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ABSTRACT

AN INTELLIGENT LAYOUT ALGORITHM FOR VARIABLE
SCREEN RESOLUTIONS

Barış Çelik

Master of Science, Computer Animation and Game Technologies
Supervisor: Asst. Prof. Dr. Burkay Genç

June 2021, 87 pages

In this thesis, we present an algorithm that will enable a relationally defined user interface

to adapt to variable screen resolutions in real time with a smart and dynamic approach. User

interfaces are design and software products that enable interaction between computers and

users. Both designers and software have their duties in revealing these interfaces. In today’s

world, with the use of different devices and many different screen resolutions supported by

these devices, it is expected to work successfully on each screen resolution in its developed

applications. Unfortunately, designers and developers are developing different interfaces

for all different resolutions, and maintenance and updating of these interfaces both in the

initial development and in the ongoing process brings serious burden. Although different

approaches have been proposed in the literature for the solution of this problem, these ap-

proaches are non-real-time approaches to reduce the effort spent in the design phase. In this

study, we present a data structure that will take this load from the designers and developers,

to be defined once and during the application’s development, with a simple relational model,

and a real-time approach that transforms this data structure into the most suitable interface to

the given screen resolution. Preparation of the data structure we use is extremely easy, and it

can be prepared in a shorter time than a single interface design. The creation of the interface
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is under a second during runtime, even during real-time resizing operations, the interface

does not get stuck or stutter. In addition, we used the aesthetic scoring method to choose the

best placement and thanks to this method, we selected the interface that appeals to the eye

which increased the user experience.

Keywords: variable resolution, smart placement, user interface, responsive design, aesthet-

ics
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ÖZET

DEĞİŞKEN EKRAN ÇÖZÜNÜRLÜKLERİ İÇİN AKILLI BİR
YERLEŞTİRME ALGORİTMASI

BARIŞ ÇELİK

Yüksek Lisans, Bilgisayar Animasyonu ve Oyun Teknolojileri

Danışman: Dr. Öğr. Üyesi Burkay GENÇ

Haziran 2021, 87 sayfa

Bu çalışmada ilişkisel olarak tanımlanan bir kullanıcı arayüzünün akıllı ve dinamik bir

yaklaşımla, gerçek zamanlı olarak değişken ekran çözünürlüklerine en iyi şekilde adapte

olmasını sağlayacak bir algoritma sunuyoruz. Kullanıcı arayüzleri bilgisayarlar ve kullanıcılar

arasındaki etkileşimi sağlayan yazılım ürünleridir. Bu arayüzlerin ortaya çıkartılmasında

tasarımcılar ile yazılımcılara düşen görevler vardır. Günümüzde değişik cihazların

desteklediği çok farklı ekran çözünürlüklerinin kullanımda olmasıyla birlikte geliştirilen

uygulamaların da her ekran çözünürlüğünde başarıyla çalışması beklenmektedir. Fakat,

mevcut durumda tüm farklı çözünürlükler için tasarımcılar ve yazılımcılar farklı arayüzler

geliştirmekte ve bu arayüzlerin hem ilk geliştirimi hem de devam eden süreçte bakım ve

güncellenmesi ciddi bir külfet getirmektedir. Bu problemin çözümü adına literatürde farklı

yaklaşımlar önerilmiş olmakla birlikte, bu yaklaşımlar tasarım aşamasında harcanan eforu

azaltmaya yönelik, gerçek zamanlı çalışmayan yaklaşımlardır. Bu çalışmada biz tasarımcı ve

yazılımcıların üzerinden bu yükü alacak, uygulamanın geliştirilmesi esnasında bir defa ve

basit bir ilişkisel modelle tanımlanacak bir veri yapısını ve bu yapıyı gerçek zamanda

işleyerek verilen ekran çözünürlüğüne en uygun arayüze dönüştüren gerçek zamanlı bir

yaklaşım sunuyoruz. Kullandığımız veri yapısının hazırlanması son derece kolay olduğu gibi,

tek bir arayüz tasarımından daha kısa bir zamanda hazırlanabilmektedir.

Uygulamanın çalışması esnasında arayüzün oluşturulması da saniyenin altında

gerçekleşmekte, gerçek zamanlı yeniden boyutlandırma işlemleri esnasında dahi arayüzde

gecikme yaşanmamaktadır. Bunun yanında en iyi yerleştirmeyi seçmek için de estetik
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puanlama metodu kullandık ve bu metod sayesinde göze en hitap eden arayüzü seçip kullanıcı

tecrübesini arttıran etkenler kattık.

Anahtar Kelimeler: değişken çözünürlük, akıllı yerleştirme, kullanıcı arayüzü, duyarlı
tasarım, estetik
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Çelik for their unconditional love and support.

v



CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
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1. THE DEFINITION OF THE PROBLEM

1.1. Overview

Softwares that are produced today is designed to work on many different devices and plat-

forms. However, in order to support all devices and platforms, a separate interface design

must be designed for each. There are hundreds of phone models with different screen sizes

and resolutions. Existing software libraries offer automatic placement algorithms to facilitate

this task. However, these algorithms are quite simple and most of the work is done by design-

ers and developers. The algorithm we developed will minimize the amount of work that will

fall on software developers and designers. Roudaki[1] summarized various approaches to

transfer the web experience to mobile devices but these are specific approaches that requires

most of the work done by the designer and developers, which we aim not to.

The method we developed takes minimal information from the developer. This information

is about the minimum and maximum size of each component and which components are

“relevant”. Being relevant is not geometric but abstract information and does not require the

developer to choose a specific placement algorithm at this point. Later, when the interface is

drawn on the screen, using the information received during software development, the width,

height and position of all components are calculated using a smart algorithm and the interface

is created automatically. To do this, the algorithm finds a good solution by pruning the tree of

all possible placements. Since this process is done in less than a second, full optimization is

achieved in relatively small interfaces and very close to the best in very complex interfaces.

Thus, developers do not have to constantly rearrange their pages for different resolutions. It

should be noted that, our goal is to place all the elements on the screen in a way that appeals

to the eye, rather than hiding the elements that do not fit on the screen like most smart layout

algorithms or responsive designs in the market.

1



1.2. Motivation

Our main motivation to study automatic layout placement was the amount of work put into

it manually. Generally, companies with internet sites develop this site to a platform with the

most user base (phone, tablet, browser etc.). Then develop it for the other platforms with less

care as it sees these other platforms as supporting platforms of the product. Which results

with the company altering and redesigning whole UI according to User Experience on that

device and redo all the work for all the other platforms and devices. If we give an example

of a mobile game company; this company, which creates the most user base on the phone

and makes games that appeal to this base for months, will need to redesign all the interfaces

in the game when the tablets become popular and they want to bring tablet support at the

intense demand of the users. The problem continues as these redesigns need maintenance as

development continues and new features are introduced to the users. Suddenly one project

becomes multiple projects and costs are increased substantially. There should be a way to

design this layout once and port it to any platform - even to any resolution.

Of course the biggest problem with this idea is the aesthetic concerns which drove these com-

panies to spend the time and effort to make these adoptions to different platforms beautifully.

However, the question ”What if there is a way to create a relation between all the page ele-

ments and automatically create a layout aesthetically which bases aesthetics on mathematical

formulas?” drove us to make some research on this topic.

In the Java programming language, the placement operations are performed by the Layout-

Managers, but none of the LayoutManagers change the relative positions of the components

according to the changing screen resolutions, they only change their size. Similarly, in the

Android mobile operating system, nesting algorithms such as LinearLayout and Relative-

Layout are used, but these are only concerned with the size of the components. In web

design, things are even worse. Changing the interface according to variable screen resolu-

tions is an application we see seldomly on web pages. Generally, web pages are made by

assuming a certain width, in screen sizes above this width, most of the page remains blank,

and on smaller screens, the content does not fit on the screen. As the use of mobile devices
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in daily life increases, companies have started to create additional designs that will alterna-

tively cover mobile device sizes. However, these designs are quite costly and it has been very

difficult to cover the new scaling that occurs as technology progresses.

In time, alternative solutions to this problem have been tried to be found. The most used of

these is the framework developed by Twitter called Bootstrap. Bootstrap tries to change the

interface in different screen resolutions with the logic of ”Responsive Design” defined. How-

ever, Bootstrap is not a smart system. It changes the interface according to some conditions

determined during the design phase. An example is ”Reduce the width of the Y component

at a resolution below X”. With Bootstrap, designs that are thought to be pleasing to the eye at

every screen width and can be adapted to every scaling have started to be produced. However,

these systems, which automatically resize themselves at different resolutions, bring glaring

errors as the resolution difference gets larger as can be seen in Figure 1.1. Top left image has

overflowing content, bottom left page has most of its’ content not present in the page and for

the right page which looks the best in all three; is just all page elements vertically placed in

order.

FIGURE 1.1. Some examples where Bootstrap can’t handle non feasible resolutions which
are taken from Bootstrap’s example pages.

In the development process, the prerequisites are determined by the developer and tested

repeatedly at different resolutions. Despite all these efforts, it is quite possible to overlook
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possible errors and defects. The algorithm we propose is a smart algorithm that will decide

and apply the best interface layout during the execution of the application without creating

such conditions beforehand.

1.3. Research Questions

The aim of this thesis can be summarized as finding answers to these questions:

• What is an efficient way to store the geometric and topological constraints of interface

elements?

• Can we compute all feasible layouts based on the constraints defined in real time?

• How can we choose the most aesthetically pleasing layout among all feasible layouts?

1.4. Organization of the Thesis

Structure of the thesis can be outlined as follows:

In Chapter 2, we talk about the previous studies on this topic and how they handled the prob-

lem. Some of the studies tried to mathematically formulate aesthetics which is essentially

what we are aiming to achieve in our layouts; to produce an aesthetically pleasing layout for

all resolutions.

In Chapter 3, the topological relation tree that we use to process interfaces is explained,

with what we need from the developers and how we process it. Here we give some examples

and detailed explanations on how the rules apply. After we discuss how it is done, the

performance problem and the solution that makes this tree viable in real time executions, is

also mentioned.

After explaining the underlying structures, in Chapter 4, we move on to the algorithm itself.

Here we explain both how we create the tree and how we layout the components.
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In Chapter 5, the aesthetic concern is added to the problem. We handpicked some aes-

thetic features from the literature and fine-tuned those mathematically formulated aesthetic

parameters which is then used in calculation of aesthetic features of the layout.

In Chapter 6, we analyze some experiments and their results. In this analysis we inspect the

results in both aesthetical aspects and performance aspects.

In Chapter 7, we conclude our work and talk about the potentials and downfalls of this

project.

5



2. LITERATURE REVIEW

Smart environments require user interfaces to dynamically adapt to usage contexts, which

are often unpredictable at the time of design. To solve this problem, it has been suggested

to use real-time interface models[2]. Studies that find optimal results by manipulating the

interface with correct modeling are available in the literature. Gajos and Weld[3] proposed a

structure similar to the one we have proposed in their study, and using constraint solvers on

their structure, they ensured the automatic development of an interface in accordance with

the constraints received from the designer. Using a more specific partition method, the in-

terface elements are added into a topological structure as in our study, and a tree is formed

by using the data type in this structure. While the leaf nodes in the tree represent the inter-

face elements that appear on the page, the branch nodes represent the relationships. In this

study, constraint solvers were used differently than what we suggested, but the focus was not

on finding alternative placements. Roscher[4], on the other hand, establishes a topological

structure, but as the closest method to the structure we have built, it also includes position,

size and horizontal or vertical values in each unit in its structure. The work done in the study

is generally expressed in a verbal language and there is not much mentioning of theoretical

details; this prevents the reproducibility of the study.

When we examine the literature, we observe that although we see similar studies, a real-

time, smart placement algorithm has not been studied yet, as we have defined in this project.

Similar studies in the literature are mainly based on the principle of making the interface

design over the constraints, then solving these constraints on an optimization library and

statically embedding the solution into the software. Therefore, studies mainly focused on

creating interface design models and solving the emerging models efficiently, and provided

algorithms[4][5] and tools[6][7] as outputs. For example, Jamil[8] made the Kaczmarz algo-

rithm work with the inequality constraints encountered in interface design. Again, Jamil and

Noreen[9] investigated how constraint solvers can be used in interface design and developed

a prioritized grouping constraints algorithm to improve this method[10]. This algorithm is

an algorithm that tries to find a constraint system without contradiction by repeatedly adding
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or removing constraints from the constraints system. Borning[11] similarly worked on dual

simplex method-based solvers that can efficiently solve interface constraint models for news

sites. Jacobs[12] defined grid-based templates and matched the content with these templates.

Nielsen[13], on the other hand, made studies on user experience in his research, and in these

studies, he tries to answer the question of how to design a highly usable interface by going

through the elements on the page. In our study, it does not seem possible to refer to usability

within the scope of this thesis, since it is not an option to see the interface elements on

the screen or which interface component to be visualized, but rather an information that the

designer determines and gives to the algorithm as input. In addition, it is possible to carry

out automatic placement studies in which the usability based on our algorithms is optimized

in the future.

Trying to gain a new perspective rather than proceeding through editor-based approaches,

Jiang[14] developed a structure that supports both Grid Layout and Flow Layout by blending

the standard layouts used with his work called ORC Layout, and this structure uses a solver

called Satisfiability Modulo Theory, shortly SMT, to produce results. In the study, an editor

was written to be able to edit the ORC Layout, and the design was made through this editor

and constraint-independent approach we aimed in our study was abandoned.

Zeidler[15] worked on constraint analysis using the program named Auckland Layout Ed-

itor [16]. However, these approaches do not fully describe a smart system, they only offer

methods that can be used at the design stage. In another study, Zeidler[17] made detailed

descriptions of editing operations, developed an algorithm that ensures that page elements

do not interfere with each other in the design phase, and developed a plug-in that can see

the behavior of an element resized in the design phase. The main purpose of the develop-

ments is that the order is always preserved and it does not contain intertwined elements in

any way. In order not to overwhelm the constraint resolver with more than one option, it

aimed to produce a specific and unique solution. In 2017, Zeidler[18] tried to increase the

power of solvers by developing the algorithm and by doing a parceling study between inter-

face elements. However, at the end of these three studies, Zeidler is still able to operate with
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the constraints determined at the design stage, and this method is only a more technological

approach to the processes normally performed. Our aim is to get only the basic information

during the design phase and update the design in the light of this information during the

study.

Similarly, template-based approaches ensure that pre-determined templates and contents are

matched to each other, so that the mapped content is drawn in accordance with the predefined

and designed template. For example, in order to present the same content in magazines,

newspapers and tabloids, templates previously prepared for these environments are used.

For example, Jacobs[12] defined grid-based templates and synchronized the content with

these templates. This study actually parallels the method used by Bootstrap in the design of

Web pages today.

All of these approaches are more relevant to Bootstrap and CSS logic and are based on the

relative fixing of the interface during design. In other words, the designer decides in which

order and in which direction (horizontal-vertical-grid) the components in the interface will

be placed before the program runs. It creates a constraint model using this information and

solves it in a constraint solver. It also reflects the solution to the application interface. How-

ever, in the system we have developed, the designer will only indicate which components

are related to each other, and will not interfere with their appearance on the screen in what

order or direction. Such decisions are made by the algorithm itself while the application is

running.

In addition, there are studies on evaluating a user interface in terms of aesthetics and us-

ability and even scoring it numerically. One of the most recent comprehensive studies was

conducted by Pajusalu[19]. Pajusalu examined different websites in this study and applied

questionnaires to users through these websites to reveal which website was liked and why.

Buanga and Mbenza[20], on the other hand, worked on the automatic evaluation of interface

aesthetics in their thesis, examined how an interface can be evaluated from an objectivist

perspective and how it will be graded on which criteria. However, these studies are not about

the placement of the interface but about the interpretation of how it is placed, and for this
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reason are beyond the scope of this article. However, it was a step forward in the next stages

of our research which lead us to the Gestalt principles[21] and Ngo’s research[22][23] on

measuring aesthetics.

Gestalt principles provide an overview of how people process what they see. These principles

include Law of Proximity, Law of Similarity, Law of Symmetry, Law of Simplicity, Law of

Closure, Law of Prägnanz, Law of Past Experience and are detailly explained in Chapter-3.

Since these principles are quite applicable to interfaces, we have seen many papers trying to

use them in their work. For example, Zeidler [15] examined these principles and claimed

that the principles can be transferred to user interfaces. In the studies of Ngo[22][23] and

Zen[24], we found the closest criteria to the aesthetic measuring we wanted. He was able to

both incorporate Gestalt principles[21] into the decision-making mechanism and put these

principles into mathematical formulas. Thus, after parsing real websites into UI elements

and making calculations based on his formulas, he obtained efficient results and we intend to

use those parameters in our work.

After Ngo, Zen[24] created a questionnaire called QUESTIM where users evaluated web

pages on some aspects. Later on these results were used to compare the results of the aes-

thetic formulas with real world answers. This study brought further validation to the param-

eters Ngo generated, as the results of the questionnaire and formulas were mostly very close

to each other.
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3. CREATING AN AUTOMATIC LAYOUT

In this chapter, the topological relation between UI elements, the constraints of these ele-

ments and how they create a formula that we can use to draw a layout will be explained. First,

we will explain the building block of this project, which is creating a layout with minimal

input from developers. Then from this layout we will expand this idea to satisfy developers

terms and conditions so that the result looks similar to what the developer thought of. Af-

ter that we will discuss about the problem we encountered when we applied this solution to

different resolutions.

Node A
Minimum Width: 200
Maximum Width: 300
Minimum Height: 300
Maximum Height: 500

Orientation Strategy: Vertical
SubRanges: Node B and C

Node B
Minimum Width: 50

Maximum Width: 100
Minimum Height: 120
Maximum Height: 250

Orientation Strategy: Horizontal
SubRanges: Node B

Node C
Minimum Width: 150
Maximum Width: 200
Minimum Height: 180
Maximum Height: 250

Orientation Strategy: Horizontal
SubRanges: Node C

FIGURE 3.1. WidthHeightRange example

Before we start this process, we need to define what we need from the developers. Our

topological relational tree nodes each hold a WidthHeightRange object in them which

is the most basic element in a tree. In this smallest element of our tree, we hold mini-

mum and maximum widths and heights as well as the orientation strategy which repre-

sents the node placement as vertical or horizontal, and lastly sub-ranges which holds the

child nodes information that consist of other WidthHeightRange objects. We need

this tree’s WidthHeightRange objects to start processing and won’t be needing any
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more information than this. In Figure 3.1., we can see an example of a small tree with

WidthHeightRange nodes. Notice the node A is a container node and wraps node B and

C, hence the minimum and maximum width and heights are the total amount of nodes B

and C. Also notice the child nodes have the same orientation strategy needed in order to be

applied correctly. Subranges of B and C are their own WidthHeightRange objects but in

node A, subranges is a list of WidthHeightRange objects which consists of both node B

and C’s WidthHeightRange objects.

3.1. Creating a Layout With Minimal Information

One of the main goals of our solution is to minimize the information to be requested from

the software developers during the design and coding stages and to ensure that the software

developer makes as few decisions as possible. You have to make some very critical decisions

when you want to create an interface in existing software languages. For example, if you

want to develop a user interface with the Java Swing library, you must first decide which of

the embedded algorithms Java[25] offers you to use. BorderLayout, for example, is one of

them, and it allows you to divide the screen into five parts, top, bottom, right, left and center,

and place a component in each piece.

FIGURE 3.2. An example of a layout created by the BorderLayout algorithm

Usually when the app or screen size is changed, BorderLayout tolerates this change by mak-

ing the center pane bigger or smaller. However, in addition, the software developer can assign

preferred size information to each component. If deemed necessary, this information is used

by the BorderLayout algorithm to calculate the size of the partitions.
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Another example is the GridBagLayout algorithm. In this algorithm, the screen is divided

into rows and columns and the components are placed in these rows and columns. The

developer has to determine in advance which rows and columns each component will contain.

In addition, many restrictions are given, allowing the screen image to be created as desired.

FIGURE 3.3. An example of a layout created by the GridBagLayout algorithm

3.2. Fundamental Structures

The algorithm we developed uses a tree structure to keep the relativity information of the

components on the page. Each component that the programmer wants to see in the interface

is included in this tree as a leaf, while the branches of the tree store the topological rela-

tionships between the components. Each leaf node holds its width and height ranges and

assigned coordinates and assigned width and height values. While each branch symbolizes

only a topological relationship, this topological relationship will evolve into a geometric rela-

tionship when the algorithm completes its analysis. As an example let’s examine Figure 3.4.

FIGURE 3.4. Topological relation tree on the left, four possible layouts on the right
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In this picture, we see the topological relationships of 3 interface components stored in a

tree. This tree tells us that components A and B are topologically related, in other words,

they are linked, while component C is topologically related to the set of components A and

B. These topological relations can evolve into 4 different geometric relations. These are

shown in the same picture on the right. Since node C is “to the right” of the parent node of

nodes A and B, the C component is positioned to the right or below the A and B components

during insertion. This is information extracted from the creation of the tree but not directly

provided by the software developer. Therefore, if this information is specifically indicated

by the programmer that this information is invalid, the C component can be positioned to the

left and above of the A and B components.

This results in 4 more geometric placements, and the total number of placements increases

to 8. However, the general acceptance will be that the order in the tree will be preserved in

the placement. In addition to these 4 possible placements, since each leaf in the tree, namely

components A, B and C, also holds its minimum and maximum sizes, they can accept any of

the unlimited number of values in the intervals they define as width and height. Even if we

discretize the plane, the number of possible absolute insertions can easily rise to thousands

or even millions. Besides, this is only a very rough calculation we made for a 3-component

system. As we will talk about in a moment, as the diversity of local placements that can

be preferred in each branch and the total number of components increases, this tree data

structure will only grow linearly, but will contain an exponentially growing solution space.

Continuing with the example in Figure 3.4., let’s assume that the following component size

ranges are also given to the algorithm by the software developer:

As can be seen here, the programmer has to make 4 numerical inputs for each component.

The first two of these show the horizontal dimension boundaries of that component, and

the other two show the vertical dimension boundaries. That is, the horizontal size of the A

component should be limited to between 100 and 200 units, while its vertical size should be

between 50 and 150 units. This corresponds to about 10000 different rectangles in a discrete

Euclidean space. Similarly, component B can be implemented with 7000 and component C

with 7000 different rectangles. It will immediately be noticed that only some of these tens of
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A

100 - 200

50 -150

70 - 140

100-200

C

50 - 120

200 - 300

B

FIGURE 3.5. A numerated example based on Figure 3.4.

thousands of rectangles that we have defined for components A, B and C will satisfy visually

pleasing placements. What the algorithm does is to choose the most ”correct” possibility

among all these possibilities.

In addition, for the convenience of the developers, a certain range of values has been defined

and a sizing system has been developed to use these values as width and height ranges. Size

ranges starting from 20 to 50 pixels go up to sizes from 890 to 2000 pixels. It is designed to

be playable as desired, as the correction and fine tuning of the gaps will vary from developer

to developer. However, quite logical results have been obtained with the default values. And

again, to make it easier for the developer, form elements that can be considered as ”classical”

have been defined as default functions. For example, if the developer wants to create a name

input field, both a label field and a text input field will be automatically added and created

in a way that can be sorted side by side or one under the other. Of course, apart from these

”classic” elements, we also support custom elements written by the developers themselves.

Ultimately, the important information of this element for our algorithm; the size range it

will occupy and its relationships with other elements. Apart from this information, it works

without any extra information and without distorting the given elements.
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3.3. Finding Feasible Layouts

The data structure we have described above includes all possible placements without any

criteria. However, there are some absolute criteria that need to be defined among the inputs.

The most basic of these is the resolution of the screen where the placement will be made.

Because if the width of the placement to be made is more than the screen width and the

height is more than the screen height, the placement will not fit on the screen. There are two

situations here. The first case is that the range values of at least one of the layouts overlap

with the screen resolution. In this case, non-overlapping placements are eliminated and these

placements are processed. Here, of course, it is extremely slow and cumbersome to use in a

real-time application to calculate all the layouts one by one and see if they fit on the screen.

Instead, we scan the tree from its leaves to its root to move the size range information from

the leaves to the root, and since the root node symbolizes the entire layout, the range values

that will appear at the root node are directly comparable to the screen resolution, helping us

to choose.

If we go through our previous example, we have shown the existence of four possible layouts.

Let’s consider the first of these, that is, the placement where component A is located above

component B and component C is located to the right of them. Also suppose, for aesthetic

concerns, that components A and B must be of the same vertical size. Let’s call X the

smallest rectangle containing A and B, which is formed when components A and B are

placed on top of each other. The X rectangle can be at least 100 and at most 140 horizontal

units. Otherwise, the limit values of either the A or the B component would be violated.

Similarly, the lower and upper vertical size limit values of the X rectangle are found as 150

and 350. New limit values can be found by adding the vertical limit values of the components

placed on top of each other. In this case, the boundary values of the X rectangle are (100-

140), (150-350). Since the components of X and C will be placed side by side, the boundary

values of the smallest rectangle that includes X and C, let’s call it the Y rectangle, are also

found as (120-260), (200-300). Thus, we find that the limit values will be (120-260), (200-

300) if the placement shown in the upper left in Figure 3.4. takes place. Let’s say we want
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A

100 - 200 C

200 - 300

B

70 - 140 50 - 120

100-200

50 -150

250

200

Y

X

150 - 350

100 - 140

120 - 260

200 - 300

FIGURE 3.6. Feasible layout execution based on Figure 3.5.

to run this application on a screen with a resolution of 200x250. In this case, our algorithm

finds that this placement can be used for the given screen resolution and lists the appropriate

placements. However, if our screen resolution was 400x200, then our algorithm would not

include this placement among possible placements, as we could not provide the horizontal

size.

Note that each branch node in the tree offers two alternative placements: horizontal and

vertical. For this case, the calculation should be made for 2k placements in a tree with k

branch nodes. This might not be too much of an issue on a 10-component display. However,

as the number of components increases, this number will rapidly rise above the practical

limits and it will not be possible for a real-time application to examine this many placements

one by one. To solve this problem, our algorithm filters out the infeasible nodes before

they reach the root node. For example, if the horizontal component of the screen resolution

is given as 600 while the possible horizontal size limits of a branch node is (800-1200),
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then the calculation of this branch node is stopped because there is no point in moving the

boundary range of that branch node up. In this way, many layouts are eliminated while still

calculating branch nodes and the tree can be pruned quickly.

Current

Calculated

Calculated Calculated

FIGURE 3.7. Green circles represent the calculated nodes which have their memoization
fields filled and blue circles represent non calculated nodes

In addition, another process to speed up this process is the memoization mechanism. If

we want to extract the appropriate tree structure again for the same resolution, which is a

situation we often encounter while roaming our entire tree, then we don’t need to calculate

the nodes that we processed again. Our recalculation will return to us as a performance

decrease since none of our parameters have changed. In Figure 3.7., green nodes indicate that

they have been calculated before in the recursion, so while calculating current node, instead

of calculating the green child node the memoization values return instantly and calculation

continues with the blue child node. If we go through the previous example, when we want

to calculate the possible height and width of the elements in the Y rectangle, we can see that

we have already calculated the width and height of the X rectangle and this calculation will

remain constant since the resolution or tree does not change. For this reason, we do not need
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to make a recalculation. But if we were doing this calculation for another resolution, the

information kept in this record would have to be cleared.

In the second case we mentioned at the beginning, none of the calculated placements fit on

the screen. In this case, we have two possible action plans. The first is to inform the user that

there is no viable layout placements, which will not be the preferred way in most cases. In

the second, the placement closest to the target resolution can be proposed and this placement

supported by scroll bars of the interface. However introducing the second option is not in

our thesis’ scope and we only deal with the possible feasible layouts.

The algorithm also ranks the layout options corresponding to the screen resolution by assign-

ing absolute values to the component sizes. The challenge is that each installation actually

has infinite solutions in continuous space. Even with the discretization method, hundreds of

solutions have to be overhauled one by one. Therefore, it seems very difficult to use brute

force algorithms. Now, we describe a smart heuristic to deal with this problem.

By calculating the horizontal and vertical boundaries of all possible placements, using these

boundaries and scanning the tree from top to bottom, the horizontal and vertical boundaries

of all nodes are constrained between these values. In other words, all components must

comply with the limit value set from above.

For example, suppose that components A and B are placed horizontally, and the horizontal

boundary values are given as (50-150) for A and (100-200) for B. Therefore, the horizontal

limit value of the node formed by the combination of A and B becomes (150-350). However,

let’s assume that it is desired to fit this node into a rectangle with a horizontal size of 220.

In this case, it is not possible for A to have a horizontal magnitude of 150. Because the

corresponding horizontal value of B will be 70, which will be outside the boundaries of B.

Therefore, the horizontal boundaries of both A and B are trimmed to find (50-120) for A and

(100-170) for B. Among these new values, there is a value that B can take for every value

that A will receive.

18



At this stage, the tree is scanned from top to bottom and screen resolution constraints are

applied to all branches and leaves. In other words, the specified ranges are reduced to a single

value to exactly reflect the horizontal and vertical size of the screen. This reduction can be in

two ways: If we want to fix the horizontal values of a cluster whose components are vertically

placed, we equal the horizontal size of each component of the cluster to the horizontal size

of the cluster. If we want to fix the horizontal size of a horizontally oriented cluster, then we

distribute the horizontal size of the cluster among the components. Making this distribution

process fast and aesthetically is one of the most critical functions of the algorithm. For this,

we could use the simplex-like optimization routines used by Borning, as well as produce

faster solutions with the help of greedy and heuristic methods, and we preferred greedy and

intuitive methods in our algorithm and created a special control mechanism.

3.4. Considering Aesthetics

As described above, the topological relationships used as input may correspond to a large

number of possible layouts. To determine which of these layouts will be selected and re-

flected to the interface, these layouts must be comparable to each other. This is only possible

if we can assign a numeric value to each layout. The biggest problem here is that this assign-

ment will be based on aesthetic values, and that the aesthetic values are relative. Therefore,

an algorithm is developed to provide aesthetic evaluation of application interfaces based on

the existing literature.

At this point, we have a list of feasible layouts that are able to provide (or closest to) the

full screen resolution and Smart Layout algorithm will assign an aesthetic score to each

implementation of these layouts. It should be noted that this scoring algorithm assumes

that the position and size of each component in the interface is fully known. However, the

information we have is the minimum and maximum of width and height values of each

component. We obtain the required information by distributing the given resolution to the

tree which is explained in Chapter-4.
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When making the aesthetics decisions, Zen[24] has identified several methods and tried to

remain as loyal to these methods as possible. These methods consist of; to consider less

criteria and to focus on those criteria, to make use of real and used interfaces rather than

artificial interfaces in creating aesthetic scoring system, and finally to make an annotated

link between subjectivities and examine this linkage. As for Smart Layout algorithm, while

making these decisions, we will also benefit from Gestalt’s principles in the literature. In

the field of aesthetic studies, Zeidler[15] examined Gestalt principles and argued that these

principles can be transferred to user interfaces. In particular, a few of Gestalt’s principles

come to the fore that Smart Layout will benefit from:

• Law of Proximity: According to this principle, people perceive various objects while

forming close groups.

• Law of Similarity: According to this principle, if the objects are similar, these various

objects are grouped perceptually. For example, buttons of the same size are combined

in the mind as if they were in the same group.

• Law of Symmetry: According to this principle, the mind perceives objects symmetri-

cally and by shaping them around a center point. It is perceptually pleasing to divide

objects symmetrically by an equal number.

• Law of Simplicity: Instead of perceiving a complex shape, turning to simple shapes

is the general habit of our brain, and instead of analyzing more than one intertwined

object, people choose to understand and define a few simple objects.

• Law of Closure: According to this principle, if the majority of an object is drawn but

some parts are left incomplete, our brain automatically completes them and we detect

what the object is.

• Law of Prägnanz: If the parts of an object form a regular, simple and ordered pattern,

they are perceived as forming a group. Prägnanz is a German word that directly means

succinctness, meaning clarity and regularity.
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• Law of Past Experience: Under certain circumstances, elements tend to be perceived

according to an observer’s past experience.[26]

In the light of this information, Smart Layout establishes a system with a strong aesthetic

aspect by incorporating Gestalt principles into it’s decision making mechanism. The exact

parametric values of the aesthetic scoring algorithm is explained in detail in Chapter 5.
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4. THE ALGORITHM BEHIND IT

In this chapter, we first explain how developers can create a topological relation tree and

give constraints to it. Later, we analize how the algorithm uses this topological relation tree

and finds suitable layouts which then, distributes the resolution to those layouts so that the

program outputs all the possible placements it can fit in the given resolution. This chapter is

solely focused on the processing and distributing algorithms and aesthetic concerns are not

in the scope of this chapter.

Here we briefly give an outline of our algorithm:

1. A topological relationship tree is created.

2. The width and height value ranges that each node can take are calculated with a recur-

sive approach.

3. According to the resolution of the application, the width and height ranges found are

fixed to a value which gives us feasible layouts.

4. All feasible layouts are subjected to aesthetic scoring in order to choose the best one

among these layouts.

5. The layout with the highest aesthetic score is selected and drawn as the interface.

4.1. Creating Topological Relation Tree

For the sake of simplicity Java 8 language is used to write this experimental project. To create

the topological tree we only need to define some Java GUI components. Since we extend

those components, while the default GUI elements are still available, they are additionally

linked to a topological relational tree. Leaf nodes of this tree is our GUI elements and we

define them as we define native Java GUI elements, but when we are creating branch nodes

or root node, no additional GUI elements gets defined. These branch nodes only carry leaf

22



nodes and do not need extra information. It will get all the information it needs from the

leaf nodes underneath while calculating possible layouts. Defining relations is fairly simple.

After creating leaf nodes, the nodes given when creating branch nodes are linked from left

to right. As explained in the previous section, the first node within the branch nodes and the

second node can be related left to right or top to bottom. Nodes within a branch node can be

both branch nodes and leaf nodes. With these rules, all nodes are connected to each other in

some way and a tree structure is formed without establishing a circular connection, and the

node that is not a parent of all these branch nodes is called a root node. Our data structure

progresses through this root node and all information is accessible from the root node.

4.1.1. Contents of the Tree Nodes

Leaf nodes keep the WidthHeightRange, horizontal or vertical placement information,

assigned coordinates, and assigned width and height information. WidthHeightRange

is the list which contains all the possible width and height ranges for different layouts. This

list actually holds the width and height ranges of each of the nodes under it. If it does not

have a node below it, this node is already a leaf node and holds the width and height ranges

assigned by the developer.

Branch nodes, on the other hand, hold the child nodes along with the information in the leaf

nodes, as well as the pre-calculated nodes used for memoization. The recursive Algorithm-1,

GetRanges, runs in branch nodes which calculates WidthHeightRange of node’s chil-

dren and thus calculates its’ own WidthHeightRange.

4.2. Parsing The Tree

After mentioning the creation of the tree and the types of data it holds, we will now examine

how to use this tree structure to find all possible placements and how the resolution given to

these placements is distributed.
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4.2.1. Finding the Range of Width and Height

Algorithm-1 finds possible layouts of a node based on given resolution values. When this

algorithm is run for the root node, all possible layout arrangements of the whole tree is found.

Flow of the algorithm is as follows; if it is running for the first time, that is, if the memoization

is not filled in, the child nodes are navigated to the lowest elements. When looking at these

nodes, calculations are made for both horizontal and vertical probabilities. If the current

node is a leaf node, the GetRanges method returns us the WidthHeightRange of the

leaf node which was given by the developer. However, if the current node is a branch node,

new ranges are determined according to the minimum and maximum values of the width and

height that the nodes below can take. After calculating these ranges, if the new maximum

values we calculated for this node remain above the minimum values, this indicates that it is a

viable range and it appears as a usable option in the next iteration. This option is added to the

list as horizontal placement if considered for horizontal positioning, and vertical placement

if considered for vertical positioning. Whenever the calculation of a node is finished, the

memoization field is filled with the possible placements while returning to recursion so the

upper branches do not have to recalculate this information. When the parent branch nodes go

up one level in recursion, we can now have both leaf and branch nodes, but there will be no

change in our calculations because still only the given width and height values are evaluated.
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FIGURE 4.1. A sample tree and 3 possible layouts found by GetRanges

Here in Figure 4.1. we have an example tree and three possible layouts. In order to algorithm

to accept these layouts as feasible, they need to fulfill the constraints of both resolution and

each components. For example if we have a C component which can take 100 to 200 pixels of
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width and a resolution of (100, 300), second and third layout in Figure 4.1. will be infeasible

and will be pruned by the GetRanges algorithm since component C can take a width of

minimum 100 pixels which can’t be applied.

Algorithm 1: GETRANGES Algorithm for detecting possible layouts
Input: Data structure that holds the tree information of the page
Output: Tree’s WidthHeightRange object representing the form

1 if memo 6= ∅ then return memo
2 movingRanges← ∅ list of WidthHeighRange
3 tempRanges← ∅ list of WidthHeighRange
// Horizontal possibilities

4 foreach child in children do
5 compareList← child.GETRANGES
6 if movingRanges = ∅ then
7 Add all elements in compareList to movingRanges

8 else
9 foreach whr in movingRanges do

10 foreach newWhr in compareList do
11 if newWhr, is horizontally placeable with whr then
12 Add newWhr to tempRanges

13 movingRanges← ∅
14 Add all elements in tempRanges to movingRanges

// Vertical possibilities
15 foreach child in children do
16 compareList← child.GETRANGES
17 if movingRanges = ∅ then
18 Add all elements in compareList to movingRanges

19 else
20 foreach whr in movingRanges do
21 foreach newWhr in compareList do
22 if newWhr, is vertically placeable with whr then
23 Add newWhr to tempRanges

24 movingRanges← ∅
25 Add all elements in tempRanges to movingRanges

26 memo← movingRanges
27 return movingRanges
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One point to note here is that while looking at possible placements for a node, if both hor-

izontal and vertical placement is suitable, we will have two different placement options.

However, these options remain only as options. All calculations up to the root node must be

consistent and completed in order for them to gain the status of layout. If there is a resolu-

tion with 900 units wide and the node has to range from 1000 to 1200 with some of its’ child

nodes added up for the horizontal option, then it is not a viable option, hence not added to

the possible placement option list. Even if this option is valid, it can be overruled by adding

the next child node to the account. In this case, this option cannot take its place as a possible

placement in the final layout list.

Thanks to memoization, we do not need to perform recalculation when roaming nodes in the

same topological relational tree structure at the same resolution.

After finding the WidthHeightRange of the root node, we have a list of all possible place-

ments for this topological relational tree. However, this list does not contain any aesthetic

concerns; it only gives a list of possible distributions with given constraints and resolution.

4.3. Distributing Resolution Amongst a Layout

How we selected the most “neat” interface from the list of all feasible layouts will be ex-

plained in the next chapter. However, we found the answer to the question of how to dis-

tribute a selected interface to a given resolution with more than one strategy.

4.3.1. Maximum Value Distribution Strategy

One of the first strategies that came to our mind was to give the elements their maximum

values and distribute them, but this solution is quite monotonous and was quickly put to

rest as it skipped most conditions. The first point we arrived at in brainstorming was how

we would distribute the remaining values after assigning values to them all. The remaining

values could be distributed equally, weighted according to their size, distributed by trying
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to equalize the values. These distribution strategies gave us an idea. The only obstacle to

implementing all of these was to make sure that the minimum values were distributed. This

strategy is completely overridden when the assigned maximum values exceed the resolution.

For this reason, we abandoned this strategy.

300

1100

300
600

Max Distribution

Min Distribution

100
200

400
400

FIGURE 4.2. Minimum and Maximum Distribution Examples

To give an example to this strategy, assume we have 1100 units of width to distribute and A

(100,300), B (200,300) and C (400,600) components’ widths are given as seen in Figure 4.2.

If we distribute the maximum values of these components, A will get 300, B will get 300

and C will get 600 which is a total of 1200 units and this distribution is not feasible for this

resolution.

4.3.2. Minimum Value Distribution Strategy

Very similar to the previous strategy, we proceeded with this strategy by assigning minimum

values. But this solution also started to create gaps throughout the layout. We scrapped this

strategy too and tried to come up with a hybrid solution of these two strategies.

Assume we have the same example from maximum value distribution strategy. If we dis-

tribute the minimum values of these components, A will get 100, B will get 200 and C will

get 400 which is a total of 700 units as seen in Figure 4.2. This distribution is also not feasible

and leaves us with a 400 units wide gap in our layout.
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4.3.3. Fair Distribution Strategy

First hybrid strategy was the fair strategy which distributed the minimum values of each

element. Since we set minimum values, we do not have any cases that will cause overflows

but in case of an underflow, remaining values are evenly distributed. Although this strategy

did not produce bad results, roughness and imbalances in the interface were common. As a

result we tried to draw a more weight-based strategy.

Algorithm 2: LAYOUT Fair Distribution Algorithm
Input: Tree information of the page
Output: Exact coordinates, width and height of each UI element

1 feasible← false
2 distribution← ∅ size is number of children
3 remaining ← remaining value of horizontal or vertical amount
// Distribute minimums to each child in node foreach child in
children do

4 distribution[current]← minimum value of this child’s distributed value
5 remaining −= distribution[current]

6 while remaining > 0 do
7 if remaining/

∑
remainingChild < minimum then

8 distribute remaining/
∑
remainingChild

9 else
10 distribute minimum

11 offset← 0
12 foreach child in children do
13 if orientation = Horizontal then
14 if ¬child.LAYOUTFAIR(x+offset, y, distribution[current], height) then
15 return false

16 else
17 if ¬child.LAYOUTFAIR(x, y+offset, width, distribution[current]) then
18 return false

19 offset += distribution[current]

20 return true

Assume we have a width of 1100 units to distribute and widths of components A (100-

153), B (300-600) and C (400-600) are given. First, the minimum values are distributed

which are 100, 300 and 400 which totals 800 units. The remaining 300 can’t be distributed
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FIGURE 4.3. Fair Distribution Example

equally because component A’s constaints prevents them. So the minimum value that makes

a component reach its’ max value which in this case is component A, is the distribution

amount. A can take 53 units at most so 53 units are distributed equally which equates to 153,

353 and 453 with a total of 959. Now that A is out of distribution, we need to distribute 141

units to B and C, but the problem is we give B 71 units and C 70 units which gives a pixel off.

This means that in each distribution, an imbalance will appear as much as the remaining unit

of the partition. For example if we try to divide 7 to 4 components, last component will get

the remainder, 3 units more than the other components. This look creates a displeasing and

uneven layouts as the whole tree merges and the group next to this one is distributed evenly

just like the one in Figure 4.3., which is not preferred.

4.3.4. Weighted Distribution Strategy

In the weight-based strategy, the values between the units to be distributed were proportioned

and the total was deducted from the value to be distributed. The proportions can be chosen

by the max values or min values of the components. This brings another level of detail as the

use cases and results change depending on the situation. The most important point here is

that the maximum values are respected and no overflow is created. Generally this approach

gave us much more stable and aesthetically pleasing results.
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FIGURE 4.4. Weighted Distribution Example

For example, suppose there are three ranges in a branch node’s width values, (100-200),

(150-250), (450-750). When the algorithm wants to make a distribution of 1000 units, there

are two options. We can pass maximum or minimum values of these width ranges, or even

our own weight ratios. With that information, the algorithm calculates the weights of those

given numbers according to the number of components it’s going to distribute which in this

case, is as 4, 5, 15 for maximum values given, and 2, 3, 9 for minimum values given. The

algorithm then distributes these values as can be seen in Figure 4.4.

Algorithm 3: LAYOUT Weighted Distribution Algorithm
Input: Tree information of the page
Output: Exact coordinates, width and height of each UI element

1 ratio← totalOfChildren / (width or height)
2 offset← 0
3 foreach child in children do
4 value← maxValueOfChild[i]
5 if orientation = Horizontal then
6 if ¬child.LAYOUTFAIR(x+offset, y, value, height) then
7 return false

8 else
9 if ¬child.LAYOUTFAIR(x, y+offset, width, value) then

10 return false

11 offset += value

12 return true
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4.3.5. Balanced Distribution Strategy

After the promising results gained from weighted distribution, we turned to balanced distri-

bution by going back to equal distribution logic. As in the principle of equal distribution, we

initially assigned the minimum values and then proceeded by adding the remaining values so

that the totals were equal. We based this idea on Gestalt’s Principle of Similarity[21]. Sim-

ilar sizes tend to group in human mind and become more aesthetically pleasing. Of course,

the primary purpose of the distribution algorithm is not aesthetics, but in the next step, when

the aesthetic rules are applied, we should make the distribution as appealing to the eye as

possible to ensure that the layout gets more aesthetic points. While respecting the maximum

values, we tried to move all child nodes to similar dimensions by increasing incrementially

between the elements that can be distributed.

1000
100 140 290

200 200 290

200 300 300

200 300 500

570

310

200

FIGURE 4.5. Balanced Distribution Example

Assume we have three ranges in a branch node’s width values (100, 200), (140,300), (290,750)

and the algorithm is trying to distribute 1000 units. As shown in the Figure 4.5., in the first

step, the minimum values of all three ranges are entered, and thus the width values are 100,

140, 290. It then gradually increases, reaching the maximum value of the first range. The

width values in the second case are 200, 200, 290. The distribution continues with the re-

maining two ranges, as the first range can no longer get any more value. When these two

ranges are equalized, even though the distribution is 200, 300, 300 there are still 200 units
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that needs to be distributed, and since only the third range remains, the whole value goes to

the third range and our final distribution becomes 200, 300, 500.

This distribution strategy paired with Gestalt’s principles[21], gave the most pleasing results

with no margin of error. Hence we decided to go on with this strategy only for the sake of

simplicity since mixing strategies will hinder the performance yet again.

We chose to continue with this strategy, as we achieved the most stable results with the

balanced distribution algorithm. After the tree is created and processed, and after the layout

processing is completed with this strategy, we are now going to the stage of evaluating the

aesthetic points of all feasible layouts and selecting the layout with the highest aesthetic score

according to these points.

4.3.6. Comparing Strategies

We lastly made a comparison between fair distribution and balanced distribution, as other

distributions often produce problematic results or do not adequately address all the distribu-

tion cases. The results of fair distribution in the same and different resolutions can be seen

respectively in Figure 4.6. and Figure 4.7.

As seen in the Figure 4.6. interface, which is distributed at the same resolution without using

aesthetic scoring, it seems that the two possible layouts have given very smooth results.

But when we change the resolution, we start to encounter problems like in Figure 4.7. Al-

though it seems to have no difficulty in placing the elements properly when the space is

narrowed and it seems to have achieved a phone or tablet-like image. But also, the dimen-

sions of similar labels are not preserved. The combobox is given a range that can take up

more space than other text fields, especially. We know that the combobox element will take

the same size as the other text fields in a balanced distribution since the values are distributed

one by one.
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Algorithm 4: LAYOUT Balanced Distribution Algorithm
Input: Tree information of the page
Output: Exact coordinates, width and height of each UI element, capacity values of the

current node
1 feasible← false
2 distribution← ∅ size is number of children
3 remaining ← remaining value of horizontal or vertical amount
// Distribute minimums to each child in node foreach child in
children do

4 distribution[current]← minimum value of this child’s distributed value
5 remaining −= distribution[current]
6 if remaining ≤ 0 then
7 break;

8 while remaining > 0 do
9 if distribution[current] < maxV alues[current] then

10 Slot is full don’t add to this node anymore

11 else
// Increment the minimum node to balance all the
nodes

12 distribution[current] += 1
13 remaining −= 1

14 offset← 0
15 foreach child in children do
16 if orientation = Horizontal then
17 if ¬child.LAYOUTBALANCED(x+offset, y, distribution[current], height)

then
18 return false

19 else
20 if ¬child.LAYOUTBALANCED(x, y+offset, width, distribution[current])

then
21 return false

22 offset += distribution[current]

23 return true
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FIGURE 4.6. Fair Distribution, same resolution, different layouts

Just like in this example seen in Figure 4.8., while maintaining the label dimensions in the

layout on the left, distributions that would disrupt the overall image were avoided. If the

label dimension sizes can’t be kept same like the others, then in order to preserve Gestalt

principles[21], a perception such as a separate grouping has been created.

The protection of Gestalt principles is best understood when we look at distributions of dif-

ferent resolutions. While trying to fill only the constraints of the combobox with different

resolutions in Figure 4.7., the Name and Surname fields were provided equal coverage, and

the Country and the checkbox pair were also equalized, as they were distributed one by one

in Figure 4.9. Whether we use a balanced distribution or a fair distribution, we have very

workable layouts and we do not know at this stage which one to choose according to what.

Since there are hundreds of layouts here, we need a decision-making mechanism and in this

case, this mechanism is aesthetic scoring.
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FIGURE 4.7. Fair Distribution, same tree, different resolutions

FIGURE 4.8. Balanced Distribution, same resolution, different layouts

FIGURE 4.9. Balanced Distribution, same tree, different resolutions
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5. AESTHETICS AS A DECISION MAKER

After finding all the feasible layouts, it’s time to choose the most aesthetic result. After

examining Gestalt principles[21] and Ngo’s work[22][23], we realized that Ngo was trying

to follow Gestalt principles as much as possible, and we found the mathematical formulas

he derived by finding parameters compatible with these principles. We examined the aes-

thetic formulas that Ngo’s study revealed, processed nine of them ourselves, and edited five

of them and made them suitable for our work. We have assigned a weight to each aesthetic

factor we use, and we have achieved an aesthetic score by the parameters and their respec-

tive weights. These parameters are; balance, equilibrium, symmetry, sequence, cohesion,

unity, proportion, simplicity, regularity, economy, homogeneity, rhythm, order and complex-

ity. Each parameter and weight coefficient can take a value between 0 and 1 so the result

is always a positive decimal number. Equations we modified, are arranged in such a way as

to derive their calculations since shapes and colors are not taken into account in our experi-

ments. All of the aesthetic parameters we have explained below are taken from Ngo’s work

as a concept and these parameters have been redesigned by making them suitable for our

study.

5.1. Balance

The first aesthetic parameter, balance, can be defined as the distribution of weight in a picture.

Larger objects are heavier, smaller objects are lighter. Balance in screen design is achieved

by giving equal weight to the left and right, top and bottom. The equation is given[22] as

follows:

BM = 1− |BMvertical|+ |BMhorizontal|
2

∈ [0, 1] (1)
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BMhorizontal and BMvertical are horizontal and vertical balances that are explained in Equa-

tion 2 and 3.

BMvertical =
wL − wR

max(|wL| , |wR|)
(2)

BMhorizontal =
wT − wB

max(|wT | , |wB|)
(3)

where

wj =
i∑
nj

dij
αij

αmax

, j = L,R, T,B (4)

amax = max
(
aij, i = 1, 2, ..., nj j = L,R, T,B

)
(5)

Letter j stands for the side component exists on which can take the values L for Left, R for

Right, T for Top and B for Bottom. aij stands for the area of object i on side j; dij is the

distance between center points of object and frame; nj is the total number of objects on that

side. The results of these formulas are then multiplied by the balance weight coefficient, and

the result gives us the balance aesthetic score of this layout.

5.2. Equilibrium

Equilibrium in a layout is measured in how centered the overall layout is. The center of mass

of overall elements and the frame’s center of mass must align or be close together in order to

achieve equilibrium in a layout. The equilibrium equation is as follows[22]:

EM = 1−
|EMx|+

∣∣EMy

∣∣
2

∈ [0, 1] (6)

EMx =
2
∑n

i ai(xi − xc))
nbframe

∑n
i ai

(7)

EMy =
2
∑n

i ai(yi − yc))
nhframe

∑n
i ai

(8)

where (x, y) pairs are coordinates for object i and frame c; ai is the area of object i; bframe

and hframe are width and height values of the frame respectively; n is the number of objects

37



in frame. Maximum values |xi − xc| and |yi − yc| can get as high as bframe/2 and hframe/2

respectively since otherwise these objects will not be in the screen.

EMx represents the center of mass of the x coordinates of all objects while EMy represents

the same for the y coordinates. As the values approach zero, the equilibrium increases, as

these values increases in the positive direction, the center of mass shifts upwards or right

depending on looking at EMx or EMy value, and in negative direction, the center of mass

shifts to the left or down. It should be noted that, since we don’t use spaces in our study, we

tried to implement it but the results were always 1 so we decided to weight this parameter as

0.

5.3. Symmetry

Symmetry can be achieved by mirroring images. Here we have three kinds of symmetry;

Horizontal, Vertical and Radial[22]. Horizontal and Vertical symmetry is preserved by hav-

ing equivalent elements in their respective axes while radial symmetry is preserved by having

equivalent elements in two or more axes which in this case x and y axes create our symmetry

parameters, allowing us to measure a diagonal symmetry.

SYM = 1− |SYMvertical|+ |SYMhorizontal|+ |SYMradial|
3

∈ [0, 1] (9)∣∣∣X ′
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(11)
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(12)

where X ′
j , Y

′
j , H ′

j , B
′
j , Θ

′
j and R′

j are, respectively, the normalised values of Xj , Yj , Hj , Bj ,

Θj and Rj

Xj =

nj∑
i

∣∣xij − xc∣∣ j = UL,UR,LL, LR (13)

Yj =

nj∑
i

∣∣yij − yc∣∣ j = UL,UR,LL, LR (14)

Hj =

nj∑
i

hij j = UL,UR,LL, LR (15)

Bj =

nj∑
i

bij j = UL,UR,LL, LR (16)

Θj =

nj∑
i

∣∣∣∣∣xij − xcyij − yc

∣∣∣∣∣ j = UL,UR,LL, LR (17)

Rj =

nj∑
i

√(
xij − xc

)2
+
(
yij − yc

)2
j = UL,UR,LL, LR (18)

where j can get the quadrants upper-left (UL), upper-right (UR), lower-left (LL), lower-right

(LR). (x, y) pairs are center coordinates for object i on quadrant j and frame c; bij and hij

are the width and height of the object and finally nj is the total number of objects on that

quadrant.

5.4. Sequence

In the habit of reading, the eye has gotten used to moving from the top left to the bottom right

of the page. According to the findings of psychologists, the eye moves from large objects to

small objects, from irregular shapes to regular shapes. In the light of this information, Ngo
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claimed that the large objects in the upper left quadrant are the most prominent objects, and

revealed the following equations[22].

SQM = 1−
∑

j=UL,UR,LL,LR

∣∣qj − νj∣∣
8

∈ [0, 1] (19)

{qUL, qUR, qLL, qLR} = {4, 3, 2, 1} (20)

νj =



4 if wj is the largest in w

3 if wj is the 2nd largest in w

2 if wj is the 3rd largest in w

1 if wj is the smallest in w

j = UL,UR,LL, LR (21)

wj = qj

nj∑
i

αij j = UL,UR,LL, LR (22)

w = {wUL, wUR, wLL, wLR} (23)

where j can get the quadrants upper-left (UL), upper-right (UR), lower-left (LL), lower-right

(LR). aij stands for the area of object i on quadrant j. Normally, in Ngo’s study[22], Equation

19 also checks color and shape as well but we don’t use these parameters since it is not the

scope of our study. In addition, since the sequence value can easily reach 1, we reduced the

coefficient to 0.2 in order not to affect the aesthetic scoring too much. The reason for this is

that, due to the structure of the algorithm, it tries to distribute evenly across the quadrants, as

it generally tries to obtain balanced layouts. If we used a different distribution algorithm; for

example, fair distribution, then we could get much more variable results from this metric.

5.5. Cohesion

Ngo claims that[22], similar aspect ratios represent cohesion, where our aspect ratio is width

and height. Measuring layout with screen and objects with layout gives us the cohesion

values of the given layout.
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CM =

∣∣CMfl

∣∣+ |CMlo|
2

∈ [0, 1] (24)

CMfl is a relative measure of the ratios of the layout and screen with

CMfl =

tfl if tfl ≤ 1

1
tfl

Otherwise
(25)

and CMlo is a relative measure of the ratios of the objects and layout with

CMlo =

∑n
i fi
n

(26)

tfl =

hlayout

blayout

hframe

bframe

(27)

fi =

ti if ti ≤ 1

1
ti

Otherwise
(28)

ti =
hi

bi
hlayout

blayout

(29)

where bi and hi are the width and height of the object i; blayout and hlayout, and bframe and

hframe are the width and height of the layout and the frame; n is the total number of objects

in the frame.

5.6. Unity

Unity creates the perception of all the elements of the page belong together. Ngo describes

it as a totality of elements that is visually all one piece[22]. To achieve unity, the form must

contain similar sized elements.

UMform = 1− nsize − 1

n
∈ [0, 1] (30)
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In Equation 30, we differed from Ngo’s study since we don’t use spacers in our study. The

number we obtained by proportioning the number of distinct areas, nsize, to the total number

of areas, n, shows us how similar the dimensions of the objects in interface is. We see that

the smaller this number, the more similar sizes are used. When we normalize the number to

1, we get our aesthetic score.

5.7. Proportion

Although beauty and aesthetics vary from person to person, from culture to culture, there are

some things that do not change over time. For example, Fibonacci’s golden ratio is still valid

today. Using this knowledge, Ngo claimed that[22] these ratios are aesthetically pleasing:

• Square (1:1)

• Square root of two (1:1.414)

• Golden rectangle (1:1.618)

• Square root of three (1:1.732)

• Double square (1:2)

PM =

∣∣PMobject

∣∣+
∣∣PMlayout

∣∣
2

∈ [0, 1] (31)

PMobject is the difference between the proportions of objects and the closest proportioned

shapes which is formulated as

PMobject =
1

n

n∑
i

1−
min

(∣∣pj − pi∣∣ , j = sq, r2, gr, r3, ds
)

0.5

 (32)

and PMlayout is the difference between the proportions of the layout and the closest propor-

tional shape which is formulated as

PMlayout = 1−
min

(∣∣pj − playout∣∣ , j = sq, r2, gr, r3, ds
)

0.5
(33)

42



{psq, pr2, pgr, pr3, pds} =

{
1

1
,

1

1.414
,

1

1.618
,

1

1.732
,
1

2

}
(34)

pi =

ri if ri ≤ 1

1
ri

Otherwise
(35)

playout =

rlayout if r ≤ 1

1
rlayout

Otherwise
(36)

ri =
hi
bi

(37)

rlayout =
hlayout
blayout

(38)

where bi and hi are the width and height of the object i; blayout and hlayout are the width and

height of the layout; pj is the proportion of shape j.

5.8. Simplicity

Simplicity is achieved with easy-to-understand and clutter-free interfaces, which in our case,

as few points of alignment as possible should be created using as few elements as possible[22].

This gives us the following equation:

SMM =
3

nvap + nhap + n
∈ [0, 1] (39)

where nvap and nhap are the distinct vertical and horizontal aligment point count; and n is the

number of objects in the layout.

5.9. Density

Density represents how much the screen is covered with the layout. Since Smart Layout

covers the whole given resolution, we gave this parameter a weight of 0 as it would always
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give 0 as result. Density can be achieved by having a spaced out layout. The more open

space the layout has the more aesthetic score it will get out of density parameter.

DM = 1−
∑n

i ai
aframe

∈ [0, 1] (40)

Here ai and aframe represents the areas of the object i and the frame; and n is the number

of objects in the layout.

5.10. Regularity

Regularity is more common in consistent interfaces, as if elements follow a pattern. In order

to achieve regularity in screen design, as few alignment points as possible should be used,

keeping the gaps as similar distances as possible. Ngo claims that regularity is a uniformity

of elements based on some principle or plan[22].

RM =

∣∣RMalignment

∣∣+
∣∣RMspacing

∣∣
2

∈ [0, 1] (41)

RMalignment, deals with minimizing alignment points

RMalignment = 1− nvap + nhap

2n
(42)

RMspacing, deals with how consistently spaced the elements are in between themselves

RMspacing =

 1 n = 1

1− nspacing−1

2(n−1)
Otherwise

(43)

where nvap and nhap are the distinct vertical and horizontal aligment point count; nspacing is

the number of distinct distances between column and row starting points; and n is the number

of objects in the layout.

44



5.11. Economy

Economy is to explain what is meant to be told by using as few patterns, elements, techniques

and visuals as possible[22].

ECM =
1

nsize

∈ [0, 1] (44)

where nsize is the number of distinct sizes of elements.

5.12. Homogeneity

Homogeneity measures how evenly the elements are distributed on the page. Here, if we

divide the page into four quadrants, we can attribute the homogeneity to the equality of the

number of elements in each quadrant.

HM = (1−HT )2 ∈ [0, 1] (45)

HT =

∑ |n4−nj|
n
4

6
(46)

where nj is the number of objects in quadrant j; and n is the number of objects in the layout.

5.13. Rhythm

Rhythm in design refers to the regular patterns of change in items. Rhythm is achieved by

diversifying the order, size, number and shape of the elements[22]. To measure the objects

that are systematically ordered following equation is used:

RHM = 1−
|RHMx|+

∣∣RHMy

∣∣+ |RHMarea|
3

∈ [0, 1] (47)
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∣∣∣
6

(50)

where X ′
j , Y

′
j , A′

j are, respectively, the normalised values of Xj , Yj and Aj

Xj =

nj∑
i

∣∣xij − xc∣∣ j = UL,UR,LL, LR (51)

Yj =

nj∑
i

∣∣yij − yc∣∣ j = UL,UR,LL, LR (52)

Aj =

nj∑
i

aij j = UL,UR,LL, LR (53)

where j can get the quadrants upper-left (UL), upper-right (UR), lower-left (LL), lower-right

(LR). (x, y) pairs are center coordinates for object i on quadrant j and frame c; aij is the area

of the object; and finally nj is the total number of objects on that quadrant.
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5.14. Order and Complexity

This parameter is the scale of complexity of the layout which is calculated as the mean of

all the previous aesthetic category scores. Since fine-tuning all of the parameters’ weight

coefficients is an optimization problem, we assumed each parameter as equally important,

with the exemptions that we mentioned in their own subsections, and it still gave good results.

∑n
i Pi

n
∈ [0, 1] (54)

where Pi is the value of parameter i; and n is the number of parameters that we use to score

the aesthetic points.
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6. EXPERIMENTS & RESULTS

6.1. Experimental Layouts

We used a fragment from the first page of the Schengen visa form to make a comparison with

real life usage which can be seen in Figure 6.1. We recreated this layout as four separate lay-

outs with 10, 31, 51 and 84 components. We tested all the layouts in 3 different resolutions.

We chose one large, one equal, one tall resolution and got the visuals of the results found by

the algorithm.

FIGURE 6.1. Original layout

Layout 1

We tried to preserve all the components for the first layout and created a layout with 84

components.
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FIGURE 6.2. Layout 1, composed of 84 components, which are 48 UI components and 36
containers
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Wide Resolution (1000, 270)

FIGURE 6.3. Layout 1, 1000 pixels wide, 270 pixels tall

After running Smart Layout, its response to a resolution of 1000 by 270 is as in Figure 6.3.

In some places, the outlines of the given groups can be seen sharply. However, this is a result

where Gestalt principles have been applied as much as possible. As a matter of fact, the

salience of relational groups shows that Gestalt principles are doing its’ work.
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Square Resolution (600, 600)

FIGURE 6.4. Layout 1, 600 pixels wide, 600 pixels tall

When we move on to a square installation, we see that the groups still do not lose their

distinction. However, the dimensions have been kept the same as possible and there is a

general consistency in areas other than Place of Birth and Country of Birth. Some areas may

be too large to appeal to the eye, but since these are completely developers’ values, they can

be modified. The reason we gave such a large range here is that the larger our range, the more

our possible options increased and we had the opportunity to find more layouts. In addition,

we wanted to make a stress test on the application as a performance evaluation.
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Tall Resolution (400, 600)

FIGURE 6.5. Layout 1, 400 pixels wide, 600 pixels tall

In this layout, we see a resolution closer to mobile and tablets. We see that vertical layouts

are preferred than horizontal layouts in order to fit more.

Layout 2

In the second layout, we tried to keep everything the same as possible, and that’s why we

created a 51 component layout using only fewer components.
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FIGURE 6.6. Layout 2, composed of 51 components, which are 28 UI components and 23
containers

Wide Resolution (650, 250)

FIGURE 6.7. Layout 2, 650 pixels wide, 250 pixels tall
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In the wide resolution, as can be seen, again, the relationships can be observed by grouping

them with Gestalt principles. However, another observed feature is the grouping of the upper

branch nodes with each other. A structure resembling a Grid Layout has been obtained and

has earned the highest aesthetic score.

Square Resolution (400, 400)

FIGURE 6.8. Layout 2, 400 pixels wide, 400 pixels tall

In square resolution, the algorithm sees the two column placement as the most appropriate

and tried to do the distribution with this logic. However, minor inconsistencies have been

observed. For example, while the majority of the fields are accumulated on either side of

the columns (Name Fields etc.), some fields spread to two columns, breaking the integrity

(Country of Birth etc.).
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Tall Resolution (300, 600)

FIGURE 6.9. Layout 2, 300 pixels wide, 600 pixels tall

Here we see the main two nodes placed vertically which gave a phone or tablet like layout.

Same inconsistencies can be found here but of course these inconsistencies can be avoided by

adjusting the weights of the aesthetic scoring parameters. For instance, if we adjust Symmetry

coefficient to higher numbers, radial symmetry will be more important which will result in

more radial equalities across the layout hence choosing a layout that is more similar in i.e.

top-left and bottom-right. But this is a whole other branch of aesthetic correction that is not

in the scope of this thesis, although it would be a promising future work.

Of course this result might be one of the lowest aesthetic scores this layout can get, just

because this was the only feasible layout or best of the worst layouts since none other layout
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contains a feasible solution to this specific screen resolution. The scoring of each layout for

each resolution will be discussed in aesthetic results part.

Layout 3

In layout 3, the component count is reduced to 31 so we can observe how the relational tree

and layout algorithm responds to fewer component distributions and how these distributions

are scored.

FIGURE 6.10. Layout 3, composed of 31 components, which are 17 UI components and 14
containers
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Wide Resolution (400, 200)

FIGURE 6.11. Layout 3, 400 pixels wide, 200 pixels tall

In the wide layout, Date of Birth field is used as a filler, because this field can still get as low

as other text input fields but can be extended twice as much as a normal text field. When a

node can stretch further, its possible solutions grow exponentially which creates these kinds

of layout opportunities that normally does not satisfy at such resolutions. If Date of Birth

fields couldn’t stretch twice as much as a normal text field node, this layout would be a text

field and label short to fill in and might become an infeasible layout.

Square Resolution (300, 300)

FIGURE 6.12. Layout 3, 300 pixels wide, 300 pixels tall
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As the layouts get smaller and smaller, the aesthetic scores and possible outcomes become

more scarce which results in more deformed layouts that have no better outcome than pre-

sented ones. The inconsistencies are even more bold in this layout.

Tall Resolution (200, 400)

FIGURE 6.13. Layout 3, 200 pixels wide, 400 pixels tall

Aside from the last label and text field the layout is pretty consistent in this specific case,

but it is worth noting that this might be the only solution to this layout and the last two

components were stretched to fulfill the constraints.
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Layout 4

FIGURE 6.14. Layout 4, composed of 10 components, which are 6 UI components and 4
containers

For the final layout we picked as little elements as possible to see how Smart Layout behaves

in minimal interfaces such as dialog boxes. The possibilities are pretty limited compared to

the other layouts with much more complex structures.

Wide Resolution (600, 100)

FIGURE 6.15. Layout 4, 600 pixels wide, 100 pixels tall

As predicted, this wide layout kept the labels at top and fields at bottom and if the layout was

extended further all the components can only be placed horizontally to fulfill the constraints.
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Square Resolution (200, 200)

FIGURE 6.16. Layout 4, 200 pixels wide, 200 pixels tall

As it can easily be seen, for the horizontal arrangement, both the horizontal and vertical con-

straints of the components cannot accommodate this resolution. If this resolution is further

narrowed down, placing each component one under the other seems to be the last option.

Tall Resolution (200, 300)

FIGURE 6.17. Layout 4, 200 pixels wide, 300 pixels tall

Here we see no significant changes to the square resolution as it can still fit the components

vertically and vertical placement gives more aesthetic score because of Proportion parameter.

Stretched objects gets lower score than equally proportioned objects as it can be calculated

in Equation 32.
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6.2. Results

In this section, we will be comparing the numerical values of the layouts we have. These

numerical values include possible number of layouts, time complexity and aesthetic scores

of layouts. The results are taken from a Java application, as secluded as it can be with

restarting everytime and made one measurement beforehand to avoid cold starts.

6.2.1. Possible Layouts

FIGURE 6.18. Feasible Layout Count for all layouts and resolutions experimented.

When we look at Figure 6.18., the first thing to notice is that certain resolution ranges give

more results in each layout. In other words, the value ranges we give to the components

seem to be most open to change at these points. In these resolutions, we have the biggest

sample space for aesthetic scoring compared to the other two resolutions. These resolutions

are, (600, 100) and (200, 300) for 10 components, (300, 300) for 31 components, (300, 600)

for 51 components, and (600, 600) for 84 components. If we compare these resoultions

61



to their siblings of the same layout tree, we might not find the most aesthetically pleasing

result, but we find which layout had the biggest sample space for our aesthetic evaluation.

As expected with more components feasible layout count increases with consideration of the

tree’s elements and its’ current resolution.

6.2.2. Time Complexity

Time was the most important metric in our study since we aim Smart Layout to work under

a second and if this metric didn’t give us these results, the study would not be a success.

To understand how it works in real time, we also took the time measurements while the

GUI was running so that we could show that it still runs under a second despite other inter-

vening operations. In Table-6.3., as expected, it is observed that as the number of feasible

layouts increases, the time finding these layouts and the aesthetic scoring periods also in-

crease. However, despite having a screen with 84 components with (600, 600) resolution,

the entire process can be calculated in under a second. We have also noticed that with more

components, it is harder to get higher scores on aesthetics. Also even with high number of

components, finding all feasible layouts can be measured with microseconds.

TABLE 6.1. Timing values of a cycle

Finding all
feasible layouts (µs)

Total feasible
layout count

Aesthetic
scoring time (µs)

Total
time (µs)

10 Comp - 600,100 3096 8 7791 10887
10 Comp - 200,200 2067 7 5466 7533
10 Comp - 200,300 1347 8 4253 5599
31 Comp - 400,200 317 52 5147 5463
31 Comp - 300,300 363 68 6993 7356
31 Comp - 200,400 694 20 1270 1964
51 Comp - 650,250 264 348 17122 17386
51 Comp - 400,400 296 242 10276 10570
51 Comp - 300,600 498 3077 153564 154061
84 Comp - 1000,270 3597 1074 93397 96994
84 Comp - 600,600 10615 6225 581954 582569
84 Comp - 400,600 341 580 48868 49209

In Table-6.1., breakdown of the cycle can be seen with proper values. We can connect the

spike in all feasible layout finding times in the 10-component tree to more branch node trips
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because it could not find appropriate layouts. It should be noted that this spike can relate to

the Java languages overheads since this measurement was snapshotted with GUI which may

caused the spike or garbage collection system that Java provides.

TABLE 6.2. Execution Time of Get Ranges algorithm (ms)

10 Components 31 Components 51 Components 84 Components
With Memoization 0.3 0.6 0.7 1
No Memoization 128 2816 36415 43340

FIGURE 6.19. Execution time of creating relational tree on a logarithmic base of 10 for all
layouts and resolutions experimented in microseconds.

If we look at the timing of our GetRanges function, which checks whether a layout is feasible

for a certain resolution according to the tree structure we have, here in Table-6.2. and Figure

6.19., we can see the comparison of our results using the memoization structure to prune the

tree and the results measured with a normal tree traversal method without using memoization.

Since the GetRanges function works only once for a specified tree, no more data is obtained

from the measurements, but as the data clearly shows, more is not needed. As Table-6.2.

and Figure 6.19. show, memoization has saved a significant exponential increase in time and

pruned the tree, avoiding many unnecessary branches.
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TABLE 6.3. Aesthetic Scores and Execution Times, Feasible Layout Execution Times and
Counts

Aesthetics Feasible Layout
Score Execution time (ms) Find all (µs) Count

10 Comp - 600,100 5.9734 7.79 3096 8
10 Comp - 200,200 6.6462 5.47 2067 7
10 Comp - 200,300 6.6224 4.25 1347 8
31 Comp - 400,200 7.3758 5.15 317 52
31 Comp - 300,300 6.4426 6.99 363 68
31 Comp - 200,400 6.1904 1.27 694 20
51 Comp - 650,250 6.4012 17.12 264 348
51 Comp - 400,400 6.8584 10.28 296 242
51 Comp - 300,600 6.1524 153.56 498 3077
84 Comp - 1000,270 5.7745 93.4 3597 1074
84 Comp - 600,600 6.0551 581.95 10615 6225
84 Comp - 400,600 5.6897 48.87 341 580

If we look at the time it takes to find all feasible layouts of a tree, the values in both Figure

6.20. and Table-6.3. show that the number of elements in the interface, the number of

feasable layouts found and the time of finding feasible layouts are directly proportional.
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FIGURE 6.20. Execution time to create a list of every feasible layout, for all layouts and
resolutions experimented in microseconds.

6.2.3. Aesthetics

Table-6.3. shows that as the interface grows, the aesthetic scores decrease slowly. It would be

wrong to make this assumption for each aesthetic parameter, but this was what we expected

to see; the overall aesthetic scores decreased. As the interface grows, it will be harder to

score because some of our parameters will require fewer elements for simplicity, and it will

be harder to fulfill the remaining parameters’ conditions. If we need to look at each aesthetic

parameter one by one, Table-6.4. and each parameters’ individual result figures will help us.
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FIGURE 6.21. Total aesthetic results for each resolution.
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6.2.3.1. Balance

FIGURE 6.22. Balance parameter results for each resolution.

The balance parameter was able to maintain its highest values comfortably in 10 components,

and this is because there are few elements in the interface, it can be equally distributed to all

four quadrants. However, as the number of components increases, the value has started

to decrease, and as it can be predicted in more mobile-like views or horizontally extended

views, since the distributions gain horizontal or vertical priority, it is not possible to talk

about a balance between the groups as the majority are grouped one below the other or side

by side. This deterioration is most clearly seen in the interface with 84 components. As

filling the rows in groups is usually left to one or two elements, aesthetic concern has ceased

to be the primary priority and we can see from the numbers that the results are reflected in

the balance parameter.
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6.2.3.2. Symmetry and Rhythm

FIGURE 6.23. Symmetry parameter results for each resolution.
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FIGURE 6.24. Rhythm parameter results for each resolution.

Since the equations of symmetry Equation 9 and rhythm Equation 47 are so similar, the

values are very much similar too. While rhythm Equation 50 looks at the size difference

between the areas of the elements that belong to each quadrant for the four quadrants, sym-

metry Equation 12 looks at a radial symmetry calculation. Like other parameters, symmetry

and rhythm parameters give extreme values in calculations because there is not enough data

in 10 component trees. The only significant difference in Figure 6.23. and Figure 6.24. is the

interface in Figure 6.13. with 31 components (200, 400) resolution. Although it is impossible

to find a visible radial symmetry, it can be seen without calculation that the area differences

for each quadrant are similar in the rhythm parameter. This explains us the difference.
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6.2.3.3. Sequence

FIGURE 6.25. Sequence parameter results for each resolution.

For the sequence parameter, while the areas in each quadrant are not evenly distributed in the

interfaces with less components, as the number of components increases, the sequence value

often returns the full value after a certain number of components, since less area overflows

from the quadrants. For this reason, its weight was reduced to 0.2 in order not to affect the

results too much.
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6.2.3.4. Cohesion

FIGURE 6.26. Cohesion parameter results for each resolution.

Since the cohesion value looks at the ratio of the width and height of the components to the

ratio of the resolution to the width and height, it allows us to avoid unnecessary long or wide

components. The values it receives can be interpreted even with the naked eye.
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6.2.3.5. Unity

FIGURE 6.27. Unity parameter results for each resolution.

Unity represents how similar the components are to each other, which means; the more

components of different sizes, the lower the results. For this reason, the fact that we can find a

lot of components with different sizes in an interface with 84 components, while all elements

have equal size in an interface with 10 components, shows the reason for the decrease in this

parameter.
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6.2.3.6. Proportion

FIGURE 6.28. Proportion parameter results for each resolution.

Proportion measures the similarity of components to some specified proportions (square,

square root of two, golden rectangle, square root of three, double square). This helps us to

eliminate unnecessarily long or wide components and allows us to keep more eye-catching

components.
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6.2.3.7. Simplicity

FIGURE 6.29. Simplicity parameter results for each resolution.

In the simplicity parameter, attention is paid to the horizontal and vertical alignment points

and the number of elements. Thus, structures similar to a grid structure are preferred.

Gestalt’s Common Region principle is used by obtaining a grid structure between groups.

The more aligned an interface is, better results it gets, but as the interface grows, its is harder

to achieve fewer alignment points which results in lower points from this parameter.
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6.2.3.8. Regularity

FIGURE 6.30. Regularity parameter results for each resolution.

Regularity is obtained by minimizing both the alignment and spacing differences. This pa-

rameter compliments Simplicity and Economy parameters and tries to apply both of them

in its’ own way. The aim is to take advantage of both Gestalt’s Similarity and Continuity

principles and create the self-oriented guidance feeling to the user.
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6.2.3.9. Economy

FIGURE 6.31. Economy parameter results for each resolution.

The economy parameter measures how many different dimensions are used in the compo-

nents, and the more similar dimensions are used by utilizing Gestalt’s similarity principle,

the higher results are given. As the interfaces grow and become more complex, the values in

the graph decrease as it will be difficult to find components of similar sizes. It has also been

observed that as the number of components increases, the difference between the values of

the same tree at different resolutions decreases.
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6.2.3.10. Homogeneity

FIGURE 6.32. Homogeneity parameter results for each resolution.

Homogeneity pays attention to how the elements are distributed over the four quadrants. If

there are no equal number of elements in each quadrant, homogeneity is not achieved. When

the imaginary quadrant lines are drawn, it is seen that the more equal distribution there is

within these lines, the higher the scores. However, as in Figure 6.7., this parameter has lower

values in interfaces that are grouped unbalanced because there are more alignment points.
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6.2.3.11. Order and Complexity

FIGURE 6.33. Order and Complexity parameter results for each resolution.

Since Order and Complexity is the average of all these parameters, it creates another layer to

eliminate complex interfaces. Other parameters aim to eliminate complexity and irregulari-

ties so this parameter can be seen as a support parameter to the others.
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7. CONCLUSION

7.1. Concluding Remarks

Ensuring that the interfaces, which play the most important role in the interaction between

human and machine, are automatically presented to people in the most proper way has been

one of the most valuable skills of today. Although automating interfaces has been tried by

many studies and institutions, they all require human support. What we are trying to achieve

is to remove the human factor and present the given information in the most automatic and

effective way possible.

Shopping sites, social media, communication platforms, games, the common point of all

these interaction tools are that they have an interface and that this interface can be displayed

on phones, computers, kiosks or giant screens. Normally, these interfaces, which are pre-

pared separately for each platform shown, are exactly the same, and the only difference

being the presentation shows us a great loss of effort. In order to prevent this loss of effort,

we established a geometric and topological structure between the elements in the interface,

and using this structure, we developed an algorithm that will select the most preferable pre-

sentation for each platform, even, for each resolution.

Similar to our study, the fact that we found few results when we searched for other studies

in the literature shows the originality of our study. Only Zeidler and Ngo have succeeded

in doing a study close to what we aimed for, and these studies are only a small part of our

scope and only a measurement tool, although they do not exactly solve the problem we want

to solve. We had a hard time finding similar studies both in the early stages of the study,

in the article we published in the middle of the study, and in the literature review we made

afterwards.

Our main technique in doing this was to extract a topological relationship tree and find fea-

sible layouts by pruning on this tree. But finding feasible layouts is only half of the job,

and these layouts are actually nothing but guidelines with infinite arrays of possibilities. By

80



trying methods to adjust and balance the arrays of these infinitely possible layouts, we fi-

nally turned all these layouts into realizable data with a balanced distribution method. At

this point, we could now implement any interface with the chosen layout, but a method was

needed to make the best choice. The mathematical representations of the aesthetic values

we found in our literature review attracted our attention and we wanted to make something

abstract concrete. That’s why we left the final decision to aesthetic evaluations and subjected

the layouts to a final test. The interface with the highest score from the test was selected as

the most suitable interface for that resolution to be displayed and drawn on the page to be

shown to the users.

In our study, we tried 4 layouts and we subjected each layout to 3 different resolutions. Each

layout was tested with different resolution values such as wide, square and long values, and

the results were noted. Our aim was to make the automatic layouts usable in daily life, so

real-time adaptation had to be provided and that could only be achieved with results that

are under a second. In order to combine our sample layouts on a common denominator, we

chose the same interface and used only different component numbers, and to add realism to

the work, we chose a part of a real-world visa application form. First layout was composed

of 48 UI components and 36 container components, second layout was composed of 28 UI

components and 23 container components, third layout was composed of 17 UI components

and 14 container components, and lastly the fourth layout was composed of 6 UI compo-

nents and 4 container components. Each tree was tested at wide, square and long resolutions

and all values were logged during the whole process. While navigating the topological re-

lationship tree, we saw that a lot of time was lost, especially in large interfaces, and with

the memoization method, we got rid of all the calculations that were calculated over and

over and gave the same results, and we obtained feasible layouts in less than a millisecond.

During the distribution phase, we saw how choosing a balanced distribution that creates the

least visual errors helped us apply Gestalt principles. We achieved handcrafted-like results

on interfaces selected by aesthetic scoring. We have seen that aesthetic formulas[22][23]

overlap with Gestalt principles[21] and make choices according to these principles. Even in

an interface with 84 components, it took a maximum of 10 ms for us to only find feasible
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layouts and make them ready for drawing by distributing all of these layouts according to

the given resolution, without coming to aesthetic scoring. This was a result that exceeded

our expectations. Despite heavy and expensive aesthetic formulas, we were able to test thou-

sands of feasible layouts in less than a second and draw the interface with the best results.

We managed to esthetically score all 6225 feasible layouts of our tree with 84 components in

581.954 ms, which is the biggest experiment we have done. The slowest drawing of a layout

we could achieve in these experiments took 0.582 seconds which fulfills our goal of drawing

layouts under a second.

Since the experiments are written in Java programming language, the variety of interface

elements in the examples depends on the capabilities of the swing library. Although we want

to measure Memory and CPU values in experiments, other asynchronous tasks of the JVM

prevent these measurements from giving stable results. Memory and CPU samples taken

repeatedly in the experiments are not included in the results section of the experiment, as

they give different results each time. We used JProfiler 10.1.5 to take the samples but with

each snapshot, the less sense the data made. As long as the intervals in the given topological

tree do not exceed 300 pixels, or a tree larger than 100 components is not used, our study

can analyze between 7000 to 8000 max feasible layouts and score them aesthetically. If we

get rid of the dependencies created by the Java language, we can work with much larger

numbers.

7.2. Future Work

For now, our work only processes areas and fills the screen with no space left. Spaces can be

added between components and scroll bar logic can be implemented. While implementing

scroll bars and spacers, an error margin can be considered as a decision maker parameter.

The area that overflows the screen, and the shape and proportion of the overflowing area can

be used to prioritize which component gets a spacer or a scroll bar.
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If we include different shapes and colors besides the fields, we can obtain a different aesthetic

scoring system. Apart from these, the weights of all parameters are currently considered

equally in aesthetic scoring, and these weights may give different results at different values.

Optimizing parameter weights can be a work in itself.

While distributing feasible layouts according to resolution, a single distribution method is

used. Different distribution methods can be added or it can be preferred to use these methods

in different places at the same time. Also with weighted distribution, we can provide a logic

which determines when to use maximum or minimum values to distribute or even come up

with a custom weight calculation formula. Depending on the situation, much more accurate

results can be obtained with different distribution methods. Which brings us to the next future

work, which is to look at the interaction between branch nodes. We consider the interaction

within the component groups, but if we change the distribution system by looking at the

interaction between the branch nodes while distributing, we can get a system that sees the

bigger picture. Also in a future work, component groups can be highlighted more and give

a feeling of belonging. For the time being, our results emphasize on groups but does not

highlight it.
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