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ABSTRACT

ENHANCEMENT OF DARK IMAGES AND VIDEOS VIA SET-BASED
LEARNING

Ahmet Serdar Karadeniz

Master of Science, Computer Engineering Department
Supervisor: Assoc. Prof. Dr. Mehmet Erkut ERDEM

September 2020, 71 pages

Capturing images under extremely low-light conditions poses significant challenges for the

standard camera pipeline. Images become too dark and too noisy, which makes traditional

enhancement techniques almost impossible to apply. Recently, learning-based approaches

have shown very promising results for this task since they have substantially more expres-

sive capabilities to allow for improved quality. Motivated by these studies, in this thesis, we

aim to leverage burst photography to boost the performance and obtain much sharper and

more accurate RGB images from extremely dark raw images. The backbone of our proposed

framework is a novel coarse-to-fine network architecture that generates high-quality outputs

progressively. The coarse network predicts a low-resolution, denoised raw image, which is

then fed to the fine network to recover fine-scale details and realistic textures. To further re-

duce the noise level and improve the color accuracy, we extend this network to a permutation

invariant structure so that it takes a burst of low-light images as input and merges information

from multiple images at the feature-level. Our experiments demonstrate that our approach

leads to perceptually more pleasing results than the state-of-the-art methods by producing

more detailed and considerably higher quality images.
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ÖZET

KARANLIK GÖRÜNTÜ VE VİDEOLARIN KÜME TABANLI
ÖĞRENME YÖNTEMİYLE İYİLEŞTİRİLMESİ

Ahmet Serdar KARADENİZ

Yüksek Lisans, Bilgisayar Mühendisliği
Danışman: Doç. Dr. Mehmet Erkut ERDEM

Eylül 2020, 71 sayfa

Aşırı düşük ışık koşullarında görüntü yakalamak, standart kamera hattı için önemli zor-

luklar yaratır. Görüntüler çok karanlık ve çok gürültülü olur, bu da geleneksel geliştirme

tekniklerinin uygulanmasını neredeyse imkansız hale getirir. Son zamanlarda, öğrenme

temelli yaklaşımlar bu problem için çok umut verici sonuçlar vermiştir, çünkü daha iyi

kaliteyi sağlamak için bu yöntemlerin için ifade gücü yüksektir. Bu yöntemlerden mo-

tive olarak, bu tez çalışmasında, iyileştirme performansını artırmak ve aşırı karanlık ham

görüntülerden daha keskin ve daha doğru RGB görüntüler elde etmek için seri çekimden

yararlanmayı hedefliyoruz. Önerilen yapının bel kemiği, aşamalı olarak yüksek kaliteli

çıktılar üreten yeni bir kabadan inceye ağ mimarisidir. Kaba ağ, daha sonra ince ölçekli

ayrıntıları ve gerçekçi dokuları kurtarmak için ince ağa beslenen düşük çözünürlüklü bir

ham görüntü öngörür. Gürültü seviyesini daha da azaltmak ve renk doğruluğunu artırmak

için, bu ağı, giriş olarak seri çekilmiş düşük ışıklı görüntüler alan ve nitelik düzeyinde birden

fazla görüntüden bilgi birleştirmesi yapan permütasyon değişmez bir yapıya genişletiyoruz.

Deneylerimiz, yaklaşımımızın en son yöntemlerden daha detaylı ve çok daha yüksek kalitede

görüntüler ürettiğini ve görsel olarak daha hoş sonuçlar verdiğini göstermektedir.
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GENİŞLETİLMİŞ ÖZET

Düşük ışık koşullarında fotoğraf çekmenin çeşitli zorlukları vardır. Temel zorluk, kame-

ra sensörleri tarafından ölçülen sinyal seviyesinin genellikle ölçümlerdeki gürültüden çok

daha düşük olmasıdır [1]. Gürültüye neden olan temel faktörler, kamera merceğine giren

foton sayısındaki değişimler ve sinyal okunurken meydana gelen sensör tabanlı ölçüm hata-

larıdır [2, 3]. Buna ek olarak, düşük ışıklı bir görüntüde bulunan gürültü, ince ölçekli yapıları

ve renk dengesi gibi çeşitli görüntü özelliklerini de etkileyerek görüntü kalitesini daha da

düşürür.

Düşük ışık koşullarında parlak fotoğraflar çekmek için kamera merceğinin açıklığının geniş-

letilmesi, pozlama süresinin uzatılması veya kamera flaşı kullanılması gibi doğrudan yaklaşım-

lar bulunur [1, 4]. Bununla birlikte, bu yöntemler, her birinin farklı dezavantajları olduğundan,

sorunu tamamen çözmez. Örneğin, açıklığın artırılması donanım kısıtlamaları ile sınırlıdır

veya flaş kullanıldığında, fotoğraf makinesine yakın nesneler uzaktaki nesnelerden daha fazla

aydınlık gözükür [5]. Uzun pozlama süreleriyle çekilen görüntüler, kameradaki sarsıntı veya

sahnedeki nesne hareketleri nedeniyle istenmeyen görüntü bulanıklığına neden olabilir [6].

Bu nedenle, literatürde, geleneksel gürültü giderme ve görüntü iyileştirme yöntemlerinden

öğrenmeye dayalı yaklaşımlara kadar düşük ışıklı görüntülerin kalitesini artırmaya çalışan

çok çeşitli çalışmalar yapılmıştır.

Görüntü arındırılması, gürültülü bir görüntüden temiz bir görüntüyü geri getirmenin amaç-

landığı görüntü işlemedeki klasik problemlerden biridir. Yıllar boyunca görüntüleri arındır-

mak için çeşitli yöntemler önerilmiştir [7–19]. Bu yaklaşımların çoğu, gürültü gidermek

üzerine bir model geliştirmek için Gauss gürültüsü olan görüntülere dayanır. Son zaman-

larda, gerçek gürültüler ile başa çıkabilen derin öğrenme tabanlı yöntemler önerilmiştir [3,

20]. Bununla birlikte, bu yaklaşımlar, standart gürültülü bir görüntüden daha zor olan aşırı

düşük ışıklı görüntüler için özelleşmemiştir. Görüntü iyileştirme, son birkaç yıl içinde derin

öğrenme ile büyük ilerleme kaydeden başka bir aktif araştırma alanıdır. [21–27]. Genel-

likle, bu yöntemler düşük dinamik aralıklı (LDR) görüntüler ile çalışır ve bu nedenle, kame-

ra işleme hattında biriken hatalar nedeniyle performansları da sınırlıdır. LDR görüntülerle
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karşılaştırıldığında, doğrudan fotoğraf makinesinden gelen ham görüntüler, daha fazla bilgi

içerdikleri ve minimum işlendikleri için aşırı düşük ışıklı görüntüleri iyileştirmek için daha

uygundur.

Aşırı karanlık görüntüleri iyileştirme bağlamında, Seeing in the Dark (SID) [28], standart

kamera hattının yerini alacak ilk öğrenme temelli girişimdir ve bir evrişimli sinir ağ (CNN)

modeli ile tek bir düşük ışıklı ham görüntüden iyileştirilmiş bir RGB görüntüsü üretir. Bu

amaçla, yazarlar kısa pozlama ile karanlık ham fotoğrafları ve bu fotoğraflara karşılık gelen

uzun pozlama referans fotoğrafları çekerek veri kümesini topladılar. Bu yöntem, kullanılan

mimarideki veya objektif fonksiyonundaki bazı değişikliklerle Maharjan ve diğerleri [29] ve

Zamir ve diğerleri [30] tarafından daha da geliştirilmiştir. Benzer şekilde, bu çalışmamızda,

tek görüntü geliştirme için yeni bir çok ölçekli mimari geliştiriyoruz ve görsel ve piksel bazlı

amaç fonksiyonlarını birleştirerek farklı bir objektif fonksiyonu kullanıyoruz. Ek olarak,

önceki yöntemler tek bir karanlık ham görüntüden bir RGB görüntüsü elde ederken, bu

çalışmada sahne ile ilgili birden fazla gözlemi birleştirerek sonuçların iyileştirilip iyileştirile-

meyeceğini araştırıyoruz.

Basamaklama yöntemi, fotoğrafçılıkta aynı sahnenin birkaç fotoğrafını hızla çekmeye da-

yanan, iyi bilinen bir tekniktir. Bu çekimler genellikle sahnenin özelliklerini farklı şekilde

yakalayan pozlama gibi bazı kamera ayarları açısından birbirinden farklıdır ve böylece yüksek

dinamik aralıklı (HDR) bir görüntü oluşturmak gibi uygulamalar için kullanılabilir. Po-

zlama basamaklamaya benzer bir teknik, seri çekimdeki her kareyi sabit bir pozlama ile

çekmektir [4]. Düşük ışık altında sürekli kısa pozlama ile çekildiğinde, bu görüntüler aynı

sahnenin farklı karanlık, gürültülü gerçekleşmelerini temsil eder. Doğal olarak, bize tek

bir karanlık görüntü ile karşılaştırıldığında sahne hakkında daha fazla gözlem sağlıyorlar.

Bu görüntülerin ortalamasının alınması gürültüyü azaltırken, sonuçlar her zaman tatmin

edici değildir. Bu nedenle, seri çekimdeki geçici pikselleri birleştirmek için farklı teknikler

önerilmiştir [1, 4, 31–36]. Bu yaklaşımlar arasında, [34–36], seri çekim görüntülerini

işlemek için öğrenme tabanlı yöntemler kullanır. Bu çalışmalarda, seri görüntüler CNN’ye

kanallar yoluyla birleştirilerek veya tekrarlayan bir şekilde beslenir. Bizim durumumuzda,

radikal olarak farklı bir yaklaşım öneriyoruz ve bu seri çekim görüntülerini permütasyon
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değişmez bir şekilde işlemenin basit ama daha etkili bir yaklaşım olduğunu gösteriyoruz.

Permütasyon değişmez yapılarda, seri çekim görüntülerinin sırası çıktıyı etkilemez ve buna

bağlı olarak daha doğru bir çıktı elde edilebilir. Önceki çalışmalar [28–30, 36], kayda değer

ilerleme göstermelerine rağmen, aşırı düzleştirme ve renk yanlışlıkları gibi yapaylıklardan

muzdaripler ve görüntüdeki ince ölçekli ayrıntıları kurtaramıyorlar.

Özetle, bu eksiklikleri hafifletmek için, bu çalışmada, bir sahnenin aşırı düşük ışıklı seri

çekim ham görüntülerini girdi olarak alıp iyileştirilmiş bir RGB görüntü oluşturan öğrenme

tabanlı bir yapı öneriyoruz. Bunun için, seri çekim karanlık görüntüleri eşzamanlı olarak

işleyebilen bir kabadan inceye permütasyon değişmez ağ mimarisi geliştiriyoruz.
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1. INTRODUCTION

Low-light image enhancement is one of the important tasks in image processing and com-

puter vision where the aim is to improve the quality of the images taken in the dark envi-

ronments. There are two main reasons for why low light image enhancement is important.

First, generating higher quality images by digital cameras leads to higher end-user satisfac-

tion. Hence, a number of camera and mobile-device companies recently developed different

imaging pipelines to address low-light image enhancement problem [1]. Second, low-light

conditions may introduce certain challenges for high-level vision tasks. Because of this, en-

hancing dark images is not only valuable for obtaining visually satisfying images but can

also improve the performance of other approaches that are effective for images captured in

ideal illumination environments.

Darkness of a scene is measured in terms of lumens per meter squared (lux). Descriptions

of the lux levels provided by Levoy [37] can be seen in Table 1.1., where scenes below

3 lux can be considered dark. In addition to the illumination conditions of a scene, camera

parameters also play an important role when capturing images in low-light. These parameters

are mainly ISO, aperture and shutter speed. As the shutter speed decreases, the amount

of the light entering the lenses of the camera increases which results in brighter images.

Similarly, aperture also affects the amount of light entering the lens. Another important

camera parameter is the ISO parameter which controls the sensitivity of the camera to the

light. When ISO increases, the resulting image becomes brighter since the camera becomes

more sensitive to the light.

Capturing images in low-light conditions is challenging – the main difficulty being that the

level of the signal measured by the camera sensors is generally much lower than the noise

in the measurements [1]. The fundamental factors causing the noise are the variations in

the number of photons entering the camera lens and the sensor-based measurement errors

occurred when reading the signal [2, 3]. In addition, noise present in a low-light image also
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Lux Description
30,000 Sidewalk lit by direct sunlight
1,000 Sidewalk on an overcast day
300 Typical office lighting
20 Restaurant with atmospheric light-

ing
3 Sidewalk lit by street lamps
1 Limit of reading a newspaper
0.6 Sidewalk lit by full moon
0.1 Wouldn’t walk through the house

without the flashlight

Table 1.1. Descriptions of lux levels [37]

affects various image characteristics such as fine-scale structures and color balance, further

degrading the image quality.

Direct approaches for capturing bright photos in low light conditions include widening the

aperture of the camera lens, lengthening the exposure time, or using camera flash [1, 4].

These methods, however, do not solve the problem completely as each of these hacks has its

own drawbacks. Opening the aperture is limited by the hardware constraints, and when the

camera flash is used, the objects closer to the camera are brightened more than the objects

or the scene elements that are far away [5]. Images captured with long exposure times might

have unwanted image blur due to camera shake or object movements in the scene [6]. Hence,

in the literature, there have been a wide range of studies which try to improve the quality of

low-light images, ranging from traditional denoising and enhancement methods to learning-

based approaches.

Image denoising is one of the classical problems in image processing, where the aim is to

restore a clean image from a noisy image. Several methods have been proposed over the

years to denoise images [7–19]. Most of these approaches rely on the images with Gaussian

noise for developing a denoising model. Recently, deep learning-based methods that can

deal with real image noise have been proposed [3, 20]. However, these approaches are not

specialized to extremely low-light images which are harder to restore than a standard noisy

image. Image enhancement is another active field of research, which has seen tremendous
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progress in the past few years with deep learning [21–27]. Usually, these methods work with

low dynamic range (LDR) input images and hence, their performance is also limited due to

the errors accumulated in the camera processing pipeline. When compared to LDR images,

raw images straight from the camera are more suitable to use for enhancing extremely low-

light images since they contain more information and are processed minimally.

In the context of enhancing extremely dark images, See-in-the-Dark (SID) [28] is the first

learning-based attempt to replace the standard camera pipeline, training a convolutional neu-

ral network (CNN) model to produce an enhanced RGB image from a single raw low-light

image. For this purpose, the authors collected a dataset of short-exposure, dark raw pho-

tos and their corresponding long-exposure references. Their method is further improved by

Maharjan et al. [29] and Zamir et al. [30] with some changes in the CNN architecture and

the objective functions utilized in training. In a similar fashion, in our study, we develop

a new multi-scale architecture for single image enhancement and use a different objective

by combining contextual and pixel-wise losses. While the previous methods obtain an RGB

image from a single dark raw image, we further explore whether the results can be improved

by integrating multiple observations regarding the scene.

Bracketing is a well-known technique in photography that relies on rapidly taking several

shots of the same scene. These shots usually differ from each other in terms of some cam-

era settings, e.g. exposure, which capture characteristics of the scene differently, and thus

they can be used for applications like constructing a high dynamic range (HDR) image. A

technique similar to exposure bracketing is shooting each frame in the burst sequence with a

constant exposure [4]. To our interest, when shot with a constant short exposure under low-

light, these images represent different dark, noisy realizations of the same scene. Naturally,

they provide us multiple observations about the scene when compared to a single dark im-

age. While simply averaging these images reduces noise, results are not always satisfactory.

For this reason, different techniques are introduced to merge the temporal pixels in the burst

sequence [1, 4, 31–36]. Among these approaches, [34–36] use learning-based methods to

process burst images. In these studies, burst images are fed to a CNN either by concatenat-

ing through channels or in a recurrent fashion. In our case, we propose a radically different
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approach and show that processing these burst images in a permutation invariant manner is a

simple yet more effective approach. The order of burst images does not affect the output, and

accordingly a more accurate output can be obtained. In Fig. 1.1., we present the results of

the aforementioned extremely low-light image enhancement models along with our results.

The multiple image enhancement models, which either employ burst imagery or integrate

ensemble of enhanced images, give superior results than their single image counterparts, yet

they still suffer from artifacts such as over-smoothing, and fail to recover fine-scale details

in the image. Despite the remarkable progress of previous studies [28–30, 36], this example

image demonstrates that there is still large room for improvement, regarding various issues

such as unwanted blur, noise and color inaccuracies in the end results – especially for the

input images which are extremely dark.

In a nutshell, to alleviate these shortcomings, in this thesis, we propose a learning-based

framework that takes a burst of extremely low-light raw images of a scene as input and

generates an enhanced RGB image. In particular, we develop a coarse-to-fine network archi-

tecture which allows for simultaneous processing of a burst of dark raw images as input to

obtain a high quality RGB image.

Our main contributions are summarized as follows:

• We introduce a multi-scale deep architecture for image enhancement under extremely

dark lighting conditions, which consists of a coarse-scale network and a fine-scale

network.

• We further extend our coarse-to-fine architecture to design a novel permutation invari-

ant CNN model that predicts an enhanced RGB image by integrating features from a

burst of images of a dark scene.

• Our experiments demonstrate that our approach outputs RGB images with less noise

and sharper edge details than those of the state-of-the-art methods. These are vali-

dated quantitatively based on several quality measures in both single-frame and burst

settings.
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SID	(E)	[28] Maharjan	et	al.	(E)	[29] Zamir	et	al.	(E)	[30]

Ma	et	al.	(B)	[36] Ours	(B) Ground	Truth

Zamir	et	al.	(S)	[30]

Ours	(S)

SID	(S)	[28]

Maharjan	et	al.	(S)	[29]

Figure 1.1. A sample result obtained with our proposed burst-based extremely low-light image en-
hancement method. The standard camera output and its scaled version are shown at the
top left corner. For comparison, the zoomed-in details from the outputs produced by
the existing approaches are given in the subfigures. The results of the single image en-
hancement models, denoted with (S), are shown on the right. The results of the multiple
image enhancement methods are presented at the bottom, with (B) denoting the burst
and (E) indicating the ensemble models. Our single image model recovers finer-scale de-
tails much better than its state-of-the-art counterparts. Moreover, our burst model gives
perceptually the most satisfactory result, compared to all the other methods.
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2. RELATED WORK

Low-light images show different characteristics due to the lighting conditions of the environ-

ments, and the noise and/or motion blur they contain. In general, the approaches for low-light

image processing can be divided into two groups, with respect to the darkness levels of the

input images: (i) low-light image enhancement, and (ii) extremely low-light image enhance-

ment. Generic low-light image enhancement methods refer to the approaches that restore

the perceptual quality of images taken under poor illumination conditions, which suffer from

low visibility. Enhancement models for extremely low-light images, on the other hand, deal

with images captured under more severe conditions, which cannot be handled by the first

group of works. In particular, the darkness of an image is directly related to the illuminance

of a scene, which is measured in terms of lumens per meter squared (lux). In this sense,

extremely low light images denote short exposure images (usually between 1/30 and 1/10

sec exposure) that are taken in 0.2-5 lux outdoor or 0.03-0.3 lux indoor scenes.

In this thesis, we explore the use of burst photography for enhancing extremely dark images.

Since extremely low-light images contain severe noise, our work is also related to generic

image denoising and burst photography. Hence, in this chapter, we provide a brief review

of image denoising, low-light image enhancement, extremely low-light image enhancement

and burst photography methods proposed in recent years. A taxonomy is given in Fig. 2.1.

with accompanying references.

2.1. Image Denoising

Image denoising is a fundamental problem in computer vision that deals with removing noise

from an image [40, 41]. Traditionally, methods that exploit the non-local self-similarity prior

[7–9], sparsity [10, 11] and image gradients [12] have been widely used for image denoising.

Recently, various deep learning approaches have been proposed for both non-blind Gaussian

denoising [13, 14] and blind Gaussian denoising [15, 16], which involve training denoising

models under known and unknown noise levels, respectively. Lately, researchers proposed

6



R
EL

AT
ED

W
O
R
K

Im
ag
e

D
en
oi
si
ng

Lo
w
-li
gh
t

Im
ag
e

En
ha
nc
em

en
t

Tr
ad
iti
on
al

Le
ar
ni
ng
-

B
as
ed

B
ur
st

Ph
ot
og
ra
ph
y

Tr
ad
iti
on
al

Le
ar
ni
ng
-

B
as
ed

Tr
ad
iti
on
al

Le
ar
ni
ng
-

B
as
ed

1.
	S
el
f-
si
m
ila
ri
ty

pr
io
r

B
ua
de
s	e
t	a
l.	
[7
]

D
ab
ov
	e
t	a
l.	
[8
]

Ta
le
bi
	e
t	a
l.	
[9
]

2.
	S
pa
rs
ity

C
ha
ng
	e
t	a
l.	
[1
0]

El
ad
	e
t	a
l.	
[1
1]

3.
	Im

ag
e	
gr
ad
ie
nt
s

R
ud
in
	e
t	a
l.	
[1
2]

1.
	H
is
to
gr
am

tr
an
sf
or
m
at
io
n

H
um

m
el
	e
t	a
l.	
[4
2]

Zu
id
er
va
ld
	e
t	a
l.	
[4
3]

Ib
ra
hi
m
	e
t	a
l.	
[4
4]

A
ric
i	e
t	a
l.	
[4
5]

2.
	R
et
in
ex
-t
he
or
y

La
nd
	e
t	a
l.	
[4
6]

N
g	
et
	a
l.	
[4
7]

Fu
	e
t	a
l.	
[4
8]

G
uo
	e
t	a
l.	
[4
9]

Jo
bs
on
	e
t	a
l.	
[5
0]

1.
	D
ir
ec
t	e
st
im
at
io
n

of
	e
nh
an
ce
d	
im
ag
e

Lo
re
	e
t	a
l.	
[2
1]

Ta
o	
et
	a
l.	
[2
2]

Fv
	e
t	a
l.	
[2
3]

2.
	Il
lu
m
in
at
io
n

es
tim

at
io
n

W
an
g	
et
	a
l.	
[2
4]

W
ei
	e
t	a
l.	
[2
5]

3.
	U
ns
up
er
vi
se
d

m
et
ho
ds

Ji
an
g	
et
	a
l.	
[2
6]

G
uo
	e
t	a
l.	
[2
7]

1.
	N
on
-b
lin
d

ga
us
si
an
	d
en
oi
si
ng

Ja
in
	e
t	a
l.	
[1
3]

X
ie
	e
t	a
l.	
[1
4]

2.
	B
lin
d	
ga
us
si
an

de
no
is
in
g

Zh
an
g	
et
	a
l.	
[1
5,
	1
6]

3.
	U
ns
up
er
vi
se
d

m
et
ho
ds

Le
ht
in
en
	e
t	a
l.	
[1
7]

K
ru
ll	
et
	a
l.	
[1
8]

La
in
e	
et
	a
l.	
[1
9]

3.
	R
ea
l	i
m
ag
e

de
no
is
in
g

B
ro
ok
s	e
t	a
l.	
[3
]

G
uo
	e
t	a
l.	
[2
0]

1.
	F
us
io
n	
of
	b
ur
st

fr
am

es
B
ua
de
s	e
t	a
l.	
[3
1]

Jo
sh
i	e
t	a
l.	
[3
2]

Li
u	
et
	a
l.	
[3
3]

2.
	F
re
qu
en
cy
-

do
m
ai
n	
ba
se
d

fu
si
on
	o
f	b
ur
st

fr
am

es
Li
ba
	e
t	a
l.	
[1
]

H
as
in
of
f	e
t	a
l.	
[4
]

D
el
br
ac
io
	e
t	a
l.	
[5
9]

R
G
B

R
AW

1.
	D
ir
ec
t	e
st
im
at
io
n

of
	e
nh
an
ce
d	
im
ag
e

C
he
n	
et
	a
l.	
[2
8]

M
ah
ar
ja
n	
et
	a
l.	
[2
9]

Za
m
ir	
et
	a
l.	
[3
0]

2.
	F
re
qu
en
cy
-b
as
ed

en
ha
nc
em

en
t

X
u	
et
	a
l.	
[5
4]

3.
	P
hy
si
cs
-b
as
ed

no
is
e	
fo
rm

at
io
n

W
ei
	e
t	a
l.	
[5
5]

1.
	K
er
ne
l	P
re
di
ct
io
n

N
et
w
or
ks

M
ild
en
ha
ll	
et
	a
l.	
[3
4]

2.
	R
ec
ur
re
nt
	F
ul
ly

C
on
vo
lu
tio
na
l

N
et
w
or
ks

G
od
ar
d	
et
	a
l.	
[3
5]

M
a	
et
	a
l.	
[3
6]

3.
	P
er
m
ut
at
io
n

In
va
ri
an
t	N

et
w
or
ks

A
itt
ta
la
	e
t	a
l.	
[6
0]

Fi
gu

re
2.

1.
R

el
at

ed
w

or
k

fo
re

xt
re

m
el

y
lo

w
-l

ig
ht

im
ag

e
en

ha
nc

em
en

t

7



unsupervised deep denoising models [17–19] that do not use any clean ground truth data

during training. Although most of these existing denoising models focus on additive white

Gaussian noise, this noise model falls short when the real-life images are considered. Hence,

the recent trend in image denoising is to develop models that are trained with real-world noisy

data [3, 20] and that can generalize much better than the models which consider additive

white Gaussian noise. While these aforementioned recent methods give fairly good results

most of the time, they are not well-suited to extremely dark images as they suffer from severe

noise and color degradation, as shown in Fig. 2.2.

(a) Dark (b) Traditional

(c) Traditional + BM3D denoising (d) Long exposure

Figure 2.2. For an extremely dark image displayed in (a), the traditional camera pipeline produces a
highly noisy image with severe color degradation, as shown in (b). Moreover, as demon-
strated in (c), the state-of-the-art denoising methods cannot handle these challenges and
give unsatisfactory results. Extremely low-light image enhancement methods, on the
other hand, aim for generating an output close to a long-exposure image, like the one
given in (d).
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2.2. Low-Light Image Enhancement

Generic approaches that can be used for low-light image enhancement can be divided into

three groups: (i) traditional contrast enhancement methods, (ii) techniques based on Retinex-

theory, and (iii) learning-based approaches. Most well-known methods for contrast en-

hancement include histogram equalization based approaches that apply transformations to

image histograms [42–45]. Motivated by human color perception, Retinex-theory based ap-

proaches decompose the images into illumination and reflectance components, and take into

account these components while enhancing the images [46–50]. On the other hand, learning-

based methods mostly include discriminative methods based on sparse autoencoders [21] and

CNNs that either directly estimate an enhanced image [22, 23] or extract an illumination map

[24, 25]. Recently, researchers suggested some unsupervised models which employ adver-

sarial losses for enhancement [26] or CNNs for illumination curve estimation [27].

These low-light image enhancement methods provide good results under certain conditions.

However, they fail to deal with the full extent of the challenges in imaging under extremely

dark conditions. These enhancement models mainly accept LDR images generated by the

standard camera pipeline. Transforming raw images to LDR images introduces some infor-

mation loss in the measurements which complicates the enhancement process. Hence, these

low-light image enhancement models are favorable only when the input images are partly

dark and do not exhibit serious color degradation and severe noise.

2.3. Extremely Low-Light Image Enhancement

As discussed in the introduction, enhancing extremely dark images was introduced as a chal-

lenging image enhancement task by Chen et al. in [28], and the See-in-the-Dark (SID) model

proposed therein is the first model that specifically aims for solving this task. This approach

processes a raw image captured under very poor illumination condition with a U-Net [51]

like architecture. Training of the model is carried out on a dataset of paired short and long-

exposure images by taking into account a pixel-wise (L1) loss.
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Very recently, there have been a few attempts to further improve the performance of SID. For

instance, Maharjan et al. [29] have proposed to use residual learning to boost the final image

quality. Zamir et al. [30] have used a hybrid loss function which is a combination of pixel-

wise and multi-scale structural similarity (MS-SSIM) losses and a perceptual loss [52, 53],

which is defined by the absolute difference of the features extracted by a deep network.

Interestingly, in [36], Ma et al. have developed an enhancement model for extremely low-

light images, which employs recurrent convolutional neural networks to obtain a high quality

result from a burst of input images. Although these studies demonstrate significant progress

in enhancing extremely low-light images, they cannot fully deal with the challenges of the

dark scenes. As presented in Fig. 2.3., the images enhanced by these approaches may suffer

from artifacts such as over-smoothing and color bleeding. Moreover, the existing models do

not recover texture and fine details such as thin structures successfully.

Previous	results Error	map Ground	truth

Th
in
	st
ur
ec
tu
re
s

C
ol
or
	b
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ed
in
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O
ve
r	s
m
oo
th
in
g
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e	
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ss

Previous	results Error	map Ground	truthLong	exposure	image

Figure 2.3. Common failure cases for the state-of-the-art extremely low-light image enhancement
methods. Subfigures show some cropped images from the results of the existing models
together with the corresponding error and the ground truth images, demonstrating that
these models suffer from over-smoothing and color bleeding artifacts and fail to properly
recover thin structures and textured regions.

Xu et al. proposed a frequency-based enhancement and decomposition method for low-light

image enhancement [54]. They developed a network that learns to recover image objects

in the low-frequency layer and then enhances the high-frequency details on the recovered

objects. Wei et al. suggested a noise formation model to synthesize realistic noisy images that

can match the quality of real data under extreme low-light conditions [55]. They additionally

presented a noise parameter calibration method that can adapt their model to a given camera.

As will be discussed in the next chapter, different from the aforementioned methods, we

alternatively propose a multi-scale approach which uses a novel coarse-to-fine architecture
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that better handles the extremely low-light images by giving much sharper and more vivid

colors. In addition, we use a combination of the L1 pixel loss and the recently proposed

contextual loss function which maintains the image statistics better [56]. Moreover, for our

burst model, we employ a set-based permutation invariant architecture that jointly processes

low-light input images in an orderless manner, giving perceptually plausible and high quality

results.

There are also some recent efforts to extend the aforementioned image enhancement models

to videos by additionally taking into account temporal consistencies. For instance, Chen et

al. [57] extended their SID model to videos by training a Siamese network on static raw

videos. Similarly, Jiang and Zheng [58] proposed a U-Net like architecture containing 3D

convolution layers for the same purpose. These models are out of focus of this study as they

require training with dark videos not images, but are mentioned here only for completeness.

2.4. Burst Photography

Burst photography refers to the process of capturing a sequence of images each spaced a few

milliseconds apart and subsequently integrating them to obtain a higher-quality image. For

instance, the most intuitive way to produce a noise-free image is to capture a burst of images

and apply simple averaging. Yet, this strategy gives unsatisfactory results in practice due

to moving objects and/or a moving camera. Hence, a variety of more complicated methods

were introduced to combine the information from multiple images in a more effective man-

ner. Buades et al. proposed to apply standard averaging only for the aligned pixels and utilize

the state-of-the art denoising methods for the remaining pixels [31]. Joshi et al. developed a

method that weights the pixels with respect to their sharpness levels by using Laplacian con-

volution [32] and accordingly utilizes these weights in obtaining higher quality images. Liu

et al. proposed to fuse the consistent pixels with an optimal linear estimator [33]. Moreover,

some researchers suggested to employ the information encoded in the frequency-domain for

temporal fusion [1, 4, 59]. Recently, more sophisticated approaches have been proposed for

denoising such as Kernel Prediction Networks [34], Recurrent Fully Convolutional Networks
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[35], and Permutation Invariant Networks [60], which process a burst of noisy and blurred

images through deep CNN architectures, as shown in Fig. 2.4.

These aforementioned models do not cope with the challenges of extremely dark images

– with the exception of Liba et al. [1] and Hasinoff et al. [4] where the authors rely on

hand-crafted strategies. As mentioned in the previous section, the only work that focuses

on learning-based burst imagery in the extremely low-light conditions is the work by Ma

et al. [36]. In this work, the authors utilized a recurrent convolutional neural network ar-

chitecture, similar to the one in [35], to enhance a burst of raw low-light images. In our

work, specifically motivated by these recent burst photography approaches, we develop a

set-based permutation invariant CNN architecture that can be used to obtain a high quality

image from a burst of extremely dark images. In particular, our network jointly processes

the burst frames in an orderless manner, as compared to the recurrent model in [36] which

processes each frame sequentially.
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(a) Kernel Prediction Networks [34]

(b) Recurrent Convolutional Networks [35]

(c) Permutation Invariant Networks [60]

Figure 2.4. Different CNN architectures for burst image processing.
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3. PROPOSED APPROACH

Table 3.1. summarizes the notations used throughout this study. Our aim is to learn a map-

ping from the domain of raw low-light images to the domain of long-exposure RGB images.

To achieve this, we first propose a single-frame coarse-to-fine model and then extend it to a

set-based formulation to process a burst of images. The details of our networks are illustrated

in Fig. 3.1.

Preserving structures and colors in dark images is difficult because of the extreme noise

present in these images. Although one can increase the complexity of a CNN to develop a

model that can adapt to various levels of noise and darkness, increasing the number of pa-

rameters does not always increase the generalization capabilities of the network. Moreover,

we usually need large effective receptive fields so that we obtain images with globally correct

colors and edge details. Then, we can use another network to increase the details in these

images. Furthermore, if we knew how dark an image is before feeding it to our network, we

could use this information for guiding the network about the noise level. Thus, developing a

multi-scale network enables us to address these problems.

Multiple observations about a scene increase the possibility of recovering a signal under

extreme darkness. We can use bracketing technique to capture multiple frames of a scene.

Although we capture the same scene multiple times, each of these frames differs from each

other in terms of noise. A naive approach to integrating these frames into a single frame is

frame averaging. However, the resulting quality is not always better than the quality of an

image obtained via a CNN whose input is a single dark raw image. To solve this problem,

we propose to use a network that can process multiple frames simultaneously. Hence, we

develop a set-based network which can extract features from each frame and merge these

features to obtain an enhanced image.

To recover fine-grained details from dark images, we propose to employ a two-step coarse-

to-fine training procedure. Similar strategies have been proven very effective in various other

tasks such as deblurring [61] and image synthesis [62]. Different than those approaches, our
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x1, x2, . . . , xm Burst of raw low-light input images
y, ŷ Reference and predicted long-exposure RGB images
Fc(·), Ff (·), Fs(·) Coarse, fine and set-based networks
xc1, x

c
2, . . . , x

c
m Raw, low-res outputs of the coarse network

n̂1, n̂2, . . . , n̂m Noise approximations for x1, x2, . . . , xm
t1, t2, . . . , tm Tensors containing raw inputs, upsampled coarse outputs

and noise approximations
Rd(·), Ru(·) Downsampling and upsampling functions

Table 3.1. The notations used throughout this study.

(a) Coarse-to-fine network (b) Set-based network

Figure 3.1. Network architectures of the proposed (a) single-frame coarse-to-fine model, and (b)
set-based burst model.

coarse network outputs a raw (denoised) image. This helps us to decouple the problem of

learning the mapping between the raw domain and the RGB domain. Some recent denoising

methods use the noise level as an additional input channel [3, 34]. Predicting the coarse

outputs in the raw domain also allows us to compute the approximate noise in the input.

In our proposed framework, the raw low-light input image is first downsampled by a factor

of two and then fed to our coarse network. The coarse network, which is illustrated in

Fig. 3.1.(a), is trained on downsampled data and produces denoised and enhanced outputs in

low-resolution

xc = Fc(Rd(x)). (1)
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We utilize the output of the coarse network not just for guidance in assisting the fine network

but also in approximating the noise by computing the difference between the upsampled

coarse prediction and the raw low-light input, as:

n̂ = x−Ru(x
c) (2)

The fine network takes the concatenation of the low-light raw input image, the output from

the coarse network and the noise approximation as inputs and processes them to generate the

final RGB output:

ŷ = Ff (t), t = (x, n̂, Ru(x
c)) (3)

Both our coarse and fine networks follow a U-Net like encoder-decoder architecture. In

the encoder, they contain 10 convolution layers where the number of filters is doubled and

the resolution is halved after every 2 convolution layers, with the initial number of filters

is set to 32. In the decoder, they include deconvolution layers which are concatenated with

earlier corresponding convolution layers through skip connections. As shown in Fig. 3.2.,

the coarse network gives a fairly good enhancement result for a given extremely low-light

image containing severe noise and color degradation. The fine network further improves the

color accuracy and the details of the result of the coarse network, producing a higher quality

image.

3.1. Set-Based Extension to Burst Images

Recently, there have been some attempts to study the invariance and equivariance properties

of neural networks [63–65]. Interestingly, Zaheer et al. provided a generic algorithm to

train neural networks that operate on sets via a simple parameter sharing scheme [66], which

allows for information exchange with a commutative operation. Based on this idea, Aittala

and Durand proposed a permutation invariant CNN model for burst image deblurring [60].

In a similar vein, in this thesis, we develop a permutation invariant CNN architecture but

with a much lower computational cost by using multiple encoders and a single decoder.
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(a) Traditional (b) Coarse (c) Fine (d) Burst

Figure 3.2. An example night photo captured with 0.1 sec exposure and its enhanced versions by the
proposed coarse, fine and burst networks. As the cropped images demonstrate, the fine
network enhances both the color and the details of the coarse result. The burst network
produces even much sharper and perceptually more pleasing output.

We extend our coarse-to-fine model to a novel permutation invariant CNN architecture which

takes multiple images of the scene as input and predicts an enhanced image. In particular,

first, low-resolution coarse outputs are obtained for each frame xi in the burst sequence,

using our coarse network:

xci = Fc(Rd(xi)) (4)

In addition, we compute an approximate noise component ni for each frame, as

n̂i = xi −Ru(x
c
i) . (5)

Finally, our set-based network accepts a set of tensors {ti} as input, each instance ti =

(xi, n̂i, Ru(x
c
i)) corresponding to the concatenation of one of raw burst images xi, its noise

approximation n̂i and the upsampled version of the coarse prediction Ru(x
c
i), and produces

the final RGB output:

ŷ = Fs ({t1, . . . , tm}) . (6)

In the above equation, Fs represents our permutation invariant CNN, which has m convo-

lutional subnetworks which allow for information exchange between the features of burst

frames. This is achieved by using a max-pooling over the set of burst features after each
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convolution layer in the encoder part of the network. Then, in the decoder part, instead of

concatenating the deconvolution features with the corresponding earlier features, we con-

catenate them with the corresponding global max-pooled features computed in the encoder

part. Hence, without even changing the parameter size, we integrate the advantage of multi-

ple observations to the network. As Fig. 3.2. demonstrates, processing multiple dark images

via the proposed burst network significantly improves the quality of the end result. Our burst

network produces perceptually more pleasing and sharper results than our fine network and

especially recovers the fine details and the texture much better.

3.2. Losses

To train our networks, we tested combining a pixel-wise loss (L1) with two alternative fea-

turewise losses, namely perceptual loss (LP) [52, 53] and contextual loss (LCX) [56, 67].

Pixel-wise Loss. Since we want output images to be close to long exposure images, we com-

pute the pixel-wise reconstruction error as the objective function. For the image denoising

and demosaicking task, L1 performs better than L2 as large errors are over-penalized by L2,

especially in smooth regions [68, 69]. Furthermore, it is also shown in [68] that even when

the output quality is measured by L2 metric, a network trained with an L1 loss can result in

lower L2 error because of their convergence properties. Therefore, we preferred to use the

L1 loss between the network output and the ground truth long-exposure image, given as

L1(y, ŷ) = ‖y − ŷ‖1 . (7)

Perceptual Loss. Using only pixel-wise losses may result in blurry images [52]. Although

humans may tolerate small transformations of images, they are sensitive to perturbations in

structure information in the images such as sharpness. Similarly, feature maps of CNNs

trained for core vision problems can represent perceptually important properties and are in-

variant to transformations that preserve the content [52, 70]. Indeed, recent studies on per-

ceptual image metrics [38, 71] suggest that features of CNNs trained for high-level vision
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tasks agree with humans when judging the perceptual quality of images. Thus, to measure

the distance at a more semantic level, we employ the commonly used perceptual loss [52, 53],

which uses high-level features from a pre-trained VGG-19 network [72], defined as

LP(y, ŷ, l) =
∥∥φl(y)− φl(ŷ)∥∥

1
(8)

where φl(·) denotes the feature maps at the l-th layer of the network.

Contextual Loss. Assume that the output image of a network is perceptually similar to

its ground truth but not spatially aligned. Then, both pixel-wise and perceptual losses may

penalize the misalignments despite the perceptual similarity. Contextual loss proposed in

[56, 67] aims to measure the similarity of two non-aligned data by comparing sets of fea-

tures. According to Mechrez et al., by comparing feature distributions, the network also

learns to better capture changes in fine-scale details. Specially, contextual loss measures the

statistical difference between the feature distributions φl(y) and φl(ŷ) extracted from y and

ŷ, respectively, and it is defined as

LCX(y, ŷ, l) = − log(CX(φl(y), φl(ŷ))) (9)

where the statistical similarity CX is estimated by an approximation of the KL-divergence,

as follows.

Let R = {ri} and S = {sj} respectively represent the set of features extracted from a

pair of images, with cardinality N , and dij be the cosine distance between the features

ri and sj . Then, CX(R, S) = 1
N

∑
j max

i
CXij where CXij = wij/

∑
k wik and wij =

exp

(
1−d̃ij
h

)
, d̃ij =

dij
min

k
dik+ε

.

Implementation Details. To generate our training data, we extracted 512×512 pixels ran-

dom patches for each input image and also generated their downsampled versions with half

resolution (obtained by bilinear interpolation). Hence, the input patch sizes for the coarse and

fine networks are 256×256 and 512×512 pixels, respectively. We first trained the coarse net-

work Fc by using Adam optimizer with a learning rate of 10−4 for 2000 epochs and 10−5 for
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2000 epochs. Then, the fine network Ff was trained with the same hyperparameters without

fixing the parameters of the coarse network. Finally, we trained the set-based network Fs for

1000 epochs by initializing its weights from the fine network. During the training of Fs, we

randomly chose the number of burst input frames between 1 and 10. We trained both of our

models by using a hybrid loss that consists of the pixel-wise L1 and the contextual LCX loss

functions1. For the contextual loss, we used conv3 2 and conv4 2 layers of the VGG-19

network. We implemented our model with Tensorflow library on an NVIDIA GeForce GTX

1080 Ti GPU. Training our model lasted about 4 days.

1In our experiments, we observed that the contextual loss LCX works consistently better than the perceptual
loss LP.
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4. EXPERIMENTAL EVALUATION

4.1. Dataset

Obtaining long-exposure images is practically difficult but they can serve as ground truth

images if the low-light scenes are static. We train and evaluate our models on the SID

dataset [28], which consists of short-exposure burst raw images taken under extremely dark

indoor (0.2-5 lux) or outdoor (0.03-0.3 lux) scenes. These images are acquired with three dif-

ferent exposure times of 1/10, 1/25 and 1/30 sec, where the corresponding reference images

are obtained with 10 seconds or 30 seconds exposures depending on the scene. Specifically,

we evaluate the performance of our models on the Sony subset, which contains 161, 36 and

93 distinct burst sequences for training, validation and testing, respectively. The number of

burst frames varies from 2 to 10 for each distinct scene. The burst images are totally aligned

as they are captured with a tripod. The total number of images in this dataset is 2697, includ-

ing the burst frames. Moreover, the images are categorized into three groups based on their

amplification ratios (×100, ×250, ×300), measured as the ratio between the exposure times

of the dark input image and the long-exposure ground truth. Some example images from the

SID dataset are shown in Fig. 4.1.

4.2. Competing Approaches

We compare our models with four state-of-the-art methods, SID [28], Maharjan et al. [29],

Ma et al. [36] and Zamir et al. [30]. In our experiments, we used the pre-trained models

provided by the authors of [28] and [29], and our implementations of the methods in [36]

and [30] as their models are not publicly available. Specifically, for the method of Zamir

et al. [30], we trained the U-Net model with the hybrid loss including pixel-wise L1 and

MS-SSIM losses and the perceptual loss LP for 4000 epochs. For the burst-based model

by Ma et al. [36], we implemented a recurrent U-Net architecture, where the concatenated

features from the previous frame, the single image model and the previous layer are fed to

each convolution block of the network. We trained the model for 1000 epochs fixing the
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(a) Dark (b) Traditional (c) Long exposure

Figure 4.1. We show example (a) short exposure, dark raw images, (b) scaling and demosaicking
dark images via traditional pipeline, (c) long exposure images from the SID dataset.

parameters of the single image network. It is important to note that among these approaches,

only the method by Ma et al. [36] processes a burst of images at once. For a fair comparison

with the single image models, we also process each burst image independently via each

model, take the average of these enhanced outputs as the final result, and additionally report

the predictions of these ensemble models.
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4.3. Evaluation Metrics

For quantitative evaluation, we employ the popular peak signal-to-noise ratio (PSNR) and

structural similarity index (SSIM) metrics and also two perceptual image quality metrics,

namely learned perceptual image patch similarity (LPIPS) [38] and perceptual image-error

assessment through pairwise preference (PieAPP) [71]. These perceptual metrics can be

used to quantify the natural distortion of images such as noise and blur as well as CNN-

based distortions. In addition, we also utilize perceptual index (PI) [73], a recently proposed

no-reference perceptual image quality metric.

Peak Signal-to-Noise Ratio. Signal-to-noise ratio (SNR) is a term that measures the ratio

of the level of a signal to the level of noise. It can be defined in dB as the following [74]:

SNR = 10 log10

M−1∑
x=0

N−1∑
y=0

f(x, y)2

M−1∑
x=0

N−1∑
y=0

[f(x, y)− f̂(x, y)]2
(10)

where f̂ is an approximation of the uncorrupted M × N image f . Note that SNR depends

on the average intensity of the image. By replacing the numerator with the square of the

maximum possible value of the image, we obtain

PSNR = 10 log10
max(f(x, y))2

1
MN

M−1∑
x=0

N−1∑
y=0

[f(x, y)− f̂(x, y)]2
. (11)

The only difference between mean squared error and PSNR is that we can compare images

with different dynamic ranges with PSNR [75].

Structural Similarity Index Measure. Structural similarity index mesaure (SSIM) is an

alternative for PSNR that also considers the structural information of the scene[76]. SSIM

is based on the contrast, luminance and structure properties of images. Let x and y be two

images to be compared. Then, luminance of x and y are estimated as the mean intensities µx
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and µy. The luminance comparison function is defined as

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1

. (12)

Then, mean intensities are subtracted from the images and standard deviations of images are

used to define contrast function

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2

. (13)

Structure comparison is estimated after mean subtraction and variance normalization. It is

defined as

s(x, y) =
σxy + C3

σxσy + C3

(14)

where σxy is the covariance of x and y. The constants C1 = (K1L)
2,C2 = (K2L)

2 and

C3 = C2/2 are used to prevent instabilities where K1, K2 << 1 and L is the dynamic range

of images. Finally, the structural similarity index of x and y is defined as a combination of

these functions as

SSIM(x, y) = [l(x, y)α · c(x, y)β · s(x, y)γ] (15)

where α, β, γ > 0 are parameters for weighting these components. When we set α = β =

γ = 1, we obtain

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
. (16)

Learned Perceptual Image Patch Similarity. Zhang et al. introduced a perceptual dataset

containing 484k human judgements with parametrized distortions and real algorithm out-

puts [38]. They have shown that deep features trained with various levels of supervision

(supervised, unsupervised, self-supervised) for different computer vision tasks work well as

a perceptual metric. In other words, according to Zhang et al., features used for seman-

tic tasks are also good at providing models of human perceptual behavior and outperform

the previously used metrics such as PSNR and SSIM. Details of the metric is illustrated in

Fig. 4.2.
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(a) Preference of humans and different metrics for sample image patches

(b) Computing distance between two patches

Figure 4.2. LPIPS metric (taken from [38])

Perceptual Image Error Assesment through Pairwise Preference. According to Prash-

nani et al., comparing two given images and determining which one is more similar to a ref-

erence image is easier than assigning quality scores for each image [71]. Correspondingly,

they introduced a dataset where the label of an image is the probability of being preferred

over the other by humans. They employed a pairwise-learning framework to predict whether

the distorted image will be preferred over the other. Hence, they have proposed a percep-

tual image-error metric that outperforms existing metrics with the observation that pairwise

preference is a robust technique to train an error-estimation function.

Perceptual Index. According to Blau et al., there is a tradeoff between accuracy of recon-

struction and perceptual quality [73]. Thus, they have used a perception-distortion plane for

evaluating the super-resolution methods for the Perceptual Image Restoration and Manip-

ulation (PIRM) challenge. They defined the perceptual quality as the visual quality of the

reconstructed image regardless of its similarity to the ground truth. Thus, for the perception

axis, they used perceptual index which is a combination of two no-reference image quality
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metrics of Ma [39] and NIQE [77], defined as:

PI =
1

2
((10−MA) + NIQE) (17)

NIQE metric proposed by Mittal et al. is based on a multivariate Gaussian model (MVG) fit

of the natural scene statistics (NSS) [77]. They fit an MVG to the features extracted from a

collection of natural images. Then, they fit another MVG to the NSS features extracted from

a given image. These features are obtained from local image patches which are selected

with respect to their sharpness. The quality of the image is measured by computing the

distance between the two MVG models. Ma et al. suggested three types of properties as

features [39] as shown in Fig. 4.3. First, they use the statistics of discrete cosine transform

(DCT) coefficients to measure high-frequency artifacts. Second, they employ Gaussian scale

mixture (GSM) model to extract global statistics information of the image. Third, principal

component analysis (PCA) is applied to images and singular values are used to describe

spatial discontinuities. Then, they regress these features to perceptual scores collected from

human subject studies to obtain a no-reference metric.

Figure 4.3. Ma metric (taken from [39])

4.4. Experimental Results

We first analyze the effectiveness of our coarse-to-fine strategy, and the performance gains

achieved over the existing single image models. Fig. 4.4. shows visual comparison of our

single image model against the state-of-the-art [28–30]. For the first image, the color of the

books and the details of texts contained on the spines are better recovered by our model. For
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the second image, the fine details are more visible and the edges are sharper (e.g. the lines on

the wall and the cable) in our result. For the third image, our model greatly reduces the noise

in the dark regions. Moreover, it is apparent that our approach preserves the edges better.

Table 4.1. shows a quantitative analysis of our single image model on the SID dataset.

Overall, our model outperforms the state-of-the-art in terms of PSNR and all perceptual

metrics, LPIPS, PieAPP and PI, and gives competitive results in terms of SSIM. It should

also be noted that our model achieves the highest PSNR on the dark images with ×250 and

×300 amplification ratios which are more challenging than the other subsets of ×100.

(a) SID [28] (b) Maharjan et al. [29] (c) Zamir et al. [30] (d) Ours (S) (e) Ground truth

Figure 4.4. Qualitative comparison of our coarse-to-fine single image (S) method for enhancing ex-
tremely low-light images, compared against the state-of-the-art models that also process
single image. From top to the bottom row, the amplification ratios are ×250, ×100 and
×250, respectively.

Fig. 4.5. presents some visual results of our burst model, along with a performance com-

parison to the burst method of [36] and the ensemble versions of the single image meth-

ods [28–30]. As evident from the zoomed-in regions, our permutation-invariant CNN model
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(a) SID (E) [28] (b) Maharjan et al.
(E) [29]

(c) Zamir et al. (E)
[30]

(d) Ma et al. (B)
[36]

(e) Ours (B) (f) Ground truth

Figure 4.5. Qualitative comparison of our burst (B) model for enhancing extremely low-light im-
ages, compared against the burst model by Ma et al. [36] and the ensemble versions (E)
of the single image state-of-the-art models. From top to the bottom row, the amplifica-
tion ratios are ×100, ×300 and ×300 respectively.

can produce enhancement results with much sharper and well restored texture details. On

the other hand, the ensemble methods all suffer from over-smoothing of the fine-scale details

such as the thin lines on the mat and the printed characters on the spine of the book, and the

textured regions like the green bush. The burst method of [36] does relatively better but its

outputs are of low contrast. Moreover, we provide a comparison of our method with other

methods for different amplification ratios in Fig. 4.6. As can be seen from the cropped re-

gion, our method better handles the color inaccuracies and the edges for higher amplification

ratios, i.e, when the input images get darker. Table 4.2. clearly demonstrates the benefit of
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0
×
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0

×
30

0

(a) SID [28] (b) Maharjan et al. [29] (c) Zamir et al. [30] (d) Ma et al. [36] (e) Ours

Figure 4.6. Comparison of our method with other methods for different amplification ratios. When
the input images are not very dark (e.g. with ×100 amplification ratio), all of the meth-
ods give similar outputs. When the input images are darker and noisier (e.g. with ×300
amplification ratio) our method better handles the color accuracy and the edges.
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Table 4.1. Performance comparison of single image models on the SID dataset for different amplifi-
cation ratios, with the best performing model highlighted with a bold typeface.

Ratio Method PSNR↑ SSIM↑ LPIPS↓ PieAPP↓ PI↓
×

10
0

SID [28] 30.087 0.904 0.450 1.427 4.320
Maharjan et al. [29] 30.535 0.906 0.448 1.250 4.481
Zamir et al. [30] 29.922 0.895 0.465 1.310 4.518
Ours (S) 30.464 0.905 0.292 0.968 4.309

×
25

0

SID [28] 28.428 0.887 0.482 1.601 4.577
Maharjan et al. [29] 28.787 0.888 0.488 1.443 4.961
Zamir et al. [30] 28.254 0.878 0.462 1.462 4.956
Ours (S) 28.900 0.884 0.326 1.113 4.551

×
30

0

SID [28] 28.528 0.870 0.507 1.644 4.107
Maharjan et al. [29] 28.382 0.868 0.516 1.645 4.523
Zamir et al. [30] 28.441 0.860 0.494 1.520 4.479
Ours (S) 28.669 0.863 0.356 1.048 4.039

A
ll

SID [28] 28.976 0.886 0.482 1.564 4.319
Maharjan et al. [29] 29.167 0.886 0.487 1.462 4.646
Zamir et al. [30] 28.838 0.876 0.465 1.437 4.639
Ours (S) 29.290 0.882 0.327 1.087 4.281

our approach that it performs the best in terms of all perceptual metrics, LPIPS, PieAPP, PI,

and the PSNR metric.

In Table 4.3., we report the runtime performances of our single image and burst models

in comparison with other competing methods. In particular, we measure the time taken to

process a single image and also a burst of 4 images. Our experiments are conducted on a ma-

chine with an NVIDIA GeForce GTX 1080 Ti 11GB graphics card using 4256×2848 pixels

images. For single image enhancement, our single image model is a bit slower than SID [28]

and Zamir et al [30] due to its multi-scale architecture, though it gives better enhancement

results as discussed before. For burst enhancement, our model achieves the best runtime

performance, with 1.509 sec for a burst size of 4. This clearly demonstrates the advantage of

having a shared decoder to process burst features, contrary to the competing approaches. We

additionally report the runtime of our burst model to enhance a burst of 8 frames. As can be

seen, the increase in the runtime is not linear in the number of processed images. We only
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Table 4.2. Performance comparison of burst (B) and ensemble (E) models on the SID dataset for
different amplification ratios, with the best performing model highlighted with a bold
typeface.

Ratio Method PSNR↑ SSIM↑ LPIPS↓ PieAPP↓ PI↓

×
10

0

SID (E) [28] 30.361 0.908 0.447 1.441 4.686
Maharjan et al. (E) [29] 30.833 0.909 0.445 1.324 4.863
Zamir et al. (E) [30] 30.120 0.898 0.430 1.335 4.776
Ma et al. (B) [36] 30.429 0.908 0.423 1.312 4.295
Ours (B) 30.849 0.909 0.280 0.945 4.233

×
25

0

SID (E) [28] 28.915 0.893 0.480 1.622 5.313
Maharjan et al. (E) [29] 29.289 0.893 0.480 1.525 5.609
Zamir et al. (E) [30] 28.630 0.882 0.454 1.495 5.406
Ma et al. (B)[36] 29.053 0.896 0.470 1.517 4.429
Ours (B) 29.479 0.892 0.313 1.063 4.366

×
30

0

SID (E) [28] 28.979 0.878 0.516 1.699 4.606
Maharjan et al. (E) [29] 28.783 0.875 0.520 1.744 5.003
Zamir et al. (E) [30] 28.750 0.866 0.500 1.581 4.805
Ma et al. (B)[36] 29.078 0.884 0.467 1.464 4.018
Ours (B) 29.232 0.877 0.322 1.048 3.923

A
ll

SID (E) [28] 29.383 0.892 0.484 1.596 4.850
Maharjan et al. (E) [29] 29.568 0.891 0.485 1.548 5.148
Zamir et al. (E) [30] 29.132 0.881 0.462 1.480 4.983
Ma et al. (B)[36] 29.485 0.895 0.455 1.433 4.232
Ours (B) 29.804 0.891 0.306 1.021 4.157

Table 4.3. Runtime analysis for single image and ensemble/burst models. The fastest model is indi-
cated with a bold typeface. Running times are in seconds.

Method 1 frame 4 frames 8 frames

SID [28] 0.424 1.648 –
Maharjan et al. [29] 2.287 3.045 –
Zamir et al. [30] 0.424 1.648 –
Ma et al. [36] – 2.001 –
Ours (S) 0.597 1.889 –
Ours (B) 0.597 1.509 2.413
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observe 1.6× increase when the burst size is doubled from 4 to 8. It should be noted that for

the case of the burst size of 8, we were unable to report runtimes of the competing models

here as enhancing these frames within a single batch by these models exceed the limits of

our GPU memory.

Our model is entirely trained on the Sony dataset of SID [28] containing images captured

by the Sony α7S II sensor. To demonstrate that our learned models can (partly) generalize

to other camera sensors, in Fig. 4.7. and Fig. 4.8., we present example outputs of our single

and burst image models on extremely dark photos taken with cameras of an iPhone 6s and

an iPhone SE, respectively. Once again, Fig. 4.7. demonstrates that our model reduces the

noise better than the state-of-the-art models [28–30], while accurately improving the texture

details of the flower and the leaves. Similarly, Fig. 4.8. shows the cross-sensor generalization

capability of our burst model. Our method clearly produces a better result than both the

traditional camera pipeline2 and SID [28] in that it recovers the details of the water hose and

the leaves of the tree more accurately.

2https://github.com/letmaik/rawpy
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SID [28] Maharjan et al. [29]

Zamir et al. [30] Ours (single)

Figure 4.7. Enhancement results of a raw image captured by an iPhone 6s using 1/20 sec exposure
time and 400 ISO. Our proposed single image enhancement model provides better noise
reduction with more structural details, in comparison to the prior approaches.
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(a) Traditional Pipeline (Ensemble) (b) SID (Ensemble) [28] (c) Ours (Burst)

Figure 4.8. Enhancement results on a burst of 8 raw images taken with an iPhone SE with 1/10 sec
exposure time and 400 ISO. Resulting images obtained by (a) averaging over the tradi-
tional pipeline, (b) averaging over the SID [28] predictions, (c) our burst model.
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4.5. Ablation Study

To evaluate the effectiveness of our approach in more detail and to better understand the

effects of the loss functions and also the contribution of the burst size to the overall quality,

we conducted an extensive series of ablation tests.

Losses. As mentioned before, the loss function we used to train our networks consists of two

complementary loss terms. The first term is the pixel-wise L1 loss which is used to improve

the accuracy of reconstructing a long-exposure image. The second term, on the other hand,

is comprised of the contextual LCX loss function, which is utilized to improve the perceived

quality of the end result.

In Table 4.4., we quantify the effect of using the contextual loss, as opposed to the perceptual

loss, in conjunction with the pixel-wise L1 loss. First of all, the burst model trained with only

L1 loss results in higher PSNR and SSIM but relatively lower perceptual quality, which is

in line with the previous observations [38, 73]. Conversely, using only Lp or LCX loss gives

higher perceptual but lower PSNR/SSIM scores. In that sense, adding either LP or LCX to our

objective function provides a good tradeoff between pixel-wise and perceptual metrics. To

inspect which one is better, we also qualitatively analyze the contribution of incorporating the

perceptual loss LP or the contextual loss LCX. As demonstrated in Fig. 4.9., either LP or LCX

allows improving the perceived quality of the end-result. The resulting images have more

realistic fine-scale details and texture while avoiding over-smoothing. To our interest, how-

ever, the network trained with the contextual loss tends to better recover the thin structures,

especially at the darker regions, as compared to the others. In Fig. 4.10., we provide some

additional results from training with L1, Lp or LCX losses separately. For the first image,

contextual loss produces a better result in terms of texture and color bleeding. Meanwhile, it

is also observed that contextual loss tends to introduce imaginary texture in some flat regions

where L1 and perceptual losses smooth the corresponding regions as illustrated in the second

image.

35



Table 4.4. Effect of the loss functions on the performance of the proposed burst enhancement model.

Method PSNR↑ SSIM↑ LPIPS↓ PieAPP↓ PI↓

L1 29.843 0.898 0.417 1.364 4.252
Lp 25.347 0.668 0.300 1.340 4.834
LCX 20.226 0.453 0.343 1.213 4.563
L1 + LP 29.895 0.894 0.274 1.053 4.593
L1 + LCX 29.804 0.891 0.306 1.021 4.157

(a) L1 (b) L1 + LP (c) L1 + LCX

Figure 4.9. Enhancement results of our method with different loss functions. Utilizing the com-
bination of contextual loss and pixel-wise loss gives visually more pleasing results, as
compared to using the pixel-wise loss together with and without the perceptual loss.

Burst Processing. In Fig. 4.11., we analyze how the number of frames in the burst sequence

affects the performance of our model. Here, we provide the results obtained with a single

input image and the burst sizes of four and eight frames. As can be seen from the zoomed-

in results, the output quality improves with an increasing number of the burst images – the

method gets much better at preserving texture details and thin structures. In Fig. 4.12., we

also compare our (set-based) burst method with the ensemble of our single image model (i.e.,
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(a) L1 (b) LP (c) LCX

Figure 4.10. Enhancement results of our method with individual loss functions. While perceptual
and L1 losses are more accurate in flat regions, the contextual loss is better at dealing
with thin structures and color bleeding.

Table 4.5. A quantitative comparison of the proposed burst model with the ensemble of the single
image model for varying number of burst images.

Method PSNR↑ SSIM↑ LPIPS↓ PieAPP↓ PI↓

Ours (S) 29.290 0.882 0.327 1.087 4.281

Ours (E) (4 frames) 29.706 0.888 0.329 1.121 4.762
Ours (E) (8 frames) 29.738 0.889 0.332 1.126 4.716

Ours (B) (4 frames) 29.742 0.890 0.313 1.034 4.197
Ours (B) (8 frames) 29.804 0.891 0.306 1.021 4.157

processing each image in the burst separately and then taking the average of individual out-

puts). Fusing burst images at the feature level is evidently much more effective. Additionally,

in Table 4.5., we quantitatively evaluate the performance of these alternative strategies3. Our

burst model gets better scores across all metrics as compared to the ensemble approach, even

when using only half of the burst images.

3As mentioned before, the burst sizes for the images in the Sony dataset vary between 2 and 10. Here, we
report the results obtained using at most four or at most eight burst frames.
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(a) Single image (b) 4 frames (c) 8 frames (d) Ground truth

Figure 4.11. Effect of the burst size. As can be seen, as we increase the number of images in the
burst sequence, the enhancement quality of our burst model improves further.

4.6. Limitations

Our approach does have a few limitations. First and foremost, our burst approach might

struggle with the burst sequences having large motion changes or camera-shake since it is

trained on a dataset where the burst frames are spatially aligned. We present such an example

in Fig. 4.13., in which our burst model introduces some unintuitive edges and blurry textures

because of the misalignment while the single image model produces much sharper output.

Second, as illustrated in Fig. 4.14., our model may sometimes hallucinate non-existing high-

frequency details. We suspect that this is caused by the excessive noise in the raw images
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(a) Ours (ensemble) (b) Ours (burst)

Figure 4.12. A comparison between our burst model and the ensemble version of our single image
model for a burst size of 8 images. Our set-based approach, which performs fusion at
the feature-level, gives perceptually better enhancement results.

and may be alleviated to some extent by better modeling of the sensor noise. Third, our

framework does not explicitly learn to perform white balance correction and tone mapping,

and this somewhat affects the results. In an attempt to address this, we employ an additional

post-processing step. In particular, we first apply the white balance correction method pro-

posed in [78] to our result. Then, we adjust highlights and shadows using the Core Image

API by Apple4. Finally, we merge this image with the white-balanced image by using the

exposure fusion method by Mertens et al. [79] to obtain a tone-mapped image. Fig. 4.15.

presents the result of this post-processing step on a sample dark input image. It is evident

that this post-processing strategy leads to a visually more pleasing image with vivid colors,

further improving the perceived quality of the enhanced image.

4Documentation of the API can be found at https://developer.apple.com/documentation/
coreimage.
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(a) Ours (single)

(b) Ours (burst)

Figure 4.13. A limitation of the proposed burst model. Our model might generate unintuitive edges
and blurry textures when the burst frames are not spatially well-aligned.
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(a) Traditional pipeline (b) Ours (burst)

Figure 4.14. Another limitation of the proposed approach. Our model may sometimes hallucinate
false high-frequency details for extremely noisy regions.

(a) Ours (b) Ours + Post-process

Figure 4.15. Effect of the post-processing procedure applied to the result of our model for a low-
light image captured with 0.1 sec exposure. Post-processing further improves the per-
ceived quality of the enhanced image.
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5. CONCLUSION

In this thesis, we tackle the problem of learning to generate long-exposure images from

a set of extremely low-light burst images. Starting from the measurement of how dark a

scene is, we first analyzed how capturing images in the dark affects the brightness of the

resulting image. It is clear that current photography techniques such as lengthening the

exposure time or using the camera flash do not solve the problems in the low-light images.

For instance, long exposure images are not practical and may result in blurry images because

of the movement of the camera or scene elements. Using a camera flash as an external

light source may increase the brightness but the brightness of the scene elements becomes

inversely proportional to their distance to the camera. Thus, there have been various studies

trying to reduce the image noise and improve the final image quality for the low-light images.

The recent trend in both image denoising and enhancement is to develop a learning-based

model for the real-life, raw images that contain real image noise. Besides, learning-based

methods have also shown promising results for the burst image denoising and deblurring

problems.

Motivated by the recent advances, we developed a new deep learning based approach that in-

corporates a coarse-to-fine strategy to better enhance the details of the output. Moreover, we

extended this network architecture to work with a burst of images via a novel a permutation

invariant CNN architecture, which efficiently processes the exchanged information between

the features of the burst frames. Our experimental results demonstrate that our burst method

achieves higher quality results than the existing state-of-the-art models. More specifically,

it better captures finer details, texture and color information, and reduces noise to a greater

extent.

As for future work, our results suggest that there is still much room for improvement, espe-

cially for dynamic scenes. In that sense, an interesting future research direction is to extend

the proposed framework to videos with moving objects or fast camera motions where cap-

turing temporal relationships between succeeding frames is crucial.
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