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ABSTRACT Acinetobacter baumannii is an important Gram-negative pathogen in
hospital-related infections. However, treatment options for A. baumannii infections
have become limited due to multidrug resistance. Bacterial virulence is often associ-
ated with capsule genes found in the K locus, many of which are essential for bio-
synthesis of the bacterial envelope. However, the roles of other genes in the K locus
remain largely unknown. From an in vitro evolution experiment, we obtained an iso-
late of the virulent and multidrug-resistant A. baumannii strain MDR-ZJ06, called
MDR-ZJ06M, which has an insertion by the ISAba16 transposon in gnaA (encoding
UDP-N-acetylglucosamine C-6 dehydrogenase), a gene found in the K locus. The iso-
late showed an increased resistance toward tigecycline, whereas the MIC decreased
in the case of carbapenems, cephalosporins, colistin, and minocycline. By using knockout
and complementation experiments, we demonstrated that gnaA is important for the
synthesis of lipooligosaccharide and capsular polysaccharide and that disruption of the
gene affects the morphology, drug susceptibility, and virulence of the pathogen.
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Acinetobacter baumannii is considered an important opportunistic Gram-negative
pathogen, causing a wide range of nosocomial infections as well as septicemia,

meningitis, pneumonia, and urinary tract infections. A critical issue for clinical treatment
is the increasing number of A. baumannii strains displaying multidrug resistance to
most first-line antibiotics (1–3), with reports of strains for which almost all available
antimicrobials are ineffective (4, 5). Therefore, new antibiotics against these resistant
strains are urgently needed.

The asymmetric architecture of the outer membrane plays a crucial role in Gram-
negative bacteria since the impermeability of the outer membrane provides an intrinsic
barrier to various antimicrobials. Intact lipopolysaccharide (LPS) is composed of three
distinct moieties—the lipid A anchor, core oligosaccharide, and O antigen (6). However,
A. baumannii does not contain an O antigen; thus, the surfaces of A. baumannii cells
display lipooligosaccharide (LOS) only. The presence of lipid A is essential for the
LPS/LOS molecule because it serves as a membrane anchor. Therefore, inhibition of
lipid A biosynthesis results in cell death, making proteins involved in this process
potential targets for novel antibacterial compounds. Studies have shown that LpxC
inhibitors can disturb the first step of lipid A biosynthesis. As a consequence, TLR4 is not
activated in host cells, and opsonophagocytic killing of bacteria is enhanced, but LpxC
inhibition also results in increased antibiotic susceptibility of bacteria (7–9).

In addition to LOS, capsular polysaccharide (CPS) plays a crucial role in the patho-
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genicity of bacteria. CPS has been recognized as one of the most important virulence
factors (10, 11). The genes for capsule synthesis are located in the K locus in A.
baumannii, with the K locus generally displaying high variability. In addition to the
genes associated with the formation of CPS, the K locus also contains genes for
nucleotide-sugar biosynthesis (12). Although the importance of the K locus for the
pathogenicity of bacteria has been widely reported, the genes involved in the synthesis
of simple UDP-linked sugars and sugar precursors in A. baumannii have been neglected
in most studies.

In this work, we identified a new gene called gnaA (BGV75_06155) in an in vitro
evolution experiment using increasing concentrations of tigecycline. We characterized
the effects of the gene on antimicrobial susceptibility, bacterial morphology, mem-
brane potential and permeability, LOS formation, and virulence in A. baumannii. Based
on the impact that gnaA disruption had on the bacterial phenotype, we propose that
the gene product might be a valuable drug target for the development of novel antibac-
terial compounds.

RESULTS
Gene mutations detected in the mutant strain. Using the multidrug-resistant A.

baumannii strain MDR-ZJ06, we performed a laboratory evolution experiment in which
the concentration of tigecycline was doubled every day, starting from 0.5� MIC. After
7 days, at 32� MIC, a culture termed “T7” was obtained, with no growth observed in
a subculture into medium with 64� MIC tigecycline. After streaking out a sample from
a frozen aliquot of culture T7 on solid medium without tigecycline, we randomly
selected one colony and grew a culture from this clone, designated MDR-ZJ06M. To
detect potential mutations, we compared the genomes of MDR-ZJ06M (see the sup-
plemental material) and its parental isolate MDR-ZJ06. We found the mutant to be
isogenic with MDR-ZJ06, with the exception of an insertion in the gene BGV75_06155,
which was verified by PCR amplification and Sanger sequencing. Comparative genomic
analysis showed that gnaA (BGV75_06155) was interrupted by the transposon ISAba16
and that this mutation was the only difference between the two strains. gnaA is located
in the K locus in A. baumannii and is associated with the synthesis of simple UDP-linked
sugars (12). gnaA encodes UDP-N-acetylglucosamine C-6 dehydrogenase, which catalyzes
the conversion of UDP-N-acetyl-D-glucosamine to UDP-N-acetyl-D-glucosaminuronic acid.

An 8-bp target site duplication of the gnaA gene encoding the sequence GAATTACA
was found at the 5= and 3= ends of ISAba16, causing insertional inactivation of gnaA
(Fig. 1). As the insertion site was close to the end of the gene, we posed the question
of whether the ISAba16 insertion affected the function of the enzyme. Insertion analysis
revealed that ISAba16 had the left inverted repeat 5=-GTAAGCATCCGGCTAA-3= and the
right inverted repeat 5=-TTCAGCGGACGCTTAC-3=. The insertion sequence ISAba16 con-
sisted of three open reading frames (ORFs) encoding transposases A, B, and C. ISAba16
belongs to the IS66 family, which displays at least three ORFs (13).

A novel gene mutation in the K locus leads to altered antibiotic susceptibility.
Compared with MDR-ZJ06, MDR-ZJ06M (MDR-ZJ06 gnaA::ISAba16) showed increased
susceptibility to imipenem, meropenem, ceftazidime, cefepime, colistin, and minocy-
cline. To identify whether gnaA was responsible for susceptibility, both knockout and
complementation experiments were performed. MDR-ZJ06M and the MDR-ZJ06 knock-
out strain (MDR-ZJ06KO) were transformed with a plasmid that encoded wild-type gnaA,

FIG 1 Schematic representation of the gnaA gene. (A) Wild-type gnaA in MDR-ZJ06. (B) A disrupted gnaA
gene was generated due to an insertion of the transposon ISAba16. An 8-bp target site duplication of the
gnaA gene encoding the sequence GAATTACA was observed at the 5= and 3= ends of ISAba16.
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which recovered the MICs for imipenem, meropenem, ceftazidime, cefepime, minocy-
cline, and colistin partly or completely (Table 1). Both strains, MDR-ZJ06M and MDR-
ZJ06KO, shared similar susceptibility to these drugs. Notably, even though MDR-ZJ06
harbored blaOXA-66, blaOXA-23, and blaADC-25, the inactivation or deletion of gnaA made
the strains susceptible to carbapenems and cephalosporins again (compared to the
parental strain MDR-ZJ06), as MDR-ZJ06M became sensitive to imipenem and mero-
penem, and MDR-ZJ06KO became meropenem intermediate. Interestingly, when MDR-
ZJ06KO was complemented with the fragment of gnaA found in MDR-ZJ06M, the
complementation produced similar findings, indicating that the residual gnaA in MDR-
ZJ06M may not produce a functional gene product.

By selecting against tigecycline in our laboratory evolution experiment, we would
expect a high tolerance toward this antimicrobial compound. After testing the isolate
for sensitivity toward tigecycline, albeit under different conditions from those of the in
vitro evolution experiment (broth microdilution method), we found that the MICs
increased only slightly from 2 to 4 mg/liter; such an increase could be considered a
normal variation. We believe that the increased tolerance for the antibiotic was a result
of an adaptation process during the evolution experiment (details discussed below).

A. baumannii gnaA plays an important role in membrane integrity and mor-
phology. Membrane potential (MP) is an electrochemical gradient across a biological
membrane and has been detected in all bacteria (14). MP is vital to the physiology of
cells because it is involved in many processes, including the metabolism, autolysis, and
survival of a cell. In Gram-negative bacteria, LPS is mainly responsible for the surface
charge (15). This study showed that MPs in the gnaA-deficient/deletion strains were
significantly higher than those in the wild-type strain (P � 0.0003 and P � 0.0007,
respectively). Furthermore, the MP of the gnaA-deficient/deletion strains decreased
after complementation with the wild-type gnaA in MDR-ZJ06. After complementation
with the residual gnaA in MDR-ZJ06M, the MP of the complemented strain remained at
a high level (Fig. 2A).

Gram-negative bacteria are resistant to many antimicrobial agents as a result of the
effective permeability barrier function of the outer membrane. To evaluate the perme-
ability properties of this barrier, To-Pro-3 was used to assay membrane permeability
since it is excluded from cells with intact membranes but stains nucleic acids in cells
with damaged membranes. The membrane permeability assay showed that the per-
meability of the gnaA-deficient/deletion strains was significantly higher than that of
MDR-ZJ06 (P � 0.0037 and P � 0.0036, respectively), which correlated with the change
in antimicrobial susceptibility. By complementing in trans, the complementation
strains (wild-type gnaA) restored the barrier function. However, no significant
difference between MDR-ZJ06KO and MDR-ZJ06KO/pYMAb2-part gnaA could be
observed (P � 0.6671) (Fig. 2B). Overall, we showed that the membrane of A. baumannii
MDR-ZJ06 was significantly influenced by gnaA, as an incomplete gnaA (resulting in the
expression of a fragment of the protein) increased the MP and caused damage to the

TABLE 1 Antimicrobial susceptibility of A. baumannii MDR-ZJ06 and gnaA-deficient/deletion
strains

Strain

MIC (mg/liter) for:a

IPM MEM CAZ FEP CST AMK GEN MIN TGC

MDR-ZJ06 32 16 �256 �256 1 �512 �512 �256 2
MDR-ZJ06M 2 2 32 48 0.125 �512 �512 12 4
MDR-ZJ06M/pYMAb2-hyg 2 2 32 32 0.0625 �512 �512 16 4
MDR-ZJ06M/pYMAb2-gnaA 16 8 64 96 2 �512 �512 �256 4
MDR-ZJ06KO 8 4 48 64 0.0625 �512 �512 12 4
MDR-ZJ06KO/pYMAb2-hyg 4 4 48 64 0.0625 �512 �512 8 4
MDR-ZJ06KO/pYMAb2-part gnaA 4 4 32 24 0.0625 �512 �512 8 4
MDR-ZJ06KO/pYMAb2-gnaA 16 16 64 32 0.5 �512 �512 �256 4
aIPM, imipenem; MEM, meropenem; CAZ, ceftazidime; FEP, cefepime; CST, colistin; AMK, amikacin; GEM,
gentamicin; MIN, minocycline; TGC, tigecycline.
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membrane. The effects that the inactivation or fragmentation of gnaA have on the
membrane are likely to also lead to the differences that were observed in antimicrobial
susceptibility testing.

To determine the effect of gnaA on bacterial morphology, scanning electron mi-
croscopy (SEM) was conducted to identify morphological changes caused by gnaA. As
shown in Fig. 3, MDR-ZJ06 exhibited a symmetrical, noncurved, and rod-shaped
morphology, while the gnaA-deficient/deletion strains looked smaller, bent, and reni-
form. After complementation with a plasmid-encoded wild-type gnaA, the strains
regained the large and straight rod shape, whereas reniform bacteria were rarely
observed. In contrast, the MDR-ZJ06KO/pYMAb2-part gnaA strain exhibited a more
irregular morphology than that of the gnaA-deficient/deletion strains (see Fig. S2 in the
supplemental material).

The gnaA mutation changes the composition of LOS and CPS in A. baumannii.
To investigate the change in phenotype described above, we extracted the surface
polysaccharides of the strains and separated them on a 10% SDS-polyacrylamide gel
and a 4% to 20% Tris-glycine gel. After silver staining, we observed one band that was
different between the genotypes. In the gnaA-deficient/deletion strains (lanes 2 and 5),
the band was absent but could be observed again when the strain was complemented
with wild-type gnaA (lanes 4 and 8), yielding an identical pattern to that of MDR-ZJ06
(lane 1) (Fig. 4A). However, when complemented with a truncated version of gnaA (lane
7), the knockout strain did not result in a full restoration of the LOS pattern. This result
suggested that only the full-length gnaA gene is able to allow a wild type-like LOS
composition. In addition, when detecting capsular polysaccharides, little difference
between wild-type and incomplete gnaA was observed (Fig. 4B). India ink staining also
showed that all strains displayed a thin capsule, while no obvious difference was
observed by microscopy (Fig. 4C).

Virulence assay in Galleria mellonella. To address the effect of gnaA on LOS and
possible implications on the virulence of A. baumannii, we performed experiments
using the G. mellonella model. Half of the larvae died by 12 h after injection with
MDR-ZJ06, which was similar to the result for the control AB5075 (P � 0.6628) (Fig. 5).
However, over 80% of larvae were still alive on day 3 after infection with the mutant or
knockout strain of MDR-ZJ06. The gnaA-deficient/deletion strains were both less viru-

FIG 2 Membrane potential and membrane permeability assay. Each strain was tested in triplicate, and the data were calculated based on three independent
experiments. A normalized permeability parameter from the ratio of To-Pro-3 fluorescence to green DiOC2(3) fluorescence was derived. The mean � standard
deviation (SD) is shown; the mean differences were analyzed using Student’s t test. *, P � 0.05; **, P � 0.01; ***, P � 0.001.
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lent than MDR-ZJ06 in the G. mellonella model (P � 0.0001). Virulence of the MDR-
ZJ06M strain increased after being complemented with a plasmid-encoded wild-type
gnaA, with a significant difference between MDR-ZJ06M and MDR-ZJ06M/pYMAb2-gnaA
(P � 0.0015). However, the complementation did not restore virulence to the wild-type
level. Also, no difference was observed in virulence between MDR-ZJ06KO and MDR-
ZJ06KO/pYMAb2-gnaA (P � 0.2244), and their corresponding survival rates were similar.

FIG 3 Scanning electron microscopy images of MDR-ZJ06 wild-type, mutants, and plasmid-complemented strains (see
Materials and Methods). Scale bars are 5 �m on the left and 1 �m on the right. MDR-ZJ06 had a symmetrical and regular rod
shape, while the gnaA interruption or deletion strain looked smaller, bent, and reniform; the gnaA plasmid complement strain
displayed a larger and more symmetrical morphology.
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DISCUSSION

In this study, we obtained the A. baumannii mutant MDR-ZJ06M from an in vivo
evolution experiment where we doubled the concentration of tigecycline after each
subculturing step. To our surprise, the clone that we isolated from a culture grown at
32� MIC tigecycline did not contain an antibiotic resistance gene or a gene mutation
that conferred resistance to the bacterium. In contrast, the isolate contains a trans-
poson insertion in a gene that we found to be involved in the production of the cell
wall. MDR-ZJ06M shows only slight tolerance toward tigecycline, which is surprising

FIG 4 Effects of gnaA on surface polysaccharides, including LOS and CPS. (A) Silver-stained LOS from A. baumannii. Ten microliters of purified LOS was separated
on a 10% SDS-polyacrylamide gel and silver stained. The black arrow indicates the band described in the text. (B) Analysis of CPS separated by SDS-PAGE and
silver stained. (C) India ink staining of bacteria. Lanes 1 to 9 in panels A and B represent MDR-ZJ06, MDR-ZJ06M, MDR-ZJ06M/pYMAb2, MDR-ZJ06M/pYMAb2-
gnaA, MDR-ZJ06KO, MDR-ZJ06KO/pYMAb2, MDR-ZJ06KO/pYMAb2-part gnaA, MDR-ZJ06KO/pYMAb2-gnaA, and SDS buffer, respectively. M, Thermo Scientific
PageRuler Prestained Protein Ladder, 10 to 180 kDa.
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because it was obtained from a culture grown at a high tigecycline concentration.
However, when the selective pressure is removed by subculturing the bacterium in
antibiotic-free medium, the bacteriostatic activity of the compound arrests the growth
of the nonadapted bacterial culture. We hypothesize that during the in vitro evolution
experiment, the bacteria adapted by a yet unidentified mechanism, e.g., by increasing
the expression of drug efflux pumps. This explanation remains to be proven, possibly
by investigating gene and/or protein expression.

After obtaining this interesting isolate and comparing its sequence to that of the
parental strain, we found an insertion in a gene with unknown function, gnaA. In the
following work, we delineated the roles of the gnaA gene in the formation of surface
polysaccharides and analyzed its role in antimicrobial susceptibility, membrane com-
position and stability, as well as the morphology and virulence of the bacterium A.
baumannii. We also reanalyzed the multidrug resistance of MDR-ZJ06, where we could
demonstrate that the wild-type strain is not only carbapenem resistant but also
virulent. The gnaA gene has a major impact on both, as its disruption changed the
virulence and membrane composition of the bacterium, in turn altering its antibiotic
susceptibility.

MDR-ZJ06 is a representative multidrug-resistant isolate that belongs to global
clone 2 and is a widely occurring strain in China (16, 17). The whole-genome sequence
belonged to one of the earliest submissions to sequence databanks and is frequently
used in comparisons in studies involving A. baumannii. However, the sequence con-
tained some sequencing errors due to the technical limitations at that time. Therefore,
we recently resequenced the strain using the PacBio platform and assembled and
submitted the revised sequence (18), which was used in this study. During our
laboratory evolution experiment, a mutation was detected in the gnaA gene, which is
located in the K locus of A. baumannii. The gene codes for an enzyme that is responsible
for the synthesis of simple UDP-linked sugars (12). While gnaA was found in the K locus
in A. baumannii, in other Gram-negative bacteria, homologs of the gene are widely
distributed within their genomes. Many studies have focused on the relationship
between the K locus and capsule formation in A. baumannii; Russo et al. found that the

FIG 5 Kaplan-Meier survival curve showing the virulence of individual isolates in G. mellonella. G. mellonella larvae (n � 30)
were inoculated with 106 CFU of AB5075, MDR-ZJ06, and mutants of MDR-ZJ06. Survival was monitored every 12 h for
3 days.
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genes wza and wzc, found in the K locus, are required for a capsule-positive phenotype
and that the capsule was an important protectin for bacterial survival (11). The function
of gnaA in other Gram-negative bacteria has been found to be associated with the
biosynthetic pathway of O antigens. Wang et al. first identified that gnaA was
responsible for UDP-D-ManpNAc3NAcA biosynthesis in Escherichia coli, while UDP-
D-ManpNAc3NAcA is the activated form of UDP-D-ManpNAc3NAcA first identified in
the E. coli O antigen (19). Miller and colleagues found that the homologue of gnaA in
Pseudomonas aeruginosa PAO1, wbpA, is involved in the biosynthesis of di-N-acetylated
mannosaminuronic acid-derived residues of the B band O antigen, and the substrate
UDP-D-GlcNAc is crucial for bacterial polysaccharide biosynthesis (20). The O antigen
plays an important role in the colonization of host tissue and resistance or susceptibility
in bacteria (21–24). For example, galE, a gene encoding UDP-galactose 4-epimerase
that catalyzes the conversion of UDP-galactose to UDP-glucose was confirmed to be
involved in biofilm formation and morphology but also the susceptibility to multiple
antibiotics and can be correlated with the length of the LPS O antigen in Porphyromo-
nas gingivalis (25).

Due to the lack of an O antigen in A. baumannii, gnaA from this organism has not
been conclusively investigated. However, studies on the LOS of other pathogens,
including Haemophilus ducreyi, Campylobacter jejuni, and Moraxella bovis, have been
instrumental in demonstrating the relevance of LOS in the pathogenesis of the diseases
caused by these microbes (26–29). Bauer et al. found that gmhA is essential for the
synthesis of LOS in H. ducreyi, and the gene affects virulence in a temperature-
dependent way in a rabbit model for experimental chancroid (29). Another study on H.
ducreyi found that waaQ and lgtF mutations would produce truncated LOS molecules,
which in turn led to pyocin resistance (28). Keo et al. found that LOS of Campylobacter
jejuni plays a very important role in protection against cationic antimicrobial peptides
and proteins (26). In addition, Singh et al. reported that Moraxella bovis LOS truncation
leads to reduced bacterial attachment, increased sensitivity to the bactericidal activity
of bovine serum, and a reduction in endotoxin activity (27).

In this study, we described that gnaA affects the formation of surface polysaccha-
rides and that mutations in gnaA cause differences in the degree of virulence of A.
baumannii. We demonstrated that gnaA affects the composition of LOS and CPS, an
observation that is consistent with the changes observed in the study of Geisinger and
Isberg that correlated K-locus gene expression, including gnaA, with the composition of
LOS (30), yielding similar patterns of LOS molecules in both studies. In addition, our
study showed that membrane potential and permeability are also affected by muta-
tions in the gnaA gene, which in turn is responsible for susceptibility to certain types
of antimicrobial agents.

The major component of LOS is lipid A. Modification of the molecule or the
deficiency in lipid A synthesis affects bacterial survival and the immune response of
the host. Therefore, proteins involved in lipid A synthesis, such as LpxC, have been
identified as targets to inhibit lipid A biosynthesis (6). Inhibitors are being developed as
antimicrobial agents, and some showed promising antibacterial activity against Gram-
negative species, including Pseudomonas aeruginosa, Escherichia coli, and Klebsiella
pneumoniae, while exhibiting poor in vitro activity against A. baumannii (31). However,
LpxC inhibitors have a positive influence on A. baumannii clearance in vivo, as they
increase cell permeability, increasing antibiotic susceptibility (7, 9). Our study showed
that gnaA has an important role in the synthesis of LOS in A. baumannii, with drastic
consequences on the phenotype of a virulent multidrug-resistant strain. Using inhibi-
tors that inactivate gnaA might be a valuable strategy to combat multidrug-resistant A.
baumannii infections. Toward this goal, one of the first steps would be to identify the
active sites of the enzyme and to develop a drug-screening assay.

This study had certain limitations, as we did not conduct the complementation
experiments in situ. In our work, we could restore phenotypes by complementation
experiments, with the exception of the virulence assay in the G. mellonella infection
model. The expression of the complementation plasmid is difficult to monitor in G.
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mellonella, and thus an explanation might be that the plasmid could have been lost
under the experimental conditions used. Nonetheless, we still observed a difference in
the virulence of the wild-type MDR-ZJ06 strain compared to that of MDR-ZJ06M. To
better understand the enzymatic reactions in which gnaA is involved, there is a need to
study the entire biosynthesis pathway of LOS in A. baumannii in detail.

In this work, we recharacterized MDR-ZJ06 as a virulent and multidrug-resistant
strain. The gene gnaA (BGV75_06155), which we identified in an evolution experiment,
had a major impact on the synthesis of LOS and CPS, which also affected the physiology
and morphology of the bacterial strain. The gnaA-deficient or deletion strains showed
increased sensitivity to multiple drugs and exhibited reduced virulence in a G. mello-
nella model. Therefore, we think that this gene has the potential to be a valuable drug
target for multidrug-resistant A. baumannii infections.

MATERIALS AND METHODS
Bacterial strains, plasmids, and MICs. The strain MDR-ZJ06 was isolated in a previous study (16)

while MDR-ZJ06M was obtained from a laboratory evolution experiment. All isolates used in this study
(Table 2) were cultured in Mueller-Hinton agar plates or broth (Oxoid, Hampshire, UK) and Luria-Bertani
(LB) broth (Sangon Biotech, Shanghai, China) at 37°C overnight. The MICs of tigecycline and colistin were
determined using the broth microdilution method according to the guidelines recommended by the
Clinical and Laboratory Standards Institute (CLSI) (32). Other antimicrobial MICs were determined using
Etest strips (AB bioMérieux, France) for the following antibiotics: imipenem, meropenem, ceftazidime,
cefepime, minocycline, amikacin, and gentamicin.

Laboratory evolution experiment. A laboratory evolution experiment was performed as previously
described (33). Briefly, a single colony of MDR-ZJ06 was cultured in 2 ml of LB broth overnight at 37°C.
The culture was exposed to increasing concentrations of tigecycline, starting at 0.5� MIC and subse-
quently doubling the amount every 24 h, with concentrations of 1�, 2�, 4�, 8�, 16�, and 32� MIC.
All of the overnight cultures were stored at �80°C. After 7 days of serial passage (5 �l of culture in 2 ml
of fresh medium), the final concentration reached 32� MIC. This culture was designated “T7” (see Fig. S1
in the supplemental material). No growth was observed after another step, with a concentration of 64�
MIC. Bacteria were streaked out from the frozen sample T7 on solid medium without antibiotic, and a
single colony (selected at random) was grown in liquid medium, again without antibiotic. This clone,
hereafter referred to as MDR-ZJ06M, was stored at �80°C.

Genomic DNA sequencing and analysis. The genomic DNA of MDR-ZJ06M was extracted using a
QIAamp DNA minikit (Qiagen Valencia, CA) following the protocol of the manufacturer. Gel electropho-
resis and a NanoDrop 2000 spectrophotometer (NanoDrop Technologies, Wilmington, DE) were used to
analyze the quality of genomic DNA. The genome was sequenced on an Illumina HiSeq platform
(Illumina, San Diego, CA, USA). In general, more than 300-fold coverage was obtained for the genome
sequences. Comparative genome analyses were performed with Breseq and Mauve (34, 35). A putative
mutation detected was confirmed by PCR and Sanger sequencing. The sequence type of the strain was

TABLE 2 Bacterial strains and plasmids used in this study

Strain/plasmid Descriptionc Source

Strain
MDR-ZJ06 Multidrug-resistant A. baumannii, wild-type strain 16
MDR-ZJ06M Selected isolate, gnaA::ISAba16 This study
MDR-ZJ06M/pYMAb2 MDR-ZJ06 gnaA::ISAba16/pYMAb2-Hygr, as a control This study
MDR-ZJ06M/pYMAb2-gnaA MDR-ZJ06 gnaA::ISAba16 constitutively expressing wild-type gnaA This study
MDR-ZJ06KO MDR-ZJ06 ΔgnaA This study
MDR-ZJ06KO/pYMAb2 MDR-ZJ06 ΔgnaA/pYMAb2-Hygr, as a control This study
MDR-ZJ06KO/pYMAb2-part gnaA MDR-ZJ06 ΔgnaA expressing residual gnaA from MDR-ZJ06M This study
MDR-ZJ06KO/pYMAb2-gnaA MDR-ZJ06 ΔgnaA expressing wild-type gnaA from MDR-ZJ06 This study
AB5075 A virulent clinical isolate 42

Plasmid
pACBSR-Hyg Template for amplification of the hygromycin resistance cassette 43
pYMAb2 E. coli-A. baumannii shuttle plasmid, Kmr 44
pYMAb2-Hygr Same as pYMAb2 but with an inserted hygromycin resistance cassette 45
pYMAb2-Hyg-gnaAa pYMAb2-Hyg derivative expressing gnaA This study
pYMAb2-Hyg-gnaAb pYMAb2-Hyg derivative expressing residual gnaA This study
pMo130-Telr Suicide plasmid, Kmr, Telr 46
pMo130-Hygr Same as pMo130-Telr, but with the Telr marker replaced by Hygr This study

aThe wild-type gnaA was amplified from MDR-ZJ06 and then cloned into the plasmid pYMAb2-Hygr.
bThe residual gnaA was amplified from MDR-ZJ06M (MDR-ZJ06 gnaA::ISAba16) and then cloned into the plasmid pYMAb2-Hygr.
cKm, kanamycin; Hyg, hygromycin; Tel, tellurite; r, resistance.
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analyzed using the PubMLST platform for A. baumannii (https://pubmlst.org/abaumannii/). Resistance
genes were detected by ResFinder (https://cge.cbs.dtu.dk/services/ResFinder/).

Gene knockout and complementation experiment. A knockout experiment was performed ac-
cording to our previous study (36) with slight modifications. To increase the efficiency of screening for
mutants, Telr was replaced by Hygr. Briefly, upstream and downstream sequences of gnaA were amplified
from MDR-ZJ06. The fragments containing homologous regions were cloned into the pMo130-Hygr

vector using a ClonExpress MultiS one-step cloning kit (Vazyme Biotech Co., Nanjing, China). Then, the
resulting plasmid was introduced into MDR-ZJ06 and selected on Mueller-Hinton agar containing
100 mg/liter hygromycin. The deletion mutant was confirmed through PCR and sequenced.

A complementation experiment was performed to evaluate the contribution of the mutation in
MDR-ZJ06M. Purified PCR products of the target gene were cloned into the pYMAb2-Hyg plasmid,
introducing BamHI and Sal� restriction sites. The recombinant plasmids were then introduced by
transformation into the mutant and deletion strains via electroporation and selected on Mueller-Hinton
agar containing 100 mg/liter hygromycin. All sequences were confirmed by Sanger sequencing.

Scanning electron microscopy. SEM was performed according to a procedure described elsewhere
(37) with minor modifications. Briefly, strains were grown overnight in Mueller-Hinton broth, diluted
1:100, and incubated in fresh broth to mid-log phase. Cells were harvested by centrifugation at 4,000 rpm
for 10 min, washed several times with phosphate-buffered saline (PBS) (pH 7.4), and centrifuged to
discard the liquid. Next, cells were fixed with 2.5% glutaraldehyde in the same buffer overnight at 4°C,
washed three times with 0.1 M PBS (pH 7.4), and then stained with 1.0% (wt/vol) osmium tetroxide. The
samples were again washed three more times and dehydrated in a series of graded ethanol solutions
(30% to 100%) before drying in a desiccator under vacuum. Imaging of the samples was performed using
Nova NanoSEM 450 (Thermo Fisher, USA).

Membrane potential and membrane permeability assays. Log-phase bacterial cultures were
diluted to approximately 1 � 106 cells/ml in filtered PBS without washing. Membrane potential (MP) was
measured as described previously (38). Membrane permeability was measured by 100 nM To-Pro-3
(Invitrogen, Thermo Fisher Scientific, USA), which stains nucleic acids in cells when the membrane is
damaged. The following controls were used: an unstained control, a depolarized control, and dead cells,
which were prepared by heating at 100°C for 10 min. All samples were incubated for 30 min at room
temperature and assayed by flow cytometry (BD). The raw To-Pro-3 fluorescence data were corrected for
size variation by calculating a quantity proportional to the logarithm of the ratio of the To-Pro-3
fluorescence to the green DiOC2(3) fluorescence, which is known to be proportional to size (39); the
logarithm of green fluorescence was subtracted from the logarithm of To-Pro-3 fluorescence, and a
constant was added to keep the values on scale.

Surface polysaccharide extraction and silver staining. Surface polysaccharides were purified by
hot aqueous phenol extraction according to Joanna B. Goldberg’s protocol (40). Ten microliters of
extracted samples were separated on a 10% SDS-polyacrylamide gel and a 4% to 20% Tris-glycine gel.
The gels were directly stained using a fast silver stain kit (Beyotime Biotechnology, China) according to
the manufacturer’s instructions.

Microscopy. Bacterial capsules were detected by the wet-film India ink method. Images were
acquired on a Nikon Eclipse 50i microscope (�100 magnification).

Galleria mellonella infection model. The G. mellonella survival assay was performed as previously
described (41). Log-phase cell cultures were centrifuged and resuspended in PBS to 108 CFU/ml. Ten
microliters of bacteria was injected into G. mellonella larvae. Larvae were incubated in dishes at 37°C, and
viability was assessed by checking for movement every 12 h. If larvae did not exhibit any movement
when prodded with a pipette tip, they were considered dead and typically turned dark brown or black.
Survival was monitored for 3 days.

Statistical analysis. Continuous variables with normally distributed data were compared with
Student’s t test, while Wilcoxon rank-sum tests were used for nonnormally distributed data. Kaplan-Meier
survival curves were carried out using GraphPad Prism 5, and statistical significance was calculated with
a log rank test.

Accession number(s). The genome of MDR-ZJ06M has been deposited at DDBJ/EMBL/GenBank
under the accession number QQQD00000000.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/AAC

.00694-19.
SUPPLEMENTAL FILE 1, PDF file, 0.7 MB.
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