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Abstract 

In the era of precision medicine, treatments that target specific modifiable characteristics of high-risk patients have the 
potential to lower further the residual risk of atherosclerotic cardiovascular events. Correction of atherogenic dyslipidemia, 
however, remains a major unmet clinical need. Elevated plasma triglycerides, with or without low levels of high-density 
lipoprotein cholesterol (HDL-C), offer a key modifiable component of this common dyslipidemia, especially in insulin resist‑
ant conditions such as type 2 diabetes mellitus. The development of selective peroxisome proliferator-activated receptor 
alpha modulators (SPPARMα) offers an approach to address this treatment gap. This Joint Consensus Panel appraised 
evidence for the first SPPARMα agonist and concluded that this agent represents a novel therapeutic class, distinct from 
fibrates, based on pharmacological activity, and, importantly, a safe hepatic and renal profile. The ongoing PROMINENT 
cardiovascular outcomes trial is testing in 10,000 patients with type 2 diabetes mellitus, elevated triglycerides, and low 
levels of HDL-C whether treatment with this SPPARMα agonist safely reduces residual cardiovascular risk.
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Preamble: why we need this consensus
Atherosclerotic cardiovascular disease (ASCVD) pre-
sents a growing global health challenge. Over the last 
20 years, chronic lifestyle-related diseases such as visceral 
obesity, type 2 diabetes mellitus (T2DM), and non-alco-
holic fatty liver disease (NAFLD) have exacerbated the 
burden of death and disability due to ASCVD. While this 
burden affects all regions, it presents a particular threat 
in low- and middle-income countries, which have the 
largest populations affected by obesity and diabetes [1–
3]. Furthermore, escalation in the prevalence of NAFLD 
in these regions, particularly the Middle East and Latin 
America, has contributed to this increasing ASCVD bur-
den independent of traditional risk factors [4, 5].

Atherogenic dyslipidemia, however, remains a major 
unmet clinical need in such populations. Elevated 
plasma triglycerides (TG), with or without low levels of 
high-density lipoprotein cholesterol (HDL-C), offer a 
key modifiable component of this common pattern of 
dyslipidemia, especially in those with insulin resistant 
conditions such as T2DM. After statins, guidelines rec-
ommend peroxisome proliferator-activated receptor 
alpha (PPARα) agonists—fibrates—for management of 
hypertriglyceridemia [6]. However, these agents have lim-
itations, most importantly due to pharmacokinetic inter-
actions, such as increased risk of myopathy with statins 
for gemfibrozil [7], or side effects, which include revers-
ible elevation in serum creatinine (with fenofibrate), as 
well as liver enzyme elevation [8–10]. Hence, there is a 
clear need for new therapeutic options.

Is it possible to selectively modify the pharmacological 
characteristics of a PPARα agonist to improve the pro-
file of beneficial effects and address known safety issues 
associated with fibrate treatment? And, if this is feasible, 
would this represent a novel therapeutic class? This Joint 
Consensus Panel from the International Atherosclerosis 
Society (IAS) and the Residual Risk Reduction Initiative 
(R3i) evaluated these questions in the context of evidence 
for the first of the selective peroxisome proliferator-
activated receptor alpha modulators (SPPARMα). Box 1 
delineates the search strategy and selection criteria for 
studies that informed this statement.

disease’ and ‘non-alcoholic fatty liver disease’. Relevant 
articles were also identified through searches of the ref-
erence lists of the identified literature. Articles result-
ing from these searches and relevant references cited in 
those articles were reviewed. Only articles published in 
English were included.

Box 1. Search strategy and selection criteria
References were identified through searches of Pub-
Med for articles published from 2000, by the use of 
the terms ‘selective peroxisome proliferator-activated 
receptor alpha’; ‘nuclear receptor’; ‘fibrate’; ‘remnant 
cholesterol’; ‘cardiovascular risk’; ‘residual risk’; ‘tri-
glyceride-rich lipoproteins’; ‘non-alcoholic fatty liver 
disease’; ‘pemafibrate (K-877)’; in combination with the 
term’ diabetes‘, ‘obesity’, ‘atherosclerotic cardiovascular 

Residual vascular risk: a key therapeutic concept
Despite guideline-recommended treatment of ASCVD 
risk, including antihypertensive and high-intensity sta-
tin therapy, or antiaggregant agents, high-risk patients, 
especially those with established ASCVD, continue to 
experience cardiovascular events [11, 12]. This residual 
vascular risk, particularly in T2DM, includes both mac-
rovascular disease as well as the microvascular changes 
that predispose to diabetic nephropathy, retinopathy, 
and neuropathy [13], for which there are limited effec-
tive medical therapies beyond strict glycemic control, an 
approach that entails risk of hypoglycemia and perhaps 
aggravated macrovascular outcomes, as well as blood 
pressure control.

Addressing this residual cardiovascular risk has 
advanced considerably. Further lowering of low-density 
lipoprotein cholesterol (LDL-C), a major component 
of modifiable ASCVD risk [14], by inhibiting propro-
tein convertase subtilisin/kexin type 9 (against a back-
ground of intense statin therapy) provides incremental 
reduction in risk [15, 16], with greatest benefit in indi-
viduals at highest absolute risk, including those with dia-
betes or peripheral artery disease [15–18]. Beyond lipids, 
the CANTOS trial (Canakinumab Antiinflammatory 
Thrombosis Outcome Study) established that targeting 
inflammation in patients with high residual risk despite 
well-controlled LDL-C levels on statin therapy reduces 
the incidence of major adverse cardiovascular events 
(MACE) [19], paving the way for exploration of further 
anti-inflammatory therapies. Additionally, the COM-
PASS trial (Cardiovascular Outcomes for People using 
Anticoagulation Strategies) demonstrated that low dose 
rivaroxaban plus aspirin significantly reduced MACE and 
major adverse limb events (albeit with a small increase in 
bleeding events) in patients with stable ASCVD [20].

Together these findings underpin the concept of 
deploying ‘precision medicine’ to optimize ASCVD pre-
vention. This approach involves focusing on specific 
modifiable residual cardiovascular risk targets (i.e. lipids, 
inflammation, or coagulation), according to patient char-
acteristics [21]. Targeting only one component, how-
ever, does not eliminate residual cardiovascular risk. The 
changing landscape of cardiovascular risk drivers pro-
vides one explanation, in particular the increasing preva-
lence of visceral obesity. Visceral obesity and ectopic fat 



Page 3 of 20Fruchart et al. Cardiovasc Diabetol           (2019) 18:71 

accumulation, particularly in the liver, associate with 
metabolic diseases and adverse cardiovascular outcomes 
[5]. Deposition of fat within the liver accompanies a 
plethora of associated metabolic abnormalities including 
elevated lipids and blood pressure, insulin resistance, as 
well as prothrombotic and proinflammatory states [22]. 
Despite observational association of liver fat content 
and NAFLD with ASCVD, genetic evidence shows that 
NAFLD is not causal for ASCVD [23, 24].

Insulin resistant cardiometabolic disease often entails 
an ‘atherogenic dyslipidemia’, characterized by elevated 
plasma TG, low HDL-C levels, a preponderance of small, 
dense LDL particles, and elevated apolipoproteins (apo) 
B (apoB 100 and apoB48) and C-III concentrations [25, 
26]. This dyslipidemic profile is common, especially in 
low- and middle-income regions where obesity is preva-
lent, such as Latin America, where it affects nearly 20% 
of the general adult population [27]. Among high- and 
very high-risk patients, up to 35% have elevated TG and 
10–15% have atherogenic dyslipidemia (Table  1) [26, 
28–32]. Atherogenic dyslipidemia therefore offers a par-
ticularly attractive target for new therapies to mitigate 
residual ASCVD risk.

Atherogenic dyslipidemia and cardiometabolic risk
Recognition of the contribution of atherogenic dyslipi-
demia to ASCVD risk is not new [11, 33]. Consistent 
epidemiological data associate low HDL-C with risk for 
ASCVD [34]. Genetic studies, however, do not support 
a protective role of HDL-C in humans [35], and clinical 
outcomes trials using different therapeutic approaches to 

target low HDL-C also failed to meet their primary end-
points [36–40]. Together, these findings imply that low 
HDL-C is a marker of risk and not a therapeutic target.

In contrast to the situation with HDL-C, the case for 
elevated TG as a biomarker for causal risk has grown in 
strength [41, 42]. Before discussing the evidence, it mer-
its mention that most of the studies that have evaluated 
the association between TG and ASCVD risk have meas-
ured fasting levels, due to previous concerns that non-
fasting samples may overestimate plasma TG. As current 
evidence does not support this view, either fasting or 
nonfasting TG concentrations can serve as a marker of 
increased risk of cardiovascular events and death in both 
men and women [43–46].

In the PROVE IT-TIMI 22 trial, on-treatment 
TG < 1.7  mmol/L associated independently with a lower 
risk of recurrent coronary events in acute coronary syn-
drome (ACS) patients at LDL-C goal [47]. Pooled analysis 
of the TNT (Treating to New Targets) and IDEAL (Incre-
mental Decrease in Endpoints Through Aggressive Lipid 
lowering) trials showed a trend for association between 
lowering TG levels and reduction in ASCVD events 
[48, 49]. Elevated TG also predicted recurrent ischemic 
events in ACS patients treated with statins, as well as 
progression of coronary atherosclerosis in patients with 
stable coronary heart disease [50, 51]. Furthermore, long-
term (> 20 years) follow-up of the BIP (Bezafibrate Infarc-
tion Prevention) Study showed an association between 
elevated TG and all-cause mortality [52].

In patients with T2DM treated with statin therapy 
in the ACCORD (Action to Control Cardiovascular 

Table 1  Prevalence of  elevated triglycerides and  atherogenic dyslipidemia in  the  general population and  high-risk 
patient groups

ASCVD, atherosclerotic cardiovascular disease; HDL-C, high-density lipoprotein cholesterol; M, million; T2DM, type 2 diabetes mellitus; *, projected data; **, Czech 
component of EUROASPIRE (n = 1484, 1152 men and 332 women)

Population Elevated triglycerides (TG) Atherogenic dyslipidemia

Criterion Prevalence Criteria Prevalence

General populations

 Europe [26] > 2.2 mmol/L 23.0% (8316/36,160) TG > 2.2 mmol/L + HDL-C < 1.0 mmol/L 
(treatment not specified)

6.0% (2169/36,160)

  On statin [26] > 2.2 mmol/L 30.0% (10,848/36,160)

 USA [28, 30]

  Not on statin ≥ 2.26 mmol/L 11.9% (21.5 M/181.0 M)* TG ≥ 2.26 mmol/L + HDL-C < 1.0 mmol/L 
(treatment not specified)

6.6% (13.1 M/199.1 M)*

  On statin ≥ 2.26 mmol/L 15.4% (6.0 M/38.9 M)*

High risk populations

 Primary prevention + risk 
factors [31]

≥ 2.3 mmol/L 20.8% (1591/7641) Elevated TG + HDL-C < 1.0 mmol/L 9.9% (759/7641)

 With T2DM [31] ≥ 2.3 mmol/L 27.5% (562/2046) Elevated TG + HDL-C < 1.0 mmol/L 14.9% (305/2046)

 Clinical ASCVD [29, 32] > 1.7 mmol/L 34.7% (2938/8467) TG > 2.0 mmol/L + HDL-C < 1.0 mmol/L in 
men, < 1.2 mmol/L in women

13–14%**
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Risk in Diabetes) Lipid study, the presence of ath-
erogenic dyslipidemia (TG ≥ 2.3  mmol/L and HDL-C 
levels ≤ 0.88  mmol/L) associated with an increase in 
cardiovascular event rates [53]. These findings derive 
support from real-world data in statin-treated diabe-
tes patients with elevated TG (2.3–5.6  mmol/L), which 
showed higher rates for non-fatal myocardial infarction 
(MI, by 30%) compared with patients with lower TG [54]. 
This result undoubtedly translates to greater healthcare 
costs associated with management of these complications 
[55]. Furthermore, as previously noted, high TG and low 
HDL-C associate with diabetic microangiopathy, in par-
ticular nephropathy, as supported mainly by evidence 
from observational studies, especially in individuals with 
LDL-C at goal [13].

Which is the risk factor: triglycerides 
or triglyceride‑rich lipoproteins?
The atherogenic entities of particular interest are, how-
ever, TG-rich lipoproteins and their remnants, for which 
circulating TG levels serve as a biomarker. TG-rich lipo-
proteins encompass a mixture of chylomicrons (synthe-
sized in the intestine) and very low-density lipoprotein 

(VLDL) particles (synthesized in the liver) (Fig.  1) [56]. 
Under fasting conditions, the liver secretes both VLDL1 
and VLDL2 containing apo B100; the larger form, 
VLDL1, carries most of the TG and associates with 
NAFLD [57]. Lipoprotein lipase (LpL) subsequently 
hydrolyzes both VLDL classes to form smaller and denser 
lipoprotein particles. The action of LpL on VLDL can 
generate endogenous, natural PPARα ligands, resulting 
in anti-inflammatory and anti-atherosclerotic responses 
[58]. Consistent with this finding, overexpression of LpL 
in settings where it is not usually found, e.g. cardiac myo-
cytes, induces expression of PPARα target genes [59, 
60]. In  the post-prandial phase, the intestine secretes 
chylomicrons containing apo B48, which subsequently 
undergo hydrolysis by LpL, with release of free fatty acids 
and formation of chylomicron remnants. LpL activity 
undergoes both pre- and post-transcriptional regulation 
mediated by free fatty acids, apo C-II, apo C-III, apo A-V, 
angiopoietin-like members 3, 4, 8 (ANGPTL 3, 4, 8), and 
glycosylphosphatidylinositol anchored HDL binding pro-
tein 1 (GPIHBP1) [56, 61, 62].

Insulin resistance drives dysregulation of the metabo-
lism of TG-rich lipoproteins by two mechanisms. On the 

Fig. 1  Remnant lipoproteins accumulate in the arterial wall where they elicit inflammation. This provides a mechanistic basis for a causal role in 
atherosclerosis. Adapted from Nordestgaard and Varbo [56] with permission. FFA, free fatty acids; LDL, low-density lipoproteins; LPL, lipoprotein lipase
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one hand, excess flow of free fatty acids to the liver, com-
pensatory hyperinsulinemia, together with concomitant 
activation of enzymes involved in hepatic de novo lipo-
genesis (DNL) contribute to overproduction of VLDL1 
particles. DNL generates malonyl-CoA that inhibits 
carnitine palmitoyl transferase I, resulting in reduced 
uptake of long-chain fatty acyl groups into mitochon-
dria and hence reduced beta-oxidation. On the other 
hand, increased secretion of apo C-III mediates impaired 
clearance of VLDL1-TG. The combination of hepatic 
TG-rich lipoprotein overproduction and inefficient clear-
ance increases the residence time of circulating TG-
rich lipoproteins [63]. This delayed clearance enhances 
the exchange of components such as cholesteryl ester, 
TG, and apolipoproteins between lipoproteins, and fur-
ther remodeling by hepatic lipase results in cholesterol-
enriched remnants, small dense LDL particles and low 
plasma HDL-C levels [63].

Triglyceride‑rich lipoproteins, remnants 
and ASCVD
TG-rich lipoproteins and their remnants contain both 
TG and cholesterol. As all cells in the body readily 
degrade TG, the enhanced ASCVD risk likely results 
from the cholesterol component of TG-rich lipopro-
teins and their remnants (referred to as ‘remnant cho-
lesterol’ and estimated in clinical practice as total 
cholesterol − [LDL-C + HDL-C]). Indeed, with the 
exception of very large particles such as chylomicrons, 
these lipoproteins and their remnants can enter the arte-
rial wall, ultimately depositing their cholesterol load in 
the atherosclerotic plaque (Fig.  1) [56, 64, 65]. Post hoc 
analysis of the TNT study also showed that TG-rich lipo-
protein cholesterol concentration was an independent 
marker of residual ASCVD risk [66].

Insights from Mendelian randomization and genetic 
studies
Mendelian randomization studies strongly support the 
causality of remnant cholesterol carried by TG-rich lipo-
proteins in ASCVD. Elevated levels of remnant choles-
terol associate with both increased observational and 
genetic risk for ASCVD, independent of HDL-C levels 
[67, 68]. Furthermore, while elevated nonfasting rem-
nant and LDL-C levels each associate with increased risk 
of ischemic heart disease and MI, only elevated remnant 
cholesterol concentration associates with increased risk 
of all-cause mortality [69]. Elevated nonfasting remnant 
cholesterol may also contribute to the residual risk of all-
cause mortality in individuals with established ischemic 
heart disease [70]. These findings reinforce the long-held 
view that postprandial lipemia contributes to atherogen-
esis, as during an ordinary day, individuals spend more 

time in the nonfasting than fasting state [71, 72]. Mecha-
nistically, the atherogenicity of elevated remnant choles-
terol may involve inflammation [73], as the Copenhagen 
studies show that elevated plasma C-reactive protein 
levels (> 2 mg/dL), a marker of inflammation, commonly 
accompany elevated TG levels (≥ 1.7 mmol/L) [74].

Genetic studies which investigated the impact of muta-
tions in genes involved in TG-rich lipoprotein metabo-
lism have strengthened evidence for a link between 
TG-rich lipoproteins, their remnants and ASCVD risk 
(Fig. 2). Loss-of-function (LOF) variants in genes encod-
ing apo AV and LpL associate with lifelong higher plasma 
TG levels and an increased risk of coronary artery dis-
ease [75–78], whereas LOF mutations in APOC3 and 
ANGPTL4 associate with lifelong decreased plasma TG 
levels and reduction in the risk of coronary artery disease 
[79–82]. These data are highly consistent with the action 
of LpL releasing endogenous PPARα ligands that limit 
atherosclerosis [60]. Evidence also implicates ANGPTL3 
in control of TG and promotion of coronary risk [83]. 
Thus, mutations in all five genes that regulate TG-rich 
lipoprotein metabolism impact the subsequent risk for 
ASCVD.

The potential of apo C-III as a therapeutic target merits 
emphasis. Clinical evidence has already established apo 
C-III as a cardiovascular risk predictor independent of 
TG levels [84]. Accumulating preclinical studies also sug-
gest that apo C-III exerts lipid-independent pro-inflam-
matory effects [85]. Individuals with diabetes mellitus 
have elevated apo C-III concentrations, in part mediated 
via effects on the functionality of the β-cell, affecting 
intracellular calcium handling and insulin sensitivity [86]. 
Therefore, targeting apo C-III may offer benefits beyond 
TG lowering in patients with diabetes.

Insights from trials of TG‑lowering therapies
Guidelines recommend fibrates (PPARα agonists) and 
omega-3 fatty acids for the management of hypertriglyc-
eridemia, usually as an add-on to primary statin treat-
ment [6, 87–89]. Cardiovascular outcomes studies with 
these agents have, however, yielded mixed results. In the 
case of the major fibrate trials, none recruited selectively 
patients with high TG levels. For example, the ACCORD 
Lipid study, which aimed to examine the benefit of add-
ing a fibrate to statin therapy in patients with T2DM, 
had no TG entry criteria, and the median TG was only 
1.8 mmol/L (interquartile range 1.3 to 2.6 mmol/L). The 
study showed no significant benefit of add-on fenofibrate 
treatment on residual cardiovascular risk [53]. Despite 
these shortcomings, post hoc analyses of the major 
fibrate trials did indicate benefit in individuals with ather-
ogenic dyslipidemia [90]. Moreover, long-term follow-up 
of patients in ACCORD Lipid showed continued benefit 
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from fenofibrate in this subgroup [91]. Reinforcing the 
relevance of elevated TG-rich lipoproteins to ASCVD 
risk, regression analysis including data from the major 
fibrate trials showed a 54% (95% confidence interval 5 to 
78%) reduction in cardiovascular events per 1  mmol/L 
reduction in TG levels [56]. As with any treatment, how-
ever, these agents have limitations, predominantly due to 
drug–drug interactions (in particular, between gemfibro-
zil and statins), or effects on renal function (notably with 
fenofibrate, reversible elevation in serum creatinine), or 
hepatic safety [7–10].

Whether omega-3 fatty acids reduce cardiovascu-
lar events has engendered debate. While the JELIS 
(Japan EPA Lipid Intervention Study) trial reported 
a 19% reduction in major coronary events [92], other 
studies were inconclusive, perhaps because they used 
lower doses of omega-3 fatty acids than required 
clinically to lower TG substantially [93]. Recently, 
however, REDUCE–IT (Reduction of Cardiovascu-
lar Events with Icosapent Ethyl–Intervention Trial) 
showed that treatment with high dose (4 g) eicosapen-
taenoic acid ethyl ester in high-risk individuals (58% 
with diabetes) with elevated TG (median 2.4  mmol/L 
[interquartile range 2.0–3.1  mmol/L]) resulted in 

relative reductions of 25% in the incidence of MACE 
and 20% in cardiovascular mortality against a back-
ground of well-controlled LDL-C levels on statin treat-
ment [94]. Although the cardiovascular outcomes 
benefit exceeded that anticipated by the magnitude 
of TG lowering (18.3%), suggesting the involvement 
of other mechanism(s), selection of an appropriate 
patient population, including both primary (30%) and 
secondary prevention groups with elevated TG, sup-
ports REDUCE-IT as a landmark trial supporting the 
concept of targeting elevated TG to reduce residual 
ASCVD risk. The question is, can application of a pre-
cision medicine approach to improve the clinical pro-
file of fibrates (PPARα agents), also offer potential to 
mitigate residual ASCVD risk?

PPARα: the nuclear receptor ‘hub’ for TG‑rich 
lipoprotein metabolism
Understanding the role of PPARα in lipid metabolism is 
fundamental to defining the SPPARMα concept. PPAR 
belongs to the extended family of nuclear receptors, 
ligand-dependent transcriptional regulators—‘hubs’—
that control key metabolic processes involved in devel-
opment, reproduction, metabolism, and inflammation. 

Fig. 2  Genetic studies suggest novel approaches for the management of hypertriglyceridemia focused on key targets involved in the regulation of 
triglyceride-rich lipoprotein metabolism: apolipoprotein C-III (encoded by APOC3), angiopoietin-like proteins (ANGPTL) 3 and 4, apolipoprotein A V 
(apo A V) and lipoprotein lipase (LPL)0 [75–83]. IDL, intermediate-density lipoproteins; TG, triglycerides; VLDL, very low-density lipoproteins
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The PPAR subfamily of nuclear receptors comprises 
three isotypes: PPARα, PPARβ/δ and PPARγ, each 
encoded by separate genes and with a unique albeit 
overlapping tissue distribution. These three isotypes 
share a common structural organization, namely, a 
variable N-terminal domain with a ligand-independent 
activation function, a conserved DNA binding domain, 
and a C-terminal ligand-binding domain, which con-
tains the ligand-dependent activation function 2 (AF2) 
(Fig.  3) [95]. Attention has focused on PPARα given 
that (1) it is highly prevalent in metabolically active 
tissues such as the liver, kidney, heart, muscle, brown 
adipose, and macrophages, and (2) has a key role in 
transcriptional regulation of lipoprotein metabolism, 
specifically fatty acid transport and beta-oxidation, 
as well as vascular inflammation [95]. Hepatic PPARα 
agonism accounts for most of these effects. Under cir-
cumstances of diminished hepatic PPARα function, 
PPARα-dependent regulation of fatty acid oxidation in 
peripheral tissues may also become relevant [96].

The ligand binding domain, which accommodates 
the lipophilic ligands and also harbors a transcriptional 
activation function at the C-terminus, has a critical role 
[97]. Binding of an agonist to the ligand binding domain 
triggers a conformational change. The activated nuclear 
receptor then binds to a specific DNA sequence in the 
promoter region of the target gene, resulting in acti-
vation of gene transcription (a process referred to as 
transactivation). The nuclear receptor may also bind to 
a repressor protein that prevents transcription of other 

genes (referred to as transrepression) [98]. For PPARα, 
transcriptional activation is a three-step process (Fig. 4) 
[95, 99]. Binding of an endogenous ligand (e.g. pros-
taglandins, leukotrienes, and medium-long-chain free 
fatty acids, especially when released by LpL) or a syn-
thetic PPARα agonist (e.g. a fibrate) to PPARα triggers a 
conformational change which stabilizes the ligand bind-
ing domain and facilitates the recruitment of a specific 
profile of coactivators and/or the release of corepressors 
[100]. Of the 320 known cofactors that bind to nuclear 
receptors, 38 bind to PPAR. Such PPAR cofactors include 
PGC-1α (peroxisome proliferator-activated receptor-γ 
coactivator-1α), SRC1 (steroid receptor coactivator 1), 
and NcoR1 (nuclear receptor co-repressor 1). The ligand-
activated PPARα forms a heterodimeric complex with 
another ligand-activated nuclear receptor, the Retinoid X 
Receptor (RXR), and binds to a specific DNA sequence 
in the promotor region of target genes referred to as a 
peroxisome proliferator response element (PPRE) [101]. 
Activation by a coactivator-acetyl transferase complex 
results in the expression of key genes involved in lipid 
metabolism, including those encoding apo A-I, A-II, 
A-V and C-III, LpL, scavenger receptor BI, adenosine 
triphosphate-binding cassette transporter A1 (ABCA1), 
ATP binding cassette subfamily G member 1 (ABCG1), 
and acyl CoA synthase. Thus, the net effects of PPARα 
activation on lipid metabolism include increases in HDL 
production, VLDL clearance, and LDL particle size, with 
downstream decreases in VLDL production, and LDL 
particle concentration [95, 102]. PPARα can also com-
pete for co-activators of the cytokine-activated nuclear 
factor-κB, inhibiting the expression of pro-inflammatory 
genes, resulting in reduced vascular inflammation [95]. 
Indeed, studies demonstrated the anti-inflammatory 
activity of PPARα more than 20  years ago [103–106]. 
More recent findings have shown that PPARα activation 
in mouse liver reduces the CCAAT/enhancer binding 
protein (C/EBPβ), as well as nuclear factor-κB protein 
expression, resulting in lower levels of C-reactive protein, 
interleukin-6 and prostaglandins [107].

PPARα may also regulate glucose homeostasis and 
reduce thrombogenesis [95, 108]. Activation of PPARα 
may shift the balance of glucose versus fatty acid as the 
major energy source for intracellular metabolism. In the 
metabolically challenged liver in a glucose-rich environ-
ment, suppression of the tricarboxylic acid cycle in the 
mitochondria leads to an increase in acetyl co-A levels 
in the cytoplasm, impairing cellular homeostasis (for 
example, a decrease in transcription of autophagy-related 
genes, and an increase in oxidative stress) [109]. Similar 
phenomena may occur in activated macrophages, cells 
which contribute to the pathogenesis of ASCVD [110]. 
Instead, PPARα activation may promote beta oxidation, 

Fig. 3  Structural organization of nuclear receptors. The ligand 
binding domain of PPARα includes the ligand dependent activation 
function 2 interface. PPRE, peroxisome proliferator response element
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and the tricarboxylic acid cycle, triggering starvation 
signaling-like responses and ameliorating intracellular 
dysmetabolism. Taken together, these findings suggest 
that PPARα has the potential for addressing multiple 
contributors to residual cardiovascular risk.

In summary, PPARα is the nuclear receptor ‘hub’ for transcriptional regu‑
lation of lipoprotein metabolism and vascular inflammation. Confor‑
mational changes induced by binding of a ligand (either endogenous 
or synthetic) to PPARα facilitate the recruitment of a specific profile of 
cofactors, which either promote or repress expression of target genes 
involved in key metabolic pathways.

Defining the SPPARMα concept
Development of selective estrogen receptor modulators 
(SERMs) provides an analogy for the SPPARMα concept. 
Depending on the tissue, SERMs can act as either agonists 
or antagonists of the estrogen receptor, with the cofactor 
milieu and structure of the bound receptor-ligand com-
plex influencing tissue-specific cellular transcriptional 
activity and the subsequent profile of physiological effects 
[111]. Modulation of the estrogen receptor activity of the 
ligand permitted promotion of specific beneficial effects 
(in breast tissue) and avoidance of adverse effects (such as 

uterotropic effects) [112]. SERMs therefore suggest a ‘blue-
print’ for modulating the ligand binding profile of PPARα, 
to improve potency and selectivity and potentially, limit 
tolerability issues seen with fibrates. This rationale under-
pins the SPPARMα concept [113].

The PPARα receptor has a large ligand binding pocket 
which can bind a range of endogenous and synthetic 
ligands, each capable of triggering specific conforma-
tional changes, resulting in a characteristic cofactor 
binding pattern. Different transcriptional responses seen 
between endogenous LpL-released fatty acids, prescrip-
tion omega 3 fatty acids and different pharmacologic 
forms of fibrates are strongly supportive of the SPPARMα 
concept [60]. Modulation of the receptor–cofactor bind-
ing profile of the PPARα ligand tuned tissue- and gene-
selective effects and, thus physiological responses [113]. 
LY-518674 was among the first SPPARMα agonists evalu-
ated. Its higher potency than fenofibrate in vitro did not 
translate to superior efficacy in lowering TG and raising 
HDL-C in patients with atherogenic dyslipidemia. Addi-
tionally, there were safety concerns, notably an increase 
in serum creatinine (similar to that observed with fenofi-
brate) in clinical studies [114]. A subsequent search for a 

Fig. 4  Transcriptional activation of PPARα is a three-part process
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novel SPPARMα involved the synthesis and screening of 
over 1300 compounds before identification of one com-
pound, K-877 (subsequently named pemafibrate), with 
potential SPPARMα activity.

In summary, binding interactions between the ligand and the PPARα 
receptor modulate the receptor–cofactor binding profile; this ration‑
ale underpins the SPPARMα concept.

Differentiating SPPARMα and PPARα agonists: 
pharmacology
As in the case of SERMs, structural features allow dif-
ferentiation of this SPPARMα agonist from PPARα 
agonists [115]. Specifically, the addition of unique ben-
zoxazole and phenoxyalkyl side-chains confer a Y-shape 
to the SPPARMα agonist pemafibrate, contrasting with 
the linear structure of PPARα agonists such as fenofi-
brate (Fig. 5). In silico computer simulation, which ena-
bles coupling of information relating to structure and 
sequence, demonstrated that this SPPARMα agonist 
binds to the entire Y-shaped ligand binding pocket with 
an enhanced induced fit compared with PPARα agonists 
such as fenofibrate (Fig. 5, Additional files 1, 2). Changes 
in PPARα conformation form a new interface which 
binds to PGC-1α, a transcriptional coactivator, resulting 
in complete activation of PPARα [116]. Quantitative eval-
uation of ligand docking using computer-linked fragment 
molecular orbit analysis predicted which amino acids 
mediate binding to the SPPARMα agonist, as confirmed 
by mutation experiments. Identification of the key role of 
PGC-1α in binding is important, given that it regulates 
metabolic adaptation, and thus influences the develop-
ment of systemic insulin resistance, glucose intolerance 
and insulin deficiency [117]. This SPPARMα agonist 

exhibited greatly enhanced PPARα potency and selec-
tivity in cell-based transactivation assays, > 2500-fold 
more potent than fenofibric acid, the active metabolite 
of fenofibrate, and > 5000-fold more specific for human 
PPARα than either PPARγ or δ [118].

Transcriptome analysis showed that while 11 of 
the main 20 genes induced by pemafibrate or fenofi-
brate participate in carbohydrate and lipid metabolism, 
there were differences in the magnitude of effect. For 
example, in human hepatocytes this SPPARMα ago-
nist further induced key target genes such as VLDLR 
and ABCA1 at 10-fold lower concentration than fenofi-
brate (10  μM vs. 100  μM) [119]. SPPARMα agonism 
predominantly induced mitochondrial genes encoding 
3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase 
2, fatty acid-binding protein 1 (FABP1), and pyruvate 
dehydrogenase kinase isozyme 4 (PDK4), involved in 
maintaining glucose homeostasis and increasing ketone 
body utilization. This SPPARMα agonist (but not fenofi-
bric acid) also augmented the expression of fibroblast 
growth factor 21 (FGF21) [119], a metabolic regulator 
with favourable effects on glucose and lipid metabolism 
[120]. Experimentally, FGF21 induces fatty acid oxida-
tion, ketogenesis and gluconeogenesis, as well as sup-
presses lipogenesis; [121] some reports have also shown 
this effect with fibrates [122]. In addition, there was 
increased expression of genes involved in the regulation 
of the innate immune system (mannose-binding lectin 2 
[MBL2]), inflammation, blood pressure (glutamyl ami-
nopeptidase [ENPEP]), and glucose and energy homeo-
stasis, implying the potential for effects beyond lipid 
modification [119]. Moreover, this SPPARMα agonist 
had no effect on peroxisome biogenesis genes in human 

Fig. 5  Structures of a SPPARMα (pemafibrate) and PPARα (fenofibrate) showing shared and unique regions. This Y-structure of pemafibrate results in 
improved fit with the PPARα ligand binding site compared with fenofibrate (see Additional files 1, 2)
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hepatocytes, suggesting that it does not stimulate per-
oxisome proliferation, and thus avoids hepatic adverse 
effects in humans [119].

SPPARMα in pre‑clinical studies
Multiple preclinical studies investigated the pharmaco-
logical profile of this novel SPPARMα agonist (reviewed 
in reference 118 and summarized in Fig.  6). Compared 
with fenofibrate, pemafibrate resulted in greater TG-
lowering and elevation in HDL-C in animals with hyper-
triglyceridemia [118, 123], and in C57BL/6J mice fed a 
high-fat diet, attenuated postprandial hypertriglyceri-
demia more effectively, by suppressing the postprandial 
increase in chylomicrons and accumulation of chylomi-
cron remnants [124]. This SPPARMα agonist produced 
similar lipid modulating actions in the liver and intestine 
[125].

Beyond lipid effects, this SPPARMα agonist also pro-
moted potent anti-inflammatory effects, increased 
macrophage cholesterol efflux to HDL, inhibited lipid 
deposition in the aorta, and attenuated atherosclerotic 
lesion development in animals [126, 127]. Evidence from 
obese mice also suggests that this SPPARMα agonist 
ameliorates visceral obesity-induced hyperglycemia and 
elevated TG-rich lipoproteins, possibly mediated by an 
increase in circulating FGF21 levels, as well as enhanced 
expression of genes involved in thermogenesis and fatty 
acid oxidation in both white and brown adipose tis-
sue [128]. In rodents with non-alcoholic steatohepatitis 

(NASH), pemafibrate improved liver dysfunction by 
modulation of hepatic lipid turnover and energy metab-
olism [129]. Finally, this SPPARMα agonist may pro-
duce beneficial microvascular benefits, with evidence 
of reduction of diabetic nephropathy in diabetic db/db 
mice, attributed, at least partly, to inhibition of renal lipid 
content and oxidative stress [130].

In summary, preclinical studies have revealed that enhanced potency, 
selectivity and cofactor binding profile differentiate this novel 
SPPARMα agent from traditional non-selective PPARα agonists. Clini‑
cally relevant genes regulated by this SPPARMα agonist include those 
involved in regulation of lipoprotein metabolism, such as VLDLR and 
ABCA1, inflammation, the innate immune system (MBL2) and energy 
metabolism (FGF21). In preclinical studies, this SPPARMα activator had 
lipid modifying and anti-inflammatory effects, as well as regulatory 
effects in glucose homeostasis and liver dysfunction.

Differentiating SPPARMα and PPARα agonists: 
clinical trial evidence
Efficacy
Thus, the pharmacological profile of this SPPARMα ago-
nist suggests benefit in the management of atherogenic 
dyslipidemia, in particular elevated TG-rich lipopro-
teins and remnant cholesterol common in overweight 
patients with T2DM [131]. A phase II dose-ranging 
trial (oral pemafibrate 0.025–0.2  mg twice daily) in Jap-
anese patients with elevated TG (≥ 2.3  mmol/L) and 
low HDL-C (< 1.3  mmol/L in men and < 1.4  mmol/L in 
women) defined the clinically relevant dose range for this 
SPPARMα agonist [132]. After 12 weeks, this agent pro-
duced dose-related reductions from baseline in TG (by 

Fig. 6  Differentiation of the pharmacological profile of a SPPARMα (pemafibrate) based on available data. ALT, alanine aminotransferase; apo 
apolipoprotein; AST, aspartate aminotransferase; C, cholesterol; FGF21, fibroblast growth factor 21; HDL, high-density lipoprotein; TG, triglycerides
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30.9% to 42.7%), VLDL-cholesterol (by 24.3% to 48.4%), 
remnant-cholesterol (by 32.3% to 50.1%), apo B48 (by 
28.4% to 55.9%), and apo C-III (by 2.2% to 34.6%), as well 
as an increase in HDL-C (by 11.9% to 21.0%), compared 
with both placebo and micronized fenofibrate 100  mg 
once daily, with maximal effects at a dose of 0.2–0.4 mg 
daily (Table 2). Treatment with this SPPARMα agent also 
ameliorated the atherogenic lipoprotein profile, reducing 
the proportion of small and very small LDL particles, and 
increasing small and very small HDL particles. Reduc-
tion in non-HDL-C and apo B100 was less pronounced 
(~ 10%) during pemafibrate therapy [132]. In another 
study in Japanese patients with high TG and low HDL–C, 
pemafibrate 0.2 mg or 0.4 mg daily was significantly more 
effective than a low dose of fenofibrate (solid dispersion 
tablet 106.6  mg, equivalent to micronized fenofibrate 
134  mg daily) and non-inferior to fenofibrate 200  mg 
daily [133]. Subsequent phase II/III trials in Japanese 
and European patients with elevated TG with or with-
out T2DM confirmed the lipid-modifying activity of this 
SPPARMα agonist, in particular robust and sustained 
lowering of remnant cholesterol (by up to 80%), and TG 
and apo C-III (by ~ 50%) [134–139]. As this SPPARMα 
agent depends predominantly on excretion by the liver 
[140], the TG-lowering response with pemafibrate does 
not vary with baseline estimated glomerular filtration 
rate (eGFR) [141]. Table 2 summarizes clinical trials with 
this SPPARMα agonist.

Subsequent studies showed that treatment with this 
SPPARMα agonist significantly reduced the postprandial 
area under the curve for TG, apoB 48, and remnant cho-
lesterol for patients with and without T2DM [136, 139]. 
In patients with atherogenic dyslipidemia, treatment with 
pemafibrate not only significantly increased HDL-C, apo 
A-I, and apo A-II levels, but also improved indices related 
to HDL function, as shown by increases in prebeta-
HDL, smaller HDL particles (HDL3 and HDL2), and 
macrophage cholesterol efflux capacity, a marker of the 
ability of HDL to mediate reverse cholesterol transport 
[139]. Some evidence also suggested non-lipid effects 
with pemafibrate 0.2 to 0.4  mg daily, including benefi-
cial effects on glycemic control and insulin sensitivity in 
patients with and without T2DM [132, 136, 142]. In a 
hyperinsulinemic–euglycemic clamp study in patients 
with elevated TG (mean 3.3 mmol/L [standard deviation 
1.10 mmol/L]) and insulin resistance, pemafibrate 0.4 mg 
daily for 12 weeks significantly increased splanchnic glu-
cose uptake, although there was no change in peripheral 
glucose uptake rates compared with placebo [143]. Treat-
ment with pemafibrate also significantly increased FGF21 
to a greater extent than 100  mg micronized fenofibrate 
[132, 134–136, 139], and lowered biomarkers of inflam-
mation (C-reactive protein and serum amyloid A) [139].

Safety
As with all novel therapies, clinicians and patients alike 
share concerns regarding benefits versus risks. Across all 
trials, this SPPARMα agonist was generally well tolerated, 
particularly with respect to renal and hepatic safety sig-
nals. The incidence of adverse events with pemafibrate 
resembled that of placebo (or statin alone in pemafibrate 
combination treatment trials) and showed no associa-
tion with pemafibrate dose. Moreover, there were fewer 
adverse effects relating to renal or hepatic function with 
this SPPARMα agonist than with fenofibrate 200 mg daily 
[118, 142]. Pooled analyses of phase II/III studies showed 
significant improvement in liver function tests (alanine 
aminotransferase, gamma glutamyl transferase, and bili-
rubin) with this SPPARMα agonist administered over 
12–24 weeks [143]. Importantly, and in contrast to stud-
ies with fenofibrate which showed reversible increases in 
serum creatinine and a decline in eGFR [8, 9], no pemafi-
brate dose studied elevated serum creatinine over up to 
52  weeks in patients with or without pre-existing renal 
dysfunction [142]. In addition, while both pemafibrate 
and fenofibrate (solid-dispersion tablet 106.6  mg daily) 
increased serum homocysteine, the effect was less with 
pemafibrate [134].

In summary, the sum of evidence from clinical stud-
ies provides further support for the SPPARMα concept. 
Briefly, treatment with this SPPARMα agonist resulted 
in robust and sustained lowering of TG-rich lipopro-
teins, remnant cholesterol, and apo C-III, together with 
improvement in the atherogenic lipoprotein profile, as well 
as attenuation of postprandial hyperlipidemia in patients 
with and without T2DM. Pemafibrate also favourably 
affected glycemia, FGF21, and inflammatory markers. The 
safety data for this SPPARMα agonist are encouraging over 
the relatively short duration of exposure in clinical trials so 
far, especially for renal and hepatic safety, with no evidence 
of elevation in serum creatinine during treatment. There 
remain, however, a number of outstanding questions. 
Chief among them is whether translation of the SPPARMα 
concept to the clinic will reduce residual cardiovascular 
risk and prove safe during long-term treatment.

Clinical trials support the SPPARMα concept, showing robust and sus‑
tained reduction of TG-rich lipoproteins in patients with atherogenic 
dyslipidemia, with or without T2DM. The risk versus benefit profile 
so far is also encouraging, especially the lack of any effect on serum 
creatinine during treatment, although longer-term safety data are 
needed.

Unanswered questions: SPPARMα, residual 
vascular risk and NAFLD
A number of lines of evidence suggest that treatment 
with this SPPARMα agonist could limit atherosclerotic 
lesion progression. In preclinical studies, pemafibrate 
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Table 2  Overview of published Phase II/III clinical trials with pemafibrate

Citation Patients Treatment 
daily dose (mg) 
and duration

Key findings

Ishibashi [132]
Phase II

N = 224 with high 
TG + low HDL-Ca

Pemafibrate 0.05, 
0.1, 0.2, 0.4

Fenofibrate 100
Placebo
12 weeks

LS mean [SE] percent changes from baseline to 12 weeks (pemafibrate 0.4 vs. fenofi‑
brate)

Decrease in TG: 42.7 [6.7]% vs. 29.7 [6.7]%
Increase in HDL-C: 21.0 [2.8]% vs. 14.3 [2.8]%
LS mean [SD] percent decrease (pemafibrate 0.4 vs. fenofibrate)
VLDL-C: 48.4 [27.5]% vs. 25.8 [29.7]%**
Remnant-C: 50.1 [31.8]% vs. 31.8 [35.0]%
Apo C-III: 33.4 [19.2]% vs. 27.2 [18.9]%
Increase in FGF21 (pemafibrate vs. fenofibrate)***
The incidence of adverse events with pemafibrate, fenofibrate or placebo was similar
Conclusion: In dyslipidemic patients with high TG and low HDL–C, pemafibrate 

improved TG, HDL-C, and other lipid parameters without increasing adverse events, 
compared to placebo and fenofibrate

Ishibashi [134]
Phase III

N = 225 with high TG 
and low HDL-Cb

Pemafibrate 0.2, 0.4 
vs. Fenofibrate 
106.6

24 weeks

LS mean [SE] reduction from baseline to 24 weeks in TG: 46.2 [2.0]% with pemafibrate 
0.2 and 45.9 [1.9]% with 0.4 vs. 39.7 [1.9]% with fenofibrate*

At 24 weeks, significant ↓ALT** and GGT** with pemafibrate compared with fenofi‑
brate

Conclusion: Pemafibrate was superior to fenofibrate in terms of serum TG-lowering 
effect and hepatic and renal safety

Arai [133]
Phase III

N = 526 with high TG 
and low HDL-Ca

Pemafibrate 0.1, 
0.2, 0.4

Fenofibrate 100, 
200 vs. placebo

12 weeks

Non-inferior LS mean [SE] decrease in TG vs. fenofibrate 200: 46.7 [1.6]% with pemafi‑
brate 0.2 and 51.8 [2.0]% with 0.4 vs. 51.5 [1.6]%

No dose-dependent increase in adverse events with pemafibrate
The incidence of adverse events for all pemafibrate doses was similar to that for pla‑

cebo and fenofibrate 100 and significantly lower than fenofibrate 200 mg*
Conclusion: The favorable safety profile of pemafibrate, with fewer adverse effects on 

kidney/liver-related tests and fewer adverse events over fenofibrate 200 mg/day, 
may justify the use of this novel and potent treatment option for reducing TG in a 
broader range of patients

Arai [135]
Phase III

2 trials, dyslipidemia 
on statin therapy

Trial Ac: N = 188
Trial Bd: N = 423

Trial A
Pemafibrate 0.1, 0.2, 

0.4 vs. placebo
12 weeks
Trial B
Pemafibrate: 0.2, 

0.2/0.4g vs. 
placebo

24 weeks

Trial A
 LS mean [SE] decrease in TG at 12 weeks: 53.4 [3.8]% with pemafibrate 0.2, 52.0 [3.9]% 

with 0.4 vs. 6.9 [4.0]% with placebo, p < 0.001
Trial B
 LS mean [SE] decrease in TG at 24 weeks: 46.8 [2.6]% with pemafibrate 0.2, 50.8 [2.5]% 

with 0.2/0.4 vs. 0.8 [3.0]% with placebo, p < 0.001
 34% of patients were titrated to the higher dose
In both trials, pemafibrate ameliorated the atherogenic lipoprotein profiles, i.e. ↓small 

LDL, ↑ larger LDL and ↓larger HDL, ↑ small HDL
Conclusion: These results strongly support the favourable benefit-to-risk ratio of 

pemafibrate add-on therapy in combination with statin treatment

Araki [136]
Phase III

N = 166, T2DM with 
high TGe

Pemafibrate 0.2, 0.4 
vs. placebo

24 weeks

LS mean reductions with pemafibrate vs. placebo
 TG: 44.3% with 0.2, 45.1% with 0.4 vs. 10.8%, p < 0.001
 Non-HDL-C 6.3% and 12.5%, remnant-C 45.7% and 49.2%, apo B100 9.1% with 0.2 mg, 

apo B48 43.7% and 50.6%, and apo C-III 32.5% and 34.0%, all p < 0.001
 HOMA-insulin resistance score with 0.2 mg, p < 0.05
 Both pemafibrate doses significantly ↑ FGF21, p < 0.001
Conclusion: Pemafibrate significantly ameliorated lipid abnormalities and was well 

tolerated in patients with T2DM with hypertriglyceridemia

Yamashita [137] N = 33 with athero‑
genic dyslipidemiaf

Crossover study, 
pemafibrate 0.4 or 
placebo

Each period was 
4 weeks

Significant (p < 0.001) mean percent LS [SE] changes with pemafibrate vs. placebo
 Decreases in TG (39.8 [19.4]% vs. increase of 22.5 [36.0]%), non-HDL-C (12.0 [19.9]% vs. 

increase of 3.5 [12.6]), remnant-C (50.6 [24.5]%), vs. increase of 17.5 [35.6]%, and apo 
C-III (31.3 [20.1]% vs. increase of 11.6 [28.3]%)

 Increases in HDL-C (16.1 [15.0]% vs. decrease 1.4 [10.6]%), apo A–I (8.3 [9.1]% vs. 1.3 
[9.8]%) and apo A-II (38.2 [17.4]% vs. 5.5 [12.6]%)

 Pemafibrate significantly increased FGF21 (p < 0.001), and decreased hsCRP and 
serum amyloid A (p < 0.01) vs. baseline

 Pemafibrate improved postprandial hyperlipidemia
 Pemafibrate improved HDL quality (macrophage cholesterol efflux capacity) and 

increased preβ1 HDL and HDL3
Conclusion: Pemafibrate enhances reverse cholesterol transport and may retard the 

progression and even promote the regression of atherosclerosis by comprehensively 
ameliorating the atherogenic lipid profile
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promoted macrophage cholesterol efflux to HDL and 
attenuated atherosclerotic lesion development [126, 127] 
and, in patients with atherogenic dyslipidemia, pemafi-
brate treatment improved macrophage cholesterol efflux 
capacity [139]. Moreover, this SPPARMα agent robustly 
reduces TG, and exerts potent anti-inflammatory effects. 
Therefore, pemafibrate may offer a novel approach to tar-
get residual cardiovascular risk in high-risk patients with 
atherogenic dyslipidemia, especially those with T2DM. 
The data so far support testing the SPPARMα concept 
to determine whether therapeutic lowering of TG-rich 
lipoproteins with pemafibrate, on a background of best 
evidence-based treatment including statin therapy, will 
reduce incident ASCVD events and exhibit long-term 
safety.

The PROMINENT study (Pemafibrate to Reduce cardi-
ovascular OutcoMes by reducing triglycerides IN diabetic 
patiENTs) addresses these critical questions. PROMI-
NENT aims to recruit 10,000 T2DM patients with ather-
ogenic dyslipidemia (TG ≥ 2.3 mmol/L and < 5.6 mmol/L, 
and low HDL-C) despite statin therapy, with or without 
established ASCVD (Fig. 7) [144]. Thus, unlike the previ-
ous fibrate trials, PROMINENT has specifically targeted 
the hypertriglyceridemic patient population. The primary 
endpoint is a four-point MACE of nonfatal MI, nonfatal 
ischemic stroke, cardiovascular death, or unstable angina 
requiring unplanned revascularization [144]. The trial is 
event-driven, requiring 1092 events (at least 200 events 
in female patients), and is powered to detect an 18% rela-
tive risk reduction. Allowing for a placebo event rate of 
3.7 per 100 person-years, the trial should take 4–5 years. 
Within PROMINENT, a prospective nested substudy will 
investigate whether this SPPARMα agonist slows the pro-
gression of diabetic retinopathy in patients with non-pro-
liferative diabetic retinopathy at study enrolment [145]. 
This substudy follows on evidence of fenofibrate limiting 
progression of diabetic retinopathy in the FIELD (Fenofi-
brate Intervention and Event Lowering in Diabetes) and 
ACCORD studies [146, 147].

Beyond reduction in residual cardiovascular risk, other 
effects may differentiate this SPPARMα agonist from cur-
rent fibrates. Notably, pemafibrate can benefit experi-
mental NASH [129], which suggests that this SPPARMα 
agent can impact progression of complications such as 
fibrosis, cirrhosis, hepatocellular carcinoma and liver 
failure [148]. These pathophysiological consequences also 
extend beyond the liver, contributing to ASCVD burden 
[149]. Ongoing studies are investigating the effects of this 
SPPARMα agonist in the setting of NAFLD [150]. Fur-
thermore, combination with a sodium-glucose cotrans-
porter-2 inhibitor may merit exploration, with evidence 
of favourable effects on weight gain, TG, and glucose lev-
els, and pathogenesis in animals that develop NASH and 
have heightened risk of hepatocellular carcinoma [151].

Conclusion
The pandemic of visceral obesity poses enormous socio-
economic challenges in managing the associated cardio-
metabolic comorbidities of T2DM, NAFLD, and ASCVD. 
Atherogenic dyslipidemia, chiefly elevated TG-rich lipo-
proteins and remnant cholesterol (often accompanied 
by low HDL-C), likely drive this association. There is an 
unmet clinical need for treatments that effectively reduce 
residual cardiovascular risk associated with atherogenic 
dyslipidemia. Realization of the SPPARMα concept 
and translation to the clinic offers a precision medicine 
approach to this challenge. On the basis of evidence 
from preclinical and clinical studies, this Joint Consen-
sus Panel concludes that this SPPARMα represents a 
new therapeutic class, differentiated from fibrates by its 
profile of activity, especially improved renal and hepatic 
safety, as well as lipid-independent anti-inflammatory 
effects. Consistent with this, the Japanese Atheroscle-
rosis Society has recently ratified SPPARMα as a new 
therapeutic class, on the basis of these criteria. PROMI-
NENT is testing whether these SPPARMα characteristics 
translate to reduction in cardiovascular events in T2DM 
patients with atherogenic dyslipidemia. This study aims 

Table 2  (continued)
ALT, alanine aminotransferase; FGF21, fibroblast growth factor 21; GGT, gamma glutamyl transferase; HDL-C, high-density lipoprotein cholesterol; hsCRP, high-
sensitivity C-reactive protein; LS, least squares; SD, standard deviation; SE, standard error; VLDL-C, very low-density lipoprotein cholesterol; TG, triglycerides

* p < 0.05, ** p < 0.01, *** p < 0.001 vs. fenofibrate

Dyslipidemia defined as:
a  TG ≥ 2.23 mmol/L and HDL-C < 1.3 mmol/L in men < 1.4 mmol/L in women
b  TG ≥ 1.7 mmol/L and < 5.7 mmol/L and HDL-C < 1.3 mmol/L in men and < 1.4 mmol/L in women
c  TG ≥ 2.23 mmol/L and non-HDL-C ≥ 3.9 mmol/L
d  TG ≥ 2.23 mmol/L
e  TG ≥ 1.7 mmol/L
f  TG ≥ 1.7 mmol/L and < 4.5 mmol/L and HDL-C < 1.3 mmol/L in men and < 1.4 mmoL/L in women
g  Pemafibrate was up titrated from 0.2 mg/day to 0.4 mg/day after week 12 if fasting TG were ≥ 1.7 mmol/L at week 8
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to validate SPPARMα as a novel therapeutic class for 
managing residual vascular risk driven by visceral obesity 
and T2DM.

Clinical perspective
Management of residual cardiovascular risk is evolving to 
address individual risk characteristics. Global changes in 
the landscape of cardiovascular risk drivers, specifically 
increases in visceral obesity and type 2 diabetes mellitus, 
present an urgent unmet clinical need to manage athero-
genic dyslipidemia. Elevated triglycerides, a biomarker 
of triglyceride-rich lipoproteins and their remnants, 
characterize this dyslipidemia. Therapeutic approaches 
have focused on the use of omega-3 fatty acids and 
fibrates (peroxisome proliferator-activated receptor alpha 
[PPARα] agonists); however, the latter group have not 
shown efficacy in improving cardiovascular outcomes in 
statin-treated individuals, and entail drug interaction and 
side effect issues, including elevation in liver enzymes, 
and fenofibrate increases serum creatinine, albeit revers-
ibly. High-dose omega-3 fatty acid did, however, sig-
nificantly reduce cardiovascular events in REDUCE-IT, 
justifying the premise of targeting elevated triglycerides.

The development of a selective PPARα modulator 
(SPPARMα) agonist offers a novel therapeutic approach. 

Preclinical and clinical studies differentiate the first 
SPPARMα agonist (K-877, pemafibrate) from current 
fibrates on the basis of its profile of activity, robust reduc-
tion in triglycerides (substantially greater than achieved 
with omega-3 fatty acid), as well as a favourable safety 
profile, with no evidence of elevation in serum cre-
atinine. In addition, this SPPARMα agonist may exert 
more potent anti-inflammatory effects than traditional 
fibrates. The cardiovascular outcomes study PROMI-
NENT will determine whether therapeutic application 
of the SPPARMα concept translates to reduction in car-
diovascular events in high-risk patients with type 2 dia-
betes mellitus already receiving the best evidence-based 
treatment.

Additional files

Additional file 1. Interaction with the selective peroxisome proliferator-
activated receptor alpha modulator (pemafibrate, K-877).

Additional file 2. Interaction with a PPARα agonist (fenofibrate).
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