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On the design of a novel fully
compliant spherical four-bar
mechanism

Volkan Parlaktasx1 , Engin Tanık1 and Cxağıl Merve Tanık2

Abstract
In this article, a novel fully compliant spherical four-bar mechanism is introduced and its generalized design methodology
is proposed. The original fully compliant mechanism lies on a plane at the free position (undeflected position); therefore,
it has the advantages of ease of manufacturing, minimized parts, and no backlash. First, the mobility conditions of the
mechanism are obtained. The dimensions of the mechanism are optimally calculated for maximum output rotation, while
keeping the deflection of flexural hinges at an acceptable range. Using an optimization method, design tables are pre-
pared to display the relationship between arc lengths and corresponding deflections of flexural hinges. Input–output tor-
que relationship and stresses at compliant segments are obtained analytically. A mechanism dimensioned by this novel
design method is analyzed by a finite element analysis method, and the analytical results are verified. Finally, the mechan-
ism is manufactured and it is ensured that the deflections of the compliant segments are consistent with the theoretical
results.
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Introduction

The moving links of spherical mechanisms are con-
strained to the concentric surfaces of a sphere, and
therefore, they generate three-dimensional movements.1

Spherical four-bar linkages are the simplest and most
compact mechanism that generates spatial motion.
Spherical linkages have numerous applications such as
generating functions and motions2 or accomplishing
specified spatial reorientations of an object.3 They can
be employed as grippers4 or wrists5 in applications such
as robotic surgery.6 Spherical mechanisms are
employed to establish orientations in aerospace7 and to
simulate flapping wings inspired by natural flight.8

Structures that gain some or all of their motion
through the deflection of compliant segments are
defined as partially or fully compliant mechanisms,
respectively. Fully compliant mechanisms possess no

friction-based classical joints in their structure. The
advantages of compliant mechanisms include reduced
number of parts and weight, lubrication free, low cost,
and less wear, clearance, and noise.9 The compliant
segments are replaced by an equivalent system of tor-
sional springs, joints, and links using a pseudo-rigid-
body model (PRBM) technique.9 In the literature, pla-
nar compliant mechanisms have been extensively
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studied.10–12 However, there are limited studies avail-
able on spatial compliant mechanisms.13 A special case
of the spherical four-bar mechanism, the compliant
Cardan universal joint, was studied by the authors, and
it was ensured that compliant segments are majorly
exposed to normal stresses due to bending. Hence, if
the output torque is not high, torsional stresses can be
neglected.14,15

In the literature, there are studies on ‘‘compliant
spherical mechanisms.’’ Bowen et al.16 described a
method for obtaining mechanisms providing motion in
action origami and utilized this method for creating a
classification scheme. Zhang et al.17 analyzed a type of
origami kaleidocycle-inspired symmetric multistable
compliant mechanism. Jacobsen et al.18 utilized a
lamina emergent torsional joint in a spherical compli-
ant mechanism. Bowen et al.19 presented a position
analysis of coupled spherical mechanisms found in
action origami. Lusk and Howell20 described a new
micro-mechanism, namely, the spherical bistable micro-
mechanism. Callegari et al.21 described the design of a
robotic wrist that can perform spherical motions. Li
and Chen22 explored spherical mechanism design from
possible compliant planar linkages. Palmieri23 per-
formed an elasto-static analysis of a 2-degree-of-free-
dom (DOF)-compliant spherical parallel wrist. Rad
et al.24 introduced an analytical compliance analysis
and a finite element verification of spherical flexure
hinges for spatial compliant mechanisms. Rad et al.25

studied the design and stiffness analysis of a compliant
spherical chain with 3-DOFs.

To the best of our knowledge, there is only one study
on ‘‘compliant spherical four-bar mechanism’’ in the lit-
erature. Wilding et al.26 identified and classified possi-
ble spherical lamina emergent mechanisms (LEMs) and
built origami examples.

In this article, the first robust (no plastically
deformed compliant segments) ‘‘fully compliant spheri-
cal four-bar mechanism’’ with small length flexural
hinges is introduced. A novel generalized analysis and
design methodology for the fully compliant spherical
four-bar mechanism is proposed. The mechanism is ini-
tially at the planar state; all segments are on parallel
planes, and all compliant segments are at their unde-
flected positions. The planar configuration enables ease
of manufacturing (all segments are made of planar
materials), and as the motion is symmetric to both
directions, input–output rotation can be doubled; if the
input link is rotated clockwise or counterclockwise, the
other movable links perform the same amount of angu-
lar motion according to the fixed link, that is, symmetry
axis. The mechanism can be produced from a single
block by carving out the compliant segments via com-
puter numerical controlled milling. As an alternative,
compliant segments can be sandwiched between rigid
plates. Moreover, in the mass production case, it can be

manufactured by plastic injection molding. Therefore,
the original mechanism has the advantages of mini-
mized parts and manufacturing tolerances, ease of man-
ufacturing, compactness, and no joint clearance.

Design of the fully compliant spherical
four-bar mechanism

The mathematical model of the fully compliant spheri-
cal four-bar mechanism is constructed using the PRBM
technique. Therefore, first, the conditions satisfying the
planar position are investigated for a rigid spherical
four-bar mechanism. Cervantes-Sanchez and Medellin-
Castillo27 described a classification layout for spherical
four-bar mechanisms.

A spherical four-bar linkage is presented in a general
position in Figure 1. The output angle f can be deter-
mined27 in terms of the input angle u

f= 2atan
�U 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 +V 2 �W 2
p

W � V

 !
ð1Þ

where U = sina1 sina3 sin u, V = cosa1 sina3 sina4�
sina1 sina3 cosa4 cos u, and W = sina1 cosa3

sina4 cos u+ cosa1 cosa3 cosa4 � cosa2.
According to Wilding et al.,26 there are three classes

of spherical four-bar mechanism satisfying a planar
state: two of them are actually the same mechanism if
the output and the input link are switched, and the
other one is a cross-configuration mechanism. Length
of the rigid part of a compliant link must be much
greater than length of the compliant part. However, it
is very hard to obtain this property with the cross con-
figuration due to its complex shape. Therefore, the
open configuration mechanism is selected for the
design. According to the type synthesis of the rigid
spherical four-bar linkage (Figure 2), when

Figure 1. Spherical four-bar linkage.
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a1 +a2 +a3 +a4\3608, the condition satisfying the
planar state for the design can be determined27 by
equation (2)

a2 =a3 +a4 � a1 ð2Þ

Here, a1, a2, a3, and a4 are the arc length of the
input link, coupler, output link, and fixed link, respec-
tively. In Figure 2, two different simplified sketches of
the selected spherical four-bar linkage type are pre-
sented for different arc lengths at the planar position.
For the compliant counterpart, the values of the arc
lengths must satisfy equations (1) and (2) and also the
mobility conditions derived in next section. It is clear
that all of the revolute joint axes must intersect at the
center of the sphere. Note that the coordinate systems
in Figures 1–3 are the same. At the planar state, the
position variables are as follows: u=0, b=180�,
g =0, and f=180�, as shown in Figures 2 and 3.

According to the selected type of rigid spherical
four-bar mechanism, two novel compliant counterparts
are designed using a rigid-body replacement synthesis
technique, as shown in Figure 3. The revolute joints are
replaced by single-axis flexural hinges at the compliant
counterparts. The axes of the compliant segments must
intersect at the center of the sphere, as displayed in
Figure 3. The flexural hinge between the ground (rigid
segment 4) and rigid segment 1 is compliant segment 1-
4. The flexural hinge between the ground and rigid seg-
ment 3 is compliant segment 3-4. The flexural hinges
between rigid segments 1-2 and between rigid segments
2-3 are compliant segment 1-2 and compliant segment
2-3, respectively. The input is at rigid segment 1, and
the output is at rigid segment 3. As shown in Figure 3,
rigid segments 3 and 4 may curl up inside or outside
and there may be extensions on rigid segments 1 and 3
for ease of transmission; the center of the extensions
must be coincident with the center of the corresponding

compliant hinges. Note that R is the radius of the outer
rigid segment measured from the sphere center that
defines the overall size of the mechanism.

The sandwiched mechanism in Figure 3 can be man-
ufactured from one thin polypropylene plate inside and
two thicker (rigid) polypropylene plates outside that are
fastened by small screws. Alternatively, it can be manu-
factured from one thin blue polished spring steel inside
and two thicker (rigid) steel plates outside that are fas-
tened by small screws or by special glues for steel.

Mobility conditions of the fully compliant
spherical four-bar mechanism

The arc lengths of the compliant spherical four-bar
mechanism are determined using the rigid-body replace-
ment synthesis technique, and, therefore, the mobility
conditions of rigid segments and limiting conditions for
the deflections of compliant segments are derived from
the geometry of the rigid spherical four-bar linkage at
the critical positions.27

The mobility and limiting conditions are determined
as follows. As u=0 at the initial position, there should
be no lower limit for u. The condition for no umin is

cos a3 � a2ð Þø cos a4 � a1ð Þ ð3Þ

The condition for nonexistence of an upper limit of u

is

cos a2 +a3ð Þł cos a1 +a4ð Þ ð4Þ

If equation (4) is violated and umax exists, the value
of umax can be determined by equation (5)

cos umax=
cos a2 +a3ð Þ � cosa1 cosa4

sina1 sina4

ð5Þ

Figure 2. Type synthesis of the rigid spherical four-bar mechanism with different arc lengths: (a) a4 is an obtuse angle and (b) a4 is
an acute angle.
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If umax exists, the predefined input for the complaint
mechanism (Dumax) must be smaller than or equal to
umax. The relationship between b and the output angle
f is

sina3 sina4 cosf+ cosa3 cosa4 � cosa1 cosa2

= sina1 sina2 cosb
ð6Þ

At the initial position b=180�. Therefore, there
should be no upper limit for b. The condition for no
bmax is

cos a3 +a4ð Þł cos a1 +a2ð Þ ð7Þ

If the following condition is satisfied, no lower limit
of b exists

cos a4 � a3ð Þø cos a2 � a1ð Þ ð8Þ

If equation (8) is violated and bmin exists, the value
of bmin can be determined as

cosbmin =
cos a4 � a3ð Þ � cosa1 cosa2

sina1 sina2

ð9Þ

If bmin exists, the maximum deflection of compliant
segment 1-2 (Dbmax) cannot exceed 180� 2 bmin. The

relationship between g and u can be determined from
equation (10)

cosa1 cosa4 + sina1 sina4 cos u� cosa2 cosa3

= sina2 sina3 cosg

ð10Þ

In the case of planar position g =0. Equation (11)
must be satisfied for no lower limit of g

cos a4 � a1ð Þø cos a3 � a2ð Þ ð11Þ

If equation (12) is satisfied, then g does not have an
upper limit

cos a1 +a4ð Þł cos a2 +a3ð Þ ð12Þ

If equation (12) is violated, the value of gmax can be
determined by equation (13)

cosgmax=
cos a1 +a4ð Þ � cosa2 cosa3

sina2 sina3

ð13Þ

If gmax exists, the maximum deflection of compliant
segment 2-3 (Dgmax) cannot exceed gmax.

Figure 3. Designs of the original fully compliant spherical four-bar mechanism where: (a) rigid segments 3 and 4 curl up outside and
(b) rigid segments 3 and 4 curl up inside and there are extensions on rigid segments 1 and 3.
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The variable f is equal 180� at the planar position.
Hence, equation (14) must be satisfied for nonexistence
of fmax

cos a1 +a2ð Þł cos a3 +a4ð Þ ð14Þ

A lower limit exists for f if equation (15) is violated

cos a2 � a1ð Þø cos a4 � a3ð Þ ð15Þ

If lower limit exists, the value of fmin can be deter-
mined by equation (16)

cosfmin =
cos a2 � a1ð Þ � cosa3 cosa4

sina3 sina4

ð16Þ

If fmin exists, the maximum deflection of compliant
segment 3-4 (Dfmax) cannot exceed 180� 2 fmin.

Arc length optimization of the rigid
segments

In previous sections, the conditions that satisfy the pla-
nar state of the design, mobility conditions of rigid seg-
ments, and limitations of the deflections of compliant
segments are determined. It is clear that there are infi-
nite numbers of arc length combinations that satisfy
the related conditions. For the design, the input is at
rigid segment 1 and the output is at rigid segment 3. It
is intended to obtain the maximum output rotation cor-
responding to a predefined input rotation. Generally,
maximizing the output stroke is advised to perform a
specified task. Therefore, the objective of the optimiza-
tion is to determine the maximum Df corresponding to
the predefined Du. Moreover, the deflections of the
other compliant segments should be in an acceptable
range. Hence, arc lengths are optimized for maximum
Df according to input rotations of Du=5�, 10�, 15�,
20�, and 25�. Here, the maximum deflection of the
remaining flexural hinges are limited to 10�, 15�, 20�,
25�, and 30� respectively. This specified set of deflec-
tions is common in numerous compliant mechanism
designs. The optimum results of the arc lengths are
searched between the specified values that yield feasible
solutions, and the related regions are 10� ł a1 ł 70�,
10� ł a3 ł 70�, and 40� ł a4 ł 150�. Note that the
value of a2 is dependent on other arc lengths, and it is
determined by equation (2).

A constraint optimization routine is utilized to deter-
mine the optimum arc length values of the mechanism
by maximizing the Df function when there is a non-
linear inequality constraint. Therefore, the objective
function is set as Df, which is a function of the a1, a2,
a3, and a4 variables. The lower and upper bounds of
the ai variables are defined as vectors, and the non-
linear constraints are specified as another function. For
the optimization process, Global Optimization Toolbox

of MATLAB R2016a is utilized and GlobalSearch sol-
ver with ‘‘fmincon’’ function is used. The GlobalSearch
uses gradient-based methods to return local and global
minima. It starts ‘‘fmincon’’ that finds minimum of con-
straint nonlinear multivariable function from multiple
starting points and store local and global solutions
found during the search process. Note that, the aim is
to maximize the Df function. Minimizing –Df is equiv-
alent of maximizing Df. Thus, –Df function is used in
the optimization routine.

Different sets of optimum results are shown in
Table 1. In this way, the local optimum results can be
observed and the arc lengths from different regions can
also be selected. Moreover, the effect of different arc
lengths on the output rotation can be visualized.
Therefore, designers have several alternatives rather
than the only one global optimum. Note that some
results are shown in boldface in Table 1. For these
results, the values of a3 are fixed to 20�, 25�, 30�, and
35�, and the other arc lengths are optimized. If the
value a3 is not specified, it mostly converges to the min-
imum value of 10� during the optimization for a slightly
larger Df.

Note that the radius of the arc measured from the
sphere center that defines the overall size of the mechan-
ism (R) is a free parameter and that can be arranged in
combination with the length of the compliant segments.
Therefore, a sufficient rigid segment/compliant segment
ratio can be satisfied owing to the type of application.
The conditions listed provide flexibility for the designers
for possible applications. For these reasons, various
optimization results are presented, and thus, Tables 1–7
can serve as a design table.

For the design of spherical four-bar mechanisms,
generally, the axes of the input and output are prede-
fined parameters. Therefore, generally, the arc length of
the fixed link is specified. Considering this situation, we
employed the same optimization procedure, but with
different specific arc lengths of the fixed link. The results
of the optimization for the specified values of a4=45�,
60�, 75�, 90�, 105�, and 120� are presented in Tables 2–
7, respectively. As can be observed in Tables 2–7, a3

converges to the minimum value of 10�. Moreover, the
value of Df decreases as the value of a4 increases.

The optimization routine derived, the conditions
listed in this section, and the results shown in Tables 1–
7 can be very useful during the initial design stage of a
fully compliant spherical four-bar mechanism that per-
forms input–output motion transmission.

Input–output torque relationship and
stresses at compliant segments

The PRBM technique9 is utilized to obtain the input
torque corresponding to a specified output torque, as

Parlaktasx et al. 5



Table 1. Optimization results serving as a design table.

Input angle Du in � a1 in � a2 in � a3 in � a4 in � Df in � Db in � Dg in �

5 32 43 10.2 64.9 7.7 5.1 10
5 30.4 26.3 11.7 45 7.5 6 10
5 34.3 34.8 12 57.1 7.5 5.5 10
5 41.3 54.1 11.7 83.8 7.1 4.4 10
5 47.5 25.5 20 53 6.5 6 10
5 53.9 21.7 25 50.5 6 6.3 10
5 62.8 21.1 30 53.8 5.5 6.2 10
5 67.5 18.2 35 50.8 5.2 6.4 10
10 20.7 41.1 10.8 51 12.5 9.9 15
10 21.5 38.6 11.4 48.7 12.4 10 15
10 22.9 49.8 11.5 61.3 12.2 9.3 15
10 37.6 36.8 21.3 53.1 10.8 9.6 15
10 35.9 38.3 20 54.1 10.9 9.5 15
10 42.6 34 25 51.6 10.3 9.6 15
10 56.6 44.9 30 71.4 8.7 7.8 15
10 57 31.7 35 53.7 9 9.2 15
15 17.2 36.9 11 43.2 17.3 14.8 20
15 17.9 48.9 11 55.9 17 14 20
15 18.6 61.6 11 69.1 16.6 13.2 20
15 17.6 72.9 10.1 80.4 16.4 12.7 20
15 30.6 41.7 20 52.3 15.3 13.7 20
15 37.3 39.5 25 51.8 14.5 13.4 20
15 45.5 43.9 30 59.4 13.1 12.3 20
15 51 38.5 35 54.5 12.7 12.5 20
20 14.8 40.2 10.3 44.7 22.1 19.3 25
20 15.7 48.6 10.8 53.5 21.8 18.7 25
20 16.7 56.3 11.3 61.7 21.3 18.1 25
20 18.9 88.3 12 95.2 19.2 15.3 25
20 30.6 71.4 20 82 17.4 14.5 25
20 34.4 43.2 25 52.6 18.6 17.3 25
20 44.6 61.1 30 75.7 15.2 13.5 25
20 47.3 42.2 35 54.5 16.4 16 25
25 14.7 43.5 10.9 47.3 26.6 23.7 30
25 14.1 51.3 10.3 55 26.5 23.2 30
25 14.9 82.5 10.5 87 24.6 20.7 30
25 22.1 59.2 16.2 65.2 24 21.2 30
25 30.2 94 20 104.3 18.2 14.8 30
25 32.5 44.4 25 51.9 22.7 21.4 30
25 42 66.7 30 78.8 18.2 16.2 30
25 46.1 51 35 62.1 19.1 18.2 30

Table 2. Optimization results for a4 = 45�.

Du in � a1 in � a2 in � a3 in � a4 in � Df in � Db in � Dg in �

5 27.2 27.8 10 45 7.8 5.9 10
10 18.9 36.1 10 45 12.7 10.2 15
15 15.9 39.1 10 45 17.5 14.7 20
20 14.4 40.6 10 45 22.2 19.3 25
25 13.5 41.5 10 45 26.9 24 30

Table 3. Optimization results for a4 = 60�.

Du in � a1 in � a2 in � a3 in � a4 in � Df in � Db in � Dg in �

5 30.6 39.4 10 60 7.8 5.3 10
10 20.1 49.9 10 60 12.5 9.5 15
15 16.6 53.4 10 60 17.2 13.9 20
20 14.8 55.2 10 60 21.8 18.4 25
25 13.8 56.2 10 60 26.3 22.9 30
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shown in Figure 4. The aim of PRBM is to ensure a
simple but accurate technique for the analysis of com-
pliant mechanisms, even for large nonlinear deflections
of flexural hinges.

As operating speeds are slow and the masses of the
rigid links are negligible, a static force analysis via the
virtual work method is appropriate. The virtual work
performed by the active generalized forces can be
derived as in equation (17)

dWT = Tidu+ Todf ð17Þ

where Ti is the input torque and To is the output
torque.

The virtual work performed by the spring forces can
be derived as in equation (18)

dWS =� k14udu� k12 b� pð Þ db

du
du

� k23g
dg

du
du� k34 f� pð Þ df

du
du

ð18Þ

In equation (18), kij are the spring stiffness values of
compliant segments i – j. The width, thickness, and
length of the compliant segment of a rectangular cross
section are defined as w, t, and l, respectively. Hence,
the second moment of area of the flexural hinge can be
obtained from equation (19)

I =
wt3

12
ð19Þ

Since the torsion can be neglected,14,15 the stiffness
of the compliant segment of a rectangular cross section
can be determined from equation (20)

Table 4. Optimization results for a4 = 75�.

Du in � a1 in � a2 in � a3 in � a4 in � Df in � Db in � Dg in �

5 33.9 51.1 10 75 7.6 4.7 10
10 21.2 63.8 10 75 12.2 8.8 15
15 17.1 67.9 10 75 16.7 13.1 20
20 15.2 69.8 10 75 21.1 17.4 25
25 14.1 70.9 10 75 25.6 21.8 30

Table 5. Optimization results for a4 = 90�.

Du in � a1 in � a2 in � a3 in � a4 in � Df in � Db in � Dg in �

5 37.8 62.2 10 90 7.3 4.1 10
10 22.4 77.6 10 90 11.7 8 15
15 17.7 82.3 10 90 16 12.2 20
20 15.6 84.4 10 90 20.3 16.4 25
25 14.3 85.7 10 90 24.6 20.6 30

Table 6. Optimization results for a4 = 105�.

Du in � a1 in � a2 in � a3 in � a4 in � Df in � Db in � Dg in �

5 43 72 10 105 6.9 3.5 10
10 23.8 91.2 10 105 11.1 7.2 15
15 18.4 96.6 10 105 15.2 11.1 20
20 16 99 10 105 19.3 15.1 25
25 14.6 100.4 10 105 23.3 19.1 30

Table 7. Optimization results for a4 = 120�.

Du in � a1 in � a2 in � a3 in � a4 in � Df in � Db in � Dg in �

5 51.6 78.4 10 120 6.3 2.8 10
10 25.9 104.2 10 120 10.2 6.1 15
15 19.4 110.6 10 120 14 9.7 20
20 16.6 113.4 10 120 17.8 13.5 25
25 15.1 114.9 10 120 21.6 17.2 30

Parlaktasx et al. 7



k =
EI

l
ð20Þ

The virtual rotation of compliant segment 3-4 can be
determined as a function of u from equation (21)

df=Adu ð21Þ

where A=(( sina1 sina3 cos u sinf+U cosa4 cosf

� sina1 sina4 cos a3 sin u)=(V sinf� U cosf)):
Similarly, the virtual angular displacements of the

remaining position variables can be determined as a
function of u from equations (22) and (23)

db=Bdu ð22Þ

where B=(( sina3 sina4 sinf)=( sina1 sina2 sinb))A

dg =Cdu ð23Þ

where C =(( sina1 sina4 sin u)=( sina2 sina3 sing)).
The total virtual work done can be determined from

equation (24)

dW = Tidu+ ToAdu� k14udu� k12 b� pð ÞBdu

� k23gCdu� k34 f� pð ÞAdu
ð24Þ

Finally, the input torque Ti can be obtained for a
specified output torque To from equation (25)

Ti =� ToA+ k14u+ k12 b� pð ÞB+ k23gC

+ k34 f� pð ÞA
ð25Þ

Commonly, bending is the predominant type of
deflection at compliant segments, as in the case of com-
pliant spherical four-bar mechanisms. A beam with an
end moment–type loading is the main source of this
deflection, if the output torque is small or zero.9,14,15

When the primary loading is an end moment type, even
for the case of large deflections, the moment M can be
determined from equation (26) as a function of the
beam end angle9 (the slope of the beam at its end is Y)

M =EIY=l ð26Þ

The maximum stress at compliant segments with
zero output torque is determined from equation (27)

smax=EYt=2l ð27Þ

Design example

First, an optimum mechanism is selected from Table 1,
where the arc lengths of the mechanism are rounded
without decimals as a1=47�, a2=42�, a3=35�, and
a4=54�. A compliant mechanism is established using a
rigid-body replacement method according to the design
presented in Figures 2 and 3. Compliant segments are
dimensioned as follows: the geometry of the compliant

hinges is homogeneous rectangular constant cross sec-
tion where thickness, t=1mm; width, w=10mm; and
length, l=12mm. Here, length of the compliant hinge
is the effective length (no fillets). A solid model of the
mechanism is constructed using the CATIA� multiplat-
form software suite. The material is selected as polypro-
pylene, which has a modulus of elasticity E=1.5GPa
and a yield strength sy=35MPa. The position vari-
ables f, b, and g are calculated analytically from the
PRBM; from equations (1), (6), and (10) for a specified
input rotation u. The deflections of the compliant seg-
ments are determined as Du= u, Df=180� 2 f, Db=
180� 2 b, and Dg = g, where the maximum values of
deflections corresponding to an input of Dumax=20�
are Dfmax=16.45�, Dbmax=16.02�, and Dgmax=
24.9�, as shown in Figure 5. Numerous arc lengths are

Figure 4. Pseudo-rigid-body model of the fully compliant
spherical four-bar mechanism.

Figure 5. Deflections of the compliant segments.
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analyzed, and we observed that the increments of the
deflections of the flexural hinges are approximately lin-
ear as in Figure 5. Note that the mechanism is initially
at the undeflected position and that the motion is sym-
metric for both sides of the rotation. Therefore, it can
be concluded that the total rotations should be multi-
plied by two; for example, this mechanism possesses a
32.9� (–16.45�$ 16.45�) output segment rotation corre-
sponding to a 40� (–20�$ 20�) input segment rotation.

The solid model of the compliant mechanism is
exported to a finite element analysis (FEA) software
(ANSYS�) for further analysis. The large deflection
mode is activated and the nonlinear analysis option is
selected. Solid Tetra 10 and Brick 20 elements with
mid-nodes are used. Two quadratic (with midside
nodes) elements along the minimum thickness are used.
For the compliant segments of the mechanism, the ele-
ment size is chosen as 0.5mm. First, the motion of the
solid model is simulated in ANSYS�, as presented in
Figure 6; the T-shaped extension of the input rigid seg-
ment is rotated (10�, 15�, 20�) about the Z-axis, and
directional deformations (m) at the Y-axis are deter-
mined. By measuring the positions of specific prede-
fined points from FEA, we calculated the deflections
of the compliant segments Du, Df, Db, and Dg (�)
from the geometry of the mechanism. It is calculated
that the deflections of the flexural hinges are approxi-
mately 1%–2% (the amount of error increased as the
deflection increased) larger than the values that are
determined analytically as shown in Figure 5.

The FEA technique is again utilized to obtain the
resultant stresses at the compliant segments. The resul-
tant stress at the compliant segments calculated by
ANSYS� is the equivalent (von Mises) stress (Pa). The
solid model of the mechanism is presented in Figure 7,
where Dumax=20�, Dfmax=16.45�, Dbmax=16.02�,

and Dgmax=24.9�. Maximum stresses at compliant
hinges occurred while the deflections are at the maxi-
mum, and they are calculated analytically from equa-
tion (27) as s14=21.8MPa, s12=17.5MPa,
s23=27.2MPa, and s34=17.9MPa. During the FEA
simulations, stress values are measured from different
points on compliant hinges (Figure 7(a)–(d)). It is veri-
fied that the average of the resultant stress on each
compliant hinge is in close agreement with the corre-
sponding theoretical value, as shown in Figure 7. For
the selected material, the yield strength is equal to
35MPa. The maximum stress value even at the most
deflected compliant hinge (2-3) is smaller than the yield
strength. Therefore, it is ensured to be in the safe elastic
region.

Finally, the analyzed mechanism is manufactured
from single piece polypropylene plate with a thickness
of 8mm, via computer numerical controlled milling as
shown in Figure 8. Due to easiness of manufacturing,
there are no fillets at the ends of the compliant seg-
ments. The deflections of the compliant segments of
the prototype are measured with the custom-built test
setup. A steel probe is fixed on the extension of the out-
put, and a steel protractor is fixed to the ground. The
probe rotates with the output’s rigid segment. The pitch
angles of the extension, probe, and protractor are the
same (Figure 8(c)). Also, center of rotations of the out-
put compliant hinge, probe, and protractor are coinci-
dent at the undeflected position. By this way, correct
output rotation can be measured for a given input rota-
tion. The relative angle between the rigid segments 1-2
and 2-3 is measured with a digital angle gauge. First,
the input’s rigid segment is fixed to a certain position,
that is, 20� and relative angles of the rigid segments are
measured. Then, the input’s rigid segment is again fixed
at 20� to measure relative angles of the rigid segments

Figure 6. Calculation of the deflections of the flexural hinges by finite element analysis.
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again. The same procedure is repeated 10 times succes-
sively. Then, the average of these data is calculated and
presented in Figure 5 as the deflection of each compli-
ant hinge. The same procedure is repeated for input
angles of 10� and 15� to measure angle of the output’s

rigid segment (red line in Figure 5), since input–output
motion relationship has major significance. It is
observed that the experimental values of the deflections
of compliant segments are approximately 2%–3% (the
amount of error increased as the deflection increased)

Figure 7. Measurement of stress values at the end of the stroke by FEA and enlarged view of flexural hinges: (a) 1-4, (b) 1-2, (c) 2-
3, and (d) 3-4.

Figure 8. Prototype of a fully compliant spherical four-bar mechanism: (a) measurement of angular motion of the output link with
the probe and protractor, (b) top view at the free position, and (c) front view at the free position.
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larger than the theoretical values, as shown in Figure 5.
Note that, flexure hinge notch shape affects the motion
range, rotational axis shift, and precision.28,29 The
mechanism is operated numerous times for a 20� input
angle, and there is no indication of failure (neither a
color change nor a tear) at the hinges.

Conclusion

In this article, a novel fully compliant spherical four-
bar mechanism with small length flexural hinges is
introduced. The mechanism’s generalized analysis and
design methodology are proposed. An optimization
routine is developed for optimizing the arc lengths,
resulting in maximum output rotation for a defined
input with an acceptable amount of flexural hinge
deflections.

The optimization routine, the listed conditions, and
the design tables can be very useful during the initial
design stage of a fully compliant spherical four-bar
mechanism. Due to the initial planar position, input–
output motion can be doubled with the mirror symme-
try. After the analysis of numerous arc lengths, it is
observed that the increments of the deflections of flex-
ural hinges are approximately linear. The analytical
results are verified with FEA and experiments. It is
ensured that fully complaint spherical four-bar mechan-
isms that allow relatively large rotations without plastic
deformations can be designed.

Spherical four-bar linkages have numerous applica-
tions. It is possible that a fully compliant spherical
four-bar mechanism may be a good alternative for
some of the applications of spherical four-bar linkages.
We believe that this study can also be a pioneer for
other scientific researches on fully compliant spherical
four-bar mechanism.
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