photodetector to enhance detection capability; as an example, one can notice the 

operation of a typical quantum RADAR [63]. This type of system uses some shorter wavelengths 

such as laser to attain much better spatial resolution. In contrast, it loses the advantage of an easy 

penetration through the fog or clouds as radar does. (3) The quantum sensor transmits entangled 

photons and attempts to detect the backscattered entangled photons. This type of quantum radar 

is the case that we will discuss in detail in this dissertation. In this system schematically depicted 

in Figure 4.2, the entangled photons (signal and idler) are produced at the first stage. The signal 

photons are transmitted in the atmosphere to detect a target, while the idler is preserved in the 

laboratory. The backscattering photons from a target are detected, and then non-classical 

correlations between states cause to enhance the detection performance.  
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Figure 4.1. Quantum radar using a single photon to detect the target [1]. 

 

In the next step, the design of the quantum radar system using quantum electrodynamics theory 

(QED) will be presented. It should be noted that the main aim is to particularly attract attention 

to improve the retained and returned modes entanglement. Thus, the concentration set on the 

design of the different types of converters to enhance the entanglement and ignore the processes 

after the detector in which everything becomes classic. In particle physics, ―QED‖ (introduced 

by Feynman for the first time) is the electrodynamics of the ―relativistic quantum field theory‖. 

Fundamentally, it presents how light and matter interact with each other and establishes full 

compatibility between ―quantum mechanics‖ and ―special relativity‖. QED is technically 

described as a ―perturbation theory‖ of the ―electromagnetic quantum vacuum‖ [61]. Thus, to 

design a quantum radar using QED, two different subsystems are studied to generate the 

microwave photons entangled with the optical photons (the idler fields that are kept in the 

laboratory). The work initially starts with the design of the electro-opto-mechanical converter, 

and in the next part, the optoelectronic converter will be investigated to produce entangled 

photons. The goal is to study the difference between two subsystems and compare the 

subsystems with each other to select the best one to use in the quantum radar system. In fact, this 

thesis emphasizes the design of a quantum radar to maintain a sustainable entanglement. As the 

entanglement is basically so fragile and easily leak away because of the effect of the noises and 

environment.  

 

https://en.wikipedia.org/wiki/Relativity_theory
https://en.wikipedia.org/wiki/Quantum_field_theory
https://en.wikipedia.org/wiki/Light
https://en.wikipedia.org/wiki/Matter
https://en.wikipedia.org/wiki/Quantum_mechanics
https://en.wikipedia.org/wiki/Special_relativity
https://en.wikipedia.org/wiki/Perturbation_theory_(quantum_mechanics)
https://en.wikipedia.org/wiki/Vacuum_state
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Figure 4.2. Quantum radar using entanglement for detection [1]. 

 

4.1. Design of an electro-opto-mechanical converter for a typical quantum radar  

Quantum radar using microwave photons, the same as a ―classical radar‖, is defined as a detector 

employing entanglement to enhance radar performance, such as detection and resolution 

capabilities [1,62]. Notably, entanglement is an unstable quantity, and it is difficult to have two 

entangled particles alive for a long time. The points mentioned above emphasize to carefully 

study the entanglement behavior at each level of the designed system, including: (I) process of 

the entanglement creation, (II) entangled photons amplifying, (III) atmosphere channel effect on 

propagation wave, and (IV) backscattering photons from the target. It will be shown that each 

step mentioned above, such as active medium as an amplifier, atmosphere as a lossy channel, and 

also target scattering, can kill the entanglement. In the following, a system (like an electro-opto-

mechanical converter) is designed using QED to generate the entangled microwave photons. In 

this step, it is obligatory to find the parameters that make a strict trade-off between each other 

and engineer them to increase the entanglement sustainability. In a quantum radar that employs 

an electro-opto-mechanical converter, three subsystems are employed, such as optical cavity, 

microresonator, and microwave cavity coupling one another to induce the entanglement between 

cavities mode. In the mentioned converter, the optical cavity mode resonates with an optical 

frequency around 10
14

 Hz, the micro-cavity mode resonates in the range of GHz (L-band), and 

the microresonator mode resonates with a low frequency around 10 MHz. It will be shown that 

the low operating frequency of the microresonator leads to a critical problem of maintaining the 

entanglement between modes high temperatures. It is related to the point that at such a low 

operating frequency, the generation of the thermally excited photons becomes so high. That 

factor restricts the entanglement between modes and leads to leak away of the entanglement. 

Therefore, in the second system, the mechanical parts operating at low frequency are removed 
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and replaced them with some optoelectronic-based elements to solve the problem. Let‘s initiate 

the story with the design of the electro-opto-mechanical converter to produce the entangled 

microwave photons. 

     

4.1.1. System definition 

A typical quantum radar system (same as an interferometry with a long arm) is depicted in 

Figure 3.1. The quantum radar process to produce optical photons (signal and idler) entangled 

with each other initiates by laser interaction with a nonlinear material [5,19]. It is stated in 

section 3.2.5 that due to the nonlinearity of OPDC, the two generating photons can be entangled. 

One of them is called signal, and the other is called the idler. These photons are operated in the 

optical range, and clearly the quantum radar that we want to design operates in the same way as a 

classical radar. That means that it is necessary to generate the microwave photons entangling 

with the idler photons. The idler photons kept in the lab are used to analyze the correlation with 

the backscattering photons from the target. Thus, the signal is used to excite the tripartite system 

in an electro-opto-mechanical converter [18,22-27] to produce the entanglement. A traditional 

electro-opto-mechanical converter containing OC, MR, and MC cavities coupled to each other is 

schematically illustrated in Figure 4.3. For system modeling, all of the interactions between 

cavities are theoretically derived using the canonical conjugate method [29,64]. This is a full 

quantum-based method to describe the interaction between cavities in the system completely.   

 

The process begins with the excitation of the OC with a signal that can generate some quantized 

optical modes inside the cavity. The OC output modes are connected to MR via optical pressure. 

The optical pressure effect leads to MR resonance with a frequency at MHz range. To derive the 

coupling between OC and MR, the interaction between OC output fields with the atom‘s field are 

considered. In the canonical conjugate theory, MR is regarded as a matter consisting of N simple 

harmonic oscillator. It is shown that there are some critical parameters by which one can 

engineer the system to manipulate the coupling between OC and MR. These parameters will 

exhibit a critical role in enhancing the entanglement between modes. Subsequently, MR 

resonator oscillation alters the MC capacitance through which the microwave cavity resonant 

frequency is changed. This point indicates that MR couples to MC through a capacitive change. 
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In fact, it is MR simple oscillators that can couple to MC cavity. All of the coupling coefficients 

will be theoretically derived and presented in the next section.   

From the latter mentioned points, it is found in the tripartite system OC, MC, and MR modes 

coupling engineers the cavities mode in the system. In other words, OC modes can couple to MC 

modes through MR coupling effect. Since the modes of cavities coupled to the other inside the 

system, thus, by engineering the electro-opto-mechanical converter‘s parameters, the non-

classical correlation between cavities modes can be established [22-27]. Engineering converter‘s 

parameter means that one can manipulate: I. Coupling factor among cavities; II. The cavity 

decaying rate; III. The frequency resonance of cavity; IV. OC and MC driving field. All of the 

mentioned engineering tasks lead to the point that it is possible to make OC and MC modes 

entanglement. Establishing entanglement between the cavities mode and its preservation are 

critical points that one has to be considered in the designed system. Preserving the entanglement 

is very important in a quantum radar system. It is because the entanglement between modes 

inside the ―electro-opto-mechanical converter‖ system can be manipulated. It means that after 

transmission of the photons in the atmosphere toward the target, there are no degrees of freedom 

to change and enhance the entanglement. In fact, it is the effects of the real medium such as 

thermally excited photons, scattering from atmospheric particles, absorption by the target, and so 

forth that can destroy the entanglement between modes. Therefore, in this Ph.D. dissertation, our 

attention specifically emphasizes converter system engineering and designing a new system: I. 

To enhance the entanglement between modes; II. To preserve the generation of the entanglement 

at a high temperature around 5K~50K; III. To reduce the system complexity; IV. To readily 

manipulate the coupling between cavities in the converter.  
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Figure 4.3. Electro-opto-mechanical converter [14] containing OC, MC, and MR subsystems 

coupling to each other. 

 

The schematically illustrated quantum radar in Figure 3.1 clearly shows that MC modes initially 

enter an active medium to amplify the entangled photons and then broadcast toward the target. 

Here, as an assumption the active medium (amplifier in the classic sense) should enhance the 

intensity of the entangled photons. However, it is so clear that this task is so challenging [65], 

and using an amplifier will cause to disturb the entanglement.  

 

In the following, for simplicity, the relationships among quantum radar different level modes are 

depicted in Figure 4.4. As illustrated in Figure 4.4, the output mode of MC (Cω), latterly 

entangled with the OC mode (as), is initially intensified by an active medium. After amplifying 

the entangled photons, these photons are broadcasted into a lossy channel to detect a target. The 

modeling of the active medium using QED is shown in Figure 4.4. For this, N beam-splitters 

(BS) is considered as the amplifying agent to fully model the active medium. Regarding the 

―quantum electrodynamics theory‖, the photons excited due to the thermal effect in the inverted 

state are employed to amplify the photons [28]. Generally, one has to study the entanglement 

between the active medium output modes (Caω) with the OC modes. It emphasizes the active 

medium effect on the correlation between modes. It is noteworthy to mention that, as the main 

task of this dissertation, the focus emphasizes on preserving the non-classicality of the 

transmitting photons in the designed quantum radar. Thus, some parameters need to manipulate 

and enhance the entanglement between modes. In the active medium, supposing that makes 

possible to improve the entanglement between modes, the fundamental parameters include the 
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active medium amplification factor (κa), the contributed wave vector (Ka), and the medium 

length. However, in reality, it is clear that any real medium can kill the entanglement between 

photons. Nonetheless, recently, it has been shown that the entangled photons can be amplified. 

Using JPC [16], nonlinearity properties lead to amplify the entangled photons. Thus, it seems 

that our assumptions and approach to intensify the entangled photons were correct. However, 

this task is so challenging to be established in practice. To simulate the active medium, N 

discrete BS are used by which the interaction between incident field and medium particles is 

modeled. Each BS has two inputs; one of them deals with the desired incident photons, and the 

other is for thermally excited photons. Therefore, at each step the effect of the thermally excited 

photon (noise effect) should be noted. Also, the BS has two outputs by which one can mode the 

transmitted photons (desired photons) and the photons that are coupled to the environment as a 

noise. The active medium is schematically illustrated in Figure 4.4, whose Za and ΔZ are the 

active medium length and BS length, respectively. The relationship between active medium input 

and output modes will be discussed in the theory and background section in detail.  

 

Subsequently, the active medium output modes Caω is sending out in the atmosphere to find the 

target. Using N discrete scattering agents as BS, the atmospheric medium is modeled through 

which the amplitude and phase of the propagating photons will be manipulated. The modeling is 

schematically shown in Figure 4.4. It is shown that the length of channel R (transmitter-target 

distance) significantly influences the attenuation medium output modes (Ca) and the wave vector 

(κatm) imaginary part. Other crucial factors affecting the entanglement between modes in the 

atmosphere are the uncontrollable natural effects such as temperature and pressure [1], [28]. As a 

result, the channel strongly limits the quantum radar applications in which the entanglement is a 

crucial factor and, unfortunately, easily destroyed by the atmosphere. Also, we have no degree of 

freedom to engineer the atmosphere parameters. One of the quantum radar system‘s advantages 

is to use microwave photons for target detection (like the classical radar) rather than optical 

photons. The atmospheric medium strongly destroys the optical photons that propagate with a 

frequency higher than 1000 THz. Therefore, it is noteworthy to mention that to reduce the 

atmospheric effect on the entanglement between photons, it is necessary to use such tripartite 

system schematically illustrated in Figure 4.3 to generate the entangled microwave photons. 

Thus, it is microwave photons that broadcast toward the target like a classic radar system. In this 
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dissertation, the backscattering photons from the target are analyzed in detail. In the same way, 

―quantum electrodynamics theory‖ is used to model the scattering from a target. Reflection, in 

essence, is introduced as an electromagnetic field interaction with the quantum field of the 

target‘s atoms. The component of the target‘s material is the other crucial parameter that the 

incident photons can be severely influenced. Thus, the Ct and OC modes entanglement can be 

strongly affected. It is shown in Figure 4.4 that output modes from the atmosphere are coupled to 

the target in parallel. Also, the model considers the effect of the noise, bt, which is issued due to 

the target materials specifications. In the following, the relationship between Ca and Ct is 

theoretically derived by which one can calculate the scattering effect from a target on the 

entanglement between modes.  

 

Figure 4.4. An illustration of the relationship between the modes cω, caω, ca, ct, cb, cab, and 

the mediums in a quantum radar. 
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Subsequently, the backscattering photons return to the atmosphere, and finally, they should be 

amplified one more time before the detection. Therefore, it is necessary to consider the 

atmosphere effects as a lossy channel on the return photons non-classicality one more time. For 

the sake of simplicity, all of the mode relationships in different mediums are completely depicted 

in Figure 4.4.  

In the following, we theoretically design an ―electro-opto-mechanical converter‖ system as the 

main part of a quantum radar system and engineer the system parameters to generate the 

entanglement photons and, more importantly, to conserve photons non-classicality with 

regarding the effect of the real lossy mediums.  

 

4.1.2. Design of an electro-opto-mechanical converter to generate the entangled microwave 

photons 

It is discussed that the quantum radar employing the microwave photons entanglement to 

broadcast toward the unknown target rather than optical photons. This means that it needs a 

device to produce microwave photons entangled with the initially generated entangling optical 

photons. In this dissertation, two different systems as the electro-opto-mechanical and 

optoelectronic-based converters are studied to produce the entanglement. Herein, the equation of 

motion of the ―electro-opto-mechanical‖ converter is theoretically studied and derived using 

―Heisenberg-Langevin equations‖. 

To analyze the system, ―Quantum electrodynamics theory‖ is used [29, 30]. First of all, analysis 

of the converter dynamics equation of the system motion is initiated; that is a subsystem of a 

typical quantum radar illustrated schematically in Figure 3.1. With regard to the standard 

approach in QED, the system associated with Lagrangian is defined. The converter addressed in 

Figure 3.1 has three different parts as OC, MR, and MC coupling each other. Thus, it needs to 

define the contributed subsystems Lagrangian and also coupling Lagrangian among the 

subsystems. For this, the total Lagrangian of the electro-opto-mechanical system is given by: 
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In this equation, LMC, LMR, LOC, and LOC-MR are, respectively, MC, MR, OC, and OC-MR 

interaction Lagrangian. The letters with dots above stand for time derivation. Also, the 

Lagrangian related to MC-MR interaction is defined via C(x) in LMC.  

In Eq. 4.1, αc, ωm, ωc, vd, C(x), Cd and m are the interaction coefficient of OC-MR, angular 

frequency of MR, angular frequency of OC, driving field of MC, variable capacitor, fix 

capacitor, and the mass of MR resonator, respectively.  Additionally, the parameters A, X, and Φ 

are vector potential, MR resonator position, and magnetic flux operators, respectively. 

 

In the next step, the contributed Hamiltonian should be defined to clarify the dynamic equation 

of the system. Thus, the conjugate momentum of the A, X, and Φ are defined regarding the 

classical conjugate variables [26], and consequently, the ―creation and annihilation operators‖ 

are introduced. After that, the system‘s Hamiltonian [18] is re-expressed using the creation and 

annihilation operators by:  
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In Eq. 4.2, (ac
+
, ac), and (cω

+
, cω) stand for OC and MC contributed creation and annihilation 

operators, respectively. In the last term, Ec is the OC driving field [22- 24]. Also, Cp and Ct are 

calculated using Cp = C
’
(x)/[C(x) + Cd]

2
 and Ct = Cd+C(x0), where x0 stands for MR resonator 

equilibrium position. In Eq. 4.2, the second term in HMC indicates the external source cavity 

driving. In this equation, the cavity interaction Hamiltonian is explicitly defined. Thus, it is clear 

how and by which parameters one can manipulate the interaction between cavities through which 

it is shown that the entanglement among modes is dramatically changed. In this design, the MC 

modes oscillate with ωω, which is around 1.5 GHz. That means the designed converter operates 

at L-band. The designed system‘s dynamics are routinely derived using ―Heisenberg-Langevin 

equations‖ [18, 21]. Also, as an important part, one has to notice the interaction of the system-

environment with which the noise and damping rate effects are included. By considering the 

latter point, including the noise effect, the equation of motion of the system becomes:  
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                 (4.3) 

In this equation, κc, γm, κω, Δc, and Δω are the OC, MR, MC damping rate, and detuning 

frequencies, respectively. Also, G1 = √(αc
2
ωm/2ε0mωc), G2 = CpCt√(ћ/mωm) and Eω is the MC 

driving field [22- 24]. Eq. 4.3 is a nonlinear equation that cannot be easily solved in terms of the 

contributed operators. To solve this equation, the equation should be initially linearized; this is 

done by selecting a fix point where the cavities of the system are driven and operated with and 

then calculate the slight fluctuation around the DC point. That is a fair assumption to select a 

strong driven field, and then one has to concentrate on the quantum field fluctuation close to the 

constant point (driven field) [22, 27]. Thus, the mode of cavities is expressed based on new 

quantities as a superposition of DC, and AC (fluctuating) terms resulted in the form of: ac = 

As+δac, cω = Cs+δcω, qx = Xs+δqx, and Px = Ps+δpx. In these expressions, the capital alphabet 

with subscript ―s‖ stands for fix point (DC), and presubscription ―δ‖ stands for the quantum 
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fluctuation very close to the fix point. With substituting new quantities in Eq. 4.3 and regarding 

just the stationary terms, the results are expressed as: 
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                                    (4.4) 

For solving Eq. 4.4, it is usually supposed Re{As}>>1 and also |Cs|>>1. The system-driven fix 

points As, Cs, Ps, and Xs are determined with solving Eq. 4.4 as:  
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                                   (4.5) 

Eq. 4.5 shows the DC point that the cavities are driven. However, it is necessary to calculate the 

small fluctuation around them in the following. It can be easily shown that the modes 

fluctuations are not affected by the DC points selection in Eq. 4.5. Eventually, the cavities mode 

fluctuation, which is limited very close to the DC point, is given by: 
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                         (4.6) 

Eq. 4.6 is a linearized coupled equation in which the quantum fluctuation of the cavity modes is 

involved. By solving this equation, modes separability and their entanglement are determined. 

The cavities mode interaction in the converter creates CV entanglement, which is the quantum 

correlation among intra-cavity field quadrature operators [12,13,19]. In fact, it is the coupling 

factor that can engineer the correlation among cavities mode. In Eq. 4.6, δpx couples to δac by 

G1, δcω is manipulated by δqx via factor CsG2Δoω1, δqx is changed by the alteration of δXc, and 

finally, δpx is altered due to the change of δqx and δcω. Thus, this is the role of a quantum radar 

engineer who determines the factors in such a way that the modes become correlated. The effect 
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of the mentioned factors on the entanglement between mods will be studied and investigated in 

detail in the following section. In Eq. 4.6, OC and MC cavity modes are expressed based on only 

annihilation operator, while for MR, the related quadrature operators are expressed. Thus, one 

can easily derive the quadrature operators for OC and MC cavities, and eventually, the system 

equation of motion using QED theory in the matrix form is expressed as: 
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         (4.7) 

One can consider the general form of the solution of Eq. 4.7, which is ―u(t) = exp(Anmt)u(0) + 

∫(exp(Anms).n(t-s))ds‖, where n(.) define the system contributed noise. The familiar correlation 

function is applied to characterize the noises in the system as [19-23]: 
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                      (4.8) 

In Eq. 4.8, N(ω) = [exp(ћω/kBT)-1]
-1

 characterizes the mean of thermal photon numbers in the 

equilibrium state. Eq. 4.7 results in the fluctuation of cavity modes and is used to analyze the 

entanglement of the cavity modes. In the quantum radar application, the OC and MC modes 

entanglement get the highest priority. That is why we deliberately focus on analyzing the MC 

and OC modes correlation. For this reason, all of the factors destroying entanglement between 

modes are studied. The entanglement between modes is evaluated using ―Simon-Peres-

Horodecki criterion‖ of the continuous mode given in Eq. 3.39. The criterion in Eq. 3.39 is the 

bipartite Gaussian states separability necessary and sufficient condition. Thus, it should be 

supposed that all of the cavities states are Gaussian. Also, Av, Bv, and Cv in Eq. 3.39 are 

Ai,j 
u(0) 

n(t) 
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correlation and cross-correlation matrix elements [Av, Cv; Cv
T
, Bv]. The elements of the 

mentioned matrix in Eq. 3.40 are re-expressed for OC-MC modes as: 
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  4.10) 

For each two-mode entanglement evaluation, matrix elements should be constructed and uses the 

criterion expressed in Eq. 3.39 to analyze the correlation between modes. Up to now, the 

equation of motion of the electro-opto-mechanical converter was analytically derived applying 

―canonical quantization method‖ and ―Heisenberg-Langevin equations‖. In the following, 

―Simon-Peres-Horodecki criterion‖ is employed as a major criterion for figuring out the cavity 

modes entanglement. As the primary goal of this thesis, the converter mentioned above must be 

engineered in such a way to enhance the OC-MC modes entanglement sustainability. However, 

as an application of a radar system, it needs to broadcast the entangled microwave photons 

toward a target. That means the entangled photons, before finding the target, should experience 

the atmospheric medium. It is clear that the propagation of a signal through the atmosphere leads 

to disperse in the signal, same as a classical radar. Thus, one can use an amplifier to intensify the 

signal and then propagate the amplified signal into the atmosphere. Nonetheless, it is clear that 

the amplifying of the entangled photons to produce more photons with the same non-classicality 

is so critical. With knowledge about this point, it is supposed that one can amplify the entangled 

photons as same as a classical approach. Also, after scattering from the target, the scattered 

photons meet the atmosphere again, get amplified, and are finally detected. In the next step, these 

effects are considered and theoretically analyzed the effect of the active medium (amplifier), 

attenuation medium (atmosphere), and the target scattering on the correlation between modes.  

 

4.1.3. Entangled photons Amplification: The effect of active medium  

This part concentrates on showing the active medium effects on intensifying microwave photons 

using QED. Figure 4.5 demonstrates the schematic of the active medium. The main idea 

emphasizes preserving the entanglement behavior of the entangled photons, although they should 

endure the active medium effect to intensify the microwave photons. Using an active medium 
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leads to intensifying the entangled photons to create more photons with non-classicality.  From 

Figure 4.5, it is clear that the active medium‘s input is a microwave photon, cω, and the 

medium‘s output is caω. Analyzing the entanglement between caω and cω is one of the primary 

purposes of the study. It will show that the active medium is an indispensable part of a quantum 

radar before the propagation of the signals into the atmosphere and detection of the target. Thus, 

it is essential to find an effective method by which it becomes possible to amplify the entangled 

microwave photons.  

 

Figure 4.5. Active medium modeling with series connection of BS. 

 

The active medium is modeled using BS connected in series. In this connection, each BS 

operating as an active agent amplifies the incoming photons fundamentally using harmonic 

oscillator inverting. It is contributed to the ―thermally excited photons ba→ ba
+
‖, where ba is the 

related operator [18, 28]. Therefore, the microwave signals are amplified since propagating 

through the active medium due to the interaction with the inverted atom population. The 

mentioned interaction refers to the interaction between atomic quantum and electromagnetic 

fields. One of the essential factors to enhance the system's efficiency is the coupling factor of the 

incident and atom‘s field interaction. In this modeling, BS plays a critical role to especially note. 

The BS is modeled as an intensifying agent in terms of its inputs (cωn, ba
+
) and outputs (cω(n+1), 

asn), where subscript n and asn indicate the BS number in medium and output mode, respectively. 

The BS input and output operators are given as [28]:  
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                           (4.11) 

In this equation, r(ω) and t(ω) are the complex reflection and transmission coefficients at 

frequency ω, respectively. In the present modeling, all of the input and output single modes 
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satisfy the commutation relation as [cnω(ω), cnω
+
(ω‘)] = δ(ω- ω‘), [c(n+1)ω (ω), c(n+1)ω

+
(ω‘)] = δ(ω- 

ω‘) and [bn(ω), bm
+
(ω‘)] = δmnδ(ω- ω‘).  

The calculation of the active medium‘s effect on the input and output modes entanglement 

requires an expression of the output with regard to the input operators (relationship between caω 

and cω). This is obtained for a single BS in Eq. 4.11. Also, this equation can be modified by 

considering the effect of the beam propagation phase with the wave vector real-part Ka = 

ωn(ω)/c, as: 
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                          (4.12) 

where n(ω) is the active medium real refractive index. The focus is laid on the intensified signal 

cω(n+1)(ω) to analyze the sustainability of the entanglement regarding the active medium effects. 

The relation between the input and output mode operators for N discrete-series BS is introduced 

as:   
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Also, the imaginary part of the wave vector is regarded as κa(ω)= |r(ω)|
2
/2Δza [28]. The 

expectation value of the thermally excited photons, which operate, in essence, like a noise, 

obeying the same relation of Eq. 4.8. It can be observed from Eq. 4.13 that N beam-splitter is 

employed in the discrete form with N = za/Δza, where za is the active medium length, and Δza is 

the single BS length. One can convert the discrete model to a continuous one by approaching N 

to infinity in order to model a real amplifier. Eq. 4.13 can be re-written in the continuous form 

as: 
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where caω(ω) is the output mode operator of the active medium. From Eq. 4.14, the first term 

indicates the MC output mode intensifying by the active medium, and also, the second term 

stands for the noise operator effects. The active medium‘s operator continuous form is examined 

based on the MC mode. Thus, it is possible to investigate the active medium-related parameter 

effects on the modes caω and as entanglement. Thus, with changing the active medium 

parameters such as length, the wave vector real and imaginary parts, and also the applied 

thermally excited photons, the output modes correlation are strongly manipulated.  
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The entanglement analysis for modes caω and cω needs to define the quadrature operator of the 

active medium output modes as: 
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            (4.15) 

where δXb = {b(ω,z)+ bm
+
(ω‘,z‘)}/2 and δYb = {b(ω,z)- bm

+
(ω‘,z‘)}/2j. It is clear from Eq. 4.15 

that the quadrature operator of the active medium mode is presented based on the MC output 

mode operators. Similar to the latter stage that the OC and MC modes entanglement was studied 

through the construction of the matrix elements Av, Bv, Cv, and Dv via Eq. 4.10 and then using 

Eq. 3.39 to analyze the entanglement between modes in the same way. It should notably be 

considered the differences between two mode quadrature operators, <δXω
2
> and <δXaω

2
>.  In 

other words, to analyze the entanglement of caω and as, the matrix A is the same with Eq. 4.10, 

while matrix B and C should be re-expressed as: 
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   (4.16) 

For instance, in the following, the expectation value of <δXaω
2
>, <δXaωδXC> and <δXaωδYC> are 

calculated as:   
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Other expectation values, e.g., <δYaω
2
>, <δYaωδXC> and <δYaωδYC> and so on should be 

calculated in the same way. The calculation of the entanglement of modes is routinely examined 

by Eq. 3.39. The simulation results reveal that the designed active medium amplifies both 

entangled and separable photons. In fact, the entangled photons are amplified through the 

incident with atom‘s fields interaction. This occurs at a few specific frequencies. However, in an 

actual condition, it seems that an amplifier will disturb the photons-related non-classicality. 

Additionally, naturally, the entanglement between modes is completely distorted at a lot of 

detuning frequencies. The mentioning points will be discussed in the following section.  

 

4.1.4.  The atmosphere effect on the propagation of the entangled photons  

In the latter step, an amplifier (classic sense) was designed utilizing QED theory due to the 

amplification of the microwave cavity signal. It was supposed that the entangled microwave 

photons can be intensified to generate more photons with preserving entanglement behavior. It 

will be shown that the existence of the active medium to increase the number of entangled 

photons before the propagation in the atmosphere is an indispensable step. For that, the 

relationship between the microwave cavity mode and active medium output was theoretically 

derived. It is noteworthy to mention that the active medium can intensify the propagating 

photons by a factor depending on the properties of the real medium.  
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Figure 4.6. Attenuation (atmosphere) medium modeling with series connection of BS. 

 

After microwave photons amplification, the photons enter the atmospheric medium (attenuation 

medium) for target detection. From the classical point of view, one can use some statistical 

models to analyze the properties of the atmosphere as a real and uncontrollable medium, which 

have a critical effect on the propagating signal [1]. It is known that the atmosphere randomly 

changing properties is the most critical feature of that medium. Nevertheless, a quantum radar 

profits one of the major advantages of a classic radar which employs microwave photons for 

propagating into the atmosphere [1, 66]. In the following, the attenuation medium using quantum 

electrodynamics will be modeled. For this reason, we focus on the quantum picture in which the 

mentioned medium is modeled by a specific package containing the scattering centers. These 

centers behave functionality with atmosphere-related variables, including pressure, temperature, 

and altitude. The discussing scattering centers in the atmosphere quantum electrodynamiclly are 

modeled using BS depicted in Figure 4.6. In this medium, the thermally excited photons which 

have a critical effect can be expressed as a function of the atmospheric conditions. In addition, it 

will be revealed that the factor mentioned above strongly impact the entanglement behavior.  

The simulation of the atmosphere medium initiates by modeling the scattering agents with a 

series connection of BS. For n
th

 BS, the inputs and outputs are, respectively, (caωn and bn) and 

(caω(n+1) and asn). The BS input and output operators can be introduced as [1, 28]:  
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                            (4.19) 

Generally, the input and output single modes obey the commutation relation [cn(ω), cn
+
(ω‘)] = 

δ(ω- ω‘). By considering the effect of the beam propagation phase with the real part of the wave 

vector Katm = ωnatm(ω,R)/c, Eq. 4.19 is re-expressed as: 
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                          (4.20) 

where natm(ω,R) is the atmosphere real refractive index dependent on the atmosphere altitude. 

The output mode operator of the atmosphere channel is expressed for N discrete and series BS, 

in terms of the input operator given by:   
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Also, the wave vector imaginary part is regarded as κatm(ω)= |r(ω)|
2
/2ΔR [28]. The discrete form 

presented in Eq. 4.21 is rearranged in the continuous form as: 

[ ( )] [ ( )]( )
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R

jKatm R jKatm R z
a a atmc e c j dze b z   
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  

                                (4.22) 

where ca(ω) is the attenuation medium output modes operator. Eq. 4.22 expresses the effect of 

the attenuation channel. Clearly seen from the equation that the input mode is exponentially 

attenuated due to the scattering agent‘s effect, and also the noise effect is shown. Changing the 

atmosphere conditions leads to a change of κatm, meaning that the output modes correlation is 

strongly affected. Also, the entanglement between modes is severely manipulated by the 

atmosphere noise effect, and additionally, the atmosphere length from the radar to the target R is 

a critical factor to disturb the nonclassicality correlation between the modes. The input operator 

in Eq. 4.22 caω(ω) is the active medium output which can be manipulated and controlled with the 

related medium‘s properties.    

In the following, the entanglement between ca(ω) and as is studied to demonstrate how the 

atmosphere can affect the entanglement between modes. For the calculation of the entanglement 

between two modes, the quadrature operator of the attenuation medium output modes is 

generally needed to be defined as: 
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In Eq. 4.23, the attenuation medium quadrature mode operators are presented. Similarly, 

entanglement between attenuation medium output modes and the modes kept in the laboratory 

can be studied. For this purpose, one has to calculate the correlation matrix elements for the new 

quantitates such as <δXa
2
>, <δXa δXc >, <δYa

2
> and so forth. Finally, to analyze the 

entanglement of ca and as, matrix Av is established in the same way with Eq. 4.10, while matrix 

Bv and Cv should be re-arranged based on the new quantities as: 
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      (4.24) 

It seems to be possible to analyze the two modes entanglement using Eq. 3.39 through 

calculation of Av, Bv, and Cv matrix in Eq. 4.24. It will be shown that the entanglement between 

modes is strongly affected by changing the attenuation medium properties. This significant issue 

will be discussed in detail using simulations and modeling. 

 

4.1.5. Scattering from a target 

After analyzing the effect of the active and attenuation mediums on the nonclassical correlation 

relation between modes, it is now time to investigate the target reflection effects on the incident 

microwave photons. Herein, to analyze the mentioned effect of the QED theory is used as same 

as the previous sections. Figure 4.7 depicts the model analyzing the reflection effect. In quantum 

picture, reflection from a target is defined as the scattering of the incident photons from the 
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target‘s atom. The process basically is the incident field and atoms‘ field interacting. However, 

the photons excited thermally in the system play a destructing role during the incident photons 

scattering from the target, leading to leaking away of the modes entanglement.  

 

Figure 4.7. A schematic illustration of the scattering modes from the target modeled with the 

series connection of BS. 

 

In Figure 4.7, it is clear that Ca is the input mode and Ct is the output mode. It needs to find a 

compact relationship between them to analyze the effect of the target properties on the output 

signal. In the same way, n
th

 BS is considered as a scattering agent, and the relationship between 

input and output is given by:  
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By involving the beam interaction phase with the wave vector real part Kt = ωnt(ω)/c, Eq. 4.25 is 

re-expressed as: 
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where nt(ω) is the target‘s real refractive index. Therefore, the reflected mode operator from the 

target can be expressed for N discrete BS in terms of the attenuation channel output Caω(ω) 

operator as:   
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In Eq. 4.27, all btj, j = 1, 2, …are expressed in terms of bt. By considering the infinite number of 

BS, and using the attenuation medium‘s relationship between transmission and reflection 

coefficients satisfying ―|t(ω)|
2
+|r(ω)|

2
 = 1‖, the continuous form of Eq. 4.27 is given by: 
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The incident photons scattering from a target are introduced in Eq. 4.28; the first term stands for 

the target‘s material wavenumber imaginary part, while the second expression indicates the 

influences of photons excited thermally. In fact, using Eq. 4.28, one can address RCS modeling 

with BS using QED and the parameters that affect RCS. Additionally, the entanglement is 

affected by the phase raising because of the noise presented in the second term. Finally, to study 

the entanglement between ct(ω) and as, it needs to define the quadrature operator of the reflection 

output modes ct(ω), which is introduced as: 

        
  

 

( )( )

0

cos( ) sin( ) ( , ) cos( ) ( , )

sin( ) 2 ( ) ( )cos( ( )) ( )sin( ( ))

cos( ) sin

t t t t

t

t t

t t

z z
t a t t a t t t t b t t b

z

z z
t t t t a t t a t t

z
t a t t a

X e X K z Y K z z e Y z K z X z

K z z dze X K z z Y K z z

Y e Y K z Y

   

 

 

        

     

  

    
   

 
 

  
 

      

     

  



      
  ( )( )

0

( ) ( , ) cos( ) ( , )

sin( ) 2 ( ) ( )cos( ( )) ( )sin( ( ))

t t

t

t t

z
t t t t b t t b

z

z z
t t t t a t t a t t

K z z e X z K z Y z

K z z dze Y K z z X K z z

 

 

     

     

 
 

 
 

    

     

(4.29) 

where δXt = ct(ω) + ct
+
(ω) /2 and δYt = ct(ω) - ct

+
(ω) /2j. Eq. 4.29 shows that the quadrature 

operators contributed to the target reflection are expressed in terms of the attenuation medium 

operators. Now, one can study the OC and reflection output modes entanglement. For this 

purpose, the correlation matrix Av, Bv, and Cv have to be calculated for the new quantities as 

given below. 
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Since the matrix elements Av, Bv, and Cv became calculated, one can analyze the entanglement 

using Eq. 3.39.     

After calculating the incident photons scattering from the target, these photons are reflected back 

in the atmosphere. So, to complete the quantum radar scenario depicted in Figure 4.4, the 

atmosphere effect should be applied one more time. In the following, the return signals have to 

be amplified before detection, suggesting that the active medium effect should be applied as 

well. The mentioned points, suggesting that the generated microwave entangled photons, are not 

a necessary condition to detect the entangled photons. In other words, in a quantum radar 

application, preserving the entanglement between photons is a challenging task. From the latter 

sections, it was shown that there are a lot of thermally excited photons and noises that critically 

affect the entanglement between modes. This means that the more thermally excited photons 

generate in a real medium, the more separability the photons experience. The thermally excited 

photons directly contribute to the temperature. Unfortunately, one cannot manipulate the 

operational temperature of the real mediums in the quantum radar system. Then, the converter 

and the active medium give some degree of freedom to do engineering. In the results and 

discussions section, it is shown that the entangled microwave photons that are generated at high 

temperatures can easily endure the noise effect applied from the real mediums and finally 

maintain the entanglement properties. This is the idea of the next part in which a new and novel 

converter is designed (called an optoelectronic converter) to produce entanglement at high 

temperatures.    

 

4.2. Design of the optoelectronic converter for entangled photons generating in a typical 

quantum radar 

In this part, the concentration mainly sat on the optoelectronic converter design in a quantum 

radar to improve critical characteristics such as modes non-classicality at high-temperature. It 
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will be discussed in the later section that the ―electro-opto-mechanical converter‖ high-

temperature operation is so essential for preserving two modes entanglement. As shown in the 

results and discussion section, the main problem is issued because of the mechanical part 

operating at low-frequency. Due to that fact, so many photons excited due to the thermal effect 

are generated and can destroy the entanglement. Thus, we significantly focus on that point and 

substitute the mechanical part with an optoelectronic part to solve the problem. A general 

schematic for such a system is depicted in Figure 4.8. 

 
Figure 4.8. A general schematic for a quantum radar using an optoelectronic converter, 

transmitter antenna, receiving antenna, and detector [67]. 

 

It is clear that quantum radar fundamentally works in the same way with a classical radar, both of 

which use microwave photons to detect the target. Nonetheless, in quantum radar entanglement 

phenomenon plays an indispensable role. In a typical quantum radar, the operation starts with the 

generation of the entangled optical photons shown with as and ai in Figure 4.8. After that, as is 

applied to an optoelectronic circuit to generate the entangled microwave photons aω, while ai is 

kept in the laboratory to be following processed. The generated entangled microwave photons 

are broadcasted toward the target through the transmitter antenna (Antenna_T), and then the 

scattered photons are collected by the receiver antenna (Antenna_R), and finally, the detected 

signals are sent to accomplish the signal processing. In the processing section, the correlation 
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between ai and at is analyzed. The main goal is to maintain and preserve the entanglement 

between ai and at, which is strongly affected by the real medium impacts such as attenuation due 

to the atmosphere, scattering loss because of the target, and also electronic noises in the detection 

unit.  

 

An optoelectronic converter is theoretically designed to produce the entanglement between 

photons. In this system, OC is linked to MC via a Varactor diode (VD) which is excited by a 

photodetector. Initially, optical cavity modes excite the photodetector, and then flowing current 

with a functionality of the incident light triggers the Varactor diode. The flowing current due to 

the OC coupling with a photodetector (PD) causes a drop voltage across the diode. This creates a 

functionality between the drop voltage across the diode and OC modes. In this dissertation, the 

effect of some critical quantities is deeply studied to engineering the system. One of the 

mentioned quantities is the photodetector coupling factor (µc) to the microwave cavity that 

makes a dramatic difference between the opto-mechanical converter and the new design. It is 

shown in the results and discussions section that by engineering the coupling between PD and 

VD, the entanglement preserved up to 5500 mK. In the following, we first define the system and 

completely determine how the parts of the system complete each other to maintain the 

entanglement at high temperatures. 

 

4.2.1. Optoelectronic converter system definition 

First of all, to completely analyze the quantum radar [22,67], it is necessary to fully describe the 

optoelectronic converter schematically illustrated in Figure 4.9, which also is a compact 

illustration of the step-by-step of the work. It is clear from Figure 4.9a that the laser light is first 

coupled to OPDC and generates the optical photons (called signal and idler) entangled with each 

other. The signal mode couples to OC, and consequently, PD is excited by OC outcoming wave. 

Therefore, flowing current through PD is a function of the incident photons energy. It means that 

flowing current through the PD is strongly dependent on OC modes. That current causes a 

voltage drop across VD, leading to a change in the VD‘s capacitance. That means that the 

capacitance generated by VD is a function of OC mode intensity. Figure 4.9a shows that MC 

resonant frequency is manipulated by the change of VD capacitance. Therefore, the modes of 

MC are influenced by OC modes with coupling between PD and VD. The design of the 
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optoelectronic converter gives us double key factors to engineer the MC and OC coupling to 

improve the output modes' nonclassicality correlation. OC coupling to PD is one of the critical 

factors used to engineer the current flow rate in the converter. In the system analysis, the 

mentioned factor has to be theoretically calculated. Another factor that is so important 

contributes to the VD and MC coupling by which MC electronic properties are affected. This 

coupling factor is created due to the change of the MC capacitance with coupling to PD. As a 

brief and obvious result, it can be stated that the output modes entanglement is manipulated by 

altering the discussed factors.  

 

In a quantum radar, one can manipulate the subsystem observed in Figure 4.9a to engineer the 

photons' non-classicality; after that step, schematically shown in Figure 4.9b, Figure 4.9c, and 

Figure 4.9d, there is no degree of freedom to control and change the entanglement behavior. 

Thus, entangled microwave photons generating via an optoelectronic converter propagate in the 

atmosphere to detect an object. The atmosphere channel effects are analyzed by modeling the 

atmosphere with the BS series configuration [28], as illustrated in Figure 4.9b. As discussed 

earlier, each BS has two inputs (ci-1: incident wave and bi: thermally generated photons) and two 

outputs (asi: noise and ci: desired output). The photons induced due to the thermal effect are 

strongly dependent on the change of temperature in the atmosphere (185~300 K). Also, the 

atmosphere height is another affecting factor that one should consider its effect on the quantum 

properties. Regarding the above mentioning parameters, it is clear that the atmosphere disturbs 

the photons' non-classicality, and then the incident entangled photons treat as classical photons. 

Consequently, the target scattering effect is applied to the incident photons (Figure 4.9c). Since 

the propagated signals contain both entangled and separable photons incident on the target, the 

target‘s atom fields interact with both of them. The target‘s materials causing reflection and 

diffraction severely affect the backscattering photons amplitude and frequency with respect to 

the incident photons. This is contributed to the quantum field of target atoms manipulating the 

incident photons properties. Finally, in Figure 4.9d, the backscattering photons endure the 

atmosphere effect one more time, similar to Figure 4.9b. Nevertheless, there is a difference 

between the atmosphere effect in Figure 4.9b and Figure 4.9d. In Figure 4.9b, the input mode cω 

contains more entangled photons, while in Figure 4.9d, the input mode is ct having a few 

entangled photons and losing a lot of entanglement due to the scattering from the target. It is 
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indicating that in Figure 4.9d, the atmosphere can easily destroy the entanglement properties. 

Additionally, in this figure, quantum dot (QD) photodetector [11] sensitivity enhanced by the 

quantum effect is employed to sense the OC incoming wave. In the simulation part, the QD is 

supposed as a two-level energy system.   

 

Figure 4.9. Quantum radar schematics using optoelectronic converter; a) Interaction of laser 

light with an OPDC to generate optical entangled photons and generation of 

microwave entangled photons using MC coupling to OC through PD, b) 

Atmosphere medium modeling using BS, c) Target scattering modeling with BS, 

d) Effect of the atmosphere on the backscattering signals, e) QD using in PD to 

increase the sensitivity [67]. 
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In the following, an optoelectronic converter is theoretically designed in the same way with the 

latter section (design of the electro-opto-mechanical converter to generate the entanglement 

modes). The significant goal is to fully compare the two systems results and find out which 

system can safely preserve the entanglement between modes and also by which method one can 

increase the nonclassicality correlation between modes. Since this thesis mainly focuses on 

providing a sustainable entanglement, therefore, it needs to design a suitable system to do the 

favor.  

 

4.2.1. Design of a typical optoelectronic converter to generate the entangled states 

The quantum radar using the optoelectronic converter illustrated in Figure 4.9a is theoretically 

analyzed using ―canonical quantization method‖ [18]. In this method, in contrast to the dipole 

approximation [68,69], the incident and atom‘s quantum field interaction is underlined.   

In general, defining the dynamics of a quantum system needs the contributed Hamiltonian 

expressed as: 
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           (4.31) 

In this equation, the (X, P), (A, E), and (Φ, Q) are the PD electron-hole position and momentum 

operator, optical cavity vector potential and electric field, and the phase and charge operators of 

MC, respectively. Also, the constants αc, vd, C‘(x), and Cd, are OC-MC coupling coefficient, the 

MC driving field, variable capacitor, and capacitor between MC driving field and cavity, 

respectively. The next step needs to determine the operators A, X, and Φ conjugate variables to 

express the Hamiltonian based on the raising and lowering operators. This is done regarding a 

classical approach defining the conjugate variables [29]; so the Hamiltonian is presented as:  
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                             (4.32) 

In Eq. 4.32 (ac
+
, ac), and (cω

+
, cω) are, respectively, optical and microwave cavities creation and 

annihilation operators. Additionally, (Px, qx), Ec, gop, and d are normalized quadrature operator, 

driving rate of optical cavity input, and the depletion layer width of VD‘s capacitor, respectively, 

and moreover µc = C
’
(x)/C0. In this design, MC modes resonate around ωω = 2.75 GHz (S-band); 

the reason is because of the decreasing the thermally excited photons in MC. In HMC-PD, which is 

the interaction Hamiltonian between microwave cavity and photodetector, the related coupling 

factor is concluded as goω = (µcωω/2d)×√(ℏ/ωegmeff); it is a critical factor by which it will be 

possible to preserve the entanglement even at high temperatures.  The mentioned point will be 

discussed in detail in the results and discussions section. Also, gop = √(ωegαc
2
/2ωcε0meff) is OC-

PD coupling rate. In Eq. 4.32, the MC field Hamiltonian and its driving are expressed altogether 

in HMC. One of the critical tasks here is the calculation of gop. To do so in unit volume, one can 

use the ―first-order perturbation theory‖, and the result is expressed as [11]: 
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(4.33) 

where gJ(hωeg), µ, and L(ωeg) are, respectively, the PD density of state, dipole momentum, and 

Lorentzian function. To know precisely how gop is derived for a typical photodetector, one can 

find the material in Appendix A. Using Eq. 4.33, one can guess about αc, which is strongly 

dependent on the electrical and optical properties of the PD. Thus, converter engineering, 

specifically PD engineering, gives a chance to manipulate the coupling between OC and PD. For 

example, on can use the plasmonic-based photodetector [11] to enhance the coupling factor.  
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At last, this key factor is employed as a critical factor to engineer the cavity modes coupling and 

find out how much the factor can affect the nonclassicality correlation between modes. After 

Hamiltonian calculation, the contributed dynamic equation of the motion is introduced using 

―Heisenberg-Langevin equation‖. To complete the dynamic equation, it needs to add the 

damping rate and noise effects because of the system and real medium interaction. Also, using 

RWA, one can define the detuning frequencies of MC, OC, and PD are defined as ∆ω = ωω – ωoω 

and ∆c= ωc – ωoc, and ∆eg = ωeg – ωc, respectively. Finally, the dynamic equation of motion of the 

new converter is given by:  
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        (4.34) 

In this equation, the parameters κc, γp, and κω are the damping rates of the optical cavity, 

photodetector, and microwave cavity, respectively. In the same way with a real system, the 

cavities interact with the environment; thus, to support the indicating effect, some quantities such 

as bin, ain, and cin as the noise sources are defined to model the environment effect on cavities. 

 

In the following, the entanglement will be analyzed as a fluctuation mode for the continuous 

modes of OC and MC around the fixed operational point that the cavities are driven. Under this 

condition, it is possible to linearize the converter equation of motion by expanding to the driven 

field as a fix point [23,27]. The linearization of Eq. 4.34 is done in the same way with Eq. 4.3 as 

(ac = As+δac, cω = Cs+δcω, qx = Xs+δqx, and Px = Ps+δpx). In fact, to calculate the nonclassicality 

correlation between modes, the fluctuation parts should be considered. Nonetheless, it is 

necessary to calculate the linearized equation in the steady-state. In the steady-state condition, 

applying a few assumptions such as Re{As}>>1 and |Cs|>>1 satisfy the stability. Herein, the 

quantum fluctuation is noticed and the related equation is solved. The cavity modes quantum 

fluctuations are defined around the DC points as: 
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The CV entanglement can be generated due to the interaction among cavities [23-27]. For the 

aim of OC-MC entanglement analysis, it is necessary to define the related cavities quadrature 

fluctuation as the fundamental modes. The matrix form of the equations is expressed as: 
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In Eq. 4.36, δXc
in

, δYc
in

, δXω
in

, and δYω
in

 are the noises quadrature operator. The solution of Eq. 

4.36 produces an equation with a form as ―u(t) = exp(Anmt)u(0) + ∫(exp(Anms).n(t-s))ds‖, where 

n(s) is the noise. One can see Eq. 4.8 to get more information about the noise correlation 

function.  

The entanglement between cavity mods can be analyzed using ―Symplectic eigenvalue‖ [33,35]: 

So far, the quantum radar system utilizing optoelectronic converter‘s dynamic is analytically 

derived employing the ―canonical quantization method‖ and ―Heisenberg-Langevin equations‖ 

and also ―Symplectic eigenvalue‖ was applied as a suitable criterion to study the modes 

entanglement. After converter modes entanglement analysis regarding the procedure 

demonstrated in Figure 4.9, it needs to consider the real mediums and target effects on the out 

coming photons. As the primary goal of this part, the new converter illustrated in Figure 4.9a 

should be brought forth in a way that other effects, such as real medium effects, have a slight 

impact on entanglement. Besides a crucial difference between the optoelectronic converters with 

the electro-opto-mechanical converter, there is an interesting point about the system illustrated in 

Figure 4.9. That is ignoring the amplifier or active medium in this system. There are some 

Ai,j u(0) n(t) 
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references [16, 65] stating that it is critical to amplify the entangled photons to produce more 

photons to remain entangled and bring out extra problems that may disturb the entanglement 

between photons in reality. So, it needs to show how the optoelectronic converter in the quantum 

radar can work without an amplifier to detect a target and, more importantly, how it can preserve 

the entanglement of photons before detecting the backscattering photons. With this short 

introduction, in the following, the atmosphere effect and target scattering are theoretically shortly 

investigated. Of course, one can find the same material in detail in sections 4.1.3, 4.1.4, and 

4.1.5. However, the effect of the real mediums on propagation modes is just listed.  

 

4.2.2. Quantum mechanically analyzing the effect of the active and passive medium on the 

generated entangled photons 

The effects of the lossy mediums are studied in the same way with section 4.1.3. The atmosphere 

medium is modeled with an array of scattering centers. These scattering centers using QED are 

modeled with BS depicted in Figure 4.9b. For n
th

 BS, (caωj, bj) is the input, and (caω(n+1), asn) is the 

output. Therefore, the output mode continuous form using |t(ω)|
2
+|r(ω)|

2
 = 1 is expressed as: 
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The first part of Eq. 4.38 reveals that the input mode operator is exponentially attenuated because 

of the scattering agents, and the second part introduces the effect of the noise operator. Using Eq. 

4.38 creates the possibility to calculate the modes entanglement between ca(ω), ac.   

In the same way considered for the attenuation medium effect, the QED is used to model the 

scattering effect. The modeling of the reflection from a typical target is illustrated in Figure 4.9c. 

From the quantum point of view, the target reflection is defined as the target‘s atoms scattering. 

The photons excited thermally in the system have an essential role during the scattering from the 

target, by this critical factor, the entanglement behavior is severely distorted. To initialize the 

process, a reflection agent is selected as j
th

 BS, and so the input and output operator continuous 

form relationship is given as:  
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In this equation, the first term shows the target‘s dielectric constant imaginary part effect, 

whereas second part defines the effect of the thermally excited photon. The crucial effect in this 
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equation is the phase raising because of the photons excited thermally in the second part by 

which the entanglement between modes is strongly distorted. After analyzing the target 

reflection, the scattering photons from the target are scattered back in the atmosphere. Thus, it is 

obligatory to consider the effect of the atmosphere one more time before the signal detection.  

So far, the two different quantum radar systems fundamentally emphasizing the generation of the 

sustainable entanglement between returned mode and the mode kept in the lab are theoretically 

designed. It is necessary to involve all of the parameters that can affect the correlation between 

modes, including real medium effect, interaction with the environment, and noises.  

Before considering the simulation results of the quantum radar utilizing electro-opto-mechanic 

and optoelectronic converters and comparing the finding, the last essential task in this study is 

introduced as radar cross-section calculation. It is very important to complete the radar system. 

In this dissertation, a novel method is introduced that can be comparable with the quantum radar 

cross-section (dipole approximation-based method), and also a new numeric-based method is 

defined to satisfy the proposed theory. In fact, for the aim of RCS calculation, two quantum 

theories to define the RCS using different methods are investigated. In recent years, ―quantum 

radar cross-section‖ (QRCS) has been calculated by employing ―dipole approximation method‖, 

and the results showed that it is possible to improve the interference pattern sidelobe. Thus, it is 

impossible to attain such a degree of freedom using classical methods. With knowledge of 

QRCS, the ―canonical quantization method‖ is utilized which is a more complete theory than the 

―dipole approximation method‖ to calculate the RCS. A few similarities are found between 

mentioned methods, but some crucial parameters and factors that had been ignored using the 

―dipole approximation method‖ can be considered as the difference between two approaches. 

The significant difference between the ―dipole approximation‖ and ―canonical quantization 

methods‖ to calculate RCS are emanated due to the interaction Hamiltonian. For this reason, the 

focus specifically sat on that point and derive the interaction Hamiltonian with different methods 

to find the quantitates that have been ignored in the dipole approximation method. Finally, to 

testify the mentioned point, a new numerical method is accomplished by which RCS is estimated 

by inserting the quantum theory in ―method of moment‖ (MoM) called ―quantum-method of 

moment‖ (QMoM).  
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5. RCS CALCULATION USING QUANTUM APPROACH 
 

 

In radar applications, predicting RCS of a target with an arbitrary shape is usually taken as a high 

priority. This task has been investigated by some exact and numerical methods [43-44, 49-50]. 

The methods commonly utilize the classical procedure to calculate RCS, called CRCS, in which 

the classical theory analyzes the RCS by calculation of the scattering electromagnetic fields due 

to the induced current on the target [70]. In essence, RCS is the target's ability to backscatter the 

radar signal intercepted by it, and other properties of the target, such as its reflectivity, projected 

cross-section, and directivity, can affect the RCS [46]. The latter expression emphasizes that 

RCS cannot be defined as the target‘s geometric area. In other words, RCS, more technically, is a 

function of the radar position regarding the target, the geometry of the target and its material 

composition, the operational radar frequency, the polarization of the radar transmitter and 

receiver [47,48].  

For RCS accurately analyzing, the trend has recently been emphasized on the quantum radar 

[1,18,22] and ―quantum electrodynamics theory‖ to improving the RCS calculation [1,18, 22,68-

69]. The calculation of RCS using QED is called quantum RCS (QRCS). It is found that the 

calculation of the CRCS and QRCS fundamentally differ from each other. QRCS is based on the 

intercepted photons‘ field and atoms‘ field interaction through the ―dipole approximation 

method‖ [1,22]. In QRCS, the effect of the diffraction and absorption of the target are ignored 

[70], through which the accuracy of the calculation can be manipulated. Various studies in the 

literature have discussed why QRCS provides an enhancement of the sidelobe over CRCS [68]. 

This point has been theoretically shown that QRCS includes a term |cos(θ)|, while the CRCS 

contains a term cos
2
(θ) [68]. The origin of cos

2
(θ) in CRCS comes from the induced current 

density decomposition. We will get back to this critical point in the later subsection. 

Nonetheless, here in this dissertation, the concentration laid on QRCS using ―dipole 

approximation method‖; we think that QRCS, maybe, is an incomplete method. This is due to the 

fact that it employs an approximation procedure for RCS calculation. Following, the aim is to 

clarify some critical questions: Can one use ―dipole approximation method‖ as a perfect method 

for RCS calculation? Is there another approach to improving QRCS?. Canonical quantization 

method [18,72] is used rather than the dipole approximation to answer the questions asked 
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above. Using that approach, the scattering photons-related wave function is derived, and the 

results are compared with the wave functions of photons calculated by ―dipole approximation 

method‖ [68-69]. It is found some main differences between the methods indicating that the RCS 

calculation can be improved using ―canonical quantization method‖. Also, in the following, to 

confirm the theory mentioned, a novel numerical method is established in which the quantum 

theory is merged into the MoM [43, 44] for RCS calculation.  In the following, a short 

introduction is given about the MoM and introduce our new approach.  

 

RCS predicting an arbitrary perfect conductor (PEC) using MoM has been studied in the 

literature [43, 44]. Through this method (MoM), the integral equation of the electric field is 

solved. It is clear from MoM approach that the tangential electric field on the PEC surface is 

zero. Based on the approach, the PEC surface is initially defined by subdomains division such as 

rectangles or triangles and choosing a suitable basis function and weighting function. Then, the 

integral is reformed to a simple matrix form. The scattering field can be calculated by solving the 

matrix containing the unknown coefficients, leading to examining the current density [45]. Then, 

RCS is calculated through the current density employing. However, a new method is introduced 

as QMoM. In this method, the current density operator is utilized in MoM (recognizing as 

QMoM) in contrast to the classical MoM for scattering field calculation. Using the current 

density operator [69, 72] introduces a few degrees of freedom un-deliberately relinquished in the 

classic approach employing the current density average. The results are so interesting when 

QMoM predicts the sidelobe enhancement, which is in agreement with QRCS. Additionally, 

QMoM shows a main-lobe enhancement has not been estimated and predicted by QRCS 

calculation. In fact, that result certifies the difference between two discussed methods discussing 

in the next section.  

 

5.1. Scattering photons wave function theoretically deriving using Canonical quantization 

method 

RCS calculation using two different methods, ―dipole approximation‖ and ―canonical 

quantization‖, are calculated and compared with the associated results. For this reason, the 

system schematic is illustrated in Figure 5.1. The procedure is as follows: a wave with intensity 

I0 propagates in the atmosphere to the incident upon a target, and the backscattering signals are 
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detected. The receiving signals from the target are analyzed using two quantum approaches to 

compare the results. The emphesis is specifically laid on ―canonical quantization‖ method and 

derive Ψc(∆R,t) as the scattering photons wavefunction and compare the result with ΨD(∆R,t) 

derived using ―dipole approximation‖ method [68, 69]. 

 

Figure 5.1. A typical schematic of a target excitation by incident photons and detection 

signals analyzing with two different quantum-based methods canonical 

quantization method and dipole approximation [51]. 

 

Herein, the task is to show the step-by-step derivation of the wave function for a single photon 

emitting from the target‘s atom using ―canonical quantization‖ method. The approach starting 

point is to clarify the interaction Hamiltonian (light-matter interaction). In the canonical 

quantization method, the matter is assumed as an atomic medium (harmonic polarization field). 

Thus, the Hamiltonian for the proposed system [51] is given by: 
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                           (5.1) 

In this equation, H0, Hm, and Hint are the incident field Hamiltonian, atom‘s field Hamiltonian, 

and the interaction Hamiltonian, respectively. Moreover, the parameters in the equation m, ωn = 

2πfn, ωm = c/λm, and α are the oscillator mass, incident angular wave frequency, matter oscillator 

angular frequency, and the incident and atom‘s fields interaction coefficient, respectively. With 

introducing raising and lowering operators (a
+
, a) and (b

+
, b) for the incident and polarization 

fields, respectively, the Hamiltonians expressed in Eq. 5.1 is represented as:  
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In Eq. 5.2, by dropping the energy non-conserving terms using the ―rotating wave 

approximation‖ (RWA), the interaction Hamiltonian by involving the different modes is given 

by:    
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where the term √(α
2
/m/ε0) defines the incident and polarization fields interaction rate. The 

calculation of the wave function of the emitting photon using <0|E
+
(r,t)|γ0> emphasizes 

examining the time evolution of the atom‘s state interacting with the incident field |γ0>. The 

incident photons interaction state with the atoms is obtained by superposition between the 

excited state of the atoms when there is no photonic mode and all photonic mode state since the 

atom remains in the ground state expressed by:    

0| ( ) ( ) | ,0 ( ) | ,1b a n

n

t C t b C t a                   (5.4) 

In Eq. 5.4, Cb and Ca stand the for probability of the atoms finding in state |b> (excited state) 

without exciting photons and the probability of finding atoms in ground state |a> because of the 

photonic mode interaction with mode k, respectively. For the state time evolution calculation, 

Schrödinger equation is used as:  

int0 0

2
[ . ] [ . ]

0

| ( ) | ( )

( ) | ,0 ( ) | ,1 . ( ) | ,0 ( ) | ,1
4

n n
m j t k r j t k r

b a n a b n
nn n n

j
t H t

C t b C t a C t e b C t e a
m

 

 

 

 



 
  


 

 
       

 
  

      (5.5) 

Eq. 5.5 can be re-expressed as a coupled equation with regard to the sweep of incident 

frequency: 
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Through integrating each side of the first part of Eq. 5.6 and replacing in the second part, that 

equation becomes:  
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Due to the modes closely spreading, the summation can be replaced by integration over volume 

V using Eq. 5.7 is re-introduced as: 
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where dk
3
=k

2
sin(θ)dkdθdφ, k = ωn/c, dk = dωn/c, and supposing that ωn can be assumed as a 

constant in the defined bandwidth; so Eq. 5.8 becomes simplified as: 
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From Eq. 5.9, Cb(t) = exp[-Γqt/2] where Γq = (V/4π
2
)(ωn/c

3
)(ωmα

2
/mε0). Then, Cb(t) is substituted 

into the first part of Eq. 5.6 leading to calculate of Ca(t) by: 
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So, one can express Ca(t) in the steady-state condition: 
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Eventually, the state of the incident and polarization fields interaction by ignoring Cb(t) is given 

as follows:  
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Now, one can calculate the wave function of an emitting photon using ―canonical quantization‖ 

method. The contributed wave function is derived as [1,68]:  
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With substituting the quantized form of E
+
(r,t) in Eq. 5.13, it can be finalized as: 
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After some algebra and applying n = n
‘
, Eq. 5.14 can be re-written as the form of: 
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Through changing summation to integral and making a few algebraic for the sake of 

simplification, Eq. 5.15 is re-expressed as: 
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The integral in Eq. 5.16 is solved using the Residue method, and the result is expressed by: 
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Defining ηc =0.5×Γq[k0
‘
.(r-r0)/c - t], Eq. 5.17 is finalized as: 
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As the main goal, one can compare the new emitting photon wave function deriving in Eq. 5.18 

with the wave function derived using ―dipole approximation‖ method [68] through:  
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In Eq. 5.19, the term (dab. εk) indicates the coupling between the incident field and dipole 

operator.  

As a usual approach, RCS is calculated for two different quantum approaches as ζd = lim r→∞ 

2πr×(Isd/I0)
2
 and ζc = lim r→∞ 2πr×(Isc/I0)

2
, where Isd and Isc are the contributed scattering photons 
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intensity (Figure 5.1). In the following, the difference between two analyzing approaches is 

studied; for this reason, it needs to analyze ζc/ζd ~ [Ψc(∆R,t)/ Ψd(∆R,t)]
2
: 
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First of all, in a simple way, one can suppose ηd ~ ηc, and also by assuming the electric dipole 

momentum dab.εk as same as α (incident and polarization fields coupling). Applying the 

assumptions for the above equations, Eq. 5.20 is written as:  
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In this equation, V = 4πRr
3
/3, where Rr is far-field distance defined by Rr >= 2D

2
/λk and D is the 

largest scatter dimension. Figure 5.2a shows the simulation results; The simulations are 

accomplished for the incident wave frequency range of 1.5 GHz <fk< 60 GHz, far-field distance r 

>= 200 nm, and scattering dimension D ~ 0.1 mm. 

 

Figure 5.2. a) Comparison between scattering photon wave functions Ψd and Ψc for ηd ~ ηc 

and α ~ dab.εk,b) Comparison between different method decay rates for α = dab.εk 

 

Figure 5.2a shows that the emitting photons calculated via ―canonical quantization method‖ is 

greater than the ―dipole approximation‖ one in the frequency range less than 2 GHz. It is 

noteworthy that calculating ζc/ζd needs to apply the square power of [Ψc(∆R,t)/ Ψd(∆R,t)]. The 
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mentioned ratio is dramatically decreased with the increase of the incident frequency. 

Nonetheless, the result shows the emitting photon calculated by the ―canonical quantization 

method‖ is approximately ~2×10
5
 times greater than the ―dipole approximation method‖ at fk = 

1GHz. The comparison suggests that some critical points, maybe, are ignored as utilizing the 

dipole approximation method.  As an interesting result, Figure 5.2a reveals that RCS main lobe 

may be enhanced besides the sidelobe. RCS sidelobe enhancement is predicted by QRCS [68-

69], while QRCS using the approximated method cannot tell anything about the main lobe. 

However, for a complete comparison between two quantum-based methods, one needs enough 

information about Eq. 20. One can initially concentrate on the time constants ηd and ηc in the 

formula. The comparison between time constants calculated by two different methods is 

displayed in Figure 5.2b. In this figure, for easy comparison, ηd is multiplied by 1000 because ηd 

is much less than ηc. Regarding the illustration in Figure 5.2b, ηd and ηc behave in the same way 

at low frequencies. The results suggest that the decay rates term in Eq. 5.20 could be ignored at a 

very low frequency. However, ηc becomes dominant by increasing the frequency, meaning that 

the atom excited state predicting by ―canonical quantization method‖ is decayed sharply rather 

than the dipole approximation method at RF frequency. Furthermore, for completely analyzing 

Eq. 5.20, the behavior of exp[ηd - ηc] shown in Figure 5.3 should be studied. The simulation 

results show that exp(ηd - ηc) is too close to unity; therefore, the term exp[ηd - ηc] can be simply 

removed in Eq. 5.20 specifically for the frequencies in the range of 0.5~3 GHz.  

 

Figure 5.3. Functionality of exp[ηd - ηc] vs frequency with the assumption of α = dab.εk 
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Nonetheless, the main point is the difference between α and dab.εk that one has to consider to 

thoroughly compare Ψd(∆R,t) and Ψc(∆R,t). Thus, these two critical terms are considered and 

study the non-ideal form of Ψc(∆R,t)/ Ψd(∆R,t). Semi-classically, dab is the atom randomly 

oriented electric dipoles in every direction. For precise analysis, the electric dipole of atoms and 

also photon‘s polarization vector are expressed as: 
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            (5.22) 

The spherical coordinates are selected for the presentation in Eq. 5.22. The different azimuth and 

elevation angles are introduced to distinguish between the direction of the incident photon 

polarization and atom dipole orientation. In this equation, dab is the dipole operator of the radial 

component of the atoms. One can consider a suitable scenario for dab in which it is supposed a 

uniform distribution for dipole direction, and therefore each atom has the same average value. 

Thus, in a common way, the mean(|dab.εk|
2
) can be used rather than ∑ i=1 

N
| dab.εk |

2
. Considering 

the scenario mentioned above, the dipole operator coupling with the photon‘s polarization can be 

approximated by a constant regarding the second scenario. After the dipole momentum analyzing 

α should be expressed in terms of atom‘s transition momentum. If one defines dab.εk as a 

constant, the coupling factor of the atom-field is given by [73]:  

| |
d

E
g                  (5.23) 

In this equation, ς is the transition momentum of an atom equal to the mean value e.(dab.εk). 

Therefore, the atoms eigenstates are shifted by ћgd. In this relation, ς is an atom characteristic 

depending only on the wave function of the electronic states. Also, gd has a strong functionality 

of the incident field. It is a critical point to focus on it to relate the coupling constant of 

―canonical quantization method‖ to the ―dipole approximation‖ method‘s characteristics 

constant. It is obvious from the ―canonical quantization method‖ that the term √(α
2
/m/ε0) 

indicates the incident and polarization fields interaction rate. Finally, by substituting the 

interaction rate in Eq. 5.23, α can be figured out as: 
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Eq. 5.24 shows a clear dependency of ς to α and. Now, one can replace Eq. 5.24 in Eq. 5.20 with 

exactly Ψd(∆R,t) and Ψc(∆R,t). The results of the analysis for non-ideal form are shown in Figure 
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5.4. For instance, at a frequency around 2 GHz, Ψc = 40Ψd concluding to ζc ~ 1600ζd. This point 

shows a larger RCS predicted by the ―canonical quantization method‖ than the ―dipole 

approximation method‖. Additionally, it is understandable from the figure that the exponential 

term in Eq. 5.20 has an ignorable impact at the RF frequency range. The results demonstrated 

above show that RCS calculation through the ―canonical quantization method‖ is strongly 

enhanced. It is attributed to the different coupling factors that the two quantum-based methods 

introduce. 

 

Figure 5.4. Comparison between scattering photon wave functions Ψd and Ψc; bold: ηd = ηc, 

dashed: ηd ≠ ηc 

 

Also, the relationship ζc/ζd ~ [Ψc(∆R,t)/ Ψd(∆R,t)]
2
 reveals the amplitude of the emitting photons 

as a key factor that RCS severely depends on it. The result ζc>>ζd is easily deduced from 

Ψc(∆R,t)> Ψd(∆R,t), meaning that RCS estimated by the ―canonical quantization method‖ is 

strongly enhanced.  

 

So far, it is theoretically derived that the ―canonical quantization method‖ results in the 

amplitude of the emitting photon greater than the ―dipole approximation method‖. The 

simulation results demonstrate a few crucial differences between two quantum-based methods. 

Accepting this point means that the QRCS prediction may be incomplete [1, 68]. In other words, 

QRCS, maybe, could not forecast the enhancement of the main lobe amplitude as same as the 

side-lobe. In the following, a new method is accomplished to analyze RCS by the quantum 
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approach merging in the ―Method of Moment‖ called QMoM. MoM uses the current density 

operator to calculate the field scattering from the target to study RCS. It is found that using the 

current density operator [28,47] in QMoM rather than the average current density gives more 

degree of freedoms ignored in CRCS [70]. It is possible to demonstrate using QMoM that the 

dipole approximation is not a complete method to calculate RCS.  

 

5.2 The emerging quantum approach in “Method of Moment” for RCS calculation 

By illuminating a PEC with an incident field, the incident and scattering fields eventuate the total 

field. The scattering field includes reflecting, diffracting, and the surface wave components. For 

initializing MoM approach, one usually uses the principle of ―Huygens‘s equivalence‖ [74], 

where the outside medium parameters are replaced with the object ones and then employ the 

current densities of the equivalent fields (electric and magnetic) on the surface. Because of PEC 

assumption, the tangential component of Etangential equals zero on PEC surface, resulting in Ms = 

0. Eventually, Js is only the parameter that produces the scattering fields. Therefore, we just 

concentrate on the boundary where Etangential = 0; it concludes n×(E
s
due to Js + E

i
) = 0. To complete 

the approach, Maxwell‘s equations should be expressed in terms of E
s
 involving the integration 

of Js leading to a Fredholm integral equation. The Fredholm integral equation is generally 

described as:  
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where H0
(2)

 is the second kind of Hankel function with zeroth-order and Ez is the electric field 

and arisen due to Jz = I×δ(r-r’), and k
2
 = ω

2
µε. Also, I is the current amplitude, and (r-r’) denotes 

the distance between source and observation points in space. To apply the MoM approach, it is 

necessary to re-express Helmholtz as a Fredholm integral form. Then, applying the boundary 

condition of the tangential field is a necessary case. In other words, if the observation point is 

moved on the PEC surface and apply the boundary condition, it leads to Ez
s
 + Ez

i
 = 0 on the PEC 

surface. Thus, for observation point r on the PEC surface, the 1
st
 kind Fredholm integral equation 

is expressed as: 
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where Jz(r) is the unknown quantity and Ez
i
(r) is the known defined in this study as Ez

i
(r) = e

-jk.r
. 

After that, one can use the traditional MoM approach to calculate Jz(r). However, we don‘t 
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follow the classical approach, and instead, Jz(r) is initially expressed as the current density 

operator in terms of the quantum state and substitute it into the classical MoM, and then calculate 

the parameters. The electrons as quantum particles produce current due to their motion. From the 

quantum point of view, the form of the wave function that describes the state of the particle 

(electron or photon) defines the associated currents. Therefore, one can define quantum operators 

to determine the current. It is the quantum motion of the charge that handles charge current, and 

that motion is probabilistic in quantum mechanics. The main idea is to find a probability current 

when a wave function satisfies the Schrödinger equation based on the related Hamiltonian 

[16,17]. For an electron, the related electrical charge density, ρe, should satisfy the continuity 

equation to conserve the charge. It is formulated for an electron as: 
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where r denotes position. Based on the ―Schrödinger equation‖ jℏ(∂Ψ/∂t) = ĤΨ, where ℏ and Ĥ 

are the Planck‘s constant and Hamiltonian, the wave function Ψ(r,t) is an energy eigenstate of the 

Hamiltonian. Moreover, the squared wave function gives the density of probability as ρe = e|Ψ|
2
, 

where e is the electron charge. By substituting ρe into Eq. 5.27, it becomes [69, 72]: 
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Using the nonrelativistic Hamiltonian as Ĥ = (1/2m) [p-eA(r,t)/c]
2
 + eφ(r,t), where m, c, p, A, 

and φ are quantum particle with mass m, speed of light, momentum operator, vector potential, 

and scaler potential, respectively. The bold alphabets are used to denote the operator. In the 

Hamiltonian defined above, the vector potential A and φ seem to be real because they describe 

the real electric and magnetic field. To simplify the calculation, it defines a new operator called 

kinetic operator as π = p-eA(r,t)/c. From quantum mechanics, the momentum operator is defined 

as p = jℏ , then the new operator re-expressed as: π = jℏ[ -j(eA(r,t)/ℏc)]. By substituting Ĥ in 

Eq. 5.28, it can be re-introduced as [69, 72]: 
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        (5.29) 

From Eq. 5.29, one can derivate the momentum current and gauge current density. The former 

one depends on 2 , while the latter one depends on –j( (eA(r,t)/ℏc)- (eA(r,t)/ℏc) ). In this 
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study, for simplicity, the momentum current density is just considered and ignore the other. The 

momentum current density is given by: 
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                  (5.30) 

Using Eq. 5.30, the classical MoM approach is modified based on the density current operator 

substituted rather than the current average. With replacing the current density average with the 

current operator, Eq. 5.26 is re-expressed as: 
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where Ψ(r) can be generally defined as Φ(r)e
(jk.r)

. Eq. 5.31 shows the quantum effect in the 

Fredholm integral in which the momentum operator is initially applied on quantum wave 

function and then times to conjugate of the same quantum wave function. Finally, the real part of 

the result is taken into account. According to the MoM approach, it needs to present Φ(r) as a 

weighted sum of the basic functions Φ(r,t) = ∑ n = 1
N
 CnFn(r), where Fn(r) is a basis function and 

Cn is an unknown quantity used to calculate the current density. By substituting the expanded 

form of Ψ(r,t) in Eq. 5.31, the final version of the equation becomes:  
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where ∆Cn is the length of line segmentation usually approximated by ∆Cn <= λ/10. Choosing 

Delta Dirac function as a weighting function wi(ri) = δ (r-ri), Eq. 5.32 is re-formed as: 
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Eq. 5.33 is the new version (called QMoM) of the MoM presented in the classical picture in Eq. 

5.26. From Eq. 5.33, N equations are established for the considered weight function. With N×N 

matrix construction as [A]nn[Cn]n1 = [bj]n1, Cn are calculated and with replacing in Φ(r,t) = ∑ n = 

1
N
 CnFn(r), the current density is estimated. Solving unknown coefficients Jz distribution using 
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the matrix system, the scattered field is calculated using Eq. 5.25 to RCS estimation. In fact, the 

same approach is used to analyze the RCS through the newly established numerical method. 

In the following part, the simulation results of the quantum radar employing different converters 

such as opto-mechanic, optoelectronic, and also the results associated with the QRCS are 

presented. 
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6. RESULTS AND DISCUSSIONS 
The quantum radar analyzed and designed in the latter part is simulated employing both electro-

opto-mechanical and optoelectronic converter, and also the results of the QRCS will be presented 

and discussed. 

 

6.1. Quantum radar utilizing Electro-Opto-mechanical converter  

Since mentioned earlier, preserving the entanglement between the photons before detection and 

the optical photons kept in the lab (retained and returned modes) is the primary purpose of this 

study. Thus, it is necessary to study the non-classicality of the modes in quantum radar illustrated 

step-by-step in Figure 3.1. The designed converter simulation is done based on data in Table. 1.  

Firstly, the simulation results of the intra-cavity modes are illustrated in Figure 6.1 and Figure 

6.2. Figure 6.1 demonstrates the entanglement between the considered modes around Δω/ω ~ 0 

as system uses opto-mechanical converter (λc = 808 nm, m = 18 ng, γm = 120 1/s). It reveals that 

if the entanglement is created between microwave cavity and optical cavity photons, then it has a 

necessary condition to transmitting the MC output photons in the atmosphere.  

Table 1. Parameters of quantum radar‘s opto-mechanical converter operating at L-band (1.5 

GHz) [12, 19, 23] 

αc [0. 025-0.26] 

λc 808×10
-9

  m 

γm 120 Hz 

m [18-22] ×10
-9

  g 

L 15×10
-12

 H 

κc [0.01ωm-0.03ωm] 

κω [0.01ωm-0.03ωm] 

ωm 2π×10
6
 Hz 

C(x0) 590×10
-12

 F 

Cd 20×10
-12

 F 

Pc 30×10
-3

 W 
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Figure 6.1. λSPH vs. ∆ω/ω, cavities modes entanglement at T = 200 mK. 

 

For a quantum radar application, it is necessary to investigate some critical parameters 

influencing on the cavity modes entanglement to improve the converter performance. The effect 

of the designed opto-mechanical crucial parameters as the damping rate of MR, the operational 

temperature, and incident wavelength to excite the OC are explored on the entanglement of the 

cavity modes. The operational temperature effect of the opto-mechanical converter (i.e., 

temperature that the converter system works with) is shown in Figure 6.2a. It is clear that 

increasing converter operational temperature cause dramatically reducing the modes 

entanglement. The graphs related to the 200 mK and 300 mK can be seen in detail in an 

exaggerated inset figure. It is found that the main reason to confine the electro-opto-mechanical 

converter temperature is MR cavity operational frequency. In this converter, MR modes oscillate 

around ωm = 2π×10
6
 Hz; from Eq. 4.8, it is clear that the high noise is dominant at a relatively 

low frequency. Therefore, it is found that the MR system is a critical case that dominantly 

confines the tripartite system to operate at high temperatures. In fact, it was considered as a 

factor to improve our design in the optoelectronic-based quantum radar based on removing the 

MR subsystem. Of course, some different approaches are used to solve the problem. One of the 
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suggesting methods is engineering the frequency bandwidth [21, 22] and the other method is MR 

substituting with the optoelectronic device operating at high frequency [12, 23]. However, since 

the MR subsystem is used in the quantum illumination system, it enforced to confine the 

operational temperature below 1200 mK to preserve the entanglement. Additionally, the other 

critical factor is excitation source wavelength that can affect the entanglement. As shown in 

Figure 6.2b, incident wave wavelength changing leads to a change of the entanglement. This 

figure again proves that at high frequency, the effect of environmental noise is negligible. So, by 

increasing the wavelength up to 808 nm, the graph shows a tendency toward modes separability. 

It is attributed to the effect of the thermally excited noise on output modes entanglement. Also, in 

Figure 6.2c, the effect of the MR damping rate is investigated on the OC and MC cavity modes, 

and the result reveals that the more increase in damping rate leads the more increase in the 

separability of the modes. This is related to the OC and MC cavities coupling, and this factor is 

effectively manipulated by MR damping rate. To profoundly understanding the point, one can 

consider the result illustrated in Figure 6.2d. This figure clearly shows that MR damping rate 

increasing causes to kill the entanglement which is due to the decrease of the coupling between 

MR and OC cavities.  

 

Up to now, the entanglement between modes of the opto-mechanical converter is just noticed. 

Following the external medium, effects are considered, and their effects are applied on the 

entanglement between modes transmitting through the mediums. We again come back to the 

figure illustrated in Figure 3.1 for entanglement property studying. The general data for all 

simulation in this section are listed as ―T = 200 mK, R = 10 km, λc = 808 nm, m = 18 ng, γm = 

120 1/s, κa = 8.7 1/m, κatm = 5.2×10
-7

 1/m, κt = 18.2 1/m‖. First of all, quantum radar operation 

emphasizes studying the OC and MC modes entanglement illustrated in Figure 6.3a. 

Subsequently, the system uses an active medium to amplify the MC modes.  Figure 6.3b (solid 

line) shows the entanglement distortion by the active medium effect. It is contributed to the real 

medium effect to increasing the entanglement fragility. In other words, any real medium can 

strongly affect the non-classicality of the modes, whereas an active medium has been classically 

used to amplify the signals but not to boost the entanglement. In other words, the active medium 

amplifies the signals; nonetheless, the intensification of entangled photons remains critical. 

Sequentially, the lossy medium effect is investigated, and the result is depicted in Figure 6.3b. 
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Comparison between results (solid- and dashed-lines) indicates that the modes separability are 

dramatically increased due to the attenuation medium. Therefore, one can conclude that the 

different parameters of the attenuation medium, such as (temperature, pressure, and so on) [30], 

which are not controllable, can easily kill the quantum property considered an essential factor for 

a quantum radar. It should be noted that there are no controls (i.e., degrees of freedom) on the 

atmosphere and its effect on modes, whereas, in the previous step, one could engineer, for 

example, the active medium length and materials to manipulate the effects. It indicates that one 

should focus on the tripartite and active medium subsystems to create some robust signals. 

Finally, the scattering effect from a target is studied. A completely flat target madding 

Aluminum is used. The simulation result is shown in Figure 6.3c. The reflected signal‘s 

amplitude is dramatically decreased due to the target material attenuation factor. However, the 

output modes remain slightly entangled around Δω/ω ~ 0. Nonetheless, it is predictable that a 

target with different materials and shapes can distort the modes entanglement. It means that RCS 

affecting parameters can distort the entanglement in the quantum radar. 

 

In the following, the signals reflecting from the target experience the influence of the attenuation 

medium one more time, and then the modes are intensified before returning signal detection. The 

mentioned effects are depicted in Figure 6.3d. It is clearly shown the entanglement between 

returned and retained modes before the detection. That is an impressive achievement the study is 

expecting for it. It is noteworthy to mention that the results were attained for the ideal conditions. 

Therefore, for a better examination, it should apply some actual conditions and then evaluate the 

performance of the design.    
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Figure 6.2. λSPH vs. ∆ω/ω, OC and MC modes entanglement (a) Temperature effect and (b) 

incident source wavelength effect, and (c), (d) study of the effect of the MR 

damping rate. 

 



 

86 
 

 

Figure 6.3. λSPH vs. ∆ω/ω for different modes entanglement at different level of a typical 

quantum radar at R = 100 km. 

 

So far, it is supposed that the Cs and qs in Eq. 4.5 were real and studied the system for an ideal 

condition. It seems a sufficient assumption regarding the section of the phase references [19]. 

Nevertheless, it is necessary to apply the dielectric constant imaginary part effect as a critical 

parameter affecting a real system design. Thus, the constants Cs and qs are supposed as the 

complex numbers. The entanglement created mainly around Δω/ω ~ 0 is shown in Figure 6.4a. 

Also, the resonance at some off-detuning frequencies is shown. As a predictable case, the result 

illustrated in Figure 6.4a demonstrates a difference in comparison with Figure 6.3a. It is due to 

the effect of the imaginary part of Cs and qs ignored in the previous section. As the next step in 

quantum radar, the entangled photons have to experience some steps as follows: amplification by 

an active medium, propagation through a lossy channel as atmosphere, reflection from a target, 
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backscattering into the atmosphere again, and then amplification before detection (Figure 6.4b). 

Also, the constants Cs and qs are supposed to be complex. From Figure 5.8b, the microcavity 

signals entangled with OC modes are intensified, indicating with solid black-line in the figure 

showing that the entanglement between modes is largely killed due to the medium effect. Also, 

the microwave photons started to strongly oscillation at Δω/ω ≠ 0. This indicates that the active 

medium severely distorts the correlation between modes; nevertheless, it helps to intensify the 

level of the signals to avoid the background noises. After that, the entanglement behavior of the 

modes is distorted because of the attenuation medium effect, and this is indicated with a dashed 

black-line in the figure. In other words, lots of propagating photons lose non-classicality due to 

the real medium effect. Then the attenuation medium output photons interact with a target 

causing to kill some more reflecting photons (dotted black-line). For better presentation, the 

important section of the figure is exaggerated and indicated with a red-dashed arrow. The back-

scattering signal oscillation with minute amplitude is interesting to note about it. Finally, the 

returned photons before detection are indicated with the blue line in the graph. There is a slight 

similarity between the blue-colored signals (returned signals) with the transmitting signal (solid 

black-line). This is contributed to the target reflection effect and also the impact of the 

attenuation medium factors, including the length of the atmosphere and attenuation factor of the 

medium on the signal.  Thus, to know how a real medium such as the atmosphere can affect the 

entanglement, some simulations are accomplished and the results completely analyze the effect. 

The atmosphere channel effect on the entanglement is investigated, and Figure 6.4 and Figure 

6.5 demonstrate the results. In Figure 6.5, the channel length is decreased to 10 km. The result 

shows that the entanglement (blue-color graph) is preserved even if κatm is drastically increased. 

For better illustration, one can consider an inset figure depicted on the right-hand side of Figure 

6.5. This figure clearly demonstrates the reflecting signals (dotted-line), propagating signal 

(dashed-dotted line), and intensifying signal (blue solid-line) before detection.  
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Figure 6.4. λSPH vs. ∆ω/ω, entanglement between modes at different level of a typical 

quantum radar for κa = 10.7 1/m, κatm = 20×10
-7

 1/m, R = 100 km. 

 

 

Figure 6.5. λSPH vs. ∆ω/ω, entanglement between modes at different level of a typical 

quantum radar for κa = 10.7 1/m, κatm = 100×10
-7

 1/m. 
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To confirm the points mentioned above, a few other simulations are accomplished with different 

temperatures at 500 mK (Figure 6.6) and 1500 mK (Figure 6.7). At each figure, the entanglement 

behavior is dramatically changed at on-detuning frequencies as compared to Figure 6.5. Those 

figures also demonstrate a separable state at off-detuning frequencies. Nonetheless, it is forcing 

to focus on a very narrow band of frequency around on-detuning frequencies Δω/ω ~ 0 to 

effectively preserve the entanglement. Fortunately, the results are appeared to be so different 

close to the on-detuning region shown in Figure 6.6 and Figure 6.7. The effect of different 

mediums on the entanglement is clearly demonstrated in inset figures. The results indicate that 

temperature increasing up to 1500 mK leads to a slight deformation of the detecting signal (solid 

blue-line) because of the medium effects; however, the entanglement between modes is still 

slightly maintained. Also, it is shown that the incident photons mostly missed the related 

entanglement, meaning that it has to be to consider only the classical correlation among photons 

after entanglement‘s miss. The latter conclusion suggests that the entangled transmitting photons 

will be largely killed in a real system. This can be because of the uncontrollable atmospheric 

conditions, target shape effect, target material type effect, incident angle, target‘s reflection and 

diffraction angles, the noise effect of the receiver and transmitter, and the idler photons 

degradations. In order words, in a real system, many parameters can distort the entanglement 

between photons. Of course, it should be noted that the fragility of the entangled photons is the 

main reason which makes the photons so vulnerable to the real medium effects. That is why 

quantum radar design is so challenging than the classical radar system. In the classical radar, the 

main point is to keep the signal-to-noise ratio high, acceptable level, while in the quantum radar 

system, besides that, we should pay special attention to the correlation between the received 

photons. Another challenging point about the quantum radar is that one has to just focus on the 

tripartite system and active medium to make a robust entanglement, while other real mediums 

are not accessible either to manipulate or to control, rather than they originally disturb the 

correlation between photons. In the latter part, the effect of the tripartite system is shortly 

discussed on the entanglement. Also, one examines the effects of the active medium; it is 

because the active medium is a case that one can manipulate its characteristics to get the best 

results. It has been concluded that real mediums such as atmosphere and target reflection can 

strongly distort the ―phase estimation errors‖ and ―phase responsivity‖ [1, 4].   
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Figure 6.6. λSPH vs. ∆ω/ω, entanglement between modes at different level of a typical 

quantum radar for T = 500 mK, κa = 10.7 1/m, κatm = 100×10
-7

 1/m. 

 

From the classical radar operation, it is found that the active medium (transmitter) is an 

indispensable part of a quantum radar. By ignoring the active medium effect (zero gain), the 

phase estimation errors can close to the ―Heisenberg limit‖. Nonetheless, the entanglement 

between modes is strongly affected through nullifying the gain of the active medium; this is a 

trade-off between entanglement enhancing and approaching the Heisenberg limit. Now, the main 

question of this study is recalled which is how the entanglement sustainability can be satisfied? 

To answer the questions, some simulations are conducted and depicted in Figure 6.8. Figure 6.8a 

shows the entanglement between the opto-mechanical converter cavity modes around Δω/ω ~ 0. 

To know about the active medium in quantum radar, the MC output photons are transmitted in 

the atmosphere without any amplification. First of all, the impact of the transmitting channel is 

investigated. Figure 6.8b clearly demonstrates the attenuation medium dramatic effect on the 

entanglement, and also due to that fact, the detected modes (solid-blue) become entirely 

separable. In fact, most of the transmitted microwave photons entangled with optical cavity 

photons lose the entanglement. For better understanding, the results of Figure 6.8b with Figure 

can be compared.  
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As a significant result, one should note that the simulations in Figure 6.8b clarifies a trade-off 

existed between the improvement of the estimation errors and entanglement. If one pays 

particular attention to catch the Heisenberg limit by nullifying the active medium gain, it will 

effectively lose the entanglement and vice versa. It is a critical point that any quantum radar 

designer should delicately consider.  

 

Figure 6.7. λSPH vs. ∆ω/ω, entanglement between modes at different level of a typical 

quantum radar for T = 1500 mK, κa = 10.7 1/m, κatm = 100×10
-7

 1/m. 

 

 

Figure 6.8. λSPH vs. ∆ω/ω, entanglement between modes at different level of a typical 

quantum radar for T = 1500 mK, κa = 0.0 1/m, κatm = 100×10
-7

 1/m. 
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6.2. Optoelectronic based quantum radar 

After a discussion about the opto-mechanical based quantum radar results, in this section, the 

emphasis is laid on the optoelectronic quantum radar. It was shown that MR was a critical 

subsystem by which some crucial issues arose, and that was why the latter version of the 

quantum radar couldn‘t work well. Also, due to that subject, we had to use the active medium to 

intensify the signals before broadcasting into the atmosphere. Even though using an active 

medium helps to enhance the signal level, but it, in essence, add some noises to the signals that 

can disturb the correlation between modes. It means that adding an active medium to the system 

helps to enhance the signal classically. Nonetheless, it was shown that the backscattering 

photon‘s entanglement was completely disturbed without the active medium. Thus, since 

theoretically demonstrated in section 5.2, the design is completely changed in which the MR 

subsystem was entirely ignored. Rather than, the optoelectronic-based subsystem is utilized to 

drive make the optoelectronic quantum radar. In the following, the simulated results associated 

with that design will be presented.      

The data given in Table. 2 used to simulate the typical quantum radar shown in Figure 4.9. 

Firstly, temperature as one of the critical parameters affecting the operation of the converter 

modes entanglement is analyzed. The entanglement between cavity modes ac and cω and also the 

transmitting and receiving modes ac and cb are examined for MC-PD coupling factor µc = 0.0002 

and Dtd = 20 m where Dtd is transmitter-detector distance. Figure 6.1 demonstrates the results of 

the entanglement between cavity modes (2η) depicting versus the detuning frequency of PD. It is 

demonstrated in Figure 6.9a that the cavity modes preserve entanglement even though the 

temperature Tc is increased up to 2500 mK. This is an astonishing result and remarkable 

compared to Figure 2 of [14] and Figure 2a of [15] that create entanglement between microwave 

photons at too limited temperatures such as 15 mK and 30 mK, respectively. The mentioned 

references [14, 15] have used the electro-opto-mechanical converter to produce the entanglement 

between microwave photons. The electro-opto-mechanical converter problem to operate at high 

temperatures originates from the mechanical oscillator operating at low frequency. The lower 

frequency operating results in the higher generating thermally excited photons through which the 

entanglement is profoundly affected. Since the entangled photons generating by MC are sent in 

the atmosphere for target detection, one cannot manipulate the atmosphere to subside the lossy 

medium effect. The lossy medium and target reflection effects are theoretically formulated in 
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Eqs. 4.38 and 4.39, and also the simulation results are depicted in Figure 6.1b. Regarding theory 

estimation, the returned field entanglement is completely killed and becomes separable at 

temperatures such as Tc> 1000 mK. For Tc<~ 500 mK, in contrast, the modes remained 

entangled, suggesting that the newly designed optoelectronic converter operates well with 

respect to the latter converter utilizing the mechanical part [14]. The atmosphere and 

backscattering from the target are uncontrollable manners. Nonetheless, it is possible focus on 

the design of a suitable converter (Figure 4.9a) operating safely at high temperatures and creating 

entangled photons. Utilizing a new approach, it seems possible to severely decrease the 

atmosphere and target scattering harmful effects to partially enhance the entanglement.  

Table 2. Parameters for Quantum radar‘s optoelectronic converter operating at S-band (2.7 GHz) 

[14-15], [23-27] 

vd 0.1 mV 

µc 0.0002  

m0 9.109383×10
-31

 Kg 

meff 0.45m0 

κc 0.08ωref 

κω 0.02ωref 

ωref 2π×10
6
 Hz 

Pc 30 mW 

 

The coupling factor of MC-PD gωp manipulating by µc can be considered as a critical factor in 

designing such a system to operate at high temperatures. An important note about this factor gωp 

is that it can be controlled by different parameters in the system such as d, meff, ωω, and ωeg. 

Some simulations have done to study ac and cω entanglement at Tc = 5000 mK, shown in Figure 

6.10. The results show that the idea works well in which the entanglement between modes is 

improved in amplitude because of the MC and PD coupling factor increasing. The coupling 

factor mentioned above as critical to engineer the optoelectronic converter creates an ignorable 

difference between this converter and others [14-15], [23], [27]. So, it can give an unavoidable 

glue in the converter designing when one compares the results of Figure 6.10 with Figure 2 

shown in [14]. In the latter work, the operational temperature is confined to T = 15 mK, and also 

with a coupling factor around µ = 0.013, the entanglement is created. In contrast, in the former 
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one the entanglement is produced for µ = 3.09×10
-4

 at 5000 mK. The important region of Figure 

6.10 is zoomed in for better presentation and depicted as an inset figure. Eventually, it is found 

as an important conclusion that the optoelectronic converter as a new design in contrast to the 

electro-opto-mechanical converter can preserve the entangled states since the operational 

temperature is increased. Thus, it is shown using simulation results that the entangled photons 

generating at a higher temperature lead to significantly alive the entanglement at different levels 

of quantum radar. In a simple word, the entangled photons generation at high temperature 

guarantees the returned signals non-classicality.    

 

Figure 6.9. (2η) vs. Detuning frequency (∆eg), a) ac and cω, b) ac and cb. 
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Figure 6.10. (2η) vs. ∆eg, MC-PD coupling effect at Tc = 5000 mK. 

 

The transmitter-detector (Dtd) distance is another vital parameter studied in this dissertation, 

shown in Figure 6.11. According to the theoretical formula expressed in Eqs. 4.38 and 4.39, 

increasing Dtd leads to an increase of the thermally excited photons. This eventuates to 

entanglement disturbing between modes. Moreover, as Dtd is increased to 2000 m, shown in 

Figure 6.11d, the entanglements between all modes entirely leak away, and the photons before 

detection become separable. This is attributed to the thermally excited photons and noise effect 

on the fragility of the entangled states. Losing all of the non-classicality of the photons before 

detection suggests that the designer has to study the quantum correlation between signals 

(retained and returned) rather than the entanglement. The returning signal entanglement with the 

idler is mostly lost due to the propagation loss and target scattering effects. In the following, the 

results contributed to the optoelectronic converter are illustrated, and these results are definitely 

regarded as a chief contribution of the new design to generate the entanglement used in quantum 

radar application.     
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Figure 6.11. (2η) vs. ∆eg, a) Dtd = 2 m, a) Dtd = 20 m, a) Dtd = 200 m, a) Dtd = 2000 m, for µc = 

0.0002, Tc = 1000 mK. 

 

The foundation of this dissertation, as the main aim, emphasizes the design of an optoelectronic 

converter to preserve entanglement between modes, even though the operational temperature is 

increased. Therefore, it is specifically focused on the MC-PD coupling factor engineering to 

manipulate the entanglement. Figure 6.12 shows that all modes become separable by increasing 

Tc around 3500 mK for a weak coupling between MC and PD cavities. As an important point to 

design a suitable system, it should be noted that the entanglement between ac and cω is directly 

affected by MC-PD coupling factor. Thus, it is clear that the retained and returned fields non-

classicality can be manipulated as a robust functionality based on the mentioned coupling factor. 

To prove the latter mentioning point, one can pay special attention to the results illustrated in 

Figure 6.13, in which the simulations were done in the same condition with Figure 6.12 except 



 

97 
 

µc to controlling the coupling strength. According to results illustrated in Figure 6.13, the 

entanglement is partially preserved between ac and cb at a very high temperature up to 50 K. This 

is contributed to the unique design of the optoelectronic converter. The enhancement of the MC 

and PD coupling factor may generate so strong non-classicality correlated photons even though 

the propagation inside the real mediums can slightly affect them and cannot kill all of the 

entanglement between photons. Thus, as a short conclusion, the returned modes non-classicality 

maintaining is strongly dependent on the conditions that MC modes are created to be entangled 

with the optical cavity photons. If the MC photons entanglement with OC mode is accomplished 

at a very high temperature, then the retained (idler) and returned modes remained entangled.    
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Figure 6.12. (2η) vs. ∆eg, a) Tc = 500 mK, a) Tc = 1000 mK, a) Tc = 1500 mK, a) Tc = 3500 

mK. 

 

A dashed circle is used in Figure 6.13 to clarify the region that the photons remained entangled. 

Also, for a clear presentation, a few crucial regions of the figure are exaggerated and depicted as 

an inset on the main figure. Figure 6.13 shows that it is possible to create the entanglement 

between modes at a high temperature around 5 K. Nonetheless, it doesn‘t mean ignoring the 

effect of the optoelectronic converter as an efficient system to create robust non-classicality for 

the photons at high temperatures. Another important point in the design of the optoelectronic 

converter is MC and PD coupling factor, which is entirely different than the electro-opto-

mechanical converter [14-17]. The latter converter is designed regarding the change of the 

capacitor‘s layer distance. That has been done by applying the optical pressure from the optical 

cavity. In contrast, in the optoelectronic converter, the depletion layer gap‘s width of VD 
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introduces the capacitance. The depletion layer width changing because of the photocurrent 

flowing leads to shifting µc, which affects the drop voltage across VD. In this procedure, the MC 

and PD coupling factor µc is implicitly manipulated via OC modes. While in the traditional 

converter, it is optical pressure generating by OC that plays the prominent role to displace the 

capacitor‘s electrodes to manipulate the MC cavity resonance. The mechanical part in the system 

limits the operational frequency because the injecting noises because of thermal effect as a 

crucial factor confines the operational temperature [14-17]. The other significant point studied in 

this work is the role amplifier or active medium before the signal propagation in the atmosphere. 

It is clear from the simulation results that increasing Dtd destroys the entanglement between 

modes. This is attributed to the fact that in the new design, there is no active medium to amplify 

the signals. It is because the entangled photons amplification to produce more photons entangled 

with the origin ones is a crucial task [16,65]. The task is so challenging because the amplifier 

stage can easily kill the entangled photons. So, it is deliberately preferred to design a typical 

quantum radar without of amplifier.  
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Figure 6.13. (2η) vs. ∆eg, a) Tc = 5 K, a) Tc = 15 K, a) Tc = 50 K, a) Tc = 150 K. 

 

6.3 Quantum Radar Cross-section 

In the previous section, the electro-opto-mechanical and optoelectronic converters are discussed 

to produce the entangled photons. Also, the trade-offs in the systems are studied by which the 

designed converters can enforce to the system and consequently introduce a suitable system. This 

section aims to raise the associated results to the radar cross-section calculated with a new 

method compared to the classical ones. In other words, we want to discuss the QMoM method 

specifically introduced briefly in the previous section (5.2). To examine QMoM and also to 

answer an important question that can QMoM do in the same way as MoM, a metal plate with 

1m×1m illuminating via an incident field is supposed and illustrated in Figure 6.14a. To testify 
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QMoM results with MoM results, a simple geometric shape is selected [69]. Also, there are some 

numerical and theoretical modeling results of RCS calculated for a metal square plate [69, 70]. 

Figure 2.2b reveals the main lobe increase of QMoM beside the side-lobe. This figure 

demonstrates the RCS calculated by MoM and QMoM for the considered geometry at f = 1.2 

GHz and θi = 0, φs = φi = 0. The difference between two methods indicated in the figure by a 

dashed circle showing the main lobe enhancing as well as the side-lobe. This means that the 

main lobe improvement could not be predicted by QRCS. We think that this fact is arisen 

because of the difference between Ψc(∆R,t) and Ψd(∆R,t). It was discussed in detail in the 

previous section. Also, in QMoM, the current quantization derived in Eq. 5.30 has a critical role 

that can strongly affect the results. The current density operator expressed in Eq. 5.30 causes the 

wave function imaginary part effects besides its real part.  

 

 

Figure 6.14. Square plate geometry and the illumination of the microwave photons with angle 

θi, φi and scattering angle θs, φs. ∆Cj stands j
th

 unit of the segmentation used in 

MoM; b) QMoM and MoM comparison for the calculation of RCS of 1m
2
 

rectangular target illuminated at f = 1.2 GHz and θi = 0, φs = φi = 0.. 

 

As a routine approach to certify the QMoM with respect to MoM, the effect of some parameters 

are investigated on RCS, such as frequency of the incident wave, the incident wave angle, and 

target geometrical shape. It is shown in Figure 6.15 that by frequency increasing, both the main 

lobe peak and the nodes number of the interference pattern are increased accordingly. In order to 
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show the frequency increasing effect on the main lobe, the related part of the figure is 

exaggerated and illustrated as the inset figure. It is shown that by increasing frequency, the 

amplitude of the main lobe is increased, and according to MoM approach, increasing the 

frequency enhances the main lobe amplitude; thus, QMoM operates in the same way as MoM 

when the frequency is changed. The comparison between the results of the standard method like 

MoM with QMoM satisfies the calculation accuracy of the new approach.  

 

For further study about the QMoM approach, the incident angle effect on RCS are investigated at 

f = 1.2 GHz, φs = φi = 0. Similar to RCS and QRCS, as the incident photon deviates from the 

normal incident angle θi = 0, the attributed scattering main lobe shifts from the normal position. 

This point is studied, and the simulated results are depicted in Figure 6.16. These simulation 

results are in agree with RCS and QRCS results [44, 68-69]. 

 

Figure 6.15. Frequency effect in QMoM approach on RCS vs pitch angle changing (θs) at θi = 

0, φs = φi = 0. 
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Figure 6.16. Incident angle effect in QMoM approach on RCS vs pitch angle (θs) at f = 1.2 

GHz, φs = φi = 0. 

 

Figure 6.17. Intercepted Shape effect in QMoM approach on RCS vs pitch angle (θs) at f = 1.2 

GHz, θi = 0, φs = φi = 0. 
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Finally, the geometrical shape effect on RCS using with QMoM approach is studied, and the 

results are depicted in Figure 6.17. It is shown that by changing the target shape in terms of 

incident angle, the RCS profile is significantly altered, and the main lobe amplitude is changed. 

By decreasing the width, e.g., 0.5m×1m and 0.2m×1m, as shown respectively with red dashed 

and red dashed-dotted in the figure, the main lobe amplitude is severely increased. In other 

words, it operates like increasing the incident frequency that means the related wavelength has to 

be decreased. In contrast, by reducing the length, e.g., 1m×0.5m and 1m×0.2m shown 

respectively with blue dashed and blue dashed-dotted, with respect to θi = 0, the magnitude of the 

RCS is significantly decreased. It acts as the incident frequency decreasing or increasing the 

associated wavelength. As an important point, it is interesting to note again that QMoM has 

perfect harmony with MoM analyzing method, which suggests that the theory behind it works 

well. Nonetheless, it indicates the main lobe enhancing in RCS that has not been predicted by the 

QRCS. That is an astonishing point about this study that increases the popularity of the QMoM 

analyzing method. So, here, it is possible to conclude that the RCS calculation by canonical 

quantization methods is a perfect method than the dipole approximation, and also QMoM can be 

employed rather than the classical MoM to calculate and analyze the RCS.   
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7. CONCLUSIONS 

 

 

In the last part of this dissertation, a short conclusion about the designed converters, electro-opto-

mechanical and optoelectronic, and also RCS calculation using quantum theory is presented as 

follows.    

 

First of all, a quantum radar with a traditional electro-opto-mechanical converter operating at L-

band (MC output resonance frequency is around 1.5 GHz) is theoretically designed to study the 

behavior of the entanglement at the different stage of a quantum radar, such as the generation of 

entangled photons, intensification of entangled photons to produce more photons, propagation of 

the microwave entangled photons, and finally the target reflection. As a common point, it is 

obvious that a quantum radar advantage is due to the utilization of entangled photons. 

Nonetheless, it had been proved that the entangled states are so unstable and can be easily 

broken. For this reason, the entanglement behavior as a major purpose of the study is thoroughly 

examined. Firstly, an electro-opto-mechanical converter is designed using the canonical 

conjugate method, and all of the contributed theory was derived. It is shown that the modes of 

the optical and microwave cavities remained entangled for such a design. After this, the 

microwave cavity photons (entangled and separable photons) experience the effect of the active 

medium, then propagate inside the atmosphere channel, and finally endure the reflection from 

the target. The effects of the different mediums listed above are theoretically studied using the 

QED theory. The results demonstrate the entanglement sustainability through engineering the 

system. It is contributed to the utilization of the active medium that was used in the system. In 

fact, in the design of the electro-opto-mechanical converter, it is supposed that the active medium 

could amplify the entangled photons while preserving entanglement. Also, the effect of the 

mechanical cavity damping rate, atmosphere channel-related absorption and scattering 

coefficient, and system operational temperature are studied on entanglement behavior between 

modes. As an interesting result, if the electro-opto-mechanical converter operational temperature 

is limited to around 200 mK, and with the assumption of a bad atmospheric condition with 

contributed coefficient κatm = 20×10
-7

 1/m, the returned photons from a target at R = 10 km 

exhibit slightly the entanglement. However, the entanglement between the incident and 
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backscattering photons is completely lost at other frequencies. It is noteworthy to mention that 

the active medium has a critical effect on entanglement conservation. It is shown that without the 

active medium in the system, the entanglement between modes is completely lost. Another 

critical point about the designed quantum radar with electro-opto-mechanical converter was the 

operation of the converter at very low temperatures, e.g., 30 mK.  It is contributed to the 

mechanical part that the converter used to couple the OC to the MC. To solve the temperature 

problem of the latter mentioned design, another converter is proposed and called ―optoelectronic 

converter‖ replaced rather than the mechanical part.  

Thus, a new quantum radar utilizing an optoelectronic converter to create the entangled photons 

is theoretically designed, modeled, and analyzed. In this design, the MC frequency of the 

optoelectronic converter is increased to 2.7 GHz, and it is because we mainly concentrated on 

limiting the thermally excited photons generated in MC. The latter mentioned converter as a 

significant part of the designed quantum radar operating at S-band was analyzed using the 

―canonical quantization method‖. This method gives some degrees of freedom to manipulate 

every quantity in the system, such as MC and PD coupling. This gives some abilities for the 

system to preserve the entanglement behavior. Additionally, applying this approach actually 

answers one of the main questions of this dissertation that is: ―which parameter specifically 

subsides the temperature effect on the entanglement between retained and returned modes‖. 

Using the new converter, it is shown that it is possible to effectively decrease the temperature 

effect on the cavity modes entanglement by engineering the MC and PD coupling factor. 

Accordingly, the returning modes non-classicality is preserved at some detuning frequencies 

meaning the entanglement between returned and retained modes when the temperature is raised 

around 5000 mK. The modes remain entangled even though the returned signals experienced the 

atmosphere channel loss and additionally the loss related to the target scattering. This is an 

interesting result in the field of quantum radar that the retained modes non-classicality is 

indispensably dependent on the conditions associated with the optoelectronic converter. In other 

words, if the entanglement between cavity modes into the converter is created at a very high 

temperature, the probability of the retained (idler) and returned modes entanglement is strongly 

increased. As the most important and remarkable achievement of this thesis, it is notable to 

mention that the entanglement establishing at high temperature is accomplished just by utilizing 

the optoelectronic subsystem.  
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After investigating the quantum radar and the associated converters, also full quantum theory is 

studied to calculate the RCS. In fact, RCS is calculated using the ―canonical quantization 

method,‖ seeming that it is a more complete theory than the ―dipole approximation method‖. The 

emphasis is laid on making a comparison between two theories to calculate the RCS. Some 

similarities between two approaches are found; nonetheless, some key factors were ignored since 

the ―dipole approximation method‖ is applied. The significant dissimilarity between two 

quantum-based approaches is issued due to the interaction Hamiltonian. In the interaction 

Hamiltonian, the coupling factor derived by two approaches creates a considerable difference 

between two methods. To make a clear comparison between methods, RCS is calculated in the 

same conditions by the approaches. The simulated results show that the emitting photons 

calculated by ―canonical quantization method‖ has a greater amplitude than the emitting photons 

calculated by ―dipole approximation method‖. The RCS interference pattern can be severely 

affected by this point. To prove that, a new numerical approach is established to emerging 

quantum theory in MoM to improve the RCS calculation for QRCS. QMoM idea arose from the 

fact that the current density average employed by MoM can be replaced with the current density 

operator. Thus, the current density operator is theoretically derived using quantum theory and 

substituted in MoM. The results show that the new approach enhanced the side-lobe similar to 

the QRCS, as well as the main lobe intensity improving. The main lobe intensity improvement is 

not predicted by QRCS approach. In fact, it is the difference between the current density average 

and the current density operator that play the original role and cause the main difference between 

two methods (MoM and QMoM). Additionally, to test the accuracy of QMoM method, some 

parameters effect such as frequency, incident angle, and geometry effect are studied. The results 

show full compatibility between MoM and QMoM in accuracy. As a significant result, it can be 

suggested that the ―dipole approximation method‖ is not a complete one to calculate RCS. 

Although the dipole approximation method may improve the accuracy of the RCS calculation 

with respect to CRCS, it cannot be considered a perfect method for analyzing. 
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