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H I G H L I G H T S

• PCSK9 monoclonal antibodies dramatically reduce LDL-C, but not hs-CRP.

• The two-dose regimen of inclisiran (300mg), a siRNA direct against PCSK9, reduced hs-CRP by 16.7%.

• hs-CRP levels identify ASCVD patients who better respond to PCSK9 monoclonal antibodies.

• In the Anitschkow study, evolocumab modestly reduced Lp(a) with no changes of hs-CRP or arterial inflammation.

A R T I C L E I N F O

Keywords:
High-sensitivity CRP
Inflammation
PCSK9
PCSK9 inhibition

A B S T R A C T

Atherosclerotic cardiovascular disease (ASCVD) remains a leading cause of morbidity and mortality despite
excellent pharmacological and revascularization approaches. Low-density lipoproteins (LDL) are undoubtedly
the most significant biochemical variables associated with atheroma, however, compelling data identify in-
flammation as critical for the maintenance of the atherosclerotic process, underlying some of the most feared
vascular complications. Although its causal role is questionable, high-sensitivity C-reactive protein (hs-CRP)
represents a major biomarker of inflammation and associated risk in CVD. While statin-associated reduced risk
may be related to the lowering of both LDL-C and hs-CRP, PCSK9 inhibitors leading to dramatic LDL-C reduc-
tions do no alter hs-CRP levels. On the other hand, hs-CRP levels identify groups of patients with a high risk of
CV disease achieving better ASCVD prevention in response to PCSK9 inhibition. In the FOURIER study, even in
patients with extremely low levels of LDL-C, there was a stepwise risk increment according to the values of hs-
CRP: +9% (<1 mg/L), +10.8% (1–3 mg/L) and +13.1% (>3 mg/L). Likewise, in the SPIRE-1 and -2 studies,
bococizumab patients with hs-CRP>3 mg/L had a 60% greater risk of future CV events. Most of the patients
enrolled in the PCSK9 trials were on maximally tolerated statin therapy at baseline, and an elevated hs-CRP may
reflect residual inflammatory risk after standard LDL-C lowering therapy. Moreover, data on changes in in-
flammation markers in carriers of PCSK9 loss-of-function mutations are scanty and not conclusive, thus, evi-
dence from the effects of anti-inflammatory molecules on PCSK9 levels might help unravel this hitherto complex
tangle.

1. Introduction

Studies on patients with myocardial infarction (MI) have clearly
established that all post-MI patients are at increased risk for recurrence
of events, despite early revascularization and well established phar-
macological therapies [1]. Among patients with clinically manifest
vascular disease, more than 20% showed a risk of recurrent events in
the excess of 30% over 10 years, including MI, stroke, or vascular death,
thus indicating an area of unmet medical need [2]. The persistence of

high risk has been increasingly associated with elevated levels of
proinflammatory molecules, such as cytokines and acute-phase re-
actants [3]. Indeed, beyond the well-known role of LDL in athero-
sclerosis, data from the proof-of-concept CANTOS (Canakinumab Anti-
Inflammatory Thrombosis Outcome Study) trial [4] have clearly iden-
tified inflammation as one of the key biological processes of athero-
sclerosis.

Low-density lipoproteins (LDL) represent the most significant bio-
chemical variable associated with atheroma. The extent of lowering of
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LDL-C and cardiovascular (CV) risk reduction has been evaluated across
different statin and non-statin therapies. The relative risk reduction of
major vascular events was similar for all drug classes (statins, bile acid
sequestrants, ezetimibe, and fibrates), and the achieved lowering of
LDL-C was associated with a reduced incidence of major CV events [5].

The CV risk linked to increased inflammatory markers was well
established following the detection of elevated high sensitivity C-re-
active protein (hs-CRP) in post MI patients with a residual in-
flammatory risk [6]. This initial observation in patients with relatively
normal lipoprotein profile and positive response to statins gave the first
rationale for the validity of the approach [7]. CRP is a liver-derived
acute phase protein associated with inflammation. Being readily as-
sayable in the circulation, it has reached an established role in the
evaluation of bacterial infections, but also of the clinical status of
generalized inflammatory diseases. Among these, foremost is rheuma-
toid arthritis, followed by chronic diseases such as spondylitis, lupus
and others [8].

High sensitivity (hs)-CRP>2mg/L associates with major CV risk
markers, such as elevated LDL-C, as well as with the progression of CV
lesions [9], although the existence of a well defined threshold is dis-
puted [10,11]. Use of this marker for an early detection of lesions and,
more importantly, for the monitoring of agents reducing CV risk, has
gained wide acceptance. Clinical studies on statins, in particular, have
shown that also patients with coronary disease not associated with
marked hypercholesterolemia, benefit from the reduction of hs-CRP
[12].

Overall, although the earlier meta-analysis of Kinlay et al. [13]
supported a strong correlation between LDL-C reduction and lowering
of hs-CRP, the case is certainly different for the newly developed PCSK9
antagonists with which a dramatic reduction of LDL-C, in the range of
50–60%, is not associated with any changes in hs-CRP. Thus, the pre-
sent review will discuss the evidence linking PCSK9 and inflammation
with a particular emphasis on hs-CRP a marker of residual in-
flammatory CV risk, especially in secondary prevention.

2. Lipid mediated-inflammation

A number of studies have described pathways leading to vascular
inflammation in atherosclerosis. Flow perturbations on endothelial cells
(EC), particularly at areas of complex geometry, predispose to lesion
development [14]. These areas express adhesion molecules and in-
flammatory genes to a higher extent [15]. In vessels with compromised
glycocalyx, LDL penetrate the arterial intima via endothelial vesicles
(transcytosis) or open endothelial junctions [16]. Lipoproteins< 70 nm
in diameter, i.e. all HDL, LDL and intermediate-density lipoprotein
(IDL) particles, in addition to very-low density lipoprotein (VLDL) and
small chylomicron remnants, can pass the endothelial barrier and enter
intima directly from the circulation [17]. Once in the arterial sub-
endothelium, lipoproteins are trapped by subendothelial proteoglycans
through a charge-based interaction [18,19]. LDL then undergo oxida-
tion by the combined action of lipoxygenases, reactive oxygen species,
peroxynitrite, and/or myeloperoxidase [20]. OxLDL and LDL-derived
oxidized phospholipids further stimulate the inflammatory activation of
macrophages and vascular smooth muscle cells; they provide also oxi-
dation-specific epitopes (OSEs) recognized by the C-reactive protein,
complement system proteins and innate “natural” IgM antibodies [21].
OxLDL stimulate endothelial cells by inducing the expression of cell
surface adhesion molecules that mediate the rolling and adhesion of
blood leukocytes (monocytes and T cells) [22]. OxLDL are rapidly re-
cognized by macrophage scavenger receptors, leading to the formation
of lipid-laden foam cells; scavenger receptor uptake is not subject to
feedback inhibition by intracellular sterols, and phagocytosis and/or
receptor uptake can continue unabated [23]. OxLDL are immunogenic
by presenting different lipid peroxidation-derived structures, such as
oxidized phospholipids and malondialdehyde that are recognized as
antigens by the immune system [24]. These oxidized products thus act

as targets of innate immunity and as critical modulators of in-
flammatory responses [25].

Although foam cell populations in atherosclerotic lesions have been
considered as primarily of leukocyte origin, smooth muscle cells (SMC)
contribute significantly to foam cell populations in human atheroma,
50% of foam cells being SMC-derived [26]. Among scavenger receptors,
the LDL receptor-related protein 1 (LRP1) is a key mediator of ag-
gregated LDL-induced cholesteryl ester accumulation in SMCs [27],
expressed in both SMCs and macrophages of human atherosclerotic
lesions [28].

The activated endothelium allows the entry to the intima of bone-
marrow-derived monocytes, e.g. the Ly6Chi subpopulation, which dif-
ferentiate into macrophages. As a result of the activation of in-
flammatory macrophages and dendritic cell (DC), an inflammatory
adaptive immune response involving T helper cells (Th1), but also
Th17, Th2 as well as B cells develops [29].

After entering macrophages through scavenger receptor CD36, ox-
LDL can prime and activate the innate immune signaling complex NOD-
like receptor pyrine domain-containing protein 3 (NLRP3) inflamma-
some in macrophages, induced by cholesterol crystallization [30].
Cholesterol crystal formation is consequent to an imbalance between
esterified and free cholesterol and by changes in HDL function [31].
Upon activation by different endogenous triggers abundantly present in
atherosclerotic lesions, e.g. cholesterol crystals [32], NLRP3 leads to an
increased secretion of IL-1β [33]. IL-1 stimulates adhesion molecules
that recruit leukocytes as well as chemokines, e.g. monocyte chemoat-
tractant protein (MCP)-1 (also known C–C motif chemokine ligand
[CCL]-2). Reduction of cholesterolemia reduces cholesterol crystal
formation and, as a consequence, atheromas. Whether reduction of the
inflammatory potential of macrophages may occur in the absence of
NLRP3 activation remains an open question [34].

In addition to the well established role of LDL-C [35], the con-
tribution of triglycerides (TG) to a raised CV risk has become clear both
after long-term prospective studies [36] and a recent mendelian ran-
domization analysis [37]. TG-rich lipoproteins may penetrate the ar-
terial wall and are retained within the sub-endothelial space; after
oxidative modification they may lead to the development of athero-
sclerotic plaques. Lipolysis of TG-rich lipoproteins may release oxidized
free-fatty acids (FFA) and lysolecithin, further stimulating endothelial
cell inflammation and coagulation [38]. A post-hoc evaluation of the
REDUCE-IT study [39] reports a significant reduction of CV events in
patients with hypertriglyceridemia treated with high dose EPA, and
indicates that even low levels of plasma TG, e.g. between 81 and
131mg/dL can carry a CV risk [39].

3. PCSK9 contribution to the development of atherosclerosis

Besides the role of PCSK9 in the regulation of LDL-C, its expression
in endothelial cells, VSMC and, at a low level, in macrophages [40],
implies the potential role of PCSK9 in atherosclerosis plaque develop-
ment (Fig. 1). VSMC produce more PCSK9 than endothelial cells,
especially in response to shear stress [41]. In particular, VSMC of
human atherosclerotic plaques secrete PCSK9, that acts in a paracrine
manner on vessel macrophages by reducing LDLR expression and LDL
uptake [42]. Thus, PCSK9 may be a possible determinant of LDL re-
tention in the intima of arterial walls [43]. In line with these findings, a
positive association between PCSK9 and arterial stiffness - a parameter
associated with the presence of carotid plaques - has been described
[44], a conclusion further supported by a study in patients of Italian
ancestry in whom short-term therapy with monoclonal antibodies im-
proved endothelial function [45] and arterial stiffness [46].

The hypothesis that PCSK9 may affect atherosclerosis in a manner
not exclusively related to lipid changes was assessed in models of
LDLR−/− or apoE−/− mice overexpressing human PCSK9 (hPCSK9).
This latter accumulates in the arterial walls and can directly affect
atherosclerotic lesion size and composition independent of lipid and
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lipoprotein changes [47]. These findings go together with those re-
porting that bone marrow macrophages derived from hPCSK9 mice
progressively accumulate in lesions of apoE−/− recipient mice with a
markedly raised infiltration of Ly6C (hi) inflammatory monocytes
(+32%) [48]. In line with these findings, PCSK9−/− mice are partially
protected from neointimal plaque formation, further supporting an ef-
fect of PCSK9 on intimal thickening [49]. A direct clinical translation of
these findings comes from the ATHEROREMO-IVUS (The European
Collaborative Project on Inflammation and Vascular Wall Remodeling
in Atherosclerosis – Intravascular Ultrasound) study, showing that
higher PCSK9 levels are linearly associated with a higher necrotic core
fraction in coronary atheromas [50].

A distinct conclusion on this topic came from a recent study re-
porting that in an atherosclerosis-prone mouse model, the deletion of
Pcsk9 gene reduced atherogenesis via mechanisms independent of
LDLR. Indeed, endothelial cells exposed to lipoproteins from these an-
imals expressed fewer adhesion molecules, such as Icam-1, and che-
motactic factors, e.g. Ccl2 (Mcp-1) and Ccl-7 (Mcp-3), all promoting
monocyte adhesion and infiltration into the vessel wall [51].

The pro-atherogenic role of PCSK9 was further supported by find-
ings which demonstrated that PCSK9 directly alters cholesterol home-
ostasis in macrophages by inhibiting ATP-binding cassette transporter
ABCA1 mediated cholesterol efflux [52]. Indeed, lipid accumulation in
the artery wall depends on a balance between entry and egress. Another
facet of the association among inflammation, PCSK9, and athero-
sclerosis relates to ox-LDL. Dendritic cells (DC) from vulnerable carotid
plaques induce PCSK9 when exposed to OxLDL; in a feed-forward loop
PCSK9 stimulates DC maturation, pro-inflammatory cytokine produc-
tion and T-cell proliferation [53]. Inhibition of PCSK9, in turn, reverts
the effects of OxLDL by decreasing production of inflammatory cyto-
kines, e.g. TNF-α, IL-1 β and IL-6 [53]. In a previous study evaluating
the contribution of the TLR4/NF-kB pathway, PCSK9 overexpression in
macrophages upregulated TLR4 expression with a higher NF-kB nuclear
translocation, followed by a raised secretion of proinflammatory cyto-
kines mediated by OxLDL [54]. In human primary macrophages, ex-
posure to human recombinant PCSK9 upregulated pro-inflammatory
cytokines and chemokine genes, e.g. IL-1β, IL-6, TNF-α, CXCL2, and
MCP1, once again showing a pro-inflammatory behavior linked to

PCSK9 [55]. In this scenario, the positive feedback between PCSK9 and
LOX-1 - a scavenger receptor responsible for binding, internalization
and degradation of OxLDL - should not be underestimated. In arterial
tissues and cultured ECs and SMCs, mitochondrial ROS generation ex-
acerbates a positive cross-talk between PCSK9 and LOX-1, in which
PCSK9 stimulates LOX-1 and LOX-1 stimulates PCSK9 [56]. This pro-
cess may contribute to atherogenesis, considering that PCSK9 stimu-
lates the expression of other scavenger receptors, e.g. scavenger re-
ceptors class A (SRA) and CD36 [57]. The relationship between PCSK9
and vascular inflammation was further investigated in the APOE*3-
Leiden.CETP mice: vascular inflammation (by reducing T cell accu-
mulation in aortic plaques) and necrotic core formation were atte-
nuated upon treatment with the PCSK9 monoclonal antibody
alirocumab [58] or an anti-PCSK9 vaccine [59].

When considering immune cells and atherosclerosis, there is now
evidence that LDL-lowering by PCSK9 inhibition can reduce accumu-
lation of lipid droplets in monocytes, counteracting both lipid-induced
monocyte activation and reactivity [60]. Monocytes from FH patients
intolerant to statins show a pro-inflammatory and migratory signature
with an increased intracellular lipid droplet accumulation. Given the
role of monocytes, and the interaction between chemokines (e.g. CCL2)
and chemokine receptors (e.g., CCR2) in atherosclerosis development,
these findings highlight how PCSK9 inhibition might alter the in-
flammatory response aside from hs-CRP changes [60]. These conclu-
sions support the notion that severe hyperlipidemia leads to increased
intracellular lipid accumulation and foamy monocyte formation. Foamy
monocytes can enhance monocyte migration from the circulation into
the arterial walls, accelerating differentiation into foamy macrophages,
thus contributing to the development of atheromas [61].

Whether reduction in immune cell activity following LDL-C and Lp
(a) lowering by PCSK9 inhibition will translate into decreased in-
flammation in atherosclerotic lesions has been addressed in the
Anitschkow Study. This trial enrolled coronary patients with elevated
Lp(a) > 50mg/dL, LDL-C≥100mg/dL and arterial wall inflamma-
tion as assessed by the most diseased target-to-background ratio (MDS-
TBR) ≥1.6 on 18F-fluoro-deoxyglucose positron-emission tomography/
computed tomography (FDG-PET/CT). A 16-week treatment with evo-
locumab (420 mg/every 4 weeks) reduced LDL-C by 61% with a 14% Lp

Fig. 1. Possible pleiotropic effects of PCSK9 inhibition in atherosclerosis.
Reproduced with permission from Nature Springer [148].
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(a) lowering and no evidence of reduction of hs-CRP or of arterial in-
flammation (MDS-TBR -8.3% for evolocumab vs −5.3% for placebo)
[62]. Considering that hs-CRP seems not to correlate with arterial wall
inflammation [63], Lp(a) may be a better marker linked to pro-in-
flammatory changes. Lp(a) likely contributes to CVD risk being more
atherogenic than LDL since it contains both the proatherogenic com-
ponents of LDL and the oxidized phospholipids (OxPL), abundant in the
apo(a) tail [64]. OxPL are crucial mediators of the arterial wall in-
flammation process among patients with elevated Lp(a) [65]. However,
the role of raised plasma Lp(a) levels in thrombosis remains con-
troversial (reviewed in Ref. [66]). Genetic, epidemiological and clinical
studies have, however, firmly established that elevated concentrations
of Lp(a) are an independent and probably causal CV risk factor. In the
FOURIER study, evolocumab significantly reduced Lp(a) levels (median
changes −26.9%), and patients with higher baseline Lp(a) levels
benefited more in terms of absolute Lp(a) reduction [67]. In the
ODYSSEY OUTCOMES trial, absolute changes in Lp(a) increased pro-
gressively with increasing quartile: −5.12%, −9.8% and −20.2%,
being the overall Lp(a) reductions associated with CV risk reduction
(commented in Ref. [68]).

4. Correlations between hs-CRP and CV risk

Questions on the validity of hs-CRP as a causal determinant of CV
risk have been raised because of the absence, in particular, of genetic
loci associated with hs-CRP levels and with the occurrence of CV events,
in contrast to neighboring loci such as IL-6R or APOE-CI-CII cluster
[69]. Mendelian randomization analysis of single polymorphisms
showed elevation in hs-CRP concentrations without an increased risk of
CHD, a finding discordant with the risk ratio [1.33 (1.23–1.43)] ob-
served for CHD per 1 SD higher hs-CRP found in prospective studies
[70]. Null associations betwenn hs-CRP-related and actual risk of CHD
were found also in a genome-wide association study demonstrating no
association between genetically elevated hs-CRP levels and risk of CHD
[71]. Although hs-CRP may be considered unquestionably a good
marker of CV risk [72], the evidence for causality is uncertain. In hu-
mans, C-reactive protein is a relatively moderate predictor of coronary
heart disease [73] and when infused into healthy adults no meaningful
increment in proinflammatory cytokine levels has been found [74].
These conclusions were in line with those of different experimental
models in which transgenic expression of human or rabbit CRP [75–77]
or CRP deletion [78] did not support any proatherogenic role of this
pentraxin. On the other hand, the biological basis recognizing hs-CRP as
a biomarker of CV risk has been, very recently, further reinforced in
acute coronary syndrome patients with LDL-C of 64.9 mg/dL and hs-
CRP>2.4mg/L; the initial and serial measurements of hs-CRP pro-
vided a very effective tool for the identification of patients at higher risk
for mortality and morbidity, independent of optimal evidence-based
pharmacological therapies [79].

Elevated hs-CRP levels are definitively associated to an increased CV
risk and their reduction by statins is beneficial. However, there is no
agreement so far as to whether the two variables, i.e. reduction of LDL-C
and hs-CRP, are correlated or not. Indeed, a recent re-evaluation of 25
primary and secondary prevention statin trials suggested that the CV
benefit from statins are not mediated through pleiotropic effects but
rather only through their LDL-C lowering effect [80]. The earliest po-
sitive evidence stems from the CARE (Cholesterol and Recurrent
Events) trial involving patients with post-MI in which pravastatin re-
duced CRP levels independent of the magnitude of LDL-C reduction
[81]. Conversely, from the 2-year JUPITER study, in which LDL-C and
hs-CRP reductions were only weakly correlated, it appeared that re-
duction in both LDL-C and hs-CRP are indicators of successful treatment
with statins [82]. However, for the same reduction of LDL-C (< 70mg/
dL) the magnitude of benefit was superior in those achieving hs-
CRP < 1mg/dL compared to hs-CRP < 2mg/dL, i.e. 65% and 79%
reductions in vascular events, respectively [83].

In a review article assessing the correlation between LDL-C lowering
and inflammatory changes [84], the most prominent hs-CRP reduction
occurred in a study with extreme baseline hs-CRP elevation [85]. High
intensity statins provided the highest CRP lowering: in the REVERSAL
(Reversal of Atherosclerosis with Aggressive Lipid Lowering) Study, an
IVUS comparative evaluation of plaque progression, atorvastatin
treatment reduced CRP (not hs-CRP) by 35.6% vs 5.2% for pravastatin
[86]. In the very large Heart Protection Study, investigating the pre-
ventive activity of simvastatin [87], the reduction in vascular deaths
appeared instead to be independent of baseline hs-CRP levels.

Concerning plaque development, in a virtual histology (VH) in-
travascular ultrasound study, there was clear evidence that changes of
hs-CRP had a significant positive correlation with reductions in the
percent necrotic core, percent dense calcium volume and absence of
thin cap fibroatheroma, and a negative linear relationship with changes
in percent fibrous and percent fibro-fatty volumes [88]. In contrast,
LDL-C changes were not associated with any of these. This evidence
should be considered when evaluating the conclusions of the GLAGOV
(GLobal Assessment of Plaque reGression With a PCSK9 antibOdy as
Measured by intraVascular Ultrasound) study, reporting that addition
of evolocumab to statins did not result in any VH change [89]. At an-
other arterial site, i.e. the carotid artery, in neurologically asympto-
matic patients, narrowing of> 50% associated with elevated hs-CRP
gave the best prognostic information [90]. Evaluation of the coronary
wall thickness by a similar ultrasound method, together with hs-CRP,
may offer a useful non invasive approach to the determination of CV
risk [91].

5. PCSK9 antagonists and hs-CRP

Although it is undoubted that the use of PCSK9 inhibitors is asso-
ciated with a significant reduction of major adverse cardiovascular
events (MACEs) [relative risk: 0.83; 95%CI 0.78–0.88] [92] with
myocardial infarction [odds ratio (OR): 0.72 (95%CI: 0.64–0.81)],
stroke [OR: 0.80 (95%Cl: 0.67–0.96)] and coronary revascularization
[OR: 0.78 (95%Cl: 0.67–0.96)] [93, 94], at the same time, it is evident
that these new agents do not have an impact on hs-CRP levels [95]. A
recent meta-analysis on 10 RTCs, not comprising the cardiovascular
outcome trials (CVOT), found that short-term PCSK9 inhibitory treat-
ment did not reduce hs-CRP concentrations, irrespective of the type of
antibody (evolocumab, alirocumab or bococizumab) and patient char-
acteristics (FH, non-FH, ACSVD). Similar results were found when data
were corrected for age, sex and LDL-C lowering [96]. These findings do
not confirm previous conclusions, showing that non-statin lipid low-
ering treatments result in significant hs-CRP reductions only in patients
with baseline levels above 2mg/L [84]. However, being most of the
patients in the PCSK9 trials on maximally tolerated statin therapy or on
standard care lipid lowering therapies, baseline hs-CRP may not reflect
the true residual inflammatory risk. Unfortunately, when PCSK9 in-
hibitors were given as monotherapy in statin intolerant patients
(ODYSSEY ALTERNATIVE [97], in the GAUSS-1, -2 and -3 [98−100]
RCTs) or in hypercholesterolemic patients (MENDEL and MENDEL-2
RCTs), data on hs-CRP were missing at follow-up. The only exception
was the GAUSS-2 study reporting that, against an LDL-C reduction of
about 50%, hs-CRP was lowered from 1.8 (0.9–3.3) to 1.5 (0.8–3.2)
mg/L [99]. In the GAUSS-3 and ODYSSEY ALTERNATIVE baseline le-
vels were 1.7mg/L.

Since a significant number of patients still has recurrent events or
show progression in IVUS studies, secondary analyses of the FOURIER
and SPIRE studies clearly demonstrated that, in spite of the dramatic
lowering of LDL-C to below 30mg/dL, hs-CRP remained a risk marker
across all categories of achieved LDL-C: the higher the baseline levels,
the larger the risk reduction [9]. These data suggest that drivers of
inflammation other than LDL-C contribute to residual events in sec-
ondary prevention [101]. This general observation has made the re-
lationship between PCSK9 and the arterial inflammatory process a
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matter of intensive debate. While inflammation raises PCSK9 liver ex-
pression [102] and PCSK9 is positively linked to TNF-α levels [55],
there is no clear relationship between PCSK9 levels and hs-CRP [55].

In the FOURIER (Further Cardiovascular Outcomes Research with
PCSK9 Inhibition in Subjects with Elevated Risk) study, recruiting
stable CAD patients (LDL-C > 70mg/dL), hs-CRP > 2.0mg/dL was
listed as a minor risk factor among inclusion criteria [103]. Basal hs-
CRP levels were 1.7mg/L and 1.8mg/L in the evolocumab and placebo
groups, respectively; 29% had hs-CRP values < 1mg/L, 41% between
1 and 3mg/dL and 30% > 3mg/dL (Table 1). CV benefit was present
across the different baseline hs-CRP strata and patients with the highest
absolute risk reduction were those in the highest hs-CRP stratum: 1.6%
(< 1mg/L), 1.8% (1–3mg/L) and 2.6% (>3mg/L). The corre-
sponding NNTs to prevent a primary endpoint event at 3 years were 56
and 38, respectively, in patients with baseline hs-CRP levels of 1–3mg/
L and> 3mg/dL (Table 2). Considering hs-CRP mean changes were
−0.2mg/L in both treatment arms, the largest absolute CV risk de-
crement was found in patients with baseline hs-CRP>3mg/L. This post
hoc analysis allows to identify individuals getting the largest benefit
from PCSK9 antagonists; even in those achieving an on-treatment LDL-
C of< 20 mg/dL there was a 3-year stepwise risk increment according
to the baseline values of hs-CRP: +9% (hs-CRP < 1 mg/L), +10.8%
(hs-CRP 1–3 mg/L) and +13.1% (hs-CRP > 3 mg/L) [104]. Moreover,
event rates were lowest in patients achieving the lowest levels of both
LDL-C and hs-CRP. To sum-up, baseline hs-CRP levels do not modify the
lipid effects of evolocumab but do identify a group with a higher risk for
CV disease, associated with a lower NNT. A higher baseline hs-CRP
associates to a higher prevalence of other CV risk factors, e.g. hy-
pertension, diabetes mellitus, smoking, and renal dysfunction, and a
higher rate of comorbid conditions, e.g. prior stroke and peripheral
artery disease [104]. Briefly, in the FOURIER study, according to hs-
CRP strata (< 1mg/L, 1–3mg/L and>3mg/L) hypertension was
present in 76%, 81% and 84%, respectively; diabetes mellitus was
found in 31%, 36% and 43%, respectively, and finally smoking was
reported in 23%, 29% and 32%, respectively [104]. Thus, the use of a
similar risk-stratification strategy with an even broader range of factors

can ensure that PCSK9 inhibitors are made available to those who may
benefit the most.

Evidence of residual inflammatory risk was particularly evident in a
post hoc analysis of SPIRE- 1 and -2 (Studies of PCSK9 Inhibition and the
Reduction of Vascular Events) trials with bococizumab, enrolling either
patients with a previous CV or a history of familial hypercholester-
olemia (high-risk primary prevention cohort). When data from the two
studies were pooled, baseline levels of hs-CRP were 2.0mg/L in both
bococizumab and placebo arms with some differences upon separate
evaluations: SPIRE-1: 1.8 vs 1.7 mg/dL and SPIRE-2: 2.3 vs 2.3
(Table 1). Overall, patients with higher hs-CRP were those with con-
comitant CV risk factors, e.g. diabetes mellitus, diagnosed hypertension
or current smokers. When examining findings in more detail, against a
mean −60.5% fall in LDL-C, a +6.6% rise in hs-CRP was found in the
bococizumab arm. Despite the magnitude of LDL-C lowering, when the
analysis was stratified according to on-treatment levels of hs-CRP a
continuous gradient in risk for future CV events was found. Adjusted
hazard ratios (HRs) for future CV events were 1.0 (hs-CRP<1 mg/L),
1.16 (hs-CRP 1–3 mg/L) and 1.62 (hs-CRP>3 mg/L) (Table 3). The
percentage of patients allocated to each group were 30.4%, 34.8% and
34.9%, respectively. Interestingly, if only LDL-C changes are considered
HRs are 1.0 (LDL-C < 30mg/dL), 0.87 (LDL-C 30–50mg/dL) and 1.21
(LDL-C>50mg/dL) (Table 3) [101].

The most recently published ODYSSEY OUTCOMES with alir-
ocumab, recruiting ACS patients, 89.5% on high intensity statins, re-
ported instead that the primary CV end points were reduced by 19% in
the group with hs-CRP<2mg/L (HR: 0.81; 95%CI 0.71–0.92) and by a
non-significant 11% in the group with hs-CRP > 2mg/L (HR: 0.89;
95%CI 0.79–1.01) [105]. No absolute changes for hs-CRP have been
reported in this study and, so far, there are no further sub-analyses
aimed at exploring the impact of inflammation even after the
achievement of very low LDL-C (Table 1). Nevertheless, it has now
become clear that also in the ODYSSEY OUTCOMES trial baseline hs-
CRP levels identify subjects at higher risk. Among 18,924 patients with
a recent ACS, alirocumab was superior to placebo in reducing first post-
randomization MI by 15%: −13% relative to type 1 MI and −23%

Table 1
Percentage changes of hs-CRP and LDL-C upon drug treatments.

Clinical study hs-CRP (mg/L) LDL-C (mg/dL)

Pre post Δ pre post Δ

Canakinumab (IL-1β mAb) CANTOS [4] 4.3 2.0 -37% vs placebo 82.4 84.7 +3.1% vs placebo
Evolocumab

(PCSK9 fully human mAb)
FOURIER [104] 1.7 1.4 0% vs placebo 92.0 30.0 -59% vs placebo

Bococizumab
(PCSK9 humanized mAb)

SPIRE-1 and -2 [101] 1.88 1.84 at week 14: mean change was +6.6% vs placebo (median
change 0%); at week 52: +6.7%

96.5 34.7 -60.5% vs placebo
(week 14)

Alirocumab
(PCSK9 fully human mAb)

ODYSSEY COMBOII [149] 3.58 3.51 -2% vs baseline 108.0 53.3 -49.5% vs baseline

Alirocumab
(PCSK9 fully human mAb)

ODYSSEY OUTCOMES
[107]

1.6
(0.8-3.9)

NA NA 87.0 53.0 -54.7% vs placebo

mAb, monoclonal antibody; NA, not available.

Table 2
Analysis of the FOURIER study according to hs-CRP strata.

hs-CRP strata
(mg/L)

FOURIER [104]

Primary Endpoints Secondary Endpoints

ARR RRR
(HR)

NNT ARR RRR
(HR)

NNT

< 1 (0.6; 0.4-0.8) 1.6% (-0.5 – 3.7) 0.82(0.70 – 0.95) - 0.8% (-1.1 – 2.7) 0.81 (0.66 – 0.99) -
1-3 (1.7; 1.3-2.3) 1.8% (0 – 3.5) 0.93 (0.83 – 1.05) 56 2.0% (0.4 – 3.4) 0.87 (0.75 – 1.02) 50
> 3 (5.4; 3.9-8.8) 2.6% (0.4 – 4.9) 0.80 (0.71 – 0.90) 38 3.0% (1.0 – 5.0) 0.73 (0.63 – 0.85) 33

ARR, absolute risk reduction; hs-CRP, high-sensitivity C-reactive protein; HR, hazard ratio; NNT, number need to treat; RRR, relative risk reduction.
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relative to type 2 MI. Compared to the subgroup with no MI event
(17,719), patients who experienced a post-randomization MI had
higher baseline levels of LDL, Lp(a) and hs-CRP. Across the three sub-
groups “no event”, “first event= type 1” and “first event= type 2”,
LDL-C (mg/dL) were 86, 91 and 91, respectively; Lp(a) (mg/dL) 20.8,
25.4 and 34.9, respectively and hs-CRP (mg/L) 1.6, 2.3 and 2.6, re-
spectively. These parameters did not differ statistically between type 1
and type 2 MI [106].

A further benefit of alirocumab over placebo has been the reduction
in the all-cause deaths, 3.5% vs 4.1%, respectively, with an HR of 0.85
(95%CI: 0.73–0,98). Among survivors, median baseline hs-CRP levels
were 1.6mg/L (similar to the whole cohort) compared to 2.8mg/L in
those who died. Conversely, when the analysis was restricted to the
8,242 patients eligible to maintain the treatment for ≥3 years, against a
more pronounced benefit of alirocumab on all-cause death [HR 0.78
(95%CI: 0.65–0.94)] no between-group differences were found in basal
hs-CRP levels (1.6 vs 1.7 mg/L) [107].

Finally, in the post-hoc analysis evaluating whether the efficacy of
alirocumab was influenced by the presence of polyvascular diseases,
higher levels of LDL-C, Lp(a) and hs-CRP were more pronounced in the
presence of two or three affected vascular beds. According to this, LDL-
C (mg/dL) was 86 (monovascular disease), 91 (coronary + peripheral
artery disease), 90 (coronary + cerebrovascular diseases) and 95
(coronary + peripheral artery and cerebrovascular diseases); Lp(a)
(mg/dL) was 20.8, 25.5, 23.0 and 29.4, respectively and hs-CRP was
1.6, 2.6, 2.2, and 2.1, respectively [108].

Concerning alternative therapeutic strategies which modulate
PCSK9 levels, inclisiran is a siRNA that acts by reducing both the in-
tracellular and extracellular PCSK9 levels. Upon its s.c. administration,
inclisiran leads to plasma lipoprotein changes that are quite similar to
those mediated by the anti-PCSK9 monoclonal antibodies [109]. Pa-
tients receiving a single dose of inclisiran 300 or 500 mg had non-sig-
nificant reductions of 16.2% and 19.8%, respectively of hs-CRP, with a
wide distribution'. Conversely, patients at a two-dose regimen of in-
clisiran (300mg) showed a 16.7% significant decrement in hs-CRP
[110]. In the context of atheroma formation, theoretically, inclisiran
should result in a lower amount of PCSK9 able to penetrate plaques,
with no impact on local PCSK9 production by macrophages and smooth
muscle cells in the atheroma (Fig. 2) [111].

More recently, in order to better assess mechanisms and con-
sequences of PCSK9 inhibition, a comparison between a genetic low-
ering of PCSK9 and that occurring after statin treatment was carried out
[112]. Individuals with a loss of function allele of PCSK9 had a reduced
lowering of VLDL-cholesterol compared to statin therapy (−54 vs
−77% reduction) for an equivalent lowering of LDL-C. This study also
evaluated a novel biomarker for future CV events. GlycA is part of the
mammalian genome: glycans are attachments known to functionally
modify cytokines and other inflammatory proteins. Among these, GlycA
quantifies the NMR signal that originates from a number of plasma
glycoproteins and was hypothesized to be a clinical marker of systemic
inflammation [113]. By standardized NMR a 17-year follow up of
27,490 in the Women's Health Study showed a clear association be-
tween increased GlycA levels and risk of all cause, CV and cancer
mortality [114]. The JUPITER study also showed that levels of GlycA

associate with CV risk, independent of hs-CRP and reduced by rosu-
vastatin [115]. In contrast, genetic lowering of PCSK9 was not asso-
ciated with any change of GlycA [112]; no data were given on CRP.

6. PCSK9 antagonism benefit in high-risk populations

A number of reports have evaluated the potential benefit of PCSK9
antagonists in conditions not strictly related to LDL-C. An important
case is that of human immunodeficiency virus (HIV) infection, a global
epidemic affecting 37 million people worldwide. While modern drug
therapy has improved HIV patient survival, the rate of MI among af-
fected individuals has risen by 50% [116]. In these subjects, chronic
inflammation, together with immune activation, have been reported as
a possible trigger of the accelerated HIV-related atherosclerosis process
[117]. However, since no clear mechanisms have been described
identifying non-traditional CV risk factors, elevated PCSK9 levels may
provide another cue to an improved understanding [118]. Indeed, in
HIV+ patients not on antiretroviral therapy (ART), PCSK9 levels were
significantly elevated compared to matched HIV− subjects, an effect
not related to the ART. Interestingly, PCSK9 associates with infection
severity only when patients are not on ART, whereas it is lost after ART
initiation. In spite of this dichotomy, no statistical correlations between
PCSK9 and hs-CRP or IL-6 were found in HIV+ patients either before or
after ART initiation [119]. Quite similar conclusions were reached in
HIV/HCV-coinfected patients [120] and in a Swiss cohort of HIV pa-
tients not on statin treatment [121]. In this last case, marijuana con-
sumption and low CD4 values were associated with higher PCSK9 le-
vels, although PCSK9 did not correlate with hs-CRP or other
inflammatory markers, e.g. IL-8 or IL-10. Altogether this evidence
highlights that the expression of PCSK9 may be altered by the in-
flammatory milieu, as in the case of patients with sepsis [122] or in
those with severe trauma injury [123]. Currently, two trials with PCSK9
inhibitors are being carried out: (i) the EPIC-HIV (effect of PCSK9 in-
hibition on CV Risk in treated HIV Infection) study evaluating the effect
of alirocumab on vascular inflammation, endothelial function, and non-
calcified plaques and (ii) the BEIJERINCK (Evolocumab Effect on LDL-C
Lowering on Back-ground Statin Therapy) study testing the efficacy of
evolocumab in HIV+ subjects with hyperlipidemia and/or mixed dys-
lipidemia.

A further case is that of diabetic patients, not only at an increased
risk of developing ASCVD but encountering worse outcomes when
ASCVD is already present. Specifically, type 2 diabetic patients show a
rise in levels of markers and mediators of inflammation and acute-phase
reactants including CRP, IL-6 and fibrinogen [124]. Considering that in
insulin-resistant patients PCSK9 associates with the secretion rate of
intestinal lipoproteins and that PCSK9 loss-of-function carriers have
reduced levels of fasting and postprandial TG [125], this may be the
mechanism through which PCSK9 may mediate the atheroma in-
flammatory burden in diabetics. Indeed, TRL remnants induce en-
dothelial dysfunction, inhibit fibrinolysis, and enhance coagulation and
vascular inflammation [38]. Aside from the post-hoc analysis of the
FOURIER study showing that evolocumab in patients with diabetes
resulted in higher absolute risk reduction in the primary endpoint/
coronary revascularization, i.e. −2.7% in patients with diabetes vs
−1.6% reduction in non-diabetic patients [126], results of the recent
BANTING (The evolocumaB efficAcy aNd safeTy IN type 2 diabetes
mellitus on backGround statin therapy) study supports the efficacy and
safety of evolocumab in patients with type 2 diabetes mellitus, hy-
perlipidemia or mixed dyslipidemia. Among 280 out of 421 individuals
given evolocumab for 12 weeks, LDL-C was decreased by 54–65% and
non-HDL-C by 47–57%, more patients reaching an LDL-C<70mg/dL
or an LDL-C reduction ≥50%. A benefit was also found for Lp(a)
(−32.6%), triacylglycerol (−13.7%) and VLDL-C (−13.3%), findings
confirmed in the post-prandial state [127]. The consistency of these
findings also relies on the recent knowledge highlighting how in high-
risk patients with diabetes and already at statins, an incremental

Table 3
Analyses of the SPIRE-1 and -2 studies according to hs-CRP and LDL-C strata.

SPIRE-1 and -2 101

hs-CRP strata
(mg/L)

HR for future CV
events

LDL strata
(mg/dL)

HR for future CV
events

< 1 (0.7; 0.4-1.2) 1 (REF) < 30 1 (REF)
1-3 (1.8; 1.1-2.9) 1.16 (0.81 – 1.66) 30-50 0.87 (0.62 – 1.22)
> 3 (4.7; 2.7-7.6) 1.62 (1.14 – 2.30) > 50 1.21 (0.87 – 1.68)

REF, reference value.
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attainment of ASCVD risk, independent of LDL-C changes, is observed
in patients experiencing the higher reductions of VLDL and their asso-
ciated cholesterol [128].

In the case of alirocumab, in ODYSSEY OUTCOMES study patients
with diabetes (28.8%) randomized to alirocumab had the largest ab-
solute risk reduction, i.e. 2.3% vs 1.2% in those with prediabetes or with
normal glycemia [129].

7. Discussion

Persistence of a high risk of CV events following ACS in optimally
drug and revascularization treated patients has indicated that other
variables may account for the increased risk [130]. Availability of novel
powerful lipid lowering agents, i.e. PCSK9 inhibitors in addition to
statins, allowed to evaluate their activity on both lipids and in-
flammatory markers, that are mainly characterized by elevated levels of
hs-CRP, a biomarker of CV risk although not playing a clear causal role
in atherosclerosis. Another still debated issue is the clinical relevance of
measuring circulating PCSK9 levels. Indeed, this protein is closely
regulated at the transcriptional and translational levels, leading to
concentrations varying over an approximately 100-fold range (re-
viewed in Ref. [109]). In a large Swiss multicenter cohort of patients
hospitalized for ACS, higher PCSK9 levels were associated with a higher
degree of inflammation, as assessed by hs-CRP, but they did not predict
mortality at 1 year. Conversely, data from an observational study did
not find any association between PCSK9 and hs-CRP in spite of a po-
sitive association with the severity of coronary artery lesions [131,132].
In a most recent study PCSK9 levels were found to predict the occur-
rence of ACS in patients with severe carotid artery stenosis, the best
predictive values being above 431.3mg/dL [133].

Again on a pharmacological clinical approach, in spite of the gen-
eral suggestion that PCSK9 inhibitors should be recommended only
after an initial 2–3 month run-up treatment adaptation with maximally
tolerated statin doses, an earlier initiation of PSCK9 mAb treatment
may be justified by the evidence that in the acute phase of ACS PCSK9
may raise coronary plaque vulnerability, inflammation and platelet
aggregation [130]. Findings from the EVOPACS [EVOlocumab for Early
Reduction of LDL-cholesterol Levels in Patients With Acute Coronary
Syndromes (NCT03287609)] trial will certainly shed light on this
matter [134].

The two major variables resulting from lipid lowering medications,
i.e. reduction of LDL-C and hs-CRP in ASCVD patients appear to be
additive as independent predictors [135,136]. In major statin trials, e.g.

the JUPITER study with rosuvastatin, maximal benefit was observed in
patients achieving reduced levels of both variables, i.e. LDL-C<70mg/
dL and hs-CRP<2mg/L. The validity of this conclusion has been
confirmed by statin and non-statin ttherapies aimed at lowering LDL-C,
e.g. the PROVE-IT trial showing that patients who attained LDL-C below
70mg/dL and hs-CRP<2mg/dL derived the largest clinical benefit
[137]. The successful achievement of the dual goal was highlighted
again in the IMPROVE-IT study in which patients achieving both targets
had lower recurrence of CV events than those meeting neither, i.e.
−38.9% vs −28.0%, respectively [138]. Since concomitant reductions
of hs-CRP and LDL-C appear to lead to maximal benefit [139], appro-
priate clinical studies, e.g. with a 2X2 factorial design, with aggressive
LDL-C-lowering and anti-inflammatory therapies are eagerly awaited
[140]. This hypothesis has become of critical interest after the di-
vergent conclusion of the REGARDS (Reasons for Geographical and
Racial Differences in Stroke) study in which in high-risk patients the
variable mainly associated with a CV risk reduction was hs-CRP <
2mg/dL with no further protective effect when LDL-C was<70mg/dL
[141]. Indeed, the two variables appear to be linked to different mor-
phological vascular outcomes. Whereas reduced hs-CRP is linked to
anatomical changes in the atheroma [88,142], i.e. reduced percent
necrotic core and absence of thin cap macroatheroma, this is not found
with just LDL-C changes [89]. In the virtual histology evaluation of the
GLAGOV study with evolocumab, this did not lead to meaningful re-
ductions in hs-CRP levels [89]. Interpretation of findings from the
GLAGOV study, however, should consider that coronary patients were
on statin background, and that HMGCo-A reductase inhibitors are as-
sociated per se with a slower progression of coronary atheromas, with
increased plaque calcification and reduction of high-risk plaque fea-
tures [143]. In the near future, findings from other ongoing RCTs will
certainly shed light on the correlation between PCSK9 inhibition and
plaque regression.

8. Conclusions

In the context of an optimal treatment strategy aimed at reducing
CV risk, it is useful to identify effects that are specific or shared by
either lipid lowering drugs, or anti-inflammatory drugs or a combina-
tion of both [139,144]. Moreover, since association studies do not ne-
cessarily imply a causal role of PCSK9 in the inflammatory response
[145] and data from carriers of loss-of-function mutations in PCSK9,
aimed to establish a correlation between plasma inflammation markers
and PCSK9 levels are scanty and not conclusive [146,147], evidence

Fig. 2. Presence of PCSK9 in the atheroma upon in-
hibition by monoclonal antibodies or siRNA (in-
clisiran).
(Upper panel) Monoclonal antibodies bind PCSK9
leading to its circulation in immune complexes either
free or bound to LDL. These complexes may enter
atheromas. (Lower panel) siRNA does not affect the
local production of PCSK9 by macrophages and
smooth muscle cells in the atheroma, but it reduces
the amount of circulating PCSK9 penetrating pla-
ques. mAbs, monoclonal antibodies; siRNA, silencing
RNA. Modified with permission from Elsevier [111].
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from the effects of anti-inflammatory molecules on PCSK9 levels might
help to unravel this hitherto complex tangle.
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