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Two new programs, MTENSOR and TENSOR, hosted on the open-access

website known as the Bilbao Crystallographic Server, are presented. The

programs provide automatically the symmetry-adapted form of tensor proper-

ties for any magnetic or non-magnetic point group or space group. The tensor is

chosen from a list of 144 known tensor properties gathered from the scientific

literature or, alternatively, the user can also build a tensor that possesses an

arbitrary intrinsic symmetry. Four different tensor types are considered:

equilibrium, transport, optical and nonlinear optical susceptibility tensors. For

magnetically ordered structures, special attention is devoted to a detailed

discussion of the transformation rules of the tensors under the time-reversal

operation 10. It is emphasized that for non-equilibrium properties it is the

Onsager theorem, and not the constitutive relationships, that indicates how

these tensors transform under 10. In this way it is not necessary to restrict the

validity of Neumann’s principle. New Jahn symbols describing the intrinsic

symmetry of the tensors are introduced for several transport and optical

properties. In the case of some nonlinear optical susceptibilities of practical

interest, an intuitive method is proposed based on simple diagrams, which allows

easy deduction of the action of 10 on the susceptibilities. This topic has not

received sufficient attention in the literature and, in fact, it is usual to

find published results where the symmetry restrictions for such tensors

are incomplete.

1. Introduction

The analysis of the restrictions that space–time symmetry

produces in the tensors describing the properties of magneti-

cally ordered crystals has been a research subject for more

than 50 years (Birss, 1963, 1964; Cracknell, 1973; Eremenko et

al., 1992; Grimmer, 1993, 1994, 2017; Kleiner, 1966; Kopsky,

2015; Landau & Lifshitz, 1960; Litvin & Litvin, 1991;

Shtrikman & Thomas, 1965; Sirotin & Shaskolskaya, 1982).

The topic is interesting because the tensor form determines

whether a particular physical phenomenon can take place in

the crystal, and also regulates the anisotropy of the different

material properties.

For tensors that describe equilibrium properties, the

restrictions derived from the application of Neumann’s prin-

ciple to the constitutive equation that defines the tensor

property lead directly to the final form of the considered

tensor. The relevant point group is one of the 122 magnetic

point groups first derived by Shubnikov & Belov (1964). In the

reduction process it must be taken into account that

the operations that contain time reversal 10 change the sign of

the tensor if it is of magnetic type, i.e. if there are an odd
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number of magnetic vectors in the constitutive relation.

Otherwise the tensor remains invariant under 10.

The procedure to obtain the restrictions imposed by

symmetry in the case of non-equilibrium properties is more

complicated. As early as 1963, Birss (1963) realized that the

application of the operations which contain 10 in the reduction

process from the constitutive relations leads to absurd results,

even for dia- and paramagnetic crystals. For example, it would

appear that the existence of electrical conductivity is

forbidden in all 32 grey point groups: under time reversal, the

electric current density vector J changes its sign, whereas the

electric field E remains invariant. Thus, the conductivity tensor

relating both vectors should vanish in all time-symmetric

crystals. In view of this paradox, Birss proposed to restrict the

validity of Neumann’s principle to operations that do not

contain time reversal for dynamic (i.e. entropy-producing)

properties. However, after a 20-year dispute it was established

that the behaviour of the tensors under time reversal must be

determined not by the constitutive equations but by the

Onsager relationships (Butzal & Birss, 1982; Eremenko et al.,

1992; Grimmer, 1994; Shtrikman & Thomas, 1965). In other

words, it is the Onsager theorem that tells us the way these

tensors transform under 10 and also allows a consistent

application of Neumann’s principle to these kinds of tensors.

Non-equilibrium tensors include not only the tensors for

transport properties (e.g. electrical or thermal conductivities,

diffusion phenomena or thermoelectric effects) but also the

optical tensors. In this respect, it is important to note that the

response of a crystal to an electromagnetic field cannot be

described as an equilibrium phenomenon unless the

frequencies involved are low enough (Eremenko et al., 1992).

Although in the literature the shapes of the symmetry-

adapted tensors in both non-magnetic and magnetic crystals

have been discussed many times (Eremenko et al., 1992;

Grimmer, 1993, 1994; Kleiner, 1966; Newnham, 2005; Nye,

1985; Shtrikman & Thomas, 1965; Tinder, 2008), we have

found it interesting to make an exhaustive compilation of

tensor properties and offer a simple automatic procedure to

obtain the tensor forms in any of the crystallographic magnetic

point groups. With this aim we have implemented a program,

called MTENSOR, within the Bilbao Crystallographic Server

(http://www.cryst.ehu.es/cryst/mtensor). On the server there is

also a simplified version of the program, named TENSOR,

which is appropriate for non-magnetic crystals (see http://

www.cryst.ehu.es/cryst/tensor). TENSOR provides informa-

tion on the symmetry-adapted tensors for non-magnetic

materials, as a function of their ordinary point group, without

the need to consider magnetic symmetry. This information can

also be retrieved from MTENSOR if instead the magnetic

grey point group (or space group) corresponding to the rele-

vant ordinary (non-magnetic) group is introduced as input.

MTENSOR provides the symmetry-adapted form of tensor

properties for any magnetic point (or space) group. On the

one hand, a point group must be selected. On the other hand, a

tensor must be defined by the user, or selected from the lists of

known equilibrium, transport and optical tensors gathered

from the scientific literature. If a standard magnetic point or

space group is defined and a known tensor is selected from the

lists, the program will return the required tensor from an

internal database. Otherwise, the tensor is calculated live.

MTENSOR is linked from a database of magnetic struc-

tures, called MAGNDATA (Gallego et al., 2016), which is

also hosted on the Bilbao Crystallographic Server (http://

www.cryst.ehu.es/magndata).

In this paper we give a detailed description of the working

principles of MTENSOR. We will begin with tensors asso-

ciated with equilibrium properties. We will then illustrate the

procedure followed for tensors of transport properties. Finally,

we will deal with optical tensors, with a special discussion of

the form that the Onsager relationships take for some

nonlinear optical susceptibilities of practical interest. We

propose an intuitive method based on simple diagrams, which

allows the determination of the action of the 10 operation on

any optical susceptibility. This topic has not been considered

sufficiently in the literature. In fact, even in recent publications

it is usual to find partial reductions of such tensors following

just the old incomplete Birss prescription.

2. Equilibrium properties

In the case of tensors describing static properties, their

transformation laws under the action of the operations of a

magnetic point group are well known (Birss, 1964). The kind

of transformation depends on the number of axial vectors that

are involved in the constitutive relation, as well as on the

number of magnetic vectors. These numbers determine the

polar or axial character of the tensor (even or odd number of

axial vectors, respectively) and the non-magnetic or magnetic

character (even or odd number of magnetic vectors, respec-

tively). For example, for the magnetoelectric tensor of rank 2,

aij , which relates an applied electric field Ej (polar non-

magnetic vector) to an induced magnetization Mi (axial

magnetic vector) through the constitutive relation Mi = aijEj ,

we have the symmetry relations

aij ¼ Rj jRimRjnamn; ð1Þ

for the proper or improper operations R of the point group

that do not include time reversal, and

aij ¼ � Rj jRimRjnamn; ð2Þ

for the operations R0 = R10 that include the time-reversal

operation 10. In (1) and (2) Rij are the elements of the 3�3

matrices that represent the point-group operations R in the

orthonormal basis in which the constitutive relation is also

expressed, and |R| is the determinant of the matrix.

We will use Jahn’s notation (Jahn, 1949) to designate the

kind of tensor according to its transformation properties. The

magnetoelectric tensor has rank 2 (V2), and it is axial (e) and

magnetic (a), so it is labelled aeV2. Using this notation,

additional symmetries like symmetry or antisymmetry of pairs

of indices are easily incorporated through square brackets or

curly brackets. For example, the elastic tensor Cijkl is of type

[[V2][V2]]. This means a polar non-magnetic tensor of rank 4,

symmetric in indices i, j, also symmetric in indices k, l, and
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where, additionally, the pair i, j is interchangeable by k, l.

Similarly, a tensor Vijk of type a{V2}V would be a magnetic

tensor of rank 3 antisymmetric in indices i, j. In MTENSOR we

present a list of 60 equilibrium properties with 24 different

Jahn symbols. For a given point group, tensor properties that

are forbidden by symmetry are listed on a grey background.

Among rank 1 tensors we have included the four basic ferroic

effects: electric polarization vector Pi of type V, magnetization

vector Mi of type aeV, polar toroidal moment Ti of type aVand

axial toroidal moment Ai of type eV. The rank of the consid-

ered tensors ranges between 1 and 8. The main page and an

example of the output of MTENSOR are given in Fig. 1.

When a tensor of third rank or higher is symmetric under

the permutation of two indices i and j, the tensor is given in

abbreviated notation by making the substitution ij! u (i, j =

1, 2, 3; u = 1, . . . , 6). The usual Voigt-like correspondence

11! 1, 22! 2, 33! 3, 23! 4, 13! 5, 12! 6 is adopted

(Nye, 1985). However, although it is customary to introduce

factors of 1/2 (or even 1/4 in some cases) into the relationships

between some of the coefficients expressed in abbreviated and

full-tensor notations, we will not follow this convention here.

The correspondence between coefficients is always taken with

unity factors to unify the wide variety of cases presented by

the different tensors. For example, our elastic compliance

coefficients in abbreviated notation verify S11 = S1111, S16 =

S1112 or S45 = S2313. Similarly, the piezoelectric coefficients fulfil

d11 = d111 or d36 = d312, exactly like the stiffness coefficients Cij

and Cijkl. This contrasts with the convention used in the book

by Nye (1985). Therefore, care should be taken when writing

the constitutive relationships or expressions for the crystal

energy using the abbreviated notation. These equations can

only be written in compact form using the full-tensor notation.

In cases of higher symmetry, where more than two indices

can be interchanged, the abbreviated notation is used for the

first two indices on the left and, if possible, the next two indices

on the right are treated in the same way. For example, if the

Jahn symbol is [V3] the correspondence is Tuk = Tijk, u =

1, . . . , 6 and i, j, k = 1, 2, 3. If the symbol is [V4] double

reduction is possible and the correspondence is Tuv = Tijkl, u, v

= 1, . . . , 6 and i, j, k, l = 1, 2, 3.

3. Transport properties

In the section on transport properties, MTENSOR deals with

more than 20 different phenomena related to diffusion,

thermal conduction, electrical conduction and combined

effects: electrodiffusion, thermodiffusion and thermoelectric

effects. Also, we incorporate variations in these properties

upon application of external magnetic fields, especially the

Hall, Nernst and Ettinghausen effects. In total we find six

different Jahn symbols for the tensors, whose ranks are

between 2 and 4. As was mentioned in Section 1, the reduction

of tensor transport properties involves the Onsager reciprocity

theorem to obtain the transformation law of the tensors upon

the time-reversal operation 10. To explain how Onsager rela-

tionships enable us to find out the effect of 10 on these tensors,

we will give below an example considering the case of ther-

moelectric effects (Grimmer, 1993, 2017).

Let us take a crystal where a temperature gradient rT and

an electric current with density current J have been estab-

lished. Then a thermal current with heat-flux density q and an

electric field E are produced. In the absence of diffusion

phenomena these quantities are related as

Ei ¼ �ijðS;HÞJj þ �ijðS;HÞðrTÞj;

qi ¼T�ijðS;HÞJj � kijðS;HÞðrTÞj;
ð3Þ

where we have explicitly written the dependence of the tensor

properties on the spin configuration S of the crystal and the

value of a possible external magnetic field H. In equation (3)

�ij is the electrical resistivity tensor, kij the thermal conduc-
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Figure 1
(a) The main page of MTENSOR and (b) a typical output provided by the
program. An example is given of the symmetry-adapted form of the
piezomagnetic tensor for the magnetic point group 320, together with
some relevant information on the chosen property.



tivity, and �ij and T�ij the tensors for the Seebeck and Peltier

effects, respectively. All these tensors can be grouped as a 6�6

matrix in the form

LðS;HÞ ¼
� �
� �k

� �
; ð4Þ

which is the matrix of the kinetic coefficients of the thermo-

electric effects. Onsager’s theorem can be written as a

symmetry relation of the kinetic coefficients (Grimmer, 1993,

2017):

LijðS;HÞ ¼ Ljið�S;�HÞ: ð5Þ

As can be seen, this expression can be understood as a

transformation law of the kinetic coefficients by time reversal,

since spins and magnetic fields are reversed by that operation.

Therefore, for the diagonal tensors of matrix Lij(S, H) we

deduce the following relations:

10�ijðS;HÞ ¼ �ijð�S;�HÞ ¼ �jiðS;HÞ; ð6Þ

10kijðS;HÞ ¼ kijð�S;�HÞ ¼ kjiðS;HÞ: ð7Þ

Similarly, for the nondiagonal tensors we have

10�ijðS;HÞ ¼ �ijð�S;�HÞ ¼ �jiðS;HÞ; ð8Þ

10�ijðS;HÞ ¼ �ijð�S;�HÞ ¼ �jiðS;HÞ: ð9Þ

Therefore, the action of the primed elements R0 = R10 of the

crystal point group on the diagonal tensors is

�ij ¼ RimRjn�nm; ð10Þ

and an identical equation for kij. On the other hand, for

elements R which do not contain time reversal we have the

usual relationship:

�ij ¼ RimRjn�mn; ð11Þ

and the same for kij . These transformation laws (10) and (11)

define a non-standard Jahn symbol which we will denote as

[V2]* (emphasizing the fact that 10�ij = �ji). In the case of a

non-magnetic crystal, equation (6) implies �ij = �ji. In other

words, for grey groups (groups containing the 10 operation)

the Jahn symbol [V2]* gives the same restrictions as [V2].

In general, if �ij is written as the sum of a symmetric and an

antisymmetric part �ij = �S
ij þ �

A
ij , it is easily deduced that �S is

a [V2] tensor and �A an a{V2} tensor. According to Grimmer

(2017), to treat �S and �A as separate tensors leads to simpler

and stronger results. In this way it can be shown that �S

accounts for the ordinary ohmic resistivity and �A is respon-

sible for the so-called spontaneous Hall effect, which does not

produce energy dissipation. In MTENSOR we do not

explicitly separate �S and �A. However, both tensors can

easily be deduced from � by taking its symmetric and anti-

symmetric parts.

The nondiagonal tensors of matrix Lij(S, H) have different

transformation properties. From (8) and (9) it can be seen that

elements R0 do not place any restriction on the tensor shape,

but relate elements of tensors that describe different proper-

ties. Thus, we have the transformations

�ij ¼ RimRjn�nm ð12Þ

and

�ij ¼ RimRjn�nm; ð13Þ

which connect the Seebeck and Peltier coefficients.

The only reduction for the individual tensors � and � then

comes from the non-primed operations in the usual way,

�ij ¼ RimRjn�mn; ð14Þ

and a similar equation for �. These kinds of tensor will be

denoted by the symbol (V2)* (here we have 10�ij = �ji). For

grey groups, �ij = �ji .

If we consider jointly the effects of electrical conduction,

thermal conduction and diffusion, the kinetic coefficients can

be written as a 9�9 matrix Lij , which verifies new Onsager

relationships similar to equation (5). In this case there are

three diagonal properties of type [V2]* (the third one is the

diffusion tensor) and six nondiagonal tensors related to each

other in pairs. The latter are tensors of type (V2)*.

The application of external magnetic fields leads to the

definition of new effects that can be described by means of

tensors of ranks higher than 2. For tensors of type [V2]*, like

�ij , a magnetic field gives rise to a dependence of the resistivity

that can be written approximately as a Taylor series,

�ijðHÞ ¼ �ijð0Þ þ RijkHk þ TijklHkHl þ . . . : ð15Þ

�ij(0) is the zero-order term, Rijk is the tensor for the Hall

effect (Ei = Rijk Jj Hk) and Tijkl is the tensor for magnetic

resistance (Ei = Tijkl Jj Hk Hl).

Taking into account that H is an axial magnetic vector, the

following transformation properties can be deduced.

For the subgroup of non-primed operations R,

Rijk ¼ Rj jRimRjnRksRmns ð16Þ

and

Tijkl ¼ RimRjnRksRlpTmnsp; ð17Þ

and for primed operations R0,

Rijk ¼ � Rj jRimRjnRksRnms ð18Þ

and

Tijkl ¼ RimRjnRksRlpTnmsp: ð19Þ

These transformation laws mean that 10Rijk = �Rjik and 10Tijkl

= Tjikl. Accordingly, the intrinsic symmetry of the R and T

tensors will be denoted by the new Jahn symbols e{V2}*V and

[V2]*[V2], respectively. It can be checked that for grey groups

the Jahn symbols {}* and []* give the same restrictions as {} and

[], respectively

Similar to the case of �ij, we can separate the Hall tensor

into an antisymmetric part, RA
ijk = �RA

jik of type e{V2}V

(ordinary Hall effect), and a symmetric part, RS
ijk = RS

jik,

responsible for the (anomalous) linear magnetoresistance,

which is of ae[V2]V type. In the same way, the tensor T is

separable into a symmetric part, TS
ijkl = TS

jikl, which describes

the (ordinary) quadratic magnetoresistance (type [V2][V2]),

and an antisymmetric part, TA
ijkl = �TA

jikl (a{V2}[V2]), respon-
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sible for the (anomalous) quadratic Hall effect. Again, these

separations are not explicitly carried out in MTENSOR but

can be obtained from the full Rijk and Tijk tensors.

For nondiagonal tensors, the application of a magnetic field

leads to a series expansion similar to equation (15). Taking the

Peltier tensor as an example, we have

�ijðHÞ ¼ �ijð0Þ þMijkHk þ . . . ; ð20Þ

where Mijk is the tensor for the so-called Ettinghausen

effect. That tensor is of type (eV3)*, which means a transfor-

mation rule

Mijk ¼ Rj jRimRjnRklMmnl; ð21Þ

for non-primed operations R, and an Onsager-like relationship

for primed operations R0,

Mijk ¼ � Rj jRimRjnRklNnml; ð22Þ

which in this case is not useful for further tensor reduction. In

equation (22) Nijk is the tensor for the Nernst effect, which

involves the Seebeck instead of the Peltier coefficients in an

expression like (20) [�ijðHÞ = �ijð0Þ þ NijkHk þ . . .]. As can be

seen, the Onsager relationships (22) connect the Ettinghausen

and Nernst coefficients.

A combination of the M and N tensors can be devised that

leads to new tensors which are either invariant or change sign

under 10. These tensors describe a series of ordinary (non-

magnetic) and anomalous (magnetic) effects, respectively, and

have been compiled by Grimmer (2017).

In Tables 1 and 2 we have gathered some important

thermoelectric effects showing the intrinsic symmetry of the

relevant tensors.

4. Optical properties

Optical properties are based on the behaviour of the dielectric

permittivity tensor at optical frequencies and its variation due

to external stimuli, such as electric fields, magnetic fields,

stress, strain etc.

As has been described in the section on static properties

(Section 2), the dielectric tensor is of type [V2] for fields of

sufficiently slow variation. However, this is no longer the case

for optical frequencies because the material response cannot

be considered as an equilibrium phenomenon. It can be shown

that at these frequencies the dielectric tensor must satisfy the

Onsager relationships (Eremenko et al., 1992),

"ijðk; S;HÞ ¼ "jið�k;�S;�HÞ; ð23Þ

where k is the light wavevector, S specifies the spin config-

uration in magnetic materials and H is an external magnetic

field. Upon time reversal, all k, S and H change direction, so

equation (23) means that the transformation of the optical

dielectric tensor under the 10 operation is

10"ijðk; S;HÞ ¼ "jiðk; S;HÞ: ð24Þ

In other words, at optical frequencies "ij becomes a [V2]*

tensor.

442 Samuel V. Gallego et al. � Automatic calculation of symmetry-adapted tensors Acta Cryst. (2019). A75, 438–447

research papers

Table 1
Intrinsic symmetry of some tensors describing thermoelectric effects.

The symmetric and antisymmetric parts of the tensors account for different properties. The symmetric and antisymmetric tensors are not explicitly included in
MTENSOR but can easily be obtained from the full original tensor. �ij(H) = �ij(0) + RijkHk + TijklHkHl, kij(H) = kij(0) + QijkHk + SijklHkHl.

Tensor
Intrinsic
symmetry Property Symmetric part Antisymmetric part

�ij [V2]* Electrical resistivity [V2], ordinary resistivity (�ij + �ji)/2 a{V2}, spontaneous Hall effect (�ij � �ji)/2
kij [V2]* Thermal conductivity [V2], ordinary thermal conductivity (kij + kji)/2 a{V2}, spontaneous Righi–Leduc effect (kij � kji)/2
Rijk e{V2}*V Hall effect ae[V2]V, linear magnetoresistence (Rijk + Rjik)/2 a{V2}V, ordinary Hall effect (Rijk � Rjik)/2
Tijkl [V2]*[V2] Magnetoresistance [V2][V2], quadratic magnetoresistence (Tijkl + Tjikl)/2 a{V2}[V2], quadratic anomalous Hall effect

(Tijkl � Tjikl)/2
Qijk e{V2}*V Righi–Leduc effect ae[V2]V, linear magneto-heat conductivity

(Qijk + Qjik)/2
e{V2}V, ordinary Righi–Leduc effect (Qijk � Qjik)/2

Sijkl [V2]*[V2] Magneto-heat
conductivity

[V2][V2], quadratic magneto-heat conductivity
(Sijkl + Sjikl)/2

a{V2}[V2], quadratic anomalous Righi–Leduc effect
(Sijkl � Sjikl)/2

Table 2
Some of the tensors without internal symmetry that describe thermoelectric effects.

New tensors with enhanced symmetry can be constructed from them by appropriate linear combinations. From a pair of tensors a new pair is built. One tensor in
each pair is invariant and the other changes sign under 10. These new tensors account for properties with different physical interpretations. They are not explicitly
included in MTENSOR but can be obtained from the information available in the program. �ij(H) = �ij(0) + MijkHk, �ij(H) = �ij(0) + NijkHk.

Tensor
Intrinsic
symmetry Property Non-magnetic part (invariant under 10) Magnetic part (changes sign under 10)

�ij (V2)* Peltier effect V2, ordinary Peltier effect (�ij + �ji)/2 aV2, spontaneous Ettinghausen effect (�ij � �ji)/2
�ij (V2)* Seebeck effect [V2], ordinary Seebeck effect (�ij + �ji)/2 a{V2}, spontaneous Righi–Leduc effect (�ij � �ji)/2
Mijk (eV3)* Ettinghausen effect eV3, ordinary Ettinghausen effect (Mijk � Njik)/2 aeV3, linear magneto-Peltier effect (Mijk + Njik)/2
Nijk (eV3)* Nernst effect eV3, ordinary Nernst effect (Nijk � Mjik)/2 aeV3, linear magneto-Seebeck effect (Nijk + Mjik)/2



The variation in "ij due to space dispersion (dependence on

k), application of electric or magnetic fields and other external

influences can be expanded in a Taylor series thus:

"ij ¼ "
0
ij þ i�ijlkl þ �

ð2Þ
ijlmklkm þ . . .þ rijlEl þ RijlkElEk þ . . .

. . .þ izijlHl þ CijlkHlHk þ . . . : ð25Þ

Every tensor in (25) is responsible for an optical effect, with its

own intrinsic symmetry. In this way we deduce the following

symmetries: the zero-order "0
ij is a [V2]* tensor, which

describes the index ellipsoid of the crystal, � ijl is a tensor of

type {V2}*V since k changes sign upon application of 10, �ð2Þijlm is

of type [V2]*[V2], rijl has an intrinsic symmetry [V2]*Vand Rijlk

is [V2]*[V2]. Finally, zijl is of type e{V2}*Vand Cijlk is [V2]*[V2].

In their turn, all these tensors have symmetric and anti-

symmetric parts with respect to transpositions of indices i and

j. We first examine the spontaneous effects. A list of them is

given in Table 2. If, in addition, the medium is non-dissipative,

"ij must be Hermitian ("ij = "�ji) (Landau & Lifshitz, 1960). This

condition implies that all elements of the symmetric and

antisymmetric tensors are either real or purely imaginary. The

last column of Table 3 accounts for this point. In the case of

dissipative media all tensors are complex.

Regarding the disturbances of the dielectric tensor caused

by external electric or magnetic fields, rijk is responsible for the

electro-optic Pockels effect, Rijkl is the electro-optic Kerr

tensor, zijk accounts for the Faraday effect and Cijkl is the

tensor corresponding to the Cotton–Moutton effect. In

MTENSOR only the main (non-magnetic) effects associated

with these tensors are considered, except for the Faraday and

Cotton–Mouton effects. In the first case we include the

possibility of a symmetric part of zijk in the indices i and j, qijk =

izS
ijk with qijk = qjik, which corresponds to the so-called

magneto-optic Kerr effect. In the second case we consider a

possible antisymmetric part of Cijkl in the indices i and j, Bijkl =

iCA
ijkl, with Bijkl = �Bjikl. This phenomenon is named the

quadratic magneto-optic Kerr effect. The two magneto-optic

Kerr effects are only observable in magnetically ordered

materials. All these tensors are real in non-dissipative media

(see Table 4).

Apart from these effects, MTENSOR also takes account of

further alterations in the permittivity due to other external

perturbations such as stress, strain or the effect of combined

fields. Tensor shapes are analysed up to rank 6.

5. Nonlinear optical susceptibilities

Nonlinear optical phenomena have recently been revealed as

a powerful tool for the investigation of magnetic symmetries,

structures and interactions in magnetically ordered crystals

(Dähn et al., 1996; Fiebig et al., 1994, 1996, 2005; Kirilyuk,

2002; Pavlov et al., 2002; Pisarev, 1996, 2013; Pisarev et al., 2010;

Yokota et al., 2012). Among the great variety of nonlinear

optical effects we will focus mainly on electric dipole effects,

which are usually associated with the most prominent

phenomena. At the end of this section we will briefly consider

some examples involving magnetic dipole effects.

We will adopt the usual notation �inin�1...i1
ð!n;!n�1; . . . ; !1Þ

(!n � 0) to designate an (n � 1)-nonlinear susceptibility

where input electric field waves of frequencies !n�1, . . . , !1

produce an electric polarization at a frequency!n = !n�1 + . . .
+ !1. This polarization then acts as source term in the wave

equation, giving rise to an electric field that also oscillates at a

frequency !n. In short, frequencies on the right-hand side of

the semicolon are those of the input waves. They can be

positive or negative (a negative frequency is understood as an

output wave with positive frequency). The frequency on the

left-hand side of the semicolon represents the frequency of the

output wave (always positive or null).

As in previous cases, in order to obtain the restrictions that

the symmetry of a magnetic group produces on these tensors,

the crucial point is to find out the way they behave under time

reversal, i.e. we need the appropriate Onsager relationships.

This problem has received scant attention in the literature. In

the work of Naguleswaran & Stedman (1996, 1998), some

relations were derived starting from the quantum mechanical

expressions for the susceptibilities. Here, we will follow a

simpler procedure well adapted to our needs.

The procedure is based on the assignment of simple

diagrams to the different optical properties. The action of time
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Table 4
Tensors describing alterations of "ij due to electric and magnetic fields.

Tensor
Intrinsic
symmetry Optical property

Real or imaginary
character in
non-dissipative
media

rS
ijk [V2]V Pockels effect Real

RS
ijkl [V2][V2] Kerr effect Real

zA
ijk e{V2}V Faraday effect Real

qijk ¼ izS
ijk ae[V2]V Magneto-optic Kerr

effect
Real

CS
ijkl [V2][V2] Cotton–Mouton effect Real

Bijkl ¼ iCA
ijkl a{V2}[V2] Quadratic magneto-optic

Kerr effect
Real

Table 3
Spontaneous optical properties allowing space dispersion up to second
order.

Tensor
Intrinsic
symmetry Optical property

Real or imaginary
character in
non-dissipative
media

ð"0
ijÞ

S [V2] Index ellipsoid Real

ð"0
ijÞ

A a{V2} Spontaneous Faraday
effect

Imaginary

�A
ijl {V2}V Natural optical activity† Real

�S
ijl a[V2]V Spontaneous gyrotropic

birefringence‡
Imaginary

�ð2ÞSijkl [V2][V2] Birefringence in cubic
crystals

Real

�ð2ÞAijkl a{V2}[V2] Non-mutual optical
activity‡

Imaginary

† In experimental work, gyrotropy is sometimes treated using a gyrotropic axial tensor
glk = ðk0=2Þ"ijk�

A
ijl , which is expressed in terms of the completely antisymmetric Levi–

Civita axial tensor "ijk and the modulus of the light wavevector in a vacuum k0. The
magnitude of the gyration G is given through the symmetric part of glk as G = glkklkk=k2

0.
The non-symmetric part of glk is not observable. ‡ Not observed yet.



reversal on a given susceptibility is obtained by just inverting

the event sequence in the diagram describing that process. The

new diagram corresponds to a new process, which is readily

identified. As far as we know, this method has never been used

before for these purposes. The validity of the results of the

method will be checked by comparison with well known

Onsager relationships in particular cases.

We start with a simple linear process with one input wave

and one output wave, both of frequency !. Instead of the

permittivity "ij we will use the equivalent susceptibility tensor

�ij(!;!). In this notation, the process described by �ij(!;!) is

the production of an output wave of frequency ! polarized

along i from an input electric wave of frequency ! polarized

along j. The process is shown schematically in Fig. 2(a). Now

let us consider the time-reversed process. Under time reversal

the input and output are interchanged, so we have the scheme

in Fig. 2(b). This new process is driven by �ji(!;!), so we arrive

at the conclusion

10�ijð!;!Þ ¼ �jið!;!Þ; ð26Þ

which is the well known Onsager relation for the dielectric

permittivity (Eremenko et al., 1992).

We now extend the use of these diagrams to higher-order

processes. Let us examine a general second-order process

driven by �ijk(!3;!2, !1) and shown schematically in Fig. 3(a).

The time-reversed process is shown in Fig. 3(b) and, as can be

seen, the tensor component associated with it is either

�jik(!2;!3, � !1) or, equivalently, �kij(!1;!3, � !2). Therefore

we should have

10�ijkð!3;!2; !1Þ ¼ �jikð!2;!3;�!1Þ ¼ �kijð!1;!3;�!2Þ:

ð27Þ

This is the Onsager relation for the process. In contrast with

the linear case, equation (27) only provides us with a rela-

tionship between elements of different tensor properties, and

thus it is not useful to reduce the tensor. We have here a

situation similar to the one found previously for the non-

diagonal blocks in equation (4) when dealing with some

transport properties. This is not strange because the direct and

reversed processes correspond to different physical

phenomena. For example, if !1 > 0 and !2 > 0, the direct and

time-reversed processes are a sum-frequency and a difference-

frequency generation, respectively. Therefore, in general, we

can only use the non-primed elements of the magnetic point

group to reduce the tensor. The intrinsic symmetry of the

susceptibility will be (V3)*.

Only in some special cases, when the direct and reversed

processes are of the same nature, is equation (27) useful for

further tensor reduction. This happens when one of the

frequencies of the input waves is the same as that of one of the

output waves (the case ! = 0 does not count). In the second-

order case there are only two relevant situations, which are

shown schematically in Fig. 4.

The first case [Fig. 4(a)] is controlled by �ijk(!;!, 0). In fact,

it is nothing but the electro-optic Pockels effect, with a

susceptibility proportional to the Pockels tensor �ijk(!;!, 0) /

rijk. The reversed process is driven by �jik(!;!, 0) [or alter-

natively by �kij(0;!, � !)]. This means that

10�ijkð!;!; 0Þ ¼ �jikð!;!; 0Þ; ð28Þ

or

10�ijkð!;!; 0Þ ¼ �kijð0;!;�!Þ: ð29Þ

Equation (28) gives the already known relationship

(Eremenko et al., 1992) for the Pockels tensor 10rijk = rjik with

intrinsic symmetry [V2]*V. Equations (29) and (28) express a

relationship between the tensors for the Pockels effect and for

the so-called optical rectification phenomenon, consisting of

the generation of a DC electric field upon illumination with an

intense light beam.
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Table 5
Intrinsic symmetry of tensors describing some second- and third-order
nonlinear optical effects in dissipative crystals.

Optical property Tensor Intrinsic symmetry

General second-order process �ijkð!3;!2; !1Þ (V3)*
Second-harmonic generation �ijkð2!;!;!Þ (V[V2])*
Pockels effect �ijkð!;!; 0Þ [V2]*V
Optical rectification �ijkð0;!;�!Þ V[V2]*
General third-order process �ijklð!4;!3; !2; !1Þ (V4)*
Four-wave mixing �ijklð!1;�!2; !1; !2Þ [V2V2]*
Degenerate four-wave mixing �ijklð!;�!;!; !Þ [[V2][V2]]*

Figure 2
(a) The linear process in which one input wave of frequency ! polarized
along the j axis gives rise to an output wave of frequency ! oscillating
along i. Under time reversal the process (b) is obtained, where the roles of
i and j are interchanged.

Figure 3
(a) A general second-order process in which two waves of frequencies !1

and !2 combine to generate a wave of frequency !3 = !1 + !2. (b) The
time-reversed process. !3 is an input frequency and the output can be
chosen between !2 (!2 = !3 � !1) or !1 (!1 = !3 � !2).

Figure 4
(a) A second-order process in which a wave of frequency ! polarized
along the j axis is transformed into a wave of the same frequency
polarized along i due to the interaction with a static electric field applied
along the k axis. (b) The optical rectification phenomenon. A DC field
along the i axis is generated by the interaction of two waves of frequency
! oscillating along j and k.



In Fig. 4(b) we show just the optical rectification process

�ijk(0;!,�!). The time-reversed process is driven by

�ikj(0;!,�!), so

10�ijkð0;!;�!Þ ¼ �ikjð0;!;�!Þ: ð30Þ

Thus, the Jahn symbol for this tensor must be V[V2]*.

For third-order processes, the most general case where we

can associate input and output waves in conjugate pairs is

shown schematically in Fig. 5. It corresponds to the four-wave

mixing process. From the figure we easily deduce

10�ijklð!1;�!2; !1; !2Þ ¼ �klijð!1;�!2; !1; !2Þ: ð31Þ

Thus, the intrinsic symmetry of this property is [V2V2]*.

A special case of the above effect is the so-called degen-

erate four-wave mixing process, when all frequencies are the

same. Obviously we have

10�ijklð!;�!; !; !Þ ¼ �klijð!;�!; !; !Þ; ð32Þ

but here we have still more reduction because kl and ij can

also be interchanged. Then the tensor is [[V2][V2]]*.

Table 5 gives the intrinsic symmetry of some important

tensors for electric dipole second- and third-order effects.

It is interesting to point out that further reduction can be

achieved in the case of non-dissipative media. We will show

the reason for this by analysing the case for the second-order

susceptibility. It can be shown that the absence of dissipation

implies a second-order electric dipole response (Klyshko,

2011; Popov et al., 1995),

�ijkð!3;!2; !1Þ ¼ �jikð!2;!3;�!1Þ
� ��

¼ �kjið!1;�!2; !3Þ
� ��

:

ð33Þ

Therefore equations (27) and (33) give

10�ijkð!3;!2; !1Þ ¼ �ijkð!3;!2; !1Þ
� ��

; ð34Þ

i.e. we regain a relationship between elements of the same

tensor property. Equation (34), first deduced by Pershan

(1963), then permits the use of primed operations of

the magnetic point group to reduce the susceptibility

tensor further.

Interestingly, although equation (34) implies that dia- and

paramagnetic transparent crystals have real susceptibilities

(since for them 10 is always a symmetry operation), this is not

necessarily the case in magnetically ordered materials, even if

they are lossless. In fact, for the magnetic point group 1 it can

be shown that all tensor elements are complex. The real and

imaginary parts can then be interpreted as separate contri-

butions to the susceptibility coming from the crystal structure

and the spin configuration, respectively.

Table 6 is a catalogue of nonlinear optical tensors showing

their intrinsic symmetry for lossless media. The last column

gives the intrinsic symmetry of the tensor property, assuming

additionally that the medium has no dispersion (also known as

Kleinman symmetry; Kleinman, 1962).

To find the Kleinman condition, we consider non-dissipative

media and neglect the frequency dependence of the

susceptibility. In the second-order case, the general

symmetry conditions for the susceptibility �ijk(!3;!2, !1) =

�ikj(!3;!1, !2), together with equation (33) specific for non-

dissipative media, give

�ijkð!3;!2; !1Þ ¼�ikjð!3;!1; !2Þ

¼ �jikð!2;!3;�!1Þ
� ��
¼ �jkið!2;�!1; !3Þ
� ��
¼ �kjið!1;�!2; !3Þ
� ��
¼ �kijð!1;!3;�!2Þ
� ��

: ð35Þ

If, in addition, we omit the frequency arguments because of

the lack of dispersion, we have

�ijk ¼ �ikj ¼ �jik

� ��
¼ �jki

� ��
¼ �kji

� ��
¼ �kij

� ��
: ð36Þ

Now, if we take the real part of the � tensor, which is of type

V3, we see from equation (36) that every pair of indices can be

permuted, so V3 transforms into [V3]. On the other hand, the

imaginary part of � must be symmetric in the last two indices

(since �ijk = �ikj) and antisymmetric in the first two (since �ijk =
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Table 6
Intrinsic symmetry of some nonlinear optical tensors for non-dissipative crystals and for media showing no dispersion.

Optical property Tensor Real part Imaginary part Kleinman symmetry

General second-order process �ijkð!3;!2; !1Þ V3 aV3 Real [V3]
Second-harmonic generation �ijkð2!;!; !Þ V[V2] aV[V2] Real [V3]
Optical rectification �ijkð0;!;�!Þ V[V2] aV{V2} Real [V3]
General third-order process �ijklð!4;!3; !2; !1Þ V4 aV4 Real [V4]
Electric field-induced second-harmonic generation �ijklð2!; 0; !; !Þ V2[V2] aV2[V2] Real [V4]
Third-harmonic generation �ijklð3!;!; !; !Þ V[V3] aV[V3] Real [V4]
General second-order process by magnetic dipole �m

ijkð!3;!2; !1Þ aeV3 eV3 Imaginary e[V3]
Second-harmonic generation by magnetic dipole �m

ijkð2!;!; !Þ aeV[V2] eV[V2] Imaginary e[V3]

Figure 5
(a) A third-order process in which two waves of frequencies !2 polarized
along the j and l axes, and another wave of frequency !1 polarized along
k, combine to produce a wave of frequency !1 oscillating along the i axis.
(b) The time-reversed process can be interpreted as the direct process
with an interchange of indices i and j by k and l, respectively.



[�jik]*). This implies Im� = 0. Similar reasoning can be applied

to the third-order susceptibility.

To end this section we will give a brief account of some

second-order susceptibility tensors that involve magnetic

dipole effects. The transformation laws associated with these

susceptibilities can easily be deduced from those of their

electric dipole counterparts by just noting that a magnetic

axial vector replaces an electric vector in their constitutive

equations. Then the behaviour under time reversal can be

obtained by just adding a minus sign. For example, equation

(27) becomes

10�m
ijkð!3;!2; !1Þ ¼ ��

m
jikð!2;!3;�!1Þ ¼ ��

m
kijð!1;!3;�!2Þ;

ð37Þ

where the superscript m makes reference to a magnetic dipole

susceptibility. In general, if there are k magnetic vectors

involved in the constitutive relation for the susceptibility, we

should include a (�1)k factor in the transformation law.

It is easy to understand that, as a rule, direct and time-

reversed susceptibilities that involve magnetic dipole effects

are of different natures, similar to the electric dipole case.

Again, the case of non-dissipative media permits further

reduction. As shown by Pershan (1963), the equivalent of

equation (34) is now

10�m
ijkð!3;!2; !1Þ ¼ � �m

ijkð!3;!2; !1Þ
� ��

: ð38Þ

The last two rows of Table 6 give two examples of second-

order magnetic dipole effects. Remarkably, both tensors are

purely imaginary for media without dispersion or for non-

magnetic crystals.

In MTENSOR a list of 31 nonlinear susceptibilities is

presented. All the effects gathered in Tables 5 and 6 are

included, analysing separately the cases of dissipative and

non-dissipative materials, and also examining the possibility of

having the Kleinman symmetry. Only second- and third-

order effects are considered, with a total of 25 different

Jahn symbols.

6. Concluding remarks

In this paper we have presented a new tool of the Bilbao

Crystallographic Server. We have implemented two new

programs, MTENSOR and TENSOR, which enable the user to

obtain automatically the shapes of the symmetry-adapted

tensors of magnetic and non-magnetic crystals. Four categories

of tensor have been considered: equilibrium, transport, optical

and nonlinear optical susceptibility tensors. For all of these we

have discussed their behaviour under 10. For the last kind of

tensor we have also given an intuitive graphical method

for the easy deduction of their transformation rules under

time reversal.

More than 140 different properties are compiled, with

tensor ranks between 1 and 8. Although many different

intrinsic tensor symmetries are considered, the programs also

offer the possibility of building any tensor à la carte. This is

useful if the user is interested in a tensor whose symmetry is

not found in the lists.

An interesting extension for both programs would be a tool

that permitted the derivation of the symmetry-adapted form

of the tensor properties for all the corresponding domain-

related equivalent structures arising at a phase transition

(Litvin, 2014). In TENSOR, this would require the specifica-

tion of the space group of the structure, the parent space

group and, optionally, the transformation relating the settings

of both structures. In MTENSOR the non-magnetic to

magnetic phase transitions seem to be the most interesting. In

this case we would have to specify the space group of the

parent phase together with the magnetic subgroup of the

daughter phase. The construction of these tools is our plan for

the near future.
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