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Abstract

Background: Population-based studies have highlighted a close relationship between migraine and stroke.
Migraine, especially with aura, is a risk factor for both ischemic and hemorrhagic stroke. Interestingly, stroke risk is
highest for migraineurs who are young and otherwise healthy.

Main body: Preclinical models have provided us with possible mechanisms to explain the increased vulnerability of
migraineurs’ brains towards ischemia and suggest a key role for enhanced cerebral excitability and increased
incidence of microembolic events. Spreading depolarization (SD), a slowly propagating wave of neuronal
depolarization, is the electrophysiologic event underlying migraine aura and a known headache trigger. Increased
SD susceptibility has been demonstrated in migraine animal models, including transgenic mice carrying human
mutations for the migraine-associated syndrome CADASIL and familial hemiplegic migraine (type 1 and 2). Upon
experimentally induced SD, these mice develop aura-like neurological symptoms, akin to patients with the
respective mutations. Migraine mutant mice also exhibit an increased frequency of ischemia-triggered SDs upon
experimental stroke, associated with accelerated infarct growth and worse outcomes. The severe stroke phenotype
can be explained by SD-related downstream events that exacerbate the metabolic mismatch, including pericyte
contraction and neuroglial inflammation. Pharmacological suppression of the genetically enhanced SD susceptibility
normalizes the stroke phenotype in familial hemiplegic migraine mutant mice. Recent epidemiologic and imaging
studies suggest that these preclinical findings can be extrapolated to migraine patients. Migraine patients are at risk
for particularly cardioembolic stroke. At the same time, studies suggest an increased incidence of coagulopathy,
atrial fibrillation and patent foramen ovale among migraineurs, providing a possible path for microembolic
induction of SD and, in rare instances, stroke in hyperexcitable brains. Indeed, recent imaging studies document an
accelerated infarct progression with only little potentially salvageable brain tissue in acute stroke patients with a
migraine history, suggesting an increased vulnerability towards cerebral ischemia.

Conclusion: Preclinical models suggest a key role for enhanced SD susceptibility and microembolization to explain
both the occurrence of migraine attacks and the increased stroke risk in migraineurs. Therapeutic targeting of SD
and microembolic events, or potential causes thereof, will be promising for treatment of aura and may also prevent
ischemic infarction in vulnerable brains.
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Background
Migraine and Aura
Migraine is a chronic or episodic neurological disorder
that is typically characterized by throbbing or pulsatile
unilateral headaches lasting for 4–72 h. The high preva-
lence of migraine and the resulting disability places
migraine among the top diseases culminating in a high
socioeconomic burden. Thirty percent of migraineurs
develop transient neurological symptoms in the setting
of an attack, the so-called migraine aura [1]. Aura symp-
toms characteristically occur up to 1 h prior to the head-
ache, but sometimes can overlap with the headache
phase. At least two migraine attacks preceded by an aura
are needed to establish the diagnosis of migraine with
aura (MA). The clinical characteristics of migraine aura
included in the formal migraine classification [2] Inter-
national Classification of Headache Disorders (ICHD-3)
are visual, sensory, language, or motor symptoms as well
as brainstem symptoms [1]. Visual symptoms are the
most commonly encountered aura feature. Brainstem
aura symptoms are rare but particularly common in
familial hemiplegic migraine [1, 3].
Since the initial description by Leão in 1944 [4], spread-

ing depolarization (SD) has been recognized as the elec-
trophysiological correlate of migraine aura. SD is
characterized by prompt, self-propagating neuronal
depolarization waves that spread at a speed of 3–5mm/
min [5, 6]. Strongest evidence for a key role of SD in
migraine aura comes from a functional MRI study that
showed retinotopic congruence between the visual aura
perception and SD-typical BOLD signal changes travers-
ing the occipital cortex [7]. Preclinical studies in trans-
genic mice for familial hemiplegic migraine (FHM) further
underscore a key role for SD in migraine pathophysiology.
FHM is an autosomal dominant severe migraine subtype,
with associated hemiplegic aura preceding some attacks.
FHM has a prevalence of 5/100000. Three FHM muta-
tions have been identified so far; the mutations are found
in voltage dependent, P/Q type calcium channel alpha 1A
subunit CACNA1A for FHM1; ATPase, Na+/K+ trans-
porting, alpha 2 polypeptide ATP1A2 for FHM2; and so-
dium channel, voltage gated, type 1 alpha subunit SCN1A
for FHM3 [8, 9]. In transgenic mice carrying human mu-
tations for FHM type 1, experimental induction of SD
produces migraine-aura like symptoms. Mice with the
R192Q mutation develop transient hemiplegia, whereas
mice with the severe S218 L mutation also develop sei-
zures, similar to the clinical phenotype in patients with
the respective mutation [10]. These severe aura symptoms
were associated with a facilitated subcortical spread of SD
[11]. Upon exposure to an SD trigger (KCl or electrical
stimulation), FHM1 mice show a reduced threshold for
SD induction and develop a higher number of SDs, with
S218 L mice carrying the stronger gain-of-function

mutation exhibiting a more severe SD phenotype when
compared to R192Q mice [10]. This enhanced SD suscep-
tibility seems to be related to stronger cortical synapses, as
indicated by larger axonal boutons and an increased per-
centage of highly excitable mushroom type dendritic
spines with a high number of excitatory NMDA receptors
[12]. Interestingly, SD susceptibility is further increased in
female mice compared to male FHM1 mice, consistent
with an increased migraine incidence in females compared
to males. Hormonal ablation in FHM1 mice successfully
abrogated the gender difference in SD susceptibility [13],
underscoring the importance of sex hormones in further
modulating the genetically enhanced SD susceptibility. An
increased SD susceptibility has also been demonstrated in
transgenic mice for FHM type 2 [14], as well as familial
migraine and advanced sleep phase [15]. Importantly, SD
can be induced by microembolic events [16], and
even occlusion of a single cortical arteriole is suffi-
cient to trigger SD [17], providing a candidate mech-
anism for SD induction in the migraine-susceptible
brain. SD also plays a major role in other diseases,
and worsens outcomes in ischemic stroke, intracranial
hemorrhage, traumatic brain injury and subarachnoid
hemorrhage [18, 19].

Migraine and stroke
The World Health Organization lists stroke as the sec-
ond leading cause of death and the third leading cause
of serious long-lasting disability [20]. Recent reports
have highlighted the fact that 90% of strokes are
preventable, which reflects an opportunity to decrease
stroke related mortality and morbidity [21]. Strategies
primarily target modifiable vascular risk factors such as
hypertension, hyperlipidemia, diabetes and smoking [22].
Over the years, data accumulating from experimental
and clinical studies have pointed out an important role
for migraine as another potentially modifiable risk factor
contributing to the stroke burden [23–26]. The associ-
ation between migraine and stroke, both of which are
considered as multifaceted neurovascular disorders, is
especially pronounced in young female patients with no
other stroke risk factors; overall, a history of migraine
doubles the risk of stroke [23–26]. Importantly, the
stroke risk is higher in migraineurs with aura compared
to those without aura.
The relationship between migraine and stroke has

been studied for years, both experimentally and clinic-
ally. Numerous theories have been proposed, involving a
shared genetic basis, vascular dysfunction, patent for-
amen ovale (PFO), atrial fibrillation, increased inflamma-
tion and excitotoxicity, as well as abnormally increased
coagulation [18, 27–36]. Twin studies suggest a contri-
bution of familial factors to underlie the migraine stroke
association [37], and a genome-wide analysis of common
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variants has identified a shared genetic susceptibility to
migraine and ischemic stroke [34]. Preclinical studies
have confirmed an increased cerebral vulnerability to
ischemia in transgenic mice carrying human migraine
mutations. In FHM1 transgenic mice, occlusion of the
middle cerebral artery causes an increased number of
ischemia-triggered SDs with facilitated initiation of an-
oxic depolarization, known to exacerbate the metabolic
mismatch and worsen infarcts. Accordingly, diffusion
weighted MRI documents an accelerated expansion of
the infarct core in migraine mutant mice, with only a
small amount of potentially salvageable brain tissue, the
so-called penumbra [8]. In fact, high-frequent ischemic
depolarizations have been shown to adversely affect
tissue and neurological outcomes in the setting of cere-
bral ischemia even in wild-type mice [38]. Accordingly,
migraine prophylactic drugs that suppress the genetic-
ally increased SD susceptibility in FHM mutant mice
reduce the number of ischemia-triggered SDs upon
experimental middle cerebral artery occlusion, and
improve, even normalize, the severe stroke phenotype
[39]. Another autosomal dominant rare migraine-
associated disease is cerebral autosomal dominant
arteriopathy with subcortical infarcts and leukoence-
phalopathy (CADASIL). CADASIL is caused by muta-
tions in the NOTCH3 gene and is characterized by
vasculopathy in perforator cerebral arteries secondary
to fibrosis and accumulation of osmiophilic substances
[40]. Migraine with aura is generally the first symptom
and found in 30–40% of CADASIL patients. At later
stages, ischemic stroke develops in some patients, while
migraine attacks lessen or even stop [2, 40]. Patients
typically show a reduced vascular smooth muscle cell
function/relaxation [41]. Similarly, transgenic mice
expressing the human Notch 3 R90C mutation as well
as Notch 3 knockout mice develop arterial pathological
hallmarks of CADASIL as well as cerebrovascular
dysfunction, and show an enhanced susceptibility to SD
[9, 11]. Upon experimental middle cerebral artery
occlusion, stroke sizes are enlarged with an increased
frequency of ischemia-triggered spreading depolariza-
tions, and neurological outcomes are worse when com-
pared to wild-type littermates [42]. These experimental
data suggest enhanced SD susceptibility to be a key fac-
tor for the increased stroke risk in migraine-susceptible
brains. Along the same line, factors increasing the like-
lihood of SD occurrence, or “endogenous” SD trigger
factors, seem increased in migraineurs. For example,
genetic and epidemiologic studies document an in-
creased incidence of hypercoagulability [43], persistent
foramen ovale [44], and atrial fibrillation [36] among
migraineurs, which facilitate microembolic events in
cerebral vasculature as triggers for SD, migraine and
possibly stroke.

Mechanisms underlying the migraine, SD and
Stroke Association
Consistent with the accelerated infarct growth in migraine
mutant mice, acute stroke patients with a history of mi-
graine also show rapid infarct expansion. There is only a
small amount of potentially salvageable brain tissue/mis-
match in migraineurs, when penumbra is determined by
cerebral blood volume (CBV) / mean transit time (MTT)
mismatch on CT perfusion [45], or diffusion weighted im-
aging (DWI) / MTT mismatch on MR perfusion [46].
Additionally, the amount of penumbra that could be sal-
vaged was smaller among MA patients in comparison to
MO and non-migraineous cases, highlighting increased
brain tissue vulnerability in migraineurs [45]. Preclinical
data support a key role for SD susceptibility in mediating
stroke risk in migraineurs. In fact, as outlined below in
more detail, there is evidence in migraine-susceptible
brains for an increased incidence of 1) SD triggering
factors such as microemboli, 2) a reduced threshold for
SD induction, 3) an increased frequency of ischemia-
triggered SD, and 4) worse consequences of individual
SDs on the metabolic mismatch. However, considering
that migraineurs also have an increased risk of myocardial
infarction, venous thromboembolism and atrial fibrilla-
tion, a systemic dysfunction not limited to the cerebral
vasculature could also contribute to the increased stroke
risk in migraineurs [36, 47, 48].

Increased SD susceptibility and its consequences
Preclinical and imaging studies highlight enhanced SD
susceptibility as a candidate mechanism increasing brain
vulnerability to ischemia and thereby contributing to the
stroke risk in migraineurs. These findings have paved
the way for studies focusing on the consequences of SD,
and thereby migraine, on ischemic stroke. Following SD,
cerebral blood flow is reduced for hours, after a brief ini-
tial functional hyperemia, with an associated decrease in
induced neuronal and glial calcium responses [49, 50].
Even a single episode of SD in rats is associated with a
long-lasting rise in the cerebral metabolic rate of oxygen,
a reduction in cerebral blood flow and impaired neuro-
vascular coupling [49]. Migraineurs’ brains might even
be more vulnerable to the negative and sometimes long-
lasting effects of SD on microvasculature, leading to an
accumulation of pathological cellular changes secondary
to repetitive ischemic events in the long run [5, 6, 51].
In fact, SD-related changes in neuronal calcium levels
and transient hypoxia are more severe in FHM trans-
genic mice when compared to wild-type mice, suggest-
ing that the consequences of SD are more pronounced
in migraine-susceptible brains [12, 50]. Therefore,
cerebral hypoperfusion that remains unnoticed in the
non-migraneur’s brain might cause profound ischemic
lesions, and in rare instances even clinically manifest
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stroke in a migraine-susceptible brain. Indeed, white
matter abnormalities, infarct-like lesions as well as
volumetric changes in gray and white matter were found
to be more frequent in migraineurs, particularly with
aura, when compared to controls [52–54].
SD-typical dynamic changes in cerebral blood flow are

attributed to an impaired vascular reactivity of cortical
vessels [55]. In fact, SD impairs vascular smooth muscle
function as evidenced by a reduced vasodilatory re-
sponse of isolated rat middle cerebral artery to extralum-
inal acidosis, and an increased vascular reaction to
extraluminal K+ [55]. Similar observations have been
made in migraine patients [56]. Migraineurs exhibit an
increased cerebrovascular reactivity to hypocapnia and
decreased vascular reactivity to vasodilatory agents such
as acetazolamide or L-arginine, pointing to a reduced
tone of cerebral vessels and/or endothelial dysfunction
[57, 58]. These findings suggest a reduced vasomotor
reserve in cerebral microvasculature in migraineurs, and
recent studies suggest a key role for pericytes to underlie
this altered cerebrovascular reactivity.

Role for Pericytes and autoregulation in mediating the
effects of SD
Pericytes are contractile mural cells in the cerebral and
retinal vasculature that express alpha-smooth muscle
actin and cover capillaries [59–61]. As a critical compo-
nent of the neurovascular unit, pericytes have an import-
ant role in regulating microcirculation via constriction
and relaxation, thereby controlling local cerebral blood
flow in physiological and disease states such as stroke
[62–68]. In the setting of cerebral ischemia, prolonged
constriction of pericytes might lead to microvascular
occlusion and unfavorable outcomes [69, 70]. Recently,
it has been shown that capillary pericytes also have an
active role in the regulation of cortical blood vessels dur-
ing and after SD [71]. In fact, SD-induced prolonged
vasoconstriction is strongest in first order capillaries
with a persistent increase in pericyte calcium. Following
SD, somatosensory stimulation fails to evoke further
changes in capillary diameter and pericyte calcium, sug-
gesting a key role for pericytes in mediating long-lasting
oligemia following SD [71]. Recent studies in Notch3
transgenic mice indeed revealed a loss of pericytes with
reduced coverage of capillaries and Notch3 aggregations
around the few remaining pericytes which might explain
microcirculatory dysfunction and ischemia in CADASIL
mutant mice and patients [72–75]. In fact, CADASIL
mutant mice show blood brain barrier leakage, reduced
vasomotor reactivity to CO2, and narrowing or occlusion
of microvessels, which may result from reduced pericyte
function [74, 75]. Similarly, in patients with CADASIL,
resting cerebral blood flow and vasodilatory response are
reduced while there is an increase in oxygen extraction

fraction and endothelial dysfunction [76–79]. And just
very recently, structural changes involving pericytes
and endothelial cells of microvessels have also been
identified in FHM patients [80]. Therefore, prevention
or treatment of pericyte constriction may become a
therapeutic target in MA and migraine-related cere-
bral ischemia [71, 81].
The potent vasodilator calcitonin gene-related peptide

(CGRP), and pharmacological suppression thereof, may
further modulate the altered cerebrovascular autoregula-
tion and the increased vulnerability to cerebral ischemia
in migraineurs. CGRP receptors are present in both the
nervous and cardiovascular system, underscoring a sig-
nificant role for CGRP in regulating vascular resistance
and regional blood flow in cerebral health and disease
[82]. In fact, endogenous CGRP is protective against
neuronal damage in the setting of acute or chronic
stroke, as suggested by experiments using CGRP knock-
out mice. CGRP has been shown to reduce infarct size
[83], and CGRP is protective against cerebral vasospasm
in the setting of subarachnoid hemorrhage [84]. CGRP
might also be protective in individuals with chronic bi-
lateral carotid stenosis by reducing subsequent neuronal
injury and cognitive impairment [83]. The protective
role of CGRP in the setting of cerebral ischemia may be
particularly relevant in patients with migraine for the
following reasons. During migraine headache, activation
of the trigeminovascular system triggers the release of
CGRP from trigeminal sensory nerves [85–87], and
stimulation of sensory fibers has been shown to increase
CGRP with consecutive dilatation of cerebral and dural
vessels [88]. Accordingly, CGRP was found to be
elevated in external jugular venous blood samples of
migraine patients during migraine attacks [89]. In turn,
intravenous infusion of CGRP has been shown to cause
attacks in some migraine patients [90]. Because CGRP
may act as a vasodilatory safeguard during cerebral
ischemic events in migraine patients, pharmacological
CGRP blockade, efficacious as acute and preventive
treatment of migraine [86, 91], may exacerbate the
increased stroke risk in migraineurs. Antibodies against
CGRP or its receptor may further enhance vulnerability
to cerebral ischemia in migraineurs, with the risk of
transient mild ischemic events progressing to an ische-
mic stroke [92]. However, no safety issues suggesting a
cerebrovascular risk for anti-CGRP drugs have emerged
from clinical trials so far, with possible long-term effects
still not sufficiently investigated [93].

Role for Neuroinflammation in mediating the effects of SD
Neuroinflammation contributes to ischemic complica-
tions related to migraine. Inflammatory cascades are
involved in the detrimental effects of SD in migraine and
stroke. Animal studies showed that SD induces neuronal
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and glial release of inflammatory mediators, dural mast
cell degranulation as well as activation the trigeminovas-
cular system [94–97]. Within minutes after SD, the
neuronal hemichannel pannexin 1 opens and forms a
pore complex with the ligand-gated cation channel
P2X7, allowing the release of excitatory neurotransmit-
ters to sustain SD and activate neuroinflammation [96].
Inhibition of SD-induced opening of the neuronal
Pannexin1 megachannel suppresses SD and reduces SD-
induced inflammatory downstream cascades that might
lead to headache [97], including upregulation of
interleukin-1 beta (IL-1beta), inducible nitric oxide syn-
thase and cyclooxygenase-2 in the cortex. IL-1beta as a
pro-inflammatory cytokine in rat trigeminal ganglia cells
causes the release of prostaglandin E2/CGRP and
induces the activation of meningeal nociceptors, mech-
anically sensitizing and activating nociceptors that in-
nervate the intracranial meninges and possibly involved
in initiating throbbing headache [98–101]. Accordingly,
pore-inhibitors also suppress surrogates for trigemino-
vascular activation, including the expression of calci-
tonin gene-related peptide in the trigeminal ganglion
and c-Fos in the trigeminal nucleus caudalis [97]. There-
fore, inhibition of neuroinflammation might be protect-
ive in both migraine and stroke by suppressing SD and
direct cellular damage in the setting of ischemia [96, 97].

Increased SD triggers in Migraineurs
Cerebral microembolization may induce SD and thereby
trigger a migraine attack. In mice, different types of
microemboli injected through the carotid artery, mim-
icking embolization in humans, were found to induce

SD [16]. Embolic occlusion of even a single penetrating
artery imitating cerebral microembolism has been shown
to induce SD, leading to selective neuronal death and
small infarction [17]. Similarly, thrombotic occlusion of
a single ascending cortical vein can also induce SD,
albeit less frequently [102–104]. These microembolic
events might contribute to long-lasting hypoperfusion if
they are repetitive and if there is a predisposing condi-
tion like MA, with increased vulnerability to cerebral
ischemia [40]. Microembolic small vessel occlusion in
the setting of persistent foramen ovale or silent vessel
dissections that remain completely unnoticed in non-
migrainous brains might therefore lead to SD and ische-
mic complications or even infarct in migraine suscep-
tible brains. This hypothesis is consistent with an
enhanced likelihood of clot formation in migraineurs,
who reportedly show an increased incidence of hyperco-
agulability [43] and atrial fibrillation [36]. As a potential
path for cerebral microembolism, an increased incidence
of persistent foramen ovale has been reported in migrai-
neurs [105], and paradoxical air microembolism as well
as cardiac catheterization with presumably associated
microembolic events have been shown to induce head-
ache in migraineurs [106–108]. Along the same line, the
increased stroke risk in migraineurs is highest for stroke
of cardioembolic etiology, and in the peri-operative
emboli-prone setting [109, 110].

Conclusions
Studies suggest a double-hit hypothesis linking migraine
with stroke (Fig. 1). In the setting of a genetically
enhanced cerebral excitability, microembolization and/or

Fig. 1 The interplay between migraine and stroke. Shared genetic factors and associated clinical features commonly observed in migraine
patients contribute to the link between migraine and stroke. The underlying mechanism involves facilitation of spreading depolarization (SD), the
electrophysiological correlate of aura, via increased SD trigger factors and/or reduced threshold for SD induction. SD then causes migraine as well
as neuroinflammation and vascular dysfunction, increasing the brain’s vulnerability to ischemia. This cascade may result in clinically silent ischemic
lesions that are frequently observed in migraineurs, or even cause ischemic stroke
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inflammatory mediators among other factors might
trigger SD, which causes or exacerbates focal ischemia;
these insults remain transient or asymptomatic in most
instances. However, in the setting of a vulnerable/hyperex-
citable brain, these perturbations might be more severe or
prolonged, escalating into further downstream events such
as silent ischemic lesions or even ischemic stroke.
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