
ORIGINAL RESEARCH
published: 12 July 2019

doi: 10.3389/fbuil.2019.00090

Frontiers in Built Environment | www.frontiersin.org 1 July 2019 | Volume 5 | Article 90

Edited by:

Dario De Domenico,

University of Messina, Italy

Reviewed by:

Diego Lopez-Garcia,

Pontifical Catholic University of

Chile, Chile

Michele Palermo,

University of Bologna, Italy

*Correspondence:

Baki Ozturk

bakiozturk@hacettepe.edu.tr

Specialty section:

This article was submitted to

Earthquake Engineering,

a section of the journal

Frontiers in Built Environment

Received: 27 February 2019

Accepted: 19 June 2019

Published: 12 July 2019

Citation:

Cetin H, Aydin E and Ozturk B (2019)

Optimal Design and Distribution of

Viscous Dampers for Shear Building

Structures Under Seismic Excitations.

Front. Built Environ. 5:90.

doi: 10.3389/fbuil.2019.00090

Optimal Design and Distribution of
Viscous Dampers for Shear Building
Structures Under Seismic Excitations
Huseyin Cetin 1, Ersin Aydin 2 and Baki Ozturk 3*

1Division of Mechanics, Department of Civil Engineering, Engineering Faculty, Nigde Ömer Halisdemir University, Nigde,

Turkey, 2Division of Mechanics, Department of Civil Engineering, Engineering Faculty, Nigde Ömer Halisdemir University,

Nigde, Turkey, 3Department of Civil Engineering, Engineering Faculty, Hacettepe University, Ankara, Turkey

Viscous dampers (VDs) are effective and widely used passive devices for the protection of

civil structures, provided that appropriate design is carried out. For this purpose, optimal

design and optimum distribution of VDs method are presented for a shear building under

the critical excitation by using random vibration theory in the frequency domain. In the

optimization, by using Differential Evolution (DE) algorithm and the top floor displacement

are evaluated as objective functions taking into consideration upper and lower limits of

VDs damping coefficients, so that optimal damper placement and properties of the shear

building can be determined. In this design, the VDs-shear building system is tested under

the three different ground motions being compared to some methods in the literature and

uniformly distributed VDs placed at each story. It is shown that the results of the study

are both compatible and very successful in reducing the response of the structure under

the different ground motions.

Keywords: differential evolution algorithm, viscous dampers (VDs), optimal viscous damper design, viscous

damper placement, passive control, critical excitation

INTRODUCTION

In traditionally designed building structures, reduction of enormous vibration energy is inadequate
because of their very limited energy absorption capacity. Therefore, usage of passive, semi-active or
active energy dissipation systems has more and more come into prominence in civil engineering
structures. Even if limited damping about 40% capacity of damping quantity is applied, owing to
the physical and manufactural difficulties, optimally designed and placed viscous dampers (VDs)
significantly decrease the response of building structures. Two endpoints of a VD are attached to
two subsequent floors. Because of the relative velocity between these two floors, VDs produce a
damping force which is proportional to damping coefficient and relative velocities.

The optimal design concept of VD has been widely studied in the literature (Constantinou and
Tadjbakhsh, 1983; Hahn and Sathiavageeswara, 1992; Zhang and Soong, 1992; Cao and Mlejnek,
1995; Shukla and Datta, 1999). In a planar building frame, an optimum algorithm was developed
by Tsuji and Nakamura (1996) including both story stiffnesses and damping coefficients. Active
control-based design of VD was developed by some researchers (Gurgoze and Muller, 1992;
Hwang et al., 1995; Gluck et al., 1996; Agrawal and Yang, 1999, 2000; Loh et al., 2000; Yang
et al., 2002; Lavan et al., 2008). Trombetti and Silvestri (2006) analytically examined the effect
of manufactured viscous dampers which are added to shear-type structures for type of Rayleigh
damping systems. Takewaki (1997a) presented both a proportional and a non-proportional
redesign passive damper method including viscous and hysteretic dampers. In his other study
(Takewaki, 1997b), taking into consideration the undamped fundamental frequency of structure
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model, the sum of amplitudes of transfer functions was
minimized in order to find damping coefficients of added
dampers. In another study proposed by Takewaki (1999a),
optimal damper placement in a three-dimensional (3D) shear
structure model was executed with the method called “Steepest
Direction Search Algorithm.” This method was used for
optimum stiffness and viscous damper distribution (Takewaki,
1999b). Therefore, the effectiveness of the gradient-based design
of VDs was revealed by Takewaki (2009). A simple and powerful
VDs optimization and distribution method on the basis of total
damper cost function minimization was developed by Aydin
(2013). During the optimization of VDs design, direct search
optimization techniques do not need derivatives and Hessians, so
that some metaheuristic algorithms can be also used (Bishop and
Striz, 2004; Dargush and Sant, 2005; Sonmez et al., 2013). Cetin
et al. (2017) studied the optimal placement of VDs in TMD-shear
building structure system. Bogdanovic and Rakicevic (2019)
presented an optimal damper placement procedure in a 3D 5-
story steel frame structure by using combined fitness function.
Aydin et al. (2019) investigated optimum design and efficiency of
VDs for earthquake-effected structures taking into consideration
different mode behaviors. De Domenico et al. (2019) successfully
summarized the organization of design strategies of fluid VDs
in their study. Akehashi and Takewaki (2019) developed a
new VD optimization and distribution method in an elastic-
perfectly plastic model for multi-degree of freedom systems by
using a critical double impulse pushover (DIP) method which
is proposed to determine the input velocity level of critical
double impulse. The form of non-linear viscous fluid dampers
(FVDs) is examined by De Domenico and Ricciardi (2019)
for the protection of earthquake-effected structures. In their
study, a novel equal-energy on non-Gaussian stochastic method
combined with the optimal design operation is applied in order
to deal with the non-linearity of fluid viscous dampers (FVDs).

In practice, linear VDs, which develop forces that are a
linear function of (i.e., proportional to) the relative velocity
between their ends can be manufactured and applied to structure
in practice. However, in order to attain flexibility in design,
non-linear type VDs widely manufactured and used in many
application (Hart and Wong, 2000). Non-linear VDs design
is mostly considered in the time domain. However, they may
be optimized in the frequency domain if specific models are
developed. Fujita et al. (2014) suggested a technique related to the
optimal design allocation of non-linear viscous dampers in the
frequency domain. They applied the Output Frequency Response
Function (OFRF) concept in their study. Adachi et al. (2013)
suggested a non-linear VDs design for multi-degree freedom
building frame structures. This method consists of two steps.
The first step is that the sensitivity analysis in the time domain
is executed on non-linear VDs model. The second step is the
modification of auxiliary forces which is based on sensitivity
analysis. In order to calculated loads on the frame, static
condensation method and the transformation of energy equality
procedure are defined to optimum operation. Lang et al. (2013)
proposed a novel technique for VDs and their placement in
multi-degree of freedom shear frame systems. The general idea of
this study is based on the Frequency Response Function (OFRF)

concept. Silvestri et al. (2010) proposed a practical and highly
efficient method for both the design of linear and non-linear
viscous dampers with respect to total dampers and dampers for
placed specific floors. Lopez Garcia and Soong (2002) proposed a
practical design approach of optimal linear type viscous dampers
by using designed simplified sequential search algorithm (SSSA)
which has a similar effect with some sophisticated methods.
However, they aimed at more extensive examination in order
to attain better performance. They are also showed that, design
of linear type viscous dampers is sensitive to ground motion
characteristic in particular for low levels of added damping.
(Palermo et al., 2018) defined a method which is related to a
direct design of added non-linear manufactured viscous dampers
for the regular multi-degree of the frame structure. The most
important purpose of their study is to present a practical design
specification of the characteristic of the manufactured viscous
dampers and frame members in order to restrict the damage of
structure under the strong ground motions.

Even though there has been a continuous development of
science and technology, prediction and behavior of ground
motion is still a difficult issue. Owing to this random excitation,
the response of building structure is also random. For this reason,
this randomness should be considered during structural design
or structural-control system design. In this study, therefore,
stationary random process and probabilistic critical excitation
method (Takewaki, 2013) is used during the determination of
objective functions in the frequency domain. For the purpose of
design of VDs and their distribution to floors, the mean square
of top story displacements is chosen as objective functions to
be minimized by using differential evolution (DE) algorithm
under a critical excitation. In order to reveal effectiveness of
the proposed method, optimized and designed system is both
tested under the three different ground motions which are El
Centro (NS), Cape Mendocino (Petroli NS), Kobe (NS) and it
is compared to other methods (Takewaki, 2000; Aydin, 2013)
and to a uniform distribution of VDs. The purpose of this
article is to obtain optimum design and distributions of linear
viscous dampers via differential evolution (DE) algorithm so as
to minimize the mean-square of top floor displacement of a shear
frame under the constraints. A numerical example presented in
order to demonstrate the effectiveness and the reliability of the
proposed method.

BUILDING STRUCTURE MODEL WITH
VISCOUS DAMPERS

Consider N degree of freedom shear frame model with VDs. cadi
which is shown Figure 1 expresses added VD at ith story while
stationary random seismic ground acceleration having zeromean
is represented by ẍg . The equation of motion of structure with
added VDs system could be expressed as bellow

Mẍ(t)+ (Cs+Cad) ẋ(t)+ Kx(t) = −Mrẍg(t) (1)

in which x(t), ẋ(t) and ẍ (t) are the displacement, velocity
and acceleration vectors of shear frame model controlled with
VDs. M, K , Cs represent NxN dimensional mass, stiffness and
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FIGURE 1 | Building model with added VDs.

structural damping matrices, respectively. r = {1, 1, 1, . . .}T1xN is
the influence vector, Cad is the NxN dimensional added damping
matrix. These matrices are expressed as follows

M =













m1 0 0 0 0

0 m2 0 0 0

0 0 . . . 0 0

0 0 0 mN−1 0

0 0 0 0 mN













NXN

(2)

K =

















k1 + k2 −k1 0 0 0 0

−k1 k2 + k3 −k2 0 0 0

0 −k2 . . . . . . 0 0

0 0 . . . . . . −kN−1 0

0 0 0 −kN−1 kN−1 + kN −kN
0 0 0 0 −kN kN

















NXN

(3)

Cs =

















c1 + c2 −c1 0 0 0 0

−c1 c2 + c3 −c2 0 0 0

0 −c2 . . . . . . 0 0

0 0 . . . . . . −cN−1 0

0 0 0 −cN−1 cN−1 + cN −cN
0 0 0 0 −cN cN

















NXN

(4)

Cad =

















cad1 + cad2 −cad1 0 0 0 0

−cad1 cad2 + cad3 −cad2 0 0 0

0 −cad2 . . . . . . 0 0

0 0 . . . . . . −cad(N−1) 0

0 0 0 −cad(N−1) cad(N−1) + cadN −cadN
0 0 0 0 −cadN cadN

















NXN

(5)

Structural damping determination in the structure includes
many factors, accordingly, it cannot be easily defined. For
simplicity, structural dampingmatrixCs can be evaluated as mass
proportional which is Cs = α Ms, stiffness proportional which
is Cs = β Ks or a linear combination of mass and stiffness
(Rayleigh damping) which is Cs = α Ms + β Ks. In here α

and β are calculated in terms of the first and second normal

mode of vibration. α and β coefficients can be calculated with
the following equation.

0.5

[

1/ωs1 ωs1

1/ωs2 ωs2

] (

α

β

)

=

(

ξs1
ξs2

)

(6)

Where ωs1, ωs2 first and second mode natural frequencies of the
shear building, ξs1 and ξs2 are damping ratios with respect to first
and second mode.

Fourier Transformation of Equation (1) is written as

(K + iωC − ω2
M)X(ω) = −MrẌ g(ω) (7)

WhereX (ω) expresses the Fourier transform of the displacement
of controlled structure and Ẍ g(ω) is the stationary ground
acceleration with zero mean in the frequency domain. i denotes
the imaginary unit. The damping matrix C includes both
structural and added damping values. The equation above can be
arranged as

AX (ω) = −MrẌ g(ω) (8)

in which A is

A = (K + iωC − ω2
M) (9)

X (ω) can be rewritten as follows

X (ω) = −A
−1

MrẌ g(ω) (10)

X (ω) is defined with respect to displacement transfer function
HD (ω) follow as

X (ω) = HD (ω) Ẍ g(ω) (11)

HD (ω) = −A
−1

Mr (12)

The matrix T transforms the displacement vector to the
interstorey drift vector δ (ω). It can be given as

T =

































1 0 0 . . . 0
−1 1 0 0 . . . . . .

0 −1 1 0 0
0 0 −1 1 . . . 0

. . . . . . . . . . . .

. . . . . . . . .

0 0 . . . 0 −1 1 0
0 0 . . . 0 0 −1 1

































NxN
(13)

δ (ω) = −TA
−1

MrẌ g(ω) (14)

If Hδ (ω) is defined as interstorey drift transfer function, δ (ω)

can be rewritten with respect toHδ (ω) as follows

δ (ω) = Hδ (ω) Ẍ g(ω) (15)
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where Hδ (ω) denotes the transfer function of the interstorey
drifts.Hδ (ω) is given as

Hδ (ω) = −TA
−1

Mr (16)

As similar to the previous Equation (10), absolute acceleration in
the frequency domain can be expressed as

ẌAA (ω) = HAA (ω) Ẍ g(ω) (17)

where, HAA (ω) is the absolute acceleration transfer function. It
can be expressed as:

HAA (ω) = (1+ ω2
A
−1

Mr) (18)

FIGURE 2 | Differential Evaluation Flowchart.

By using the random vibration theory, the mean square of
displacement ith floor can be defined as

σ 2
Di =

∞
∫

−∞

|HDi (ω)|2Sg (ω) dω =

∞
∫

−∞

HDiH
∗
DiSg (ω) dω (19)

where, Sg (ω) is Power Spectral Density (PSD) function
of seismic input, |HDi (ω)| and |HAAi (ω)| are the transfer
function amplitude of ith displacement and absolute
acceleration, respectively. In these equations, ()∗ represents
the complex conjugate. The above formulas have also been used
by Takewaki (2009).

FIGURE 3 | Six story shear building model.

FIGURE 4 | Variation of objective function f1 with respect to design

step numbers.
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TABLE 1 | Properties of VDs parameters and their locations to the floors.

VD parameters and locations (10 6 Ns/m) Proposed method

(Minf1)

Aydin (2013) Takewaki (2000) Uniform distribution

cad6 0 0 0 1.20823

cad5 0 0 0 1.20823

cad4 0 0 0 1.20823

cad3 0.08657 0 0 1.20823

cad2 3.004 3.3004 1.2494 1.20823

cad1 4.1588 3.949 6.000 1.20823

Total damper 7.2494 7.2494 7.2494 7.2494

GENERAL CONCEPT OF CRITICAL
EXCITATION METHOD FOR DESIGN

The general concept of probabilistic critical excitation method
is explained herein (Takewaki, 2013). The seismic effect can
be defined as a critical excitation. The natural frequencies
of the structures are taken into consideration. When the
dominant frequency of groundmotion and the natural frequency
of structure coincide, devastating damage can occur on the
structure due to the resonance effect (Takewaki, 2013). Because of
the high level of uncertainty of the ground motion, its prediction
and identification are quite difficult. Therefore, probabilistic
critical excitation method (Takewaki, 2013) can be highly
powerful for this specification. According to this method, the
definition of power limit S̄ is given as follow (Takewaki, 2013)

∞
∫

−∞

Sg (ω) d (ω) ≤ S̄ (20)

In the inequality equation, PSD function Sg (ω) can be explained
as input variance and S̄ is the power limit that is the area limit
of PSD function. The amplitude limit of Sg (ω) is defined as
Takewaki (2013)

sup Sg (ω) ≤ s̄ (21)

where s̄ is the supremum of PSD function Sg (ω). Taking into
consideration of ground motion records, S̄ and s̄ can be defined.
If s̄ almost reaches to infinity, PSD Sg (ω) can be evaluated as
Dirac delta function. It is well-known that Dirac delta function
takes extremely high values in very small intervals. When s̄ is
considered as finite, the other solution of Sg (ω) is evaluated
as a band-limited white-noise. The frequency interval� can be
defined according to S̄/s̄ rate under the band-limited white-
noise excitation. The upper and lower limits ofωu andωL can be
explained with respect to this rate (Takewaki, 2013).

DEFINITION OF OPTIMIZATION PROBLEM
AND METHOD

Using the random vibration theory, in order to obtain objective
functions σ 2

DN which is mean square of displacement can be
expressed in a closed form

f1 (cadi) = σ 2
DN (22)

The passive and active constraints are defined with respect to
upper and lower limits and total damping as follow

0 ≤ cadi ≤ c̄ad (23)

N
∑

i=1

cdi = c̄Tot (24)

in which, c̄ad, c̄Tot are upper bounds of added damping of ith

added VD and total limit of added VDs, respectively.

DIFFERENTIAL EVOLUTION ALGORITHM
FOR VD OPTIMIZATION

Although direct search methods spend relatively more
computation time, their tolerance with respect to noise is
more robust (Champion and Strzebonski, 2008). For this reason,
in this study, a kind of stochastic and direct search optimization
method named as Differential Evolution (DE) is utilized. This
method was developed by Storn and Price (1997). The objective
function is defined under design constraints. Initial population
matrix is composed considering the boundary conditions. In the
first step, the donor vector is composed of exposure to mutation.
In the second step, target and donor vectors create the test
vector. In the third step, for the purpose of picking up the new
generation, target and test vectors are compared to determine
the lowest one. In the fourth step, if the optimal solution is
evolved, DE procedure is ended. Otherwise, it is returning to the
mutation step to evaluate the new generation. These steps are
formulated and expressed as follows (Peñuñuri et al., 2011; Wu
et al., 2018; Biswar et al., 2019).

In the case of gth generation consideration, ith target vector EX
g
i

can be defined as

EX
g
i = {x

g
1,i, x

g
2,i, . . . , x

g
D,i,}, i = 1, . . . ,NP (25)

In this equation, NP means the number of populations and the
dimension of the problem is symbolized by D which is usually
evaluated in between 2D and 40D (Ronkkonen et al., 2005).

In the populationmatrices, initialization at the first generation
is set equal to zero (g=0). The population matrix in zero
generation is defined with respect to the jth component of ith

vector as following

x0ij = xj,Low + randi,j (0, 1) .
(

xj,Up − xj,Low
)

,

i = 1, 2, 3, . . . ,NP and j = 1, 2, ..,D (26)
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FIGURE 5 | Frequency responses of 6th floor with respect to the transfer

function amplitude of top displacement
∣

∣HD6
∣

∣ (A), the transfer function

amplitude of top absolute acceleration
∣

∣HAA6
∣

∣ (B) and the transfer function

amplitude of first floor inter story drift
∣

∣Hδ1

∣

∣ (C) considering objective function

f1, the methods of Aydin (2013), Takewaki (2000), and uniformly

distributed VDs.

In this equation, randi,j (0, 1) is randomly chosen from uniformly
distributed numbers which are between 0 and 1. In the equation
above, i = 1, 2, 3,. . . , NP and j = 1, 2, 3,. . . , D. xj,Low and xj,up are

the lower and upper limits of jth component which arementioned
as above for DE. Each step can be determined as follows

Step 1: Target vectors mutation and donor vectors creation

Random target vectors EX
g

Ri1
, EX

g

Ri2
and EX

g

Ri3
in which Ri1, R

i
2 ve

Ri3 ∈ [1, NP] are determined as stochastically for each target

vector EX
g
i . These random vectors create the donor vectors EV

g
i via

scaling factor F which is usually chosen between 0 and 1. Donor
vector can be expressed as follows

EV
g
i = EX

g

Ri1
+ F.(EX

g

Ri2
-EX

g

Ri3
) (27)

Step 2: Crossover in order to compose the test vector

Crossover is exposed to donor vector in order to obtain the
test vector EU

g
i = {u

g
1,i, u

g
2,i, u

g
D−1,i, u

g
D,i,} as following

u
g
j,i =

{

v
g
j,i, If randi,j (0, 1) ≤ Cr or j = jrand

x
g
j,i, otherwise

(28)

In this equation, jrand is chosen as random integer number
which is between [1-D]. Cr is the crossover rate which is in
between [0,1].

Step 3: Selection of superior one

Either target vector EX
g
i or test vector EU

g
i is selected as lowest

one which is transferred to the next generation so that superior
one is assigned as target vectors which is expressed as

EX
g+1
i =







EU
g
i , If f

(

EU
g
i

)

≤ f
(

EX
g
i

)

EX
g
i , If f

(

EU
g
i

)

> f
(

EX
g
i

)
(29)

If the optimum solution is obtained, the operation is ended.
Otherwise, it is returned to the mutation step to compose the
new generation. The steps explained above are shown as a flow
chart in Figure 2. DE Algorithm is able to reach the optimum
solution with vertical changes. It is a stochastic search algorithm
and uses random numbers in every iteration. Therefore,
the variation of the objective functions is non-monotonic.
Unlike gradient-based methods, direct search methods do not
use derivative information. Genetic Algorithm, Nelder-Mead,
Simulated Annealing, and Differential Evolution may be given
as some examples for the direct search methods. Although a
direct search method needs more time for convergence, their
tolerance to noises is more effective (Champion and Strzebonski,
2008). Differential Evolution based on a genetic algorithm that
maintains a population of specimens, x1,. . . ,xn, represented as
vectors of real numbers (“genes”). Every iteration, each xi chooses
random integers a, b, and c and constructs the mate yi = xi +

γ (xa + (xb − xc)), where γ is the value of Scaling Factor. Then
xi is mated with yi according to the value of Cross Probability,
giving us the child zi. At this point, xi competes against zi for
the position of xi in the population. Search Points is Min [10∗d,
50], where d is the number of variables. Differential Evolution is
quite robust but generally slower than other methods due to the
relatively large set of points it maintains.
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NUMERICAL EXAMPLE

The optimum design and optimal distribution of VDs is
executed for a sample 6 story shear building model which
is shown in Figure 3 by using random vibration theory and
probabilistic critical excitation method (Takewaki, 2013). The
objective function, which is the mean square response of top
floor displacements to be minimized, is chosen to find optimum
VDs. The upper value of c̄Tot is set equal to the value that is
calculated from the proposed method by Aydin (2013). If a VD
at a specific story convergence to zero, it is set equal to zero.
Therefore, VD placement is not carried out for this specific story.
After the design is obtained, in order to understand the validity of
the proposedmethod, the results are compared with the results of
methods which are proposed by Takewaki (2000), Aydin (2013)
and uniformly distributed VDs. The time history analyses are
performed using El Centro (NS), Cape Mendocino (Petroli NS)
and Kobe (NS) ground motions.

In the 6-story sample model, structural damping of the
structure is supposed to be Rayleigh damping. First and second
mode damping ratios ξ1 and ξ2 are set equal to 0.02, each floor
mass and each story stiffness are taken as mi = 12 x104 kg (i =
1, 2, 3, .., 6) and ki = 2.5 x107 N/m (i = 1, 2, 3.., 6), respectively.
Natural frequencies for the undamped case are calculated as
ωsi = {3.48, 10.24, 16.40, 21.61, 25.56, 28.03} rad/s. Structural
damping is evaluated as Rayleigh damping. It is given as

Cs =

















158278 −72906.7 0 0 0 0

−72906.7 158278 −72906.7 0 0 0

0 −72906.7 158278 −72906.7 0 0

0 0 −72906.7 158278 −72906.7 0

0 0 0 −72906.7 158278 −72906.7

0 0 0 0 −72906.7 85371.7

















6X6

Ns/m(30)

The upper limit of each VD is taken as c̄d = 6x106Ns/m, and
total damper quantities of upper limit of VDs which is defined
as c̄Tot obtained by Aydin (2013). Therefore, total damping
quantities are restricted as c̄Tot = 7.2494x106 Ns/m. In these
limitations, the mean square of top floor displacements σ 2

D6 is
minimized under the critical excitations to carry out optimum
placements to floors and their optimal values.

In the example, in order to attain the critical excitation, power
limit of power spectral density and amplitude limit are specified
as S̄ = 0.553x2 m2/s4 and s̄ = 0.066x2 m2/s3, respectively
(Takewaki, 2013). These parameters belong to 40 s duration of
the El Centro (NS) ground motion record (Takewaki, 2013).
Frequency bandwidth � is identified as S̄/2s̄ = 4.2 rad/s.
Frequency ranges of critical excitation for two fundamental
modes of lower and upper limits are obtained for the first mode
as ωL1 = 1.38 rad/s and ωu1 = 5.58 rad/s, and for the second
the mode as ωL2=8.13 rad/s, and ωu2=12.33 rad/s. First and
second modes are considered for design. The PSD is taken as
Sg (ω) = 0.066x2 m2/s3, and beyond the range, it is taken as
zero. The performance of the structure-VDs system is tested in
comparison with the results of Takewaki (2000), Aydin (2013)
and uniformly distributed VDs considering El Centro (NS), Cape
Mendocino (Petroli NS), Kobe (NS) ground motions.
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FIGURE 6 | Peak displacements (A), peak absolute accelerations (B), peak IDR (C), RMS of displacements (D), RMS of accelerations (E) based on f1 and the

methods of Aydin (2013), Takewaki (2000) and uniformly distributed VDs for El Centro (NS) ground motion.

The variation of objective function σ 2
D6 (f1) during the

optimization via differential evolution (DE) method under the
specified constraints are depicted according to design step
numbers in Figure 4. Calculated optimum VDs parameters and
their allocation to floors according to objective functions and in
comparison, with the methods in the literature (Takewaki, 2000;
Aydin, 2013) and uniform distribution are depicted in Table 1.
As seen in Table 1, although all total damper quantities are the
same for all designs, the placements and properties of VDs are
different from each other. For example, while VDs focus on to the
first, second and also just a little bit to third floors with respect to

f1 minimization, allocations focus on the first four floors on the
basis of the f2 minimization. If the proposed method by Aydin
(2013) is considered, VDs allocations focus on the first two stories
but, most of VDs quantity focus on the first story. If the proposed
method by Takewaki (2000) is considered, close quantity VDs are
placed to first and second stories.

While the minimization of acceleration may be important for
the elastic structures, the minimization of deformation may be
important for the inelastic structures. Therefore, the objective
functions which are needed are chosen by engineers considering
objectives. In this study, only one objective function is evaluated.
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In addition to this, three different groundmotions are considered
for the time history analysis. These groundmotions are El Centro
(NS), Cape Mendocino (Petrolia NS), and Kobe (NS) ground
motions, respectively. Taking into consideration of damage in
the structure, whereas the response of the inelastic structure
is usually important for the displacements (or deformations),
the acceleration or stress response are more important for the

TABLE 3 | Percentage of Arias intensity in different frequency ranges to the total

intensity for near-field ground motion (Moustafa and Takewaki, 2010).

Earthquake

records

% Intensity to total intensity

(0–1) Hz (1–2) Hz (2–3) Hz (3–4) Hz (4–5) Hz

Cape mendocino

(Petrolia NS)

86.75 8.30 1.98 1.03 0.60

El centro (NS) 82.03 13.27 2.70 1.22 0.49

Kobe (NS) 91.43 6.02 1.40 0.58 0.21

non-structural elements and non-structural components in the
structures (Viti et al., 2006).

The variation of the transfer function amplitude of top
displacement |HD6 (ω)|, the transfer function amplitude of
top absolute acceleration |HAA6 (ω)| and the transfer function
amplitude of first interstorey drift |Hδ1 (ω)| are shown in
Figure 5 with respect to the objective function which are the
mean square of top floor displacement and methods in literature
which are proposed by Takewaki (2000) and Aydin (2013), lastly
on basis of uniformly distributed viscous damper to each floors.
As seen in these Figures, proposed methods are very effective
in reducing all these transfer functions for both the first mode
and second mode control. They are effective to decrease the
response of the structure and consistent to each other and all
methods here are very effective in reducing the response but each
method has individually superior to each other for a different
kind of reduction. Table 2 also shows the response reductions of
structure for all methods with respect to three different ground

FIGURE 7 | 3D plots of the absolute value of transfer function
∣

∣HD6
∣

∣ based on f1 minimization with respect to excitation frequency and added damping parameters.

FIGURE 8 | 3D plots of the absolute value of transfer function
∣

∣HAA6

∣

∣ based on f1 minimization with respect to excitation frequency and added damping parameters.

FIGURE 9 | 3D plots of the absolute value of transfer function
∣

∣Hδ6

∣

∣ based on f1, minimization with respect to excitation frequency and added damping parameters.
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TABLE 4 | Properties of VDs parameters and their locations to the floors for 10

story shear frame.

VD parameters

and locations (10
6 Ns/m)

Proposed

method

(Minf1)

Aydin

(2013)

Takewaki

(2000)

Uniform

distribution

cad10 0 0 0 2.30897

cad9 0 2.30897

cad8 0 0 2.30897

cad7 0 2.30897

cad6 0 2.30897

cad5 0 0 0 2.30897

cad4 6 5.0897 0 2.30897

cad3 6 6.0000 7.1088 2.30897

cad2 5.0897 6.0000 7.7456 2.30897

cad1 6 6.0000 8.2353 2.30897

Total damper 23.0897 23.0897 23.0897 23.0897

motions which are El Centro (NS), Cape Mendocino (Petrolia
NS) and Kobe (NS) ground motions.

Figures 6A–E show response of the floors of the shear
building with respect to peak displacements, peak accelerations,
peak interstorey drifts ratio (IDR), root mean square (RMS) of
displacements and root mean square (RMS) of accelerations,
respectively under the El Centro (NS) ground motion. As seen in
these figures, although all methods and uniform distribution are
effective to decrease the response of the structure and consistent
to each other and all methods here are very effective in reducing
the response, therefore each method have individually superior
to each other for a different kind of reduction. Table 2 also
shows the responses and response reductions of structure for all
methods with respect to three different ground motions which
are El Centro (NS), Cape Mendocino (Petrolia NS) and Kobe
(NS) ground motions.

Three different ground motions are selected for time history
analysis. Table 3 shows the percentage of Arias intensity in
different frequency ranges to the total intensity for near-field
ground motion (Moustafa and Takewaki, 2010). As it is seen
this table, Kobe (NS) ground motion has narrow frequency
bandwidth. In the comparison of El Centro (NS) and Cape
Mendocino (Petrolia NS) groundmotions have more wide-width
frequency range than Kobe (NS). It is observed that the peak
acceleration response of example structure in this study, lessen if
the ground motion has more wide frequency range. For example,
as seen Table 2, the peak acceleration response reduction at 6th
floor of the shear building, the highest for Kobe (NS) ground
motion which has the narrowest frequency range in this study.
In the table, peak acceleration reduction at the top floor is for
El Centro (NS) ground motion 2.766 %, for Cape Mendocino
(Petrolia NS) ground motion 11.919 % and for Kobe (NS) 32.325
% groundmotion with respect to VDs of mean square of top floor
displacement minimization. It can be concluded this results that,
VDs could be more effective in reducing the peak acceleration
response for against to ground motions which have narrower
band frequency content. In addition to this case, it is concluded in
the literature that VDs are not much effective to reduce the peak T
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FIGURE 10 | Time history of 10th story displacement of the shear frame.

acceleration for the inelastic structures (Reinhorn et al., 1995).
Whereas VDs are effective in reducing the displacement of the
inelastic structures, they are effective to reduce the acceleration
of the elastic structures (Viti et al., 2006).

For the purpose of plotting the 3D graphics are plotted to
observe the variations of the absolute value of transfer functions
with respect to excitation frequencies and added viscous dampers
(cadi). If f1 minimization is considered, three numbers of VDs
are needed and they are placed to first three floors. As seen in
Figures 7–9, while viscous damper located to the first floor is
considered, for the response reduction on transfer function, the
total VDs located in other stories is kept stable. As understood
from these 3D figures, the response reduction of the absolute
value of displacement, absolute acceleration and first story inter-
story drift transfer functions are obtained in a better way with the
help of cad1, cad2, cad3, and cad4 successively. After the decrease of
the transfer function amplitude reaches the optimum point in 3D
graphics, this value of transfer function continues almost as stable
value, even if cadi value is raised to higher values in these plots.

Even if f1 function could not decrease acceleration responses
as seen in Table 2, it has better results with respect to
displacements responses. In this study a 10-story shear frame
is also detected in order to understand the effectiveness of
the f1 function. In this 10-story shear frame, each floor mass
and stiffness are taken as mi = 12 x104 kg(i = 1, 2, 3, .., 10)
and ki = 2.5 x 107 N/m (i = 1, 2, 3.., 10) and damping
coefficient chosen as ci = 1.21 x105 Ns/m(i = 1, 2, 3.., 10)
respectively. The calculated VDs and their location to stories
are depicted in Table 4. The responses of the added viscous
damper which is designed with respect to f1 function are
shown in Table 5, designed compared with other methods in
literature and uniformly distributed viscous dampers for El
Centro (NS) ground motion. In addition to this, the time history
of top floor displacements responses of the f1 function and
uniformly distributed viscous damper is added to the manuscript
as seen in Figure 10. It is observed from the Table 5 and
Figure 10, f1 function is more successful than the uniformly
distributed viscous damper design with respect to displacement
minimization and reduction of accelerations responses between

these designs is almost close the each other. The other advantage
of f1 function beside of succession of displacement reduction.
While the design with uniformly distributed VDs occupies
ten stories, VDs which is designed according to f1 function
needs only four stories locations. This means design based on
f1function needs less workmanship cost than the uniformly
distributed VDs design.

CONCLUSIONS

A damper optimization method is proposed for building
structures using random vibration theory in the frequency
domain. Differential Evolution (DE) algorithm is used in
order to minimize the objective function which is the top
floor displacement function considering design constraints.
After the optimal design is found, the three different ground
motions are conducted to test the seismic response of
model building structure. Additionally, the proposed optimal
design method is compared with the other methods in the
literature which were proposed by Aydin (2013), Takewaki
(2000) and the uniform design. Some conclusions could be
summarized as follows:

(1) It is observed that optimum designed and placed VDs can
decrease the transfer function amplitudes effectively.

(2) The proposed method is very effective in reducing seismic
response and is compatible with the other methods in
the literature.

(3) The method used for each objective function minimizes
its purpose better. The different purpose functions can be
important for different types of structures. In this study,
the application objective function is shown on a single type
of structure.

(4) It is concluded that differential evolution (DE) algorithm
can be used to solve the optimal damper problem based on
transfer functions by considering critical excitation.

(5) The proposed method is very effective for more than one
mode of control in the frequency domain.

(6) The objective function for the proposed method is more
successful than uniformly distributed VDs design with
respect to displacement minimization. Additionally, design
based on f1 function needs less workmanship cost than the
uniformly distributed VDs design.
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