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ABSTRACT 

 

 

AYDIN, Aslı. Robots and human labor: dynamics, intergenerational impacts and 

inequality, Ph.D. Dissertation, Ankara, 2020. 

 

 

In today's world, where the use of robots in production processes is increasing, future 

predictions about human labor constitute an important research subject. In this 

dissertation, the implications of rising robots on labor markets are observed. For this 

purpose the effect of robots on human labor is investigated through theoretical and 

empirical estimation methods. The first chapter illustrates a two-period overlapping 

generations framework, including robots, human labor and physical capital in the 

production process. Our model is consistent with labor-saving or labor-replacing impact 

of robotics and the OLG dynamics indicatea negative impact of robots on employment. 

Chapter 2 addresses the empirical investigation of the robotic impact on employment.  

We use novel panel datafor 47 countries over the period 2004-2016 to test the 

employment impact of robot-usage. Our SYS-GMM estimates show that each additional 

robot usage leads a 0.7 percent drop in employment for selected countries. The 

magnitude of employment impact of robots becomeshigher in high-income countries 

that each robot increase causes 3.1 percent drop in employment rate. The impact of 

robots on heterogeneous labor market is investigated in chapter 3. Heterogeneity is 

observed among four different age groups and gender classifications.Regarding the 

analyses based on age groups, dynamic panel data estimation provides empirical 

evidence that most negatively affected group is young people under the age of 25. In 

addition, while the least negatively affected group is the oldest group, the middle age 

group is found to be positively affected. Regarding to age group classification, results 

support the skill-biased technological change (SBTC) hypothesis in which different skill 

groups diverge against robotic impacts.  The results also indicate that robots are more 

unfavorable to men workers. This situation is explained conceptually withtask-biased 
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technological change(TBTC), as a result of the fact that male employees are 

quantitatively more involved in routine jobs than women. 

 

Key Words: Robots, Employment, Overlapping Generations Model, System GMM, 

Inequality, Gender  
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ÖZET 

 

 

AYDIN, Aslı. Robotlar ve insan emeği: dinamikler, nesiller arası etkiler ve eşitsizlik, 

Doktora tezi, Ankara, 2020 

 

 

Üretim süreçlerinde robot kullanımının hızla arttığı günümüz dünyasında, 

insanemeğineilişkingeleceğeyöneliktahminlerönemlibiraraştırmakonusunuoluşturmakta

dır. Bu tezde, kullanımı yaygınlaşmakta olan robotların işgücü piyasaları üzerindeki 

etkileri gözlemlenmekte; bu amaçla robotların insan emeği üzerindeki etkisi teorik ve 

ampirik tahmin yöntemleriyle araştırılmaktadır. İlk bölümde ücret üzerindeki etkiler, 

robotların, insan emeğinin ve fiziki sermayenin dahil edildiği iki dönemli ardışık 

nesiller büyüme modeli üzerinden analiz edilmekte, emek üzerindeki olası etkileri 

tartışılmaktadır. Elde edilen analitik sonuç, robotların emek tasarrufu sağlayan etkisine 

yönelik görüşleri desteklemekte, istihdam üzerindeki olumsuz etkisini göstermektedir. 

İkinci bölüm, istihdam üzerindeki robotik etkinin ampirik yöntem ile incelenmesine 

ayrılmıştır. Robot kullanımının istihdam etkisini test etmek için 2004-2016 dönem 

aralığında 47 ülke üzerinden yeni panel verileri kullanılmıştır. Sistem 

Genelleştirilmiş Momentler Metodunun (SYS-GMM) tahminlemesi sonucu elde edilen 

bulgular, her bir birimlik robot artışı sonucunda toplam istihdam oranında yüzde 0.7 

düşüş yaşandığını ortaya koymaktadır. Yüksek gelir gurubundaki ülkeler için bu etki 

daha olumsuzdur; ilave her robot artışının istihdam oranında neden olduğu kayıp yüzde 

3.1 olarak saptanmıştır. Robotların heterojen işgücü piyasası üzerindeki etkisi üçüncü 

bölümde incelenmiştir. Heterojenlik, dört farklı yaş grubu ve cinsiyet sınıflandırması 

üzerinden gözlemlenmektedir. Yaş guruplarına dayalı yapılan dinamik panel veriye 

yönelik ampirik analizlerde robotlardan en olumsuz etkilenen gurubun 25 yaş altı genç 

çalışanlar olduğu sonucuna ulaşılmıştır. Bunun yanı sıra, göreceli olarak en az olumsuz 

etkilenen gurup emekliliğe en yakın olan çalışanlara ait olurken, orta yaş olarak 

adlandırılabilecek çalışanlar robotlardan olumlu yönde etkilenmektedir. Yaş guruplarına 

yönelik yapılan analiz sonucu elde edilen ampirik kanıtlar, robotların farklı becerilere 
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sahip çalışanlar üzerinde farklı etkilerini savunan vasıf-yanlı teknolojik değişim (Skill-

Biased Technological Change, SBTC) hipotezlerini desteklemektedir. Ayrıca elde 

edilen sonuçlara göre robotların olumsuz etkisine erkek çalışanlar daha fazla maruz 

kalmaktadır.  Elde edilen bu bulgu, görev-yanlı teknolojik değişim (Task-Biased 

Technological Change, TBTC) tezi ile de uyumluluk göstermekte; erkek çalışanların 

daha olumsuz etkilenmeleri, kadın çalışanlara göre daha fazla rutin işlerde çalışmasının 

bir sonucu olarak açıklanmaktadır. 

 

AnahtarKelimeler: Robotlar, İstihdam, Ardışık Nesiller Büyüme Modeli, Sistem-

GMM, Gelir ve cinsiyet eşitsizliği. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 
 

TABLE OF CONTENTS 

 

KABUL VE ONAY ..................................................................................................... i 

YAYIMLAMA VE FİKRİ MÜLKİYET HAKLARI BEYANI............................. ii 

ETİK BEYANI .......................................................................................................... iii 

ACKNOWLEDGEMENTS ...................................................................................... iv 

ABSTRACT ............................................................................................................... .v 

ÖZET ......................................................................................................................... vii 

TABLE OF CONTENTS .......................................................................................... ix 

LIST OF TABLES .................................................................................................... xi 

LIST OF FIGURES ................................................................................................. xii 

ABBREVIATIONS ................................................................................................. xiii 

INTRODUCTION .....................................................................................................  1 

CHAPTER 1 :THE ROBOTIC IMPACT ON HUMAN LABOR IN 

OVERLAPPING GENERATION ECONOMIES ................................................ 16 

1.1.BACKGROUND AND LITERATURE REVIEW ................................ 16 

1.2.MODELING ROBOTS  ........................................................................... 20 

1.3.MODEL ..................................................................................................... 23 

1.4.CONCLUSION ......................................................................................... 35 

CHAPTER 2: THE IMPACT OF ROBOTS ON EMPLOYMENT: THE 

EMPRICALINVESTIGATION FOR SELECTED COUNTRIES ..................... 37 

2.1.EMPIRICAL LITERATURE REVIEW ................................................ 37 

2.2.DATA AND DESCRIPTIVE STATICS  ................................................ 40 

2.2.1.Robots ................................................................................................ 43 



x 
 

2.2.2.Employment  ...................................................................................... 46 

2.3.METHODOLOGY ................................................................................... 48 

2.3.1.Generalized Method of Moments ...................................................... 50 

2.3.2.Panel Unit Root Test Results ............................................................. 52 

2.4.EMPIRICAL RESULTS .......................................................................... 54 

2.5.CONCLUSION ......................................................................................... 57 

CHAPTER 3: RISING INEQUALITY AMONG EMPLOYEES ....................... 60 

3.1. GENERAL VIEWS ON ROBOTS AND INEQUALITY .................... 60 

3.2. THEORETICAL AND EMPIRICAL BACKGROUND ..................... 62 

3.3. DATA ........................................................................................................ 67 

3.4. METHODOLOGY AND EMPIRICAL RESULTS ............................. 69 

3.4.1.GMM Estimation Results for Age Groups ........................................ 71 

3.4.2.Empirical Results for Gender Groups ................................................ 75 

CHAPTER 4: CONCLSION ................................................................................... 80 

BIBLIOGRAPHY .................................................................................................... 84 

APPENDIX A ........................................................................................................... 93 

APPENDIX B ......................................................................................................... 100 

APPENDIX C ETHICS BOARD FORM ............................................................ 102 

APPENDIX D ORIGINALITY REPORT ........................................................... 103 

 

 

 

  

 

 



xi 
 

LIST OF TABLES 

Table 1.1. Countries with highest ICT score..................................................................  5 

Table 2.1. Literature Review/Local Economy Analyses .............................................. 39 

Table 2.2. Literature Review/Cross-Country Analyses ................................................ 40 

Table 2.3. Country Classifications Based on Income Groups ...................................... 41 

Table 2.4. Acronyms and Definitions of Data .............................................................. 42 

Table 2.5. Descriptive Statistics ...................................................................................  42 

Table 2.6. Terms Used in Definition of Industrial Robot  ............................................ 43 

Table 2.7. Panel unit root test results ............................................................................ 54 

Table 2.8. Dependent Variable: lnemployment ............................................................ 55 

Table 2.9. Dependent Variable: lnemployment, high-income countries ...................... 56 

Table 3.1. List of Countries..........................................................................................  67 

Table 3.2. Panel Unit Root Test Results for Age Groups ............................................. 70 

Table 3.3. Panel Unit Root Test Results for Gender  .................................................... 71 

Table 3.4. Dependent variable: lnemployment(15-24)  ................................................ 72 

Table 3.5. Dependent variable:lnemployment(25-34) .................................................  73 

Table 3.6. Dependent variable: lnemployment(35-44)  ................................................ 74 

Table 3.7. Dependent variable: lnemployment(45-54) ................................................  75 

Table 3.8. Dependent variable: lnemployment (Female)  ............................................. 76 

Table 3.9. Dependent variable: lnemployment (Male)  ................................................ 77 

Table 3.10. Summary of the results .............................................................................. 78 

 

 

 



xii 
 

LIST OF FIGURES 

Figure 1.  Smart Technologies ..................................................................................... 4 

Figure 2.Annual installations of industrial robots; the case of Asia, Australia,       

Europe, and US ............................................................................................................ 6 

Figure 3. GDP per capita growth (annual%) .............................................................. 11 

Figure 4. Employment-to-population ratio, 15+, total (%), World ............................ 12 

Figure 5. Employment to population ratio, 15+, total (%), High income countries .. 13 

Figure 6. Employment to population ratio, 15+, total (%), Upper middle income .... 13 

Figure 7. Employment to population ratio, 15+, total (%), Low income ................... 13 

Figure 8. Employment to population ratio, 15+, total (%), Lower middle income ... 13 

Figure 9. Labor force participation rate, total (% of total population ages 15-64),       

High Income, Low Income Countries ........................................................................ 14 

Figure 10. Labor force participation rate, total (% of total population ages 15-64), 

Lower-Middle Income Countries ............................................................................... 14 

Figure 11. Labor force participation rate (% of total population ages 15-64), Upper-

Middle Income Countries  .......................................................................................... 14 

Figure 1.1. Isoquant and Isocost Curves .................................................................... 26 

 

Figure 2.1. Robot average distribution of robots, income groups .............................. 44 

 

Figure 2.2. Robot average distribution of robots, country income groups ................ 47 

Figure 3.1. Global Labor market, 2018 ...................................................................... 61 

 

 

 

 



xiii 
 

ABBREVIATIONS 

 

OLG  : Overlapping Generations  

SYS-GMM : System Generalized Method of Moments 

SBTC  : Skill-biased technological change 

TBTC  : Task-Biased Technological Change 

IR1  : The First Industrial Revolution  

IR2  : The Second Industrial Revolution  

IR3  : The Third Industrial Revolution  

OECD  : The Organization for Economic Co-operation & Development 

OLS  : Ordinary Least Square 

FE  : Fixed Effect  

GDP    : Gross Domestic Product 

TÜBİTAK :  The Scientific and Technological Research Council of Turkey   

UNDP  : The United Nations Development Programme 

UN  : The United Nations  

ICT  : Information and Communications Technology 

IMF  : The International Monetary Fund  

AI  : Artificial Intelligence   



xiv 
 

IoT  : Internet of Things 

3D  : Three-dimensional  

IFR  : The International Federation of Robotics 

WB  : The World Bank  

ETC  : Embodied Technological Change 

CES  : Constant Elasticity of Substitution 

R&D  : Research and Development  

EU  : European Union   

ISO   : International Organization for Standardization 

PPP   : Purchasing Power Parity 

PWT   : Penn World Tab



1 
 

INTRODUCTION 

 

The relationship between the rapid technological progress and employment constitutes 

an important contradiction of our century, such as in urbanization, climate change, 

impoverishment and income inequality. In the near future, all these conflicts will be 

inevitably more threatening issues to be solved by humanity. In this conjecture, the 

emerging trend of digitalization and automation is seen as a paradigm shift, which is 

escalating by the driving forces such as falling productivity gains and high transaction 

costs. This thesis focuses on the future of employment, in quantitative and 

demographic aspects, which is under the risk of accelerating robotization.  

 

For a long time in history, technology plays an important role for wellbeing.  For 

centuries, human beings have succeeded in transforming the opportunities offered by 

nature to their own benefits by the help of scientific activitiesfed by curiosity and 

skills. Making first tools from stone, wood, antlers, and bones, discovering fire, 

beginnings of human settlements and agriculture, inventing the wheel, starting to use 

language, inventing printing press and astronomical discoveries are such ancient 

inventions which had contributed to the sustainability of human life.  

 

Although human beings invented machines to do their own work a very long time ago, 

recently invented robots reveal a new milestone in a history. Because, in the words of 

Richard Baldwin, as they are beyond a machine, so-called “remote intelligence”, and 

thus no longer just complementary to human labor (Baldwin, 2017).  

 

I. An Inevitable Historical Debate: Technological Anxiety 

Since the First Industrial Revolution (IR1) automation, as a general-purpose technology 

which brings the transformative side of technology in front, has been affecting life in 

every aspect. IR1 arose with the use of machinery instead of human labor in the 
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production process, especially with the use of the steam engine. While it acts as an 

engine of productivity, it also raises a broad debate due to the fact that it replaces human 

labor in the production process. With the Second Industrial Revolution (IR2), the 

electricity adoption takes place as well as the significant manufacturing technologies 

such as assemblyline, and major developments in infrastructure. In the stage of the 

Third Industrial Revolution (IR3), robots and computers have become a part of daily 

life. When all these technological milestones areconsidered, it is seen that every 

technological revolution re-delegates the tasks created by the previous onebetween 

human labor and machinery. For example, as agricultural works aremechanized, human 

labor gathersin factories; as communication technologies evolvesand manufacturing 

becomesmore automated, workers startto shift to the service sector from factories. 

Hence the result of the interplay between machines and human labor throughout the 

history has been determined by the balance between the jobs destroyed and the jobs 

created by the technology. 

 

That’s why technology-anxiety or in other words technology-driven unemployment is 

not a new concern; since the Luddites movement
1
 (Mokyr and Ziebarth, 2015) there has 

been growing fear that technological advances, in particular automation, will replace 

human labor and take over the jobs. 

 

In the article of The Economic Possibilities for Our Grandchildren, John Maynard 

Keynes also expresses his concern as follows:  

We are being afflicted with a new disease of which some readers may not yet have 

heard the name, but of which they will hear a great deal in the years to come--namely, 

technological unemployment. This means unemployment due to our discovery of means 

of economising the use of labor outrunning the pace at which we can find new uses for 

labor. But this is only a temporary phase of maladjustment. All this means in the long 

run that mankind is solving its economic problem. (Keynes, 1930) 

                                                           
1
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This debate continues with Wassily Leontief. Leontief (1983) argues that machines will 

replace human labor, just as machines replaced horses in the early 20th century, and 

new industries will not be sufficient to employ anyone looking for a job. 

 

On the other hand, in Marxist thought, which claims that the only source of profit is a 

surplus value, robots can be found to have the power to end capitalism (Marx, 

1973).According to Marx, increasing the productive power of labor and thus increasing 

the surplus value is the tendency of capital.Mechanization is such a dynamic that is 

developed as a result of this trend.He claims that through mechanization, that is, 

automation, labor loses control over production processes and becomes part of fixed 

capital. Also this brings the accelerating alienation process. Marx continues with the 

words: ‘The rising of automation is a consequence of falling profit rates’ and indicates 

that an increase in labor productivity due to automation would cause an increase in 

organic composition of capital (C/V) that leads to a reduction in exploitation rates 

(Marx, 1973). This reveals a crisis of capitalism explained by the factor of automation.  

 

In the Schumpeterian perspective, there is an argument that an increasing number of 

robots will lead to the production of new products and create new markets, and as a 

result, these new markets will create their own demands and jobs. The replacement of 

this new production system with the old takes place in a process that Schumpeter refers 

to as 'creative destruction'. Here, those who cannot keep up with the new have no 

chance but to lose and disappear, and only the adaptive ones will be winners of this 

process(Schumpeter, 1939). 

 

II: Current Trends in Digital Technologies and Robots  

 

With the spread of digital technologies, the ongoing technological concern has been 

fueled again, and it has also initiated a series of studies on the effects of next-generation 
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technologies such as Information and Communication Technologies (ICT), robots, 

Artificial Intelligence (AI) and the Internet of Things (IoT) on human labor. Looking at 

the common point of these technologies, it is noteworthy that they can perform not only 

routine tasks but also complex tasks and cognitive skills.More recently, the arrival of 

3D printing, self-driving cars (Tesla, Apple, Google), agricultural manufacturing and 

domestic robots has again raised a widespread interest into the possibility of massive 

‘technological unemployment’ (Pellegrino, Vivarelli and Piva, 2017).  

 

Figure 1. Smart Technologies  

 
Source: OECD (2017a)  

 

 

Since UNIVAC I, which is the first commercial computer designed to predict the 1952 

US election results, computers have taken away most of the computing and decision-

making tasks from human labor. The progress of computer technology, which is widely 

used in all areas of the industry and in the services sector, continued with ICT 

technology. Nowadays the ICT sector represents 6% of GDP of the OECD member 

countries (UNDP, 2017). Table 1.1 lists the countries with top ICT scores in investment 

and employment. Recently, the United States, New Zealand and Switzerland are the 
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three countries holding the leadership in ICT investments.As of 2010 the United States, 

which ranks first, allocates 32% of its total investments to the ICT sector. 

 

Table 1. Countries with highest ICT score  

  

ICT Investment (% 
of total, 2010) 

Employment (% of 
total, 2011 )  

Unites States  32.14 3.80 

New Zealand  21.24 N/A 

Switzerland  18.51 5.36 

Canada  17.02 2.61 

Finland  15.52 6.43 

Spain  13.76 2.66 

Germany  12.69 3.94 

Ireland  12.41 5.25 

Italy  11.03 3.15 

Korea  10.72 9.50 

 

The current stage of rapidly advancing technology is defined by products such as 

simulation, AI and smart systems, sensors, augmented reality, IoT, robot and 

automation, contribution production, big data analysis, cyber security and cloud 

computing (TUBITAK, 2020). All these technologies, which we can further diversify, 

have one thing in common: they use information as the primary source of input, so they 

can do a lot more than humans can do by producing a lot of output without tiring once 

they have the knowledge. Therefore, these technologies present "creative destruction", 

in Schumpeter's words, in all of their production and consumption processes.  

 

Although the world is at the beginning of the adaptation of digital technologies and 

smart technologies, the widespread acceleration of these technologies in the last few 

years puts these technologies at the center of global attention.The transformation in the 

composition of top 20 firms in the world makes this attraction more visible. In 2009, the 

world's 20 largest companies were oil-gas and mining companies. In 2018, the 20 

largest companies are technology companies (UNCTAD, 2019). On the other hand, 
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OECD (2016) finds that the amount of investments in private equity exclusively for AI
2
 

start-ups increased by 3% from 2011 to 2018, and in the first half of 2018, AI start-ups 

attracted nearly 12% of private equity investments in the world. As a sub-segment of 

digital technologies
3
, robots attract more and more public and private investments each 

year. The World Robotics Report 2019, published by International Federation of 

Robotics (IFR), shows that more than 2.4 million robots are operating in factories 

worldwide today. In 2018 alone, 422,000 new robots were introduced, with a 6% 

increase compared to 2017. 30% of the total robots are used in the automotive industry, 

25% in the electrical & electronics industry and 10% in the metal industry. According to 

IFR, 3 million robots (An increase of 14% compared to 2017) are expected to be 

employed in 2020 worldwide. And from 2020 to 2022, 2 million additional robots are 

expected to be loaded only at the factories worldwide (IFR, 2020).  

Figure 2. Annual installations of industrial robots; the case of Asia, Australia, Europe, 

and US 

 

 

                                                           
2
Artificial Intelligence (AI) is defined as “Machine based system that can, for a given set of 

human defined objectives, make predictions, recommendations, or decisions influencing real or 

virtual environments. AI systems are designed to operate with varying levels of autonomy” 

(OECD, 2019). 
 
3
Other sub-segments are sorted as follows: The Internet Of Things (IoT), Cloud Computing, 

Photonics and light technologies, Blockchain, Modeling simulation and gaming, Quantum 

computing, Big data analytics, Artificial intelligence (AI) (OECD, 2016)  
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The key factor that distinguishes robots from other automation technologies is the 

ability to perform many human skills at a higher efficiency and lower costs. The UN 

makes a clear distinction between automation and robotics: “To illustrate the difference, 

once might refer to the distinction between software and hardware. Robots are 

programmable machines which are able to carry out a series of actions autonomously, 

or semi-autonomously. They interact with the physical world via sensors and actuators. 

Because they are reprogrammable, they are more flexible than single-function 

machines. Automation can be software automation or industrial automation. The latter 

is about controlling physical processes: using control systems or physical machines to 

automate tasks within an industrial process. A fully autonomous factory would be an 

extreme example” (Technological Change and The Future of Jobs, 2018 pp.10).  

 

Over and above, robots are well developed, complex and intelligent machines such that 

it revives as a return of a new species in the human mind. The ability of the robots, 

previously limited by the 'imitation game' by Turing (1950), has already gone beyond 

imitation. Thanks to humanoid robots, which are designed in a similar way to the 

physical characteristics of human beings, robots look like us, speak like us and now 

thanks to AI and Machine Learning software they containthese machines have started to 

think like us.Contrary to the argument of Turing (1950), these machines have ability to 

think uniquely rather than imitating human thinking-process. Although this smart robots 

are sometimes the subject of a utopia, and sometimes of a dystopia, today's rapidly 

evolving automation trends show that in the end robots are attractive investment area 

with all its cost and profit opportunities and time-saving advantages. They are indeed 

much more predictable than humans; they are pre-programmed to perform repetitive 

and also cognitive tasks with an endless effort. Furthermore, they are tempted to carry 

out highly dangerous activities for human beings. For example, without robots, the lives 

of people would be endangered today to observe Mars; or by using robots as fire 

workers, as saving people from fire would not be a job for humans as well as using 

them at welding tasks which requires working under extremely hot temperatures.  
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Describing robots only by the threats they pose to humankind, as well as describing 

them as a salvation would both be misleading. The question that needs to be discussed 

is whether there is a social and industrial development that is compatible with the 

adaptation of robots.During the period called the 'Golden Age' after two decades of the 

World War II, the effect of the technology used in production on the welfare of the 

workerswas quite strong. During this period, with the widespread use of industrial 

machinery productivity increased, which was also reflected in workers' wages and 

consequently their consumption demands (Glyn et al., 1988). After the 1970s, the 

relationship between productivity gains and workers' wages began to deteriorate.For 

example, according to US data, average workers' wages fall by 13% after the inflation 

adjustment, although productivity increased by 107% in 2013 compared to the early 

1970s (Ford, 2015). In addition, US statistics show that job growth fell from 31% in the 

1960s to 27% in the 1970s and 20% in the 1980s and 1990s.In this downward trend, 

when it comes to the 2000s, it is seen that the first 10 years of job growth is 0 (Irwin, 

2010). Also income inequality has been increasing in most parts of the world, including 

most industrialized countries, since the 1980s (Berg, 2015). Thus, looking at today, it is 

expected that the spread of robots in a period of high unemployment and inequality all 

over the world, would have considerable negative consequences. 

Thus, new robotic technology products compete with human labor in almost every field 

today. Digital supply network has created the ‘dark factories’, in which there is no light 

and no human intervention needed for manufacturing production due to the full 

automation. Moreover, robots can move digitally in a networked connection; that is, 

they can communicate and decide among themselves. This digital connectivity, so 

called “OPC Robotics Companion Specification”, offers an environment that 

completely excludes the human factor in the industry (IFR, 2019). In the healthcare 

sector, robots are widely used in almost every field such as orthopedics, urology, 

general surgery, gynecology, neurology, thoracic, otolaryngology, bariatric, rectal and 

colon, multiple oncologic fields – even dental and hair transplants (Smith, 

2019).  Specifically surgical robots, also named as Surgeon Waldo, are one of the most 

popular robots because they eliminate human error that may occur due to fatigue, stress, 

excitement etc. Moreover, in addition to these examples, social robots used in 
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education, robots in transportation, restaurants, bars, and even hotels show that robots 

are running aggressively in this competition. 

 

III. Understanding Inside of Robots: The evolution of robots  

 

In previous traditional models, perception-cognition-action is the basic functioning 

cycle of information processes. Robots are designed based on this cycle autonomously, 

but in a more interactive way. Simple robots were commanded by humans by remote 

control. They were machines that did not have flexibility and could only move within 

the limits of human commands. Then, "smart robots" closer to today's technology were 

invented. When given a task, a robot is capable of acting based on a perception and 

based on this action it can develop a new perception.  

 

Every experience provides understanding and learning. As a result, the robot is made to 

decide in this way. Scholars call this technique “Machine Learning”. Computerizing a 

learning process dates back to the 1950s. The first well known study is a learning 

program to play checkers developed by Arthur Samuel in 1952 for IBM Company. 

Checkers were chosen for the most primitive machine learning system because it was an 

easier game than chess. The probability and the number of strategies were less than that 

of chess. Therefore, it is not surprising that the development in machine learning will 

continue through the chess game in the following years. In 1996, the smart robot called 

Deep Blue defeated Garry Kasparov, who is known as a chess grandmaster of our time.  

 

In the following years, robots, which produce strategies with big data, algorithms and 

complex mathematics, and can decide on their actions without human intervention 

began to learn how to work in a collective way. In 1997 a soccer playing robot, which is 

called RoboCup was established. One of the aims of the project was building a robot 

that can win the human world championship in 2050. But the main motivation was the 
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establishment of a robot that acts, plays and thinks just like humans. In a next step, this 

project was improved towards the RoboCupSoccer, so that the robots could collectively 

and fully, autonomously achieve the goal given to them, which is to defeat humans and 

to win the match.  

 

The development of the first humanoid robot goes back to the 2000s. ASIMO as an 

acronym for “Advanced Step in Innovative Mobility”, which emerged as a result of a 

project carried out by Honda, was named in memory of Isaac Asimov. It is a robot that 

traces all moving objects around it, hears the sounds and can decide the distance 

between the objects by having visual information with the cameras placed inside it 

(Eaton, 2015).  

 

In all areas of the economy, robots undoubtedly offer great productivity opportunities 

with their capabilities and flexible technological features. As the use of robots becomes 

widespread, the price becomes cheaper, and this trend reveals 'dark factories'. As a one 

of the dark factories, in Philips' electric razor production plant in Netherlands each robot 

undertakes nine workers’ task alone (Tilley, 2017)  

 

IV. General Views on Employment  

 

The crash in the real economy in 2009, after the 2008 financial crisis, caused a 

significant drop in growth rates. This negative growth revealed the severe economic 

contraction that occurred after the 1929 Great Depression. Recovery strategies were 

implemented after the crisis, largely based on monetary expansion. Despite the 

improvement in the growth rates of the world economy in 2010, a decrease occurred 

again after 2011 and an L-type growth was experienced in the world economy. 

Kristalina Georgieva, the President of the IMF, described the state of the world 

economy as 'synchronous slowdown' at the end of 2019. 
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In the analysis to be made according to the country income groups, defined according to 

the World Bank classification, it is observed that the strongest decline in 2009 occurred 

in high income countries. GDP per capita has decreased there below the world average. 

The contraction in upper middle income countries was gradual, and the trend in GDP 

per capita growth fell below the lower middle income countries. 

 

Figure 3. GDP per capita growth (annual %) 

 
Source: World Bank Indicators, 2020 

 

 

So how do employment rates accompany today's global synchronized slowdown? 

Worldwide employment-to-population ratio has been steadily declining since 2000. 

World employment-to-population ratio, which was 61.1% in 2000, dropped to 59.9 %% 

in 2008, then 58.8% in 2010, 58.3% in 2016 and 58.1% in 2019. 
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Figure 4. Employment-to-population ratio, 15+, total (%), World 

 
Source: World Bank Indicators, 2020 
 

In terms of income groups, employment in high income countries after 2013 shows a 

return to pre-2008 levels until 2018. But in 2019, the trend has turned its direction 

downwards again. For the upper-middle income countries, there has been a downward 

trend since 2000. While the employment-to-population ratio was 65.43% in 2000 for 

this country group, it was 60.30% in 2019. A downtrend prevails in the lower income 

countries. Although it fluctuated in some years (2004, 2005), the downward trend still 

remains between 2000 and 2019, employment-to-population ratio decreased from 

57.04% to 54.28% in this period. Also the same downward trend is observed for lower 

income countries, although minor increases are observed in 2016 and 2017. The 

employment-to-population ratio in the four income groups in 2019 is as follows: for 

high income countries it is 57.33%; for upper-middle income countries it is 60.30%; for 

lower-middle income countries it is 54.28%; for lower income countries it is 68.95%.  
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Source: World Bank Indicators, 2020 

 

 

Lastly, trends in the labor force participation rates provide important information in 

terms of understanding the current dynamics of employment worldwide. When high-

income and low-income countries are compared, the gap between the two country 

groups is closed in 2016-2017, but after 2017, the gap is widened. This time, although 

the trend is opposite in favor of high income countries, the downward trend for upper-

middle and lower-middle income groups has been continuing since 2000. 
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Figure 9. Labor force participation rate, total (% of total population ages 15-64), High 

Income, Low Income Countries 

 
Source: World Bank Indicators, 2020 

 

 

 
Source: World Bank Indicators, 2020 

 

 

Within this context, the outlook of employment reveals thefollowing facts:  

a. The world economy is still far away from the pre-2008 growth pace. 

 

b. This sluggish growth rate in GDP per capita triggers the downward trend of 

global employment rate. Fewer people can find jobs every day. 

 

c. In the phase of the ‘synchronous slowdown’ of the world economy, the creation 

of new job sites at a lower rate. 
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This thesis attempts to analyze the employment in a conjuncture where robots are 

rapidly spreading. The scope of thesis is specified with the following research 

questions:  

(i) How will the employment be affected by the widespread use of robots in a 

heterogeneous population economy?  

 

(ii) In addition to the relative change in employment, will the inequality-effect 

occur when the demographic characteristics of the employees are taken into 

account? 

 

Chapter 1 and Chapter 2 seek to answers for the first question with an overlapping 

generationsmodel and SYS-GMM estimation respectively. The second question is 

addressed in chapter 3, with empirical analysis taking the demographic differences 

within the workforce into account.  
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CHAPTER 1 

 

 

THE ROBOTS AND HUMAN LABOR IN OVERLAPPING 

GENERATION ECONOMIES 

 

 

1.1 BACKGROUND AND LITERATURE REVIEW 

 

The impact of robots on aggregate employment is not straightforward. Firstly, an 

increase in robotsleads to an increase in GDP per capita andgenerates new jobs, 

primarily by providing an increase in productivity and profitability.This positive effect 

reveals the key role of technologyimprovements in productivity leaps, from the times of 

steam engine to Fordist production mode and to ICT in the 21
st
 century (IMF, 2018). 

Accordingly, the recent increase in a productivity caused by robots is defined as 

productivity effect by Acemoğlu and Restrepo (2019) and product innovation by 

Pellegrino et al. (2017). 

 

As relative prices of robots fall over timeresulting from cost reductions, this leads to a 

replacement of human labor for a given degree of substitutability. This negative effect is 

also defined as a displacement effect by Acemoğlu and Restrepo (2019).This impact 

which leads a labor-saving impact is explained as a result of theprocess innovation in 

Pellegrino et al (2017). This way of technological progress is also defined as embodied 

technological change (ETC) in which any technological progress is added to novel 

machines such as robots and allows producing same amount of products with less labor.  
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Given the extant literature on this issue, the impact of robots on human labordepends on 

which of these colliding effects (productivity effect vs. displacement effect)is 

dominant.Throughout the history, the impact of technological progress on employment 

has been determined by interplay of these impacts. While the productivity impact has 

prevailed since the IR1 and kept employment-to-population ratio growing during 20
th

 

century (Autor, 2015), it is still a lively debate as whether robots leave employment 

behind or whether the future will host brand new jobs to respond to the labor supply. 

 

In general, the findings on the net effect of robots on the human labor are still 

inconclusive. Acemoğlu and Restrepo (2019) offers an ultimate counterbalanced impact 

resulting from neutralization of the productivity and displacement effects. This claim is 

based on the hypothesis that as robots’ degree of substitution increases, this will result 

in a higher productivity effect, resulting in a higher per capita GDP and aggregate 

employment. During this neutralization period, some people are forced to leave their 

jobs, but at the same time some others take part in the new jobs created.Compensation 

of the reduction in employment by the rise in productivity is examined through similar 

counterbalance effect analyses such as Manyika et al., (2013) and Mokyr et al., (2015). 

Moreover, Autor (2015)points out that although robots are indeed substitutes for labor, 

they mostly act as a complement of labor as well by generating a higher demand for 

labor as a result of increasing productivity and earnings. These findings are also in line 

with previous opinions, such as Freeman and Soete, (1994), Autor et al.,(2006), Goos et 

al.,(2004), Bernman et al.,(1994),Autor et al., (1998), and Morrison and Siegel, (2001), 

where technologicalprogress is skill-biased technological change (SBTC). SBTC is 

simply a feature of technological advancement that generates new jobs that demand old 

skills and take old jobs, mostly routine tasks, out of human labor. 

 

Among the studies verifying the role of productivity effect, Pellegrino et al. (2017) finds 

a highly significant effect of automation on job-creation while documenting no 

significant effect on unemployment. According to their SYS-GMM estimates, Research 

and Development, R&D, expenditures embedded in robotic technology has a 
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significantimpact on job creation, but at the same timeembodied technological change
4
, 

ETC presents a labor-saving process and ultimately these two adverse impacts 

neutralize each other and thus unemployment is not observed. In a similar way, Dauth et 

al. (2017) finds no evidence that robots lead a decline in aggregate employment. In their 

study for Germany, they show that although the robots cause a 23% drop in 

employment between 1994 and 2014, this decline is offset by new jobs in the services 

sector. Graetz and Michael(2018) also demonstrates that robots had no negative impact 

on overall employment, except for negative impact on low-skilled labor. 

 

On the other hand, a number of studies have shed light on the dominancy of 

displacement effect. Brynjolsson and McAfee (2014)define the recent period as Second 

Machine Age to indicate the expansion of robots. They claim that this new age is 

expected to be an era carrying similar characters with the First Industrial Revolution (by 

their definition: “First Machine Age”) in which muscle power is replaced by machinery. 

Following an occupation-based approach and using Gaussian process, Frey and Osborne 

(2013) examine 702 detailed occupations in U.S. and estimate that 47% of jobs are at 

risk. More recently, PwC Survey (2017) predicts 37% of workers are worried about the 

possibility of losing their jobs due to the automation. Moreover, for Finland 35% jobs 

are found susceptible to the automation (Pajarinen and Rouvinen, 2014), for Germany it 

is 59% (Brzeski and Burk, 2015), for Europe the jobs are found to be susceptible at the 

range between 45% and 60% (Bowles, 2014) and for OECD countries it is found to be 

9% (Arntz, Gregory, Zierahn, 2016). European Commission admits that 25% of 

employment in sectors that make up 20% of GDP is currently under the threat of 

automation. At the same time, in contrast with Kaldor’s stylized facts
5
, Karabarbounis 

and Neiman (2014) and Piketty (2014) points out the global decline in the share of labor 

                                                           
4
Embodied technological change (ETC) refers to productivity gains by a new capital embodied 

in technology; it exhibits labor saving nature (Sakellaris and Wilson, 2004)  
 
5
 In his study, Capital Accumulation and Economic Growth in 1961, Nicholas Kaldor lists 

following six observations to consolidate the analysis of the literature on national income 

calculations:  

1-labor productivity shows steady growth 2-Capital per worker shows steady growth 

3- The rate of return on capital is steady 4-The ratio of capital to output is steady 5-Both labor 

and capital has constant shares in aggregate income 6- There are important differences in 

growth rates between countries. In fast growing economies, these rates vary between 2-5%. 
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as a result of the efficiency enhancing replacement of labor by robots. Moreover, 

Acemoglu and Restrepo (2017)’s static version of the model, in which capital is kept 

fixed and technology is defined as an exogenous factor of production, indicates a 

reduction in aggregate employment due to the rising automation. In an OLG economy 

settings, Berg et al. (2015) claims that intelligent machines are expected to replace 

human labor in the same way that combustion engine had substituted horses during IR1. 

Given the intergenerational effects, it is expected that the result of the race between 

robots and human labor will not favor human labor, and therefore the claim that the 

economy will reach equilibrium in the long run is refuted (Sachs andKotlikof, 2012, 

Sachs et al., 2015, Berg et al. 2015). Because savings, which are the only source of 

investments in OLG economy, decrease as a result of falling labor demand; this reduces 

investments and ultimately restricts capital accumulation. Therefore, robots that replace 

human labor in OLG economies drag the economy into long-term immiserization. The 

similar long-term immiserization is conceptualized byRifkin (1995) decades ago.In 

Rifkin’s world of economy, this immunization is defined as ‘workless world’, in which 

existing workforce is under a danger of automation.  

 

Although the literature is concentrated on local, regional or cross-country analyzes due 

to lack of available data, Carbonero et al. (2018) conducts a world-wide empirical 

analysis by showing a significant negative impact of robot exposure on employment. 

Working with such a wide range of data reveals an important contribution to examining 

the effects of robots in countries with different levels of development. In this context, 

Carbonero et al. (2018) finds that increase in robot usage causes 1.3% drop in 

worldwide employment over the period 2005-2014. In industrialized countries, or 

developed countries, this effect remains very limited (-0.54%), while in emerging 

countries it is at a very high level (-14%).  

 

In this chapter, following Sachs and Kotlikof, 2012, Sachs et al., 2015,the effect of 

robots on human labor is studied within the OLG framework. Our study attempts to 

provide a theoretical map for understanding the robotic impact on human labor, while 
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intergenerational dynamics, or micro foundations are taken into account. We modify 

OLG model (Diamond, 1965) with a unique production function in which robots are 

accounted as one of the essential productive units in a single-output economy. This 

chapter attempts analyze the consequences of a change in robots on human labor at the 

stationary phase (steady-state) of the economy.  

 

1.2. MODELING ROBOTS  

 

In the theoretical literature, modeling of robots generally takes place with two different 

approaches. The first one is the task-based approach, which divides the production 

processes into small tasks and accepts the comparative advantage of human labor in one 

part of these tasks and the comparative advantage of robots in the other part. 

 

Task-based approach has been developed by Zeira (1998). Zeira (1998) provides a 

simple task-based model considering final output which is produced by either manual or 

automated technology is produced by a set of intermediate goods in a one output 

economy. Acemoglu and Restrepo (2017, 2018, and 2019) modify Zeira’s task-based 

model by using CES production function and endogenizes the tasks.  A contribution of 

the task-based approach to the literature is that it emphasizes the tasks in which human 

labor holds the comparative advantage, thus allowing a countervailing effect against the 

substitution effect (Acemoglu and Restrepo, 2018). 

 

Another approach is based on the neo-classical production function that is modified to 

include robots as a third production factor. In this approach, the type of production 

technology is the key factor determining the ultimate impact of robots on human labor. 

Cobb Douglas and Constant Elasticity of Substitution (CES) production functions are 

the most preferred ones among the all production technologies. There are models using 
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CobbDouglas or CES, as well as studies using two-nested CES and also a combination 

of Cobb Douglas and CES. 

 

Models using only Cobb Douglas production technology (Hanson, 2001) allow robots 

and human labor complement each other. This type of characterization underestimates 

the capability of robots to replace human labor in production process. 

 

To overcome this shortcoming, most studies (Decanio, 2016;Aghion, 2017)apply CES 

production function. In addition to taking into account many factors (including physical 

capital), it also offers flexibility on the degree of elasticity of substitution and provides a 

control over elasticity of substitution.  

 

The degree of substitutability of human labor depends on the range of elasticity of 

substitution between robots and human labor,  . At the point where      equation (3) 

is specified as Leontief function, where the production function requires fixed 

proportions; i.e. there is no substitution between inputs. When     the production 

function shows constant returns to scale, specified as Cobb Douglas production 

technology. Gross complementarity, where the rise of robots lead a decrease in human 

labor demand, arises between robots and human labor where    . Robots and human 

labor becomes gross substitutes, where     and perfect substitutes where    .  

 

Although, the empirical estimation of the elasticity of substitution between K and L is 

very difficult, there is a strong consensus that it takes the value in the range between 0 

and 1 (Arrow et al., 1961, Bodkin and Klein, 1967, Sato, 1970, Kalt, 1978, Antràs, 

2004, Klump, McAdam and Willman, 2007) and the inputs of K and L show that they 

have historically been complementary to each other (Rader, 1968). 
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On the other hand, the elasticity of substitution between robots and human is mostly 

predicted to be greater than 1 (Sachs and Kotlikoff, 2012, Berg et al., 2018). More 

concretely, Berg et al.(2018) proves that elasticity of substitution between P and L is 

2.3-3 times higher than between K and L. To capture the characteristics of smart robots 

substituting human labor perfectly, in this thesis we adopt      case of CES 

technology. Automation is frequently assumed to improve capital productivity (Graetz 

and Michaels, 2015, and Nordhaus, 2015, Benzell et al, 2015, Sachs and Kotlikoff, 

2012) and then increase or decrease labor share at a degree of elasticity of substitution 

(  . The current macro-economic problem, which this thesis also questions analytically, 

is the direction and severity of the effect of robots that can replace human labor in all 

kinds of tasks on employment. Thus following Gasteiger and Prettner (2017), we apply 

perfect substitution,    , between human labor and robots. In this type of set-up, 

the economy will also desperately evolve into stagnation due to the full replacement, 

reduced wages, reduced transfer to subsequent generations and reduced investments 

respectively.  

 

In our model, we adopted the combination of Cobb Douglas and perfect substitution 

technology.Sachs et al. (2015)also applies Cobb-Douglas technology, case:     in a 

two-sector economy. Robotic sector operates with two firms that one of them only 

produces with robots and the other one uses traditional technology with capital and 

human labor. On the other hand non-robotic sector produces traditional output only with 

capital and human labor. At the end, the model displays decline of wages and saving of 

young and old generations as a result of robots replacing human labor. Sachs and 

Kotlikoff (2012)also treat robots and human labor are complementary, concluding that 

job opportunities for future generations are reduced as wages and savings fall. 

 

Moreover following Sachs and Kotlikoff (2012), Sachs et al (2015) and Benzell et 

al.(2015), we employ anOverlapping Generations Model (OLG) in order to capture the 

intergenerational transitions and long-term dynamics.While accumulation of capital 

plays a key role in the economic growth process in the standard neoclassical models, in 
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the OLG economies investment decisions of heterogeneous households are the driving 

forces. This dynamic set-up allows includingdemographic features and timing of the 

exogenous shocks in the model.  

 

Moreover, in this thesis the definition of robots (P) differentiates from the vast literature 

by limiting its scope. In the extant literature robots are frequently defined in a broader 

expression such as the sum of all the codes (the ones applying OLG economy; Sachs 

and Kotlikoff, 2012,Sachs et al, 2015, Benzel et. al, 2017). Following Graetz and 

Michaels(2018), in this thesis, we first limit the scope and consider only industrial 

robots. Then we define robots as a special kind of capital that acts as a different form of 

labor. Defining robots as a form of labor does not make a mathematical difference, but 

it emphasizes the degree of close substitution between human labor (DeCanio, 2016). 

Therefore in the model, robots fulfill most human skills and are equipped to replace 

human labor by degree of substitution, which is assumed to be greater than 2. 

 

Our theoretical model represents a transition economy in which robots are becoming 

widespread, that’s why their price is sufficiently low and capable to replace human 

labor in all production processes. In order to allow robots to substitute human labor at 

every stage of the production process, we set a single output economy in which all three 

factors (physical capital, human labor and robots) are used. 

 

1.3.MODEL 

 

The modelfeaturesaone-sector overlapping generationseconomy in which agents 

consume identical goods and services. Economy consists of two generations, young and 

old, who lived for two-period in a discrete time,           with infinite horizon and 

sharing identical preferences over consumption and saving. The size of the population 
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follows      (      , where   is assumed to be exogenous, represents the young 

individuals born at period t, while     represents the constant population growth rate. 

 

Therepresentative firm uses a production technology, which is already automated. Thus 

our model differs fromthe standard OLG model
6
 by including robots as a third input 

forthe production process. Firms, which are owned by old individuals, produce output 

by using three production factors: Traditional or so-called physical capital,   , human 

labor,  , and robot stock,   .  

 

Firms 

The only source of investment in the economy is households’ savings during their first 

period of life. After the young individuals invest their savings to the representative 

firm,the firm internally allocates these investments as     and    . The first part of 

capital,     , solely acts as a physical capital stock, whereas the second part of the 

capital,     is converted into robots without any cost.  

 

At each period, the representative firm produces a final good, Y.  The production of Y 

uses the Cobb Douglas technology in which elasticity of substitution between labor 

service and physical capital (   ) is 1; while labor service is generated by human 

labor,   ,and robot stock,      In the production function, robots can perfectly perform 

the work of   unit of labor. 

 

The production of Y at period t follows: 

 

        
 [       ]

    1 

                                                           
6
For the detailed description of standard OLG model, see de la Croix and Michael (2002) 
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Where   stands for the total factor productivity (TFP) and  ,   (    , is the elasticity 

of substitution between     and the labor service, which is formed by a combination of 

human labor,    and robot stock,    . 

 

There are alsostudies in the literatureincluding human labor in robot production(Benzell 

et al., 2018). However, this form of labor does not include all labor; it encompasses 

mostly the high-skilled form of labor that represents a very small proportion of the total 

labor.However, most of the time, after robotic production is carried out once including 

human labor, it evolves without the need for human labor intervention(Sachs et al., 

2015).Since the focus of this thesis is the effect of robots on human labor in full 

substitution, human labor is not included in robot production; ratherrobots are 

considered as a self-sufficient form of capital used in the tasks of human labor. 

 

Figure 1.1 shows isoquant and isocost curves that depict the bundles representing 

constant output levels. The tangency between isocost and isoquant curves, model 

reaches interior solution. 
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Figure 1.1.Isoquant and Isocost Curves 
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Under the perfect competition market conditions, in each period the representative firm 

chooses the amount of capital stocks,    ,   and human labor,    by maximizing its 

profit.  

The demands for factors of production satisfy; 
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Since the economy has single rate of return on capital,      assuring the equality of 

equations 4 and 5 yields;  

 

 

The rearrangement of Equation (7)provides     as a function of   . 
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Households 

 

In their first period of life, at period  , individuals are young and endowed with    unit 

of labor that they inelastically supply to firms for to produce output (Y).Following 

Diamond (1965), young individuals allocate their income, which is equal to the real 

wage (     between current consumption(    and savings (   . Savingsare invested in 

the representative firm operating in goods-production and the real interest rate on 

savings between the periods   and     are denoted by     . During the old ages, in the 

second period of life, the return on the savings (           generates an income that is 

entirely consumed. Hence the saving function is increasing in real wage and the return 

on the savingsbetween the periods  and    ,     (   (        . 

 

The budget constraint for the period   and     is;  

 

 

Accordingly, the consumption of old individuals at period     is 

 

 

All individuals are assumed to have rational expectations or perfect foresight and all are 

price-takers. The preferences of individuals are represented by a lifetime utility function 

U (.) derived from consumption in young ages (    and old ages(     respectively.  

 

The lifetime utility function U (.) is defined as follows; 

           9 

      (            10 
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Households discount the future consumption at a rate   and the subjective discount 

factor is   
 

   
 and    (    . This lifetime utility U (.) is strictly concave (decreasing 

marginal utility), strictly increasing (no satiation), twice continuously differentiable and 

satisfies the Inada conditions
7
.  

 

Given the real wage rate and the real interest rate on savings between   and    , the 

optimization problem of the representative is given by:   

 

 

 

              , and          

 

The price of consumption goods is normalized to 1.   

 

The first order conditions (FOC) for the optimization problem of the representative 

individual follows:  

                                                           
7
Inada Conditions are used as a technical assumption for the smoothness of indifference curve;  
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The Competitive Equilibrium 

 

Definition: A dynamic competitive equilibrium is expressed with the feasible 

allocations {                             }   
   and sequence of prices 

{     }   

 
satisfying equations (4), (5), (6) with the positive initial variables 

{              } and the law of motion of   , firms maximize their profits, consumers 

maximize their lifetime utility and all the markets clear at each period t.  

 

Under the perfect competition condition, goods market clears at; 

Labor market clears at; 
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(          
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                    18 
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The physical capital     and robots     make up the total capital stock in the economy. 

 

Plugging Equation (20) into Equation (8) and expressing all variables in per capita 

terms yieldrespectively equations (21) and (22). 

 

 

Since the main focus of this analysis is to see the implications of robots in an economy 

where robots are actively used, we only check the condition where        . Hence 

given Equation (22), for any positive values of           , the total capital per capita 

must be above a certain threshold,     
 

   

 

 
. 

 

Proposition 1.As robot productivity increases in a country, the amount of capital that 

needs to be allocated to robots also increases. For this, the total capital stock per capita 

must exceed a certain threshold, (
 

   

 

 
 . However, the robotic productivity rate,   plays 

an important factor in the threshold level. As robotic productivity rate gets higher, the 

threshold level declines; and this allows the economies which have lower capital stock 

to access to robotized production technology. 

 

And finally capital market clears where the equality between savings and investments 

satisfies at; 

      (          (       20 

    (       
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Combining equations (18), (19), and (23), total capital stock evolves at; 

 

 

It is seen that for this economy, the growth of the economy as given by      
    

  

(    , is 

an increasing function of exogenous parameter A and decreasing function of        (  

  . 

 

 

At the steady-state of the economy,          , where    
  

  
.  

 

Defining    
 

   
(    , the long-term of stocks of total capital and robotic capital 

are:  

 

 

 

Proposition 2. Under the assumptions of   ,    and existence of a linear robot 

production,    ,steady state capital stock per capita of the economy is given by 

Equation (26).Given exogenous parameters    and   as constant, Equation (26) implies 
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there is only one transition dynamics in the economy. For a given     , the first order 

derivative 
   

  
 indicates that the increasing robotic productivity is an immiseration of the 

economy, i.e. there is no growth in the existence of rising robot productivity level. 

 

 

This long-term immiseration of the model also supports the findings of Sachs and 

Kotlikoff (2012) and Sachs et al. (2015). In addition, Gasteiger and Prettner (2017) 

finda similar overall stagnation in the long-term of economy. Due to applying perfect 

substitution between robot usage and human labor, they arrive with AK-type of growth 

model, and relatively reduced wages, reduced transfer to subsequent generations and 

reduced investments. 

 

The intuition of this immiseration result is explained by wage dynamics of the model. 

The steady state level of the real wage yields;  

 

 

Equation (29) and the first order derivative
   

  
 simply imply that the increasing robotic 

productivity reduces real wages 
   

  
   (               . Also checking the second 

order derivative,
    

    (     (               , provides a result that robots' negative 

effect on the wages increases gradually.Therefore savings and investments, which are 

solely financed by wages, also are decreasing in this regards.   

   

  
      (

 

   
)
  

 
      

27 

   

  
   

28 

   (              29 



34 
 

Proposition3.Under the assumptions of   ,    and existence of a linear robot 

production,    , given a production technology that uses the same amount of 

labor,every unit increase in robot productivity pulls real wages down. 

 

Moreover, Equation(29) also provides acomparative statics related with the impact on 

human labor. It’s obvious that for developing an analytical explanation about the effects 

on employment, the model needs a departure from full employmenteconomy.In a case 

where robots substitute human labor perfectly, low-wage dynamics becomes persistent. 

In this low-wage transition, under the rising robotization conditions, labor’s share in 

income approaches zero (Berg et al., 2018).  Acemoglu and Restrepo (2016) proves the 

same direction of labor’s share in income and employment under the endogenous labor 

supply conditions. Also under conditions, where wages cannot be adjusted immediately, 

i.e. in the presence of minimum wage level, unemployment rate is positively related 

with the wage level (Fanti and Gori, 2007). Among the recent studies, Leduc and Liu 

(2019) develops a model, in which the presence of job vacancies in the market are 

accepted in order to make room for robotic decisions, and  come up with a result that 

increasing fluctuations on labor market with a rising displacement effect of robots.   

 

In addition, by taking intergenerational effects, our study differs from Acemoğlu and 

Restrepo (2019), Manyika et al.(2013), Mokyr et al.(2015), Autor et al. (2006), 

Pellegrino, Vivarelli and Piva (2017), Dauth et al.(2017), and Graetz and 

Michael(2018). The most distinctive reason for this departure lies on the model 

selection. Acemoğlu and Restrepo (2017, 2018, and 2019)apply task-based approach, in 

which they allow tasks human labor has the comparative advantage. 
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1.4.CONCLUSION 

 

There is a consensus in the extant macroeconomic theoretical literature that robots will 

substitute for human labor in the production of goods and services. However, the 

arguments vary that this will result in permanent unemployment. This effect of robotic 

technologies, which have been rapidly increasing in recent decades, on human labor is 

studied analytically with various theoretical models.Task-based models in the literature 

suggest a job growth effect that has a capability to offset the displacement effect, 

assuming that robots cannot replace human labor in every task.But this balancing 

mechanism does not always work in neoclassical models. Among the neoclassical 

models, the degree of substitutability of human labor plays a key factor in determining 

the impact on employment and wages. Our model takes the robots as perfect substitutes 

for human labor, or in other words we employ a model in which robots can accomplish 

all tasks in production process.  

 

Moreover, in our analysis we trace the robotic impact in overlapping generations 

economy. This specific economy allows us to take into account the intergenerational 

dynamics and micro-foundations of the economy.The model has been kept general and 

simple for a wide analytical discussion.In summary, there are basically two factors in 

economy: physical capital,     and human labor  . Since the production processes are 

automated, and all firms have access for this technological adoption, robots that can 

perfectly replace human labor, can be produced with some part of the physical capital. 

Therefore, robots are used as a third production factor. Since only source of investment 

in the economy is savings, which are also unconsumed portion of wages of working 

young people, the increasing use of robotspusheswages down.This also leads to long-

term immiseration in the economy due to the decline in the capital stock. Although 

pushing wages downward does not cause unemployment in the full employment 

economy, the result the model points out, implicitly allows comparative statics.In the 

conditions of leaving full employment, the increase of robots will result in 

unemployment inevitably. 
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For nearly the last three decades, we have been facing with novel form of machine, 

which differentiates from the previous ones, such as assembly lines, computers and 

basic robotic arms. Today’s robotsare ready to take over almost all jobs performed by 

human labor in the production process. Therefore, the widespread use of robots reveals 

the new technological concern of our age. This concern is expressed in two ways: first, 

'robots may take our jobs away' and second, 'robots can cause economic shrinkage in the 

long term, although they can increase production in the short term. These two scenarios 

are also interdependent, because if the emerging unemployment in the economy is not 

compensated, the decline in wages and savings in the long run will create immiseration 

in the economy. Our model supports both of these scenarios. 

 

However, these concerns need more comprehensive analytical explanation. These 

analytical studies undoubtedly have a large room that includes departure from full 

employment and moving away from the assumption of capital is owned by all 

households.  
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CHAPTER 2 

 

THE IMPACT OF ROBOTS ON EMPLOYMENT: THE EMPRICAL 

INVESTIGATION FOR SELECTED COUNTRIES  

 

In this chapter, the robotic impact on employment is empirically analyzed. The analysis 

is conducted in an intergenerational framework, which is theoretically described in 

Chapter 1.  

 

2.1. EMPIRICAL LITERATURE REVIEW  

 

There is a wide range of empirical studies in the literature on how robots affect labor 

demand, aggregate employment. We classify the empirical literature on the effects of 

robots on employment first by dividing it into two- local economy analyses and cross 

country analyses- and then two more subgroups-quantitative analyses and qualitative 

analyses.  

 

Acemoğlu and Restrepo (2017) conduct a study on the basis of US local labor markets   

and find that each increase in a robot per thousand workers reduces employment-to-

population ratio by around 0.18%- 0.34.A similar study (Autor and Dorn, 2009) taking 

into account the 722 US commuting zones explains that the decline in the US 

employment-to-population ratio occurs mostly in routine work-intensive 

sectors.However, this study also shows that this decline in employment is offset in the 

non-routine, cognitive-intensive service sectors, thanks to the reallocation of employees 

according to their skills.For German manufacturing industry, the robotic displacement 

effect is found to be negative; Dauth et al. (2017) finds that each increase of robots 

resulted in two job losses.Regarding Spanish manufacturing firms, Pellegrino, Vivarelli 
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and Piva (2017) shows that automation has no significant effect on employees in high-

tech companies with high R&D expenditures, and robots in non high-tech companies 

affect employment negatively. Given the UK evidence (Goos and Manning, 2003), 

robotization has a negative effect on workers only in routine work-intensive companies, 

and it does not have a significant effect on employees in companies based on creativity 

and problem solving. 

 

 

On the other hand, cross-country analysis provides more insight into robot effects.These 

analyses allowcapturing differences in economic structure, heterogeneity in 

technological adoption and capabilities, cultural factors etc. On conducting a cross-

country study, there is possibility to choose the country classification on the subject to 

focus on. For OECD countries, De Backer, K. et al. (2018) refers to Global Value 

Chains and analyze the impact of robots on employment. While the effects of robots on 

humans are found to be positive for developed countries with off-shore possibilities, this 

positive effect is disappearedfor developing countries andno significant effect is found. 

For 17 selected countries, Graetz and Michaels (2018) estimate a neutral correlation 

between robots and employment, whereas for low-skilled workers and for low-skilled 

working density-countries this effect turns to be negative.  

 

 

However, for six EU countries, the impact of robots on employment is found to be 

negative (Chiacchio et al. 2018). According to this study, a rise in robot per thousand 

workers reduces employment by around 0.16%-0.20% points. Focusing on the 

development scales of countries, Carbonero et al. (2018) conducts a study on 43 

selected countries worldwide and finds that displacement effect is dominant for whole 

sample. For developed countries this negative effect is turned to be lower, whereas for 

developing countries, the displacement effect of robots reaches14% points. 
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Table 2.1. Literature Review/Local Economy Analyses 

Autors 

Estimatio

n Model  Period  Sample  Findings  

Acemoğlu 

and Restrepo, 

2019          

 

IV  1990-

2007 

US labor 

markets, 

commuting 

zone basis  

Each increase in a robot per 

thousand workers reduces 

employment by 0.2%. 

Dauth et al., 

2017  

IV  1994-

2014 

Germany 

manufacturing 

industry.  

Each additional robot causes 2 

employment losses.  

Pellegrino, 

Vivarelli and 

Piva, 2017 

GMM-

SYS 

2002-

2013 

Spanish 

manufacturing 

firms 

Employment is not significantly 

affected by automation. 

However, in industries without 

high-tech capacity and R&D 

expenditures, this effect turns out 

to be negative.  

Goos and 

Manning 

2003 

The dot-

probe task 

measurem

ent  

1976-

1999 

UK, cross-

sectoral 

analysis  

Robotization only has negative 

effects on workers in companies 

with routine work intensity, and 

it does not have a significant 

impact on workers in companies 

other than that, in companies 

with jobs based on creativity, 

problem solving. 

Autor and 

Dorn 2009 

OLS  1980-

2005 

US labor 

markets 722 

commuting 

zones 

Only in routine work-intensive 

companies employment is 

negatively affected by rising 

robots, but due to the reallocation 

of workers to service sectors, this 

decline is offset in the economy.   
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Table 2.2. Literature Review/Cross-Country Analyses 

Autors 

Estimatio

n Model  Period  Sample  Findings  

De Backer, K. 

et al. (2018) 

FE  2000-

2014 

OECD 

economies  

The positive correlation of robot 

investments with employment 

growth is observed in developed 

economies. In developing 

economies, the real allocation of 

fixed capital to robotic areas has 

not been seen to have a 

significant effect on employment. 

Carbonero et 

al. (2018)  

OLS, IV  2005-

2014 

43 countries  Robots have significantly 

displacement impact on 

employment worldwide. For 

developed countries this negative 

impact is much smaller, while for 

developing countries it is 

estimated by 14%.  

Chiacchio et 

al. 2018 

 

IV, 2SLS  1995-

2007 

6 EU countries  Robot increase per thousand 

workers reduces employment by 

0.16-0.20 points. This negative 

effect is more pronounced in 

younger generations and low and 

middle-skilled workers. 

Graetz and 

Michaels, 

2018 

OLS, 

2SLS  

1993-

2007 

17 countries  Robots have no significant 

negative effect on employment, 

although they do reduce low-

skilled workers’ employment 

share 

 

 

2.2. DATA AND DESCRIPTIVE STATICS  

 

In this chapter, dynamic panel data techniques are used to estimate the employment 

impact of robots. By including time and space dimension, panel data or longitudinal 

data provides a techniques, which allows a more comprehensive analysis by combining 

time series and cross-sections. Panel data also provides more efficient estimation by 

offering   less linearity between variables and greater degrees of freedom.So,it allows 

working on models including complex dynamics (see Baltagi, 2005). 
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The data consists of 47 countries in a sample period 2004-2016.The World Bank 

classifies the world economies into four groups — high, upper-middle, lower-middle, 

and low income countries according to GINI per capita converted to U.S dollars Atlas 

Method
8
.According to the availability of robot data, only three income groups- high, 

lower-middle and upper-middle income countries- are used.  

 

Table2.3.Country Classifications Based on Income Groups 

High Income Economies  
Upper-Middle Income 

Economies  

Australia United Kingdom  New Zealand Brazil Malaysia 

Austria Hong Kong  Portugal China  Russian Federation 

Belgium Hungary  Singapore Colombia Thailand 

Canada  Ireland  Slovakia Mexico Turkey  

Switzerland Iceland  Sweden   South Africa 

Czech Republic Israel  United States 
Lower-Middle Income 

Economies  

Germany  Italy Chile  Indonesia  India  

Denmark  Republic of Korea Greece  
 

 Spain  Lithuania Poland  

  Estonia  Latvia Slovenia 

  Finland  Netherlands Japan 

  France  Norway Argentina 

   

The time dimension is reduced to 13 years due to the availability of robot data. In 

accordance with the World Bank classification and data availability, data set includes 35 

high-income, 2 lower-middle and 10 upper-middle-income countries.  

 

Table 2.4 shows acronyms and definitions of the variables used in the empirical analysis 

and Table 2.5 lists descriptive statistics indicating detailed description of the variables. 

                                                           
8
The World Bank uses the Atlas conversion factor to reduce the effect of exchange rate fluctuations while 

calculating the gross national income in US dollars in its analysis of GDP between countries. This factor 

is defined as the average exchange rate of any year and the previous two years, after purifying the  

country's and international inflation rate.. For details see : 

https://datahelpdesk.worldbank.org/knowledgebase/articles/378832-what-is-the-world-bank-atlas-method 
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The central tendency in panel data is captured by the mean value. According to Table 

2.5, the average of employment-to-population ratio is 56.7%, whereas the range of data 

is between 31.2 (minimum) and 75.4 (maximum). In stock of robots data, where the 

average is 36,686, the data is spreading to a greater extent from average. This is because 

the range between minimum and maximum varies between 0
9
 and 1,024,897.This 

highlights the huge asymmetry in the world robot distribution. 

 

Table 2.4. Acronyms and Definitions of Data  

Variable Acronym Unit of Measure  Source  

Employment-to-population 

ratio  employment  

As % of working-

age population   World Bank Indicators 

    

Stock of Robots robots  

Installations and 

operational stock IFR 

    

GDP per capita gdppercapita 

PPP (constant 

2011 international 

$) World Bank Indicators 

    

Labor Compensation LaborCompen. 

Share of Labor 

Compensation in 

GDP 

Penn World Table 

(version PWT 9.1)  

    

Value Added: ValueAdded 

Industry (including 

construction), 

value added (% of 

GDP)  World Bank Indicators 

 

 

Table 2.5. Descriptive Statistics  

Variable Obs Mean  Std. Dev.  Min  Max  

Employment-to-population ratio  611 56.6621 7.049586 37.179 75.423 

Stock of robots   611 36686.47 108829 0 1024897 

 Labor compensation 611 0.5380118 0.0761113 0.3049485 0.6899443 

GDP per capita  611 30609.01 15086.58 2774.421 91452.04 

Value Added  610 26.75945 7.373833 6.717173 48.52979 

                                                           
9
Canada started its robot stock investments after the year 2010. Therefore, Canada's stock of robots is 

zero between 2004 and 2010. 
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2.2.1. Robots 

 

We use industrialrobot data from International Federation of Robotics (IFR), who 

estimates the operational stock of robots under the assumption of an average service life 

of 12 years with an immediate withdrawal from service afterwards (IFR, 2018). 

Covering 90% of the world robot market, IFR collects robot data from suppliers via 

annual surveys and publishes yearly. Having their own systems and working 

independently is characteristic of robots within the scope of data..IFR defines industrial 

robots according to International Organization for Standardization (ISO 8373:2012) as 

“automatically controlled, reprogrammable, multipurpose manipulator, programmable 

in three or more axes, which can be either fixed in place or mobile for use in industrial 

automation applications” (International Organization for Standardization, ISO)
10

 (see 

Table 2.6 for details).  

 

Table2.6.Terms Used in Definition of Industrial Robot 

Reprogrammable Designed so that the programmed motions or auxiliary functions 

can be changed without physical alteration, 

Multipurpose Capable of being adapted to a different application with physical 

alteration 

Physical 

alteration 

Alteration of the mechanical system (the mechanical system does 

not include storage media, ROMs, etc.)  

Axis Direction used to specify the robot motion in a linear or rotary 

mode 

Source: ISO 8373:2012, Robots and robotic devices-Vocabulary 

 

                                                           
10

 For the long version of ISO Definition, see https://www.iso.org/obp/ui/#iso:std:iso:8373:ed-2:v1:en). 
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In some studies, robot data is considered as a robot per thousand workers (Acemoglu 

and Restrepo, 2019, Chiacchio et al. 2018, Graetz and Michaels, 2018). However, 

following Dauth et al. (2017) and Carbonero et al. (2018), we preferred to use it as a 

robot stock to avoid the problem of collinearity between robots and employment.  

 

Among selected countries, high income countries hold 98.9% of the total robot stock in 

2004 and 83% in 2016. While this change shows that high income countries still have 

the biggest share in the robot stock, it reveals that other countries have been robotized in 

the past 12 years. Figure 2.1 presents the average distribution of robots among the 

income groups in the period of 2004-2016. In order to observe the trend of robots 

clearly, we use log transformation. In this way, the distribution becomes smoother and 

better behaved.   

 

Figure 2.1. Robot average distribution of robots,  

income groups 

 
H: High income countries; LM: Lower-middle income economies;  

UM: Upper-middle income countries 

 

 

The trends of stock of robots in each high income countries is shown in Appendix A. 

Australia, Germany, Japan, Republic of Korea and United States are the ones with the 
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largest stock of robots. Italy, Spain UK and Sweden are emerging as the followers. 

Canada is one of the 'delayed countries' that started investing in 2011, while Eastern and 

Central European countries such as Latvia, Lithuania and Estonia are showing an 

increasing trend. 

 

Between 2004 and 2016, the logarithmic average of the robot stock in high-income 

countries is 7.87, that is lower than the averages in Australia, Japan, United States, 

Germany, Republic of Korea, Italy, Spain, United Kingdom, Sweden, New Zealand, 

Belgium, Canada, Austria, Netherlands, Singapore, Czech Republic, Switzerland, 

Finland, Denmark and Poland; and higher than the Portugal, France,  Slovakia, 

Hungary,  Slovenia, Norway, Argentina, Israel,  Hong Kong,  Ireland,  Greece,  Chile,  

Estonia,  Iceland,  Lithuania and Latvia respectively (for details see Appendix A).  

 

In the comparison between high income countries, Australia is in a position of the 

leading country, where the robot stock exceeds 1 million in 2016. Japan started with a 

high robot investment in 2004, followed a downward trend after 2005, but is still the 

second country with the highest robot stock. On the other hand, as the third country with 

the highest stock, the USA is in a rising trend. 

 

The trend of robots stocks in each upper-middle income country is presented at 

Appendix A in detail. Among the upper-middle income countries, China and Thailand 

shows a diverging trend in stock of robots by converging to the top-ranked high income 

countries. Thanks to China and Thailand, the average robot stock in upper-middle 

income countries is almost equal to that in high-income countries. However, if these 

two countries are excluded, it decreases to an average of 7.29. Mexico, where robot 

stock investments have started in 2011 stands out as the latecomers of this group.  
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Accompanied witha rapid rise, China shows a significant decomposition from the other 

upper-middle income countries.Thailand turns to follow a similar trend of China. It has 

begun to diverge from other countries with a small distance. 

 

India and Indonesia are the two lower-middle income countries in our dataset. Despite 

low income generating economy, India is accepted worldwide as one of the world's 

leading outsourcing and low-cost centers, especially for technology and industry 

companies. According to Global Competitiveness Report 2019, India shows a 

considerable improvement in Global Innovation Index, by raising its ranking from 81th 

to 52
nd

 (Lalwani, 2019). On the other hand, Although Indonesia is lagging far behind 

India in terms of stocks of robots;with having relatively high rate of technological 

adoption (72nd out of 141 countries) the country is promising in terms of robot 

usage.Although India has more robot endowment, Indonesia shows trend-like features 

with India. While the average logarithmic robot of India is about 8.42, it is 7.21 in 

Indonesia. 

 

2.2.2. Employment  

 

Following Carbonero et al. (2018),Chiacchio et al. (2018) and Pellegrino, Vivarelli and 

Piva, (2017), we use the employment-to-population data from World Bank 

(WB), World Development Indicators. In order to eliminate heterogeneity in population 

and hence labor size, we preferred to take employment-to-population into account as a 

dependent variable. By collecting data from International Labour Organization, 

ILOSTAT database, employment-to-population ratio is the ratio of the population 

working in the country to the total working-age population. Generally, workers aged 15 

and over are accepted as a total working-age population. The stock of robots at high 

income countries for the period between 2004 and 2016 is shown according to the 

country group they belong to in Appendix A. 
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We created a variable called “Robot Density” to compare the number of robots per 

thousand employees between countries (Figure 2.1). The robot density simply provides 

the information about the robot-intensive levels of countries. 

 

Figure2.2. Robot Density Average, 2004-2016 

 

 

Germany, Japan, Italy and Korea, which are also the leading countries in the number of 

robot stocks, are ranked as the countries with the highest robot intensiveness. In 

countries such as New Zealand, Slovakia and Finland, where there are relatively low 

number of employees due to low population numbers, the robot density shows relatively 

high level.  

 

Following Dauth et al.(2017) we use GDP per capita-hereafter gdppercapita- which is a 

significant contributor to the employment and job creation (Manyika, 2017). World 

Bank provides GDP per capita based on purchasing power parity (PPP), i.e. gross 

domestic product converted to international dollars using purchasing power parity rates 

on an annual basis for all the world countries.  

 

Following Carbonero et al.(2018) and Graetz and Michaels(2015), value added as a 

percentage of GDP-hereafter ValueAdded- is used as an industrial development 
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indicator. World Bank merges value added data with OECD national accounts and 

provides the percentage GDP including construction.  

 

Following Graetz and Michaels (2015) we use share of labor compensation to indicate 

the labor’s share of income. Penn World Table version 9.1 provides the share of labor 

compensation in GDP data in current national prices with an extended series covered 

the period since 1950.  

 

In order to control unobserved time variation we also add dummy variable. For each 

year we created a dummy variable,       to capture the time series trends.  

 

2.3. METHODOLOGY  

 

In the extant literature, three approaches are commonly used to understand economic 

relations empirically: Cross-country analysis, time series analysis and panel data 

analysis. Compared to cross-country analysis and time series analysis, the use of panel 

data provides important advantages in understanding the economic relations, which are 

generally dynamic in nature. Having N cross sectional units and T time periods, panel 

data allows more sample variability and more degrees of freedom (Baltagi, 2005).  

 

An economic relationship becomes dynamic by taking the lagged value of the 

dependent variable, i.e.; 

 

               
          

where             
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In this dynamic specification, with dependent variable     and dependent variable   
   , 

     represents the sum of unobserved time-invariant heterogeneity (     and 

idiosyncratic error term (    ). 

 

The inclusion of lag dependent variable poses significant problems in estimating the 

model with OLS, FE and GLS estimators.In OLS estimation, both      and        are a 

function of      . So following the OLS estimation approach gives biased and 

inconsistent outcomes. In addition to Fixed Effect (FE) model suffering from a large 

loss of degrees of freedom, it yields biased and inconsistent outcomes.  The FE 

regression forms with averaging over time and having the differences give respectively; 

 

 
 
   

    
   

      

      
 
  (        

    
)   (  

      
 )+(       ) 

 

With FE estimator, although    is canceled out in the model, (        
    

)  is still 

correlated with the error term(       ). 

 

A similar problem occurs with random effect GLS estimator. Since (        
    

) is 

correlated with(          ), the inconsistency and bias problems are not solved via GLS 

estimator. 

 

The instrumental variable, IV estimation (Acemoğlu and Restrepo, 2019, Wolfgang et 

al., 2017) and two-Stage least squares, 2SLS (Graetz and Michaels, 2015) approaches is 

also preferred in empirical literature to overcome biased and inconsistent results. In this 

study, IV approach is not preferred because it doesn’t take into account of all available 
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moment conditions and ignores differenced structure on the residual disturbances 

(      . 

 

2.3.1. Generalized Method of Moments 

 

Following Pallegrino, Piva, Vivarelli(2017), in this thesis system-GMM (Generalized 

Method of Moments) method is applied based on the dynamic characteristics of the 

panel data used. GMM coefficient levels are expected to be at a level between the 

coefficients found from OLS and Fixed Effect estimation results (Bond, 2002 pp: 158-

159),  therefore we also report Ordinary Least Squares (OLS) and Fixed Effect (FE) 

estimates for completeness.  

 

System-GMM method developed by Arellano and Bond(1991), Arellano and 

Bond(1995), Blundell and Bond (1998) and popularized byHoltz-Eakin et al. 

(1998).Either differenced-GMM or system-GMM is used most commonly for 

estimating standard dynamic panel data models. Both are developed for; 

(i) Small (T) and large panels (N),  

(ii) The models with dynamic dependent variable, 

(iii) Not strictly exogenous independent variables (Roodman, 2009).  

 

What distinguishes the system-GMM from the others is that it takes account of the 

potential correlation between instrument variables and fixed effects. 

 

One important concern that arises with dynamic panels is endogeneity bias. Regarding 

to our study, we come across the following concern: It may not be the current year’s 

robot level that is affecting employment-to-population ratio, but rather the previous 

year’s level that could be the significant actor. System-GMM is often argued (Baum, 
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2006) as the best identification method in dealing with the dynamic nature resulting 

from the impact of explanatory variables on the dependent variable, i.e. endogeneity 

bias. Static models are very restricted to consider the dynamics of endogeneity. 

Endogeneity, which can be defined simply as the impacts of past on present, arises from 

the correlation between dependent variable and error term. To solve this problem, first 

difference-GMM was developed (Arellano and Bond, 1991) by instrumenting lagged 

dependent variable by differencing regressors. Then the estimator was improved to 

system-GMM by Arellano and Bond(1995) and Blundell and Bond(1998) by allowing 

more instruments to overcome some existing limitations.  

 

Therefore, system GMM allows us to deal with this endogeneity bias by using lagged 

values of dependent variable as an instrument. Thus by internally transforming the data, 

which refers statistical process that subtracts past value of the variable from the present 

value (Roodman, 2009), we overcome the endogeneity bias. Generally, the one-step 

GMM and two-step GMM estimators are used for this transformation. Due to the 

limitations of one-step GMM estimator, which causes too many losses in observations, 

Arellano and Bover(1995) developed two-step GMM estimator. 

 

One another problems arise from dynamic panel estimation are heteroskedasticity and 

autocorrelation within the error terms. By the method of two-step GMM, this problem 

can also be removed.  

 

 We first construct the simple regression model equation panel data model;  
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In order to test the employment impact of stock of robots, we apply GMM estimator 

approach, and for that we move from the static expression to the dynamic specification 

as follows:  

 

                                                                                        

                       (         

          

where   is time-invariant individual fixed effect and   is the usual error term.  

 

2.3.2. Panel Unit Root Test Results 

In order to check the stationarity properties of dynamic panel data, Panel Unit Root Test 

was applied.The most significant property that distinguishes Panel Unit Root Test from 

Unit Root Test is, it considers asymptotic behavior of the time-series dimension ( )and 

the cross-sectional dimension ( ). 

 

To run the unit root test, the following simple dynamic heterogeneous panel regression 

is assumed;  

      (                          

                          

                          and initial values are assumed to be given 

    (       ,     (      

  :         for all  . 

  :                for all  . 
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In order to meet the requirements arising from the properties of the panel data, Panel 

Unit Root Test was developed first by Levin, Lin and Chu (2002)and thenimproved by 

Im, Pesaran and Shin (2003). In both methods, the null hypothesis (  ) is tested. 

Commonality of two methods is that, with the null hypothesis(  ) all or at least one of 

the panel members is assumed to contain unit roots whereas under alternative 

hypothesis(     the first order serial correlation coefficient is assumed to be identical in 

all cross-sectional units.  

 

In this thesis, Levin-Lin-Chu (LLC), Im, Pesaran and Shin (IPS), Fisher-type (Fisher) 

and Hadri LM panel unit root tests are used. The reason for to apply all these tests is 

that all the four methods are act as a complementary each other and offer more powerful 

explanation altogether. For instance, LLC unit-root test has an explanatory power only 

if not all units are stationary. In the other case, i.e. when rejecting null hypothesis, the 

evidence that all series are stationary would become not convincing (Pesaran, 

2012).Hence IPS test is used in order to take heterogeneity and asymmetry features of 

null and alternative hypothesis into account. Fisher test is applied as an alternative to 

IPS test; while Fisher test presents exact test (N goes to infinity), IPS test reveals an 

asymptotic (T goes to infinity) feature (Maddala and Wu, 1999)   

 

Unit root test results for all variables are presented in Table 2.7.  LLCindicates that all 

stock of robots and GDP per capita panels contain unit roots whereasIPS panel unit root 

test indicates non-stationary for all panels. On the other hand LLC shows that number of 

employees and Value-Added panels are stationary. For the first differenced panel series, 

except stock of robots, all panels become stationary.  Fisher test indicates unit root for 

all variables except labor compensation and all panels except stock of robot becomes 

stationary for the first differenced panel series. Lastly Hadri LM test reveals that unit 

root n some panels and for the first differenced series- except the number of employee 

and stock of robots- all panels become stationary.  
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Table 2.7. Panel unit root test results 

 
Employment Robot 

GDP 

Per 

Capita 

Value 

Added 

Labor 

Compensation  

 

Prob. Prob. Prob. Prob. Prob. 

LLC  0.0000 1.0000 0.0917 0.0042 0.0000 

IPS  0.0345 - 1.0000 0.9988 0.0370 

Fisher  0.0146 1.0000 0.9994 0.9991 0.0131 

Hadri LM  0.0000 0.0000 0.0000 0.0000 0.0000 

First Differences  

 

   

LLC  0.0000 0.8014 0.0000 0.0042 0.0000 

IPS  0.0002 - 0.0000 0.0000 0.0000 

Fisher 0.0001 0.8927 0.0000 0.0000 0.0000 

Hadri LM 0.0049 0.0000 0.0012 0.0909 0.5629 

LLC: Levin-Lin-Chu unit-root test (  : Panels contain unit roots;   : Panels are stationary)  

IPS: Im, Pesaran and Shin unit root test (  : All panels contain unit roots;   : Some panels are 

stationary) 

Fisher: Fisher-type unit-root test, Based on augmented Dickey-Fuller test (  : All panels contain unit 

roots;   : At least one panel is stationary) 

Hadri LM: Hadri LM test(  : All panels are stationary;   : Some panels contain unit roots) 

 

2.4. EMPIRICAL RESULTS  

 

Estimation results of the dynamic panel are presented in tables 2.8 and 2.9. OLS, FE 

and one-step system GMM results are included in the results for completeness. 

Considering the AR(2) and Hansen Test results, two-step system GMM results are 

takeninto account.  

 

In general the empirical results indicate that the impact of robots on labor is negative 

and significant. In this way, the empirical results show consistency with the findings in 

chapter 1.  
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Table 2.8 reports the empirical results on the impact of robots on employment for all 

countries.  According to Arellano-Bond (AB) two-stepsystem GMM results, the first lag 

of employment is positive and significant at a 5 percent significance level. The 

coefficient of the stock of robots is negative and significant with a 10 percent 

significance level. Results reveal that each increase in robots causes0.7%drop in 

employment-to-population ratio. As a price indicator of labor, labor compensation 

affects the employment level negatively as expected. Each unit labor compensation 

increase leads to a 0.1% decrease in the employment-to-population ratio. Also results 

reports that GDP per capita and value added have no significant impact on employment-

to-population ratio. 

 

Table2.8. System GMM Estimation Results I 

  Dependent Variable: lnemployment 

  OLS  FE  SYS GMM 1 SYS GMM 2 

L1.lnemployment  - - 0.485 0.625 

  - - (0.000)* (0.033)** 

lnrobot -0.001 -0.007 -0.016 -0.007 

  (0.571) (0.028)** (0.052)*** (0.067)*** 

lnvalueadded 0.139 0.199 0.137 0.068 

  (0.000)* (0.000)* (0.029)** (0.326) 

lnLaborCompen. -0.009 0.264 0.016 -0.001 

  (0.980) (0.000)* (0.858) (0.01)**  

lngdppercapita 0.068 0.189 0.083 0.044 

  (0.000)* (0.000)* (0.259) (0.198) 

First and second are coefficient levels and probability levels respectively  

Number of groups: 47, Number of instruments: 23 

One-Step GMM/AR(2):  0.538     Two-Step GMM/AR(2): 0.515 

One-Step Hansen Test: 0.269        Two-Step Hansen test: 0.390 

*, **, *** represents the significance at 1%, 5%, 10% respectively 

 

Table 2.9lists the empirical results where the dependent variable is employment-to-

population ratio in high-income countries. Similar to the whole sample estimation, 

robots have significant -according to 5 percent significance level- and negative impact 

on employment. However, robots have slightly more negative impact on high income 

countries than the all countries. Each increase in robots causes3.1% drop in 
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employment-to-population ratio.For high-income countries, employment is also affected 

by the GDP per capita. According to estimation results, GDP per capita has positive and 

significant impact on employment.  

 

Table2.9. System GMM Estimation Results II 

  Dependent Variable: lnemployment in high income countries  

  OLS  FE  SYS GMM 1 SYS GMM 2 

L1.lnemployment  - - 0.909 0.754 

  - - (0.001)* (0.002)* 

lnrobot -0.013 -0.007 -0.024 -0.031 

  (0.000)* (0.028)** (0.087)*** (0.017)** 

lnvalueadded 0.103 0.204 0.076 0.048 

  (0.000)* (0.028)* (0.754)  (0.711) 

lnLaborCompen. 0.145 0.270 -0.304 -0.028 

  (0.000)* (0.000)* (0.334) (0.179)  

lngdppercapita 0.229 0.187 0.322 0.417 

  (0.000)* (0.000)* (0.059)*** (0.014)** 

First and second are coefficient levels and probability levels respectively  

Number of groups: 35 Number of instruments: 24 

One-Step GMM/AR(2):  0.250     Two-Step GMM/AR(2): 0.515 

One-Step Hansen Test: 0.444        Two-Step Hansen test: 0.335 

*, **, *** represents the significance at 1%, 5%, 10% respectively 

 

The overall results are supporting the findings ofCarbonero et al. (2017), Bartelsman et 

al. (2009), Bassalini (2010), and Fargerberg (2000). Carbonero et al. (2017) finds the 

employment impact of robots stock at -0.5% at the world level. Considering the US 

local labor markets, Acemoglu and Restrepo (2017) finds 0.37% reduction in aggregate 

employment in each increase in robot per thousand workers under the assumption of no-

trade between commuting zones. Compared to the results of both studies, the -0.7% 

impact found in this study indicates a more negative outcome on employment compared 

to Carbonero et al.(2017) but points to a less negative impact compared to Acemoglu 

and Restrepo (2017). 
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Forhigh-income economies, some studies find a positive coefficient for robot exposure.  

While estimating employment impact of distinct types of innovative investments at 

Spanish manufacturing sector on a firm-basis level, Pellegrino, Piva, Vivarelli (2017) 

find a positive effect on employment at the level of 0.6%.For Germany, Dauth et 

al.(2017) finds 2% increase in aggregate employment in each robot installation. This 

result challenges the findings of Bessen (2018), where the author argues that high-

income countries diverge on this issue, but not positively. Bessen (2018) explains this 

argument with the large unmet needs of the markets:such a market may have an impact 

on growth and employment growth as it can reflect productivity increases to sales 

(Bessen, 2018). HoweverDe Backer et al. (2018), points out the position of low and 

medium-income countries in global value chains, arguing that such a mechanism will 

not work, that global offshore rates will decline, and that potential increases from 

productivity gains will be hampered by weakening global trade.  

 

Also our results also support the findings of Bartelsman, Pieter, and Wind (2009) 

indicating that countries where technological progress poses high risk of unemployment 

lack relatively laws protecting workers. According to author’s empirical evidence, 

employment-protecting laws prevent the risk of jobs destruction as well as reducing the 

aggregate employment in the danger of rapid technological adoptions. This 

countermeasure partly explains why employment in high-income countries has less 

damage than the whole world.  

 

2.5. CONCLUSION  

 

In this chapter, the robotic impact on employment is investigated. In extant literature, 

there is ongoing debate about the effect of robots on human labor. The net effect of 

robots, which can perform almost all the work of human labor alone, on employment is 

still argumentative. On the one hand, robots are anticipated to replace human labor 

thanks to their labor-saving nature; on the other hand due to productivity improvements 
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including robots in production leads new jobs and therefore additional employment. 

Although there is no consensus on the net effect in the literature yet, it is possible to 

find empirical studies on both views despite their insufficient number. The distinctive 

contribution of this study to the literature is the aggregate employment analysis for 

selected countries around the world including different income country groups. 

Specifically, the industrial robots are taken into account for 47countries in the period of 

2004-2016. 

 

The dynamic panel regression results show that each robot increase causes a 0.7% drop 

in employment-to-population ratio. This impact slightly rises for high-income countries; 

that each increase in robots leads3.1%fall in employment-to-population ratio for this 

country group. For overall country sample, the share of labor compensation has positive 

but very small impact (0.1%) on employment. On the other hand for high-income 

country group, while labor compensation has no significant impact on employment, 

GDP per capita has andpositive and a greater effect than robots. 

 

The empirical results show that for all countries the increase in robot use clearly causes 

a negative effect on employment. Therefore, the estimation results support the 

displacement impact literature (Carbonero et al., 2017, Bartelsman et al., 2009, 

Bassalini, 2010, and Fargerberg, 2000,  Carbonero et al., 2017). 

 

In addition, the empirical results support real life experiences. The key determinant of 

the question is the rapid progress of the technology in the direction of fulfilling the work 

of human labor.In other words, the trend in technological progress is that machines 

become workers by leaving from their complementary role to workers.For instance, in 

the age of the Second Industrial Revolution, workers put in a complementary role. But 

now the world is welcoming intelligent machine-learning algorithms, that can learn all 

business processes, as long as they have big data and software. Hence the displacement 

effect is getting stronger. 
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Also the US example mentioned in the introduction section also confirms this trend; the 

fact that the rate of job growth in the country fell from 31% in the 1960s to 0% in the 

2000s reveals the magnitude of negative effect of these intelligent machines on 

employment and shows that the offset mechanism or so-called counterbalance effect 

(Acemoglu and Restrepo, 2019; Manyika et al., 2013; Mokyr et al., 215) is almost 

nonexistent.This situation also explains why the displacement effect is much stronger in 

high-income countries. Higher and widespread robotization causes a more negative 

effect on employment in these countries with developed economies. 
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CHAPTER 3 

 

 RISING INEQUALITY AMONG EMPLOYEES 

 

3. 1.  GENERAL VIEWS ON ROBOTS AND INEQUALITY 

 

The way that robots interact with generations and among workers is complex and co-

evolutionary. As automation leads a reduction on the demand of labor (Autor et al., 

2006; Acemoglu and Autor, 2011; Brynjolfsson and McAfee 2014, Acemoğlu and 

Restrepo 2015, Graetz and Michaels, 2015, Arnzt et al. 2015, Hemous and Olsen, 2016, 

PrettnerandHolger, 2017) the need of special attention on the demographic variations is 

growing as well. This need stems from the question "who will be most affected by robot 

expansion?". 

 

According to ILO, there are currently5.7 billion people are in working-age population, 

i.e. capable of workingin all over the world. However, 3.3 billion people out of 5.7 

billion make up the workforce; this is represented by the 61.4% labor force participation 

rate. Moreover, 172 million people are unemployed; and140 million people are counted 

in potential labor force, which means “people who are looking for a job but are not yet 

available to take up employment, or who are available but are not looking for a job” 

(ILO, 2018). This alarming picture highlights that 2.2 billion people included in 

working-age population are unable to find a job.In other words, the current global 

economy on earth cannot provide jobs to 36.6 percent of those in working-age 

population (Figure 3.1). 
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Figure 3.1. Global Labor market, 2018 

 

Source: World Employment and Social Outlook-Trends 2018, ILO modeled estimates, November 2018; 

ILO, 2018a. 

 

When we put our focus on demographic features, inequality among employees becomes 

a pronounced era. 3 out of every 5 employed people are male. Besides, while male labor 

force participation is 75%, female labor force participation remains at 50% level. This 

wide gap provides striking data that reveals gender inequality amongthe workforce. 

 

Another remarkable statisticsis that a significant share of the drop in the labor force 

participation rate in the last 25 years belongs to young people. Every year, 33 million 

people, mostly young generations, join the workforce. As of 2018, youth participation 

in labor force was only 42%, indicating that there has been a sharp drop by 15% in 

youth participation since 1993. On the other hand the world population has increased by 

50% since 1990 and the employment rate has decreased from 62.6% to 58.15% between 
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1991 and 2019 (ILO, World Employment and Social Outlook, 2019).This fact shows 

that the world economy cannot provide sufficient job opportunities to new generations. 

As labor force participation is following a downward trend and the inequality among the 

labor force is increasing rapidly, the effect of robots that is anticipated to replacehuman 

labor is becoming an argumentative and important topic. In the first chapter of the 

thesis, the effect of robots on employment is theoretically and empirically proven to be 

significant and negative. This chapter focuses on the effect of robots on inequality 

among workers, based on their demographic characteristics. We investigate the 

intergenerational effects of robots, assuming a positive correlation of experience, 

knowledge and skills with age.It’s predicted that the negative impact of the growing 

number of robots on employment will be felt mostly by the younger generations and 

maleworkers.In this context, the study is based on the hypothesis that the young 

generation and male workers represent two demographic groups that have the most 

difficulties in responding to the increasing skill demands arising from robotization. This 

study consists of four sections. Section 2 reviews the theoretical and empirical literature 

focusing on inequality caused by robots. Section 3 empirically estimates the impact of 

robots on employment according to age and gender groups. Lastly, section 4 

summarizes the results.  

 

3. 2. THEORETICAL AND EMPIRICAL BACKGROUND  

 

A vast literature documents the varying opinions and findings on the impact of robots 

on heterogeneous labor force. Nevertheless there is a strong consensus among scholars 

that robots increase inequality among workers (Prettner and Holger, 2017, Acemoglu 

and Restrepo 2018, Graetz and Michaels, 2015, Hemous and Olsen, 2016, Arnzt et al. 

2015). 

 

In his extensive study-Capital in the Twenty-first Century- Thomas Piketty argues that 

if the rate of return of capital exceeds the rate of growth in the economy, the nature of 
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working changes and inequality is expected to increase among working class. In 

parallel, a widespread opinion in the recent literature supports that robots mostly take 

over the repetitive tasks which are undertaken by low and middle-skilled workers. 

Goos, Manning and Salomons (2009) analyzes inequality resulting from technological 

progress in 15 EU countries and argues that high-paying, high-skill demanding jobs 

have increased and middle-paying jobs have decreased relatively, from the early 1990s 

to the end of the 2000s. More recently, Education Comission
11

- shortly Comission-

claims that the young generation in the world is at high risk due to the accelerating 

automation, which has ahigher labor substitution power previous stages of technological 

progress. The Comission also underlines that half of the world's total work - about 2 

billion - is at high risk of extinction due to the automation.  

 

By conducting local labor market equilibrium approach on 6 EU countries which make 

85.5% of EU robot market, Chiacchio et al. (2018) finds a significant and strong 

displacement effect of robots on young workers. Muro et al. (2019) indicates that for the 

near future, the automation and AI will affect mostly men and young workers. They 

found that the most vulnerable demographic segment in the society that is affected by 

robots is men. Through the Brookings analysis of 2016 American Community Survey, 

where the demographic impacts of robots on US labor market are investigated, it is 

found that 42.6% of jobs that men are working are automatable, whereas 39.6% of 

women’s jobs are at risk of automation. On the other hand, the situation is more 

frightening for employees under the age of 25. 50% of the total tasks of employees 

under the age of 25 faces with automation risk. Similar effects are found by Dauth et al 

(2019) for Germany. Dauth et al (2019)reveals that young people are affected by 

robotization more negatively. The need for young workers is decreasing in the sectors 

where robots are expanding, and therefore, young people are directed to the 

servicesector relativelydemanding low-skills. 

 

                                                           
11

 The International Commission On Financing Global Education Opportunity 
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Although there is a growing interest on labor market polarization, the empirical study 

on this question is limited due to lack of statistical data. This gap is often tried to be 

narrowed by firm or local-level survey analysis. As one of these studies, Morikawa 

(2017) conducts a survey on Japanese companies and reveals that the AI technology, 

which has a strong labor substitution, effects post-graduate employees to a minimum, 

and even this effect, may turn to be a positive impact for this worker group. Also Frey 

and Osborne (2013) predict a downward trend in labor market polarization. Their 

acclaimed work The Future of Employment shows that computerization will not only be 

in routine tasks involving low-skilled workers, but also in cognitive tasks, because of 

the high progress in machine learning process. 

 

World Bank warns that the share of middle-skilled jobs is falling in 20 out of 22 

developing countries (World Bank, 2015). These observations and predictions are based 

on the following fact: All robots are a product of human intelligence at the end. They 

are the machines designed and produced by mankind for their own interest. Therefore 

some human activities are needed to manufacture, operate, develop and maintain robots 

such as; designing, coding, programming, R&D activities and auditing. Regarding these 

tasks, robots can be defined as very complex machines embodied with high technology, 

high labor skills, high knowledge and experience. On the other hand, robots are the 

special type of machines that can imitate human production activities therefore can 

replace human labor not only in routine tasks, also in cognitive and decision-making 

tasks. 

 

In an industry-country panel setting and using data for 17 countries over the period 

1993-2007, Graetz and Michaels (2018) shows that despite no evidence on significant 

negative impact of robotics on employment, there’s a remarkable reduction of low-

skilled employment share. Noting the wage aspect of inequality, Dauth et al. (2017) 

empirically reveals that there is a sharper fall in the wages of medium-skilled workers 

thanks to increasingnumber of robots. In the same labor price context, Berg et al. (2018) 
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found that the impact for automation is negative and strong for the upcoming next 

generations.    

 

The inequality impactof robots is also explained by theoretical models. Prettner and 

Holger (2017) offer a framework where high-skilled employees are complementary to 

machines and low-skilled employees are substituted under the R&D-based growth 

model. In a task-based approach and with endogenizing capital accumulation, the 

findings of Acemoglu and Restrepo (2018) support the positive causality between 

robotization and inequality by providing theoretical evidence on asymmetrical 

employment effects of robots on heterogeneous labor force.  By constructing the 

endogenous growth model Olsen and Hemous (2016), demonstrates the positive 

relationship between automation and skill premium. Accepting the effect of increasing 

skill premium, Benzell et al. (2018) poses the risk of job loss for all employees due to 

insufficient capital accumulation and relatively slowdown in growth by looking long 

run. 

 

The one conceptual explanation behind increasing inequality due to the robots lies in the 

Skill-Biased Technological Change (SBTC). SBTC generally takes two skill groups-

high skilled and low-skilled workers- into account; this may often be extended with 

third category by including middle-skilled workers. According to general acceptance, 

highly educated and experienced employees are categorized as high-skilled, while low-

educated and inexperienced are defined as low-skilled (Krueger, 1993;Autor, Katz and 

Krueger, 1999; Goldin and Katz, 2018). SBTC specifies two forces that technological 

improvements affect labor demand.  On the one hand, as technology advances, each 

new stage requires higher skills, thereby it causes an increase in demand for 

complementary labor. On the other hand, every advanced stage in the technology brings 

with a greater proportion of the replacement of works, which are previously done by 

human labor. On a large scale, these jobs are those undertaken by low skilled workers in 

the production process. In short, the advancement of technology does not only produce 

quantitative results on labor demand, but also produces qualitative results. While 
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technology establishes a complementary relationship with the high skills of human 

labor, it establishes a substitute relationship with its low skills. This leads to an increase 

in the demand for high-skilled labor (increasing labor share) and a decrease in demand 

for low-skilled labor (decreasing labor share), therefore it results with higher inequality 

(Graetz and Michaels, 2018, Hemous and Olsen, 2016, Acemoğlu and Restrepo 2015, 

Dauth et al 2017, Autor, 2015, Benzell et a. 2018, Sachs et al. 2015, Berg et al 2018, 

Chiacchio et al. 2018). 

 

Another conceptual explanation for rising inequality between workers is Task-Based 

Technological Change (TBTC) approach. TBTC is formulated by Autor et al., (2003) 

with the intuition of separating the work into tasks, such as the atom splitting into 

molecules. Based on the measurement of task complexity, TBTC-focused studies turn 

their attention to how repetitive tasks a job contains. Consistent with SBTC, repetitive 

jobs require low skills, while more complex tasks require high skills. The main point 

that TBTC differs from SBTC is SBTC treats the main cause of inequality as 

educational differences, while TBTC claims that task content in jobs leads to inequality. 

Autor and Dorn, (2013) provides the finding that regarding US labor market between 

1950 and 1980, while repetitive task-intensive jobs accounted for 38% of total jobs, in 

2005 this rate fell to 28%, so employment in these jobs was sharp had a decline. Finding 

similar result for 27 EU countries in the period 1999-2010, Gregory et al., 2019 

observes a rapid decline in repetitive-intensive jobs and an increase in complex task-

intensive jobs, which leads a counterbalance effect by offsetting the fall in repetitive-

intensive jobs.  

 

Following Chiacchio et al. (2018) and Muro et al. (2019), in this chapter we provide 

evidenceconsistent with the SBTC concept, focusing on different age groups and 

genders. There is a close relationship between employment divergences in different age 

groups and genders and skill disparities. This chapter follows the hypothesis that, apart 

from education, experience is also a qualification included in high qualifications. The 

special point in this case is that experience is only obtained by the years in work; i.e. as 
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the age gets older. Card and DiNardo (2002) supports this hypothesis by providing 

evidence for the periods 1980s and 1990s that the ability to use computers increases 

with age. In this context, young workers can compete with older i.e. experienced 

workers only by improving their education quality. In OECD countries, approximately 

one in five youth can acquire basic minimum level of skills. Besides, on average, 20% 

of young people end their education before completing upper secondary education 

(OECD, 2012).  

 

The second focus of this chapter is to look at the inequality arising from robotization 

between the genders. Although there is a wide consensus on market polarization against 

women, robots are expected to affect men more. This prediction is explained by TBTC. 

Since, men work in more routine-intensive jobs (Muro et al. 2019), they face the danger 

of replacing robots more. 

 

3. 3. DATA  

Dynamic panel data includes 28 countries due to lack of employment data availability 

and has a sample period 2014-2016 with annual observations. Table 3.1.lists the 

countries in the dataset.  

Table 3.1.List of Countries  

Austria Ireland 

Belgium Iceland 

Canada Italy 

Switzerland Lithuania 

Czech Republic Latvia 

Germany Mexico 

Denmark Netherlands 

Spain Norway 

Estonia Poland 

Finland Portugal 

France Slovakia 

United Kingdom Slovenia 

Greece Sweden 

Hungary South Africa 
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In chapter 2, overall employment is observed with using employment-to-population-

ratio as dependent variable. In this chapter, since employment based on demographic 

features is analyzed, we prefer to use the number of employee data instead of 

employment-to-population ratio. 

 

As a general definition, employment is defined as those from working-age populations, 

who are engaged in on economic activity for pay or get profit in a reference period.  We 

used International Labor Organization (ILO) “Employment rate by sex and age” data to 

analyze the employment impact of robots by age ranges.ILO defines employed people 

as those in one of the following categories: “i) paid employment (whether at work or 

with a job but not at work); or ii) self-employment (whether at work or with an 

enterprise but not at work)”(see ILO yearly indicators, 1947-2019)  

 

In this context, following ILO classification, we definefour age groups: (i) for those 

who are the beginners: 15 to 24; (ii) for those who are in their prime working lives: 25 

to 34; (iii) for those who has reached the peak in their career: 35 to 44 (iv) lastly the 

group of workers approaching retirement: 45 to 54. 

 

In order to smooth data, we use natural logarithms of number of employees, stock of 

robots, labor compensation as a % of GDP, value added as a % of GDP and GDP per 

capita. The average logarithmic values of number of employees according to age groups 

for 28 countries are documented at Appendix B. Comparing the average employment 

across countries, it’s clear that the youngest employee population is located in Mexico 

and the number of employee population decreases at a later age. As a country with a 

high number of employees, Germany has a higher population in the middle-agegroup.In 

countries other than Mexico and South Africa, an inverted U-curve representing the 

relationship between age and employment takes place; employment increases up to a 

certain age, and decreases as the age gets older since reaching the peak. In Mexico and 

South Africa, an age curve occurs, peaking in the 25-34 age-band and then declining; 
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these figures does not follow an inverted U-curve, until the age range 25-34 the increase 

is slow and after this age, the decrease is rapid. Therefore, in our data set Mexico and 

South Africa display a younger age-intensive employment feature.  

 

3.4. METHODOLOGY AND EMPIRICAL RESULTS  

 

In order to test the employment impact of stock of robot by age groups, we apply two-

step system GMM estimator approach. For this purpose, the specification is taken to 

explain the relationship between employment by age and sex groups and stock of robots 

as follows;  

 

                     (                                                             

                     (                                                             

                      (                                                             

                      (                                                             

 

where                                 ,                  and 

                indicate the employment by age groups: 15-24, 25-34, 35-44, and 

45-54 respectively;   indicates countries and   indicates year. 

 

We construct static and dynamic model as followsrespectively;  
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                                             (         

 

                                     

          

          

 

where   is time-invariant individual fixed effect and   is the usual error term.  

First, the stationarity features of panel data are investigated. In order to avoid repetition, 

panel unit root test will be applied only in employment by age and sex data.  

 

Tables 3.2 and 3.3 present the panel unit root test results for age groups and genders 

respectively. Unit root test results indicate that at least one of the tests show non-

stationary in the employment data by age groups, whereas for the first-difference panel 

series stationary is provided by all the tests.  

 

Table 3.2. Panel Unit Root Test Results for Age Groups 

  
 

                 
                                  

 

                

  Prob. Prob. Prob. Prob. 

LLC  0.0000* 0.4243 0.0000* 0.0000 

IPS  0.0079* 0.9987 0.7812 0.1296 

Fisher  0.0001* 0.7536 0.2071 0.0008 

Hadri LM  0.0000* 0.0000* 0.0000* 0.0000* 

First Differences 

 
  

LLC  0.0000* 0.0000* 0.0000* 0.0000* 

IPS  0.0000* 0.0010* 0.0008* 0.0012* 

Fisher 0.0000* 0.0004* 0.0032* 0.0001* 

Hadri LM 0.0112** 0.0001* 0.0221** 0.0072* 

LLC: Levin-Lin-Chu unit-root test (  : Panels contain unit roots;   : Panels are stationary)  

IPS: Im, Pesaran and Shin unit root test (  : All panels contain unit roots;   : Some panels are 
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stationary) 

Fisher: Fisher-type unit-root test, Based on augmented Dickey-Fuller test (  : All panels contain unit 

roots;   : At least one panel is stationary).  

Hadri LM: Hadri LM test(  : All panels are stationary;   : Some panels contain unit roots) 

*, **, *** represents the significance at 1%, 5%, 10% respectively 

 

Table 3.3.Panel Unit Root Test Results for Gender 

  
  

           (        
  

           (      
  Prob. Prob. 

LLC  0.0000* 0.0000* 

IPS  0.3378 0.2473 

Fisher  0.0299** 0.0910*** 

Hadri LM  0.0000* 0.0000* 

First Differences 

 LLC  0.0000* 0.0000* 

IPS  0.0008* 0.0001* 

Fisher 0.0000* 0.0001* 

Hadri LM 0.0006* 0.0937*** 
LLC: Levin-Lin-Chu unit-root test (  : Panels contain unit roots;  : Panels are stationary)  

IPS: Im, Pesaran and Shin unit root test (  : All panels contain unit roots;   : Some panels are 

stationary)Fisher: Fisher-type unit-root test, Based on augmented  

Dickey-Fuller test (  : All panels contain unit roots;   : At least one panel is stationary) 

Hadri LM: Hadri LM test(  : All panels are stationary;   : Some panels contain unit roots) 

*, **, *** represents the significance at 1%, 5%, 10% respectively 

 

3.4.1 GMM Estimation Resultsfor Age Groups 

 

The empirical results of the possible relationship between the number of employees 

aged 15-24, 25-34, 35-44, and 45-54 and stock of robots are documented in tables 3.4-

3.7.  
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Table 3.4.System GMM Estimation Results for Age Group 15-24 

  Dependent Variable: lnemployment between ages 15 and 24 

  OLS  FE  SYS GMM 1 SYS GMM 2 

L1.lnemployment  - - 0.822 0.813 

  - - (0.000)* (0.000)** 

lnrobot 0.432 -0.080 -0.098 -0.215 

  0.000 (0.000)*  (0.044)*** (0.086)*** 

lnvalueadded -0.778 0.725 0.125 -0.420 

  (0.001)* (0.000)* (0.911) (0.137) 

lnLaborCompen. -1.013 1.570 -2.268 -4.668 

  0.025 (0.000)* 0.020 (0.079)**  

lngdppercapita -0.678 0.777 1.488 3.001 

  (0.000)* (0.000)* 0.038 (0.073) 

First and second are coefficient levels and probability levels respectively  

Number of groups: 28, Number of instruments: 23 

One-Step GMM/AR(2):  0.418     Two-Step GMM/AR(2): 0.124 

One-Step Hansen Test: 0.379      Two-Step Hansen test: 0.551 

*, **, *** represents the significance at 1%, 5%, 10% respectively 

 

The dynamic model for the AB two step-system GMM estimation for the dependent 

variable employment aged 15-24 is specified as follows;  

 

            (           (                  (            

 (                  (                         (                       

 (                             (         

 

According to the AB two step-system GMM estimation (table 3.4); the first lag of the 

number of employees aged 15-24 is positive and significant at 1% level. The robot stock 

coefficient isnegative and significant according to 10% significance level. The 

coefficient of robot stock reveals thatevery 100 additional robot causes a decline in the 

number of employee between the ages of 15 and 24 by 21.5. In addition, the impact of 

labor compensation on the number of employeeis negative and significant at the 10% 
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level and GDP per capita affects significantly and negatively. And also value added has 

positive butnot significant impact for this young age group.   

 

Table 3.5.System GMM Estimation Results for Age Group 25-34 

  Dependent Variable: lnemployment between ages 25 and 34 

  OLS  FE  SYS GMM 1 SYS GMM 2 

L1.lnemployment  - - 0.819 0.887 

  - - (0.000)* (0.000)** 

lnrobot 0.468 -0.034 -0.088 -0.122 

  (0.000)* (0.000)*  (0.066)*** (0.058)*** 

lnvalueadded -1.136 0.311 0.160 0.219 

  (0.000)* (0.001)* (0.778) (0.674) 

lnLaborCompen. -1.493 0.906 -0.292 -2.398 

  (0.000)* (0.000)* (0.899) (0.004)**  

lngdppercapita -1.301 0.426 0.813 1.355 

  (0.000)* (0.000)* (0.032)** (0.047) 

First and second are coefficient levels and probability levels respectively  

Number of groups: 28, Number of instruments: 23 

One-Step GMM/AR(2):  0.694     Two-Step GMM/AR(2): 0.397 

One-Step Hansen Test: 0.142     Two-Step Hansen test: 0.925 

*, **, *** represents the significance at 1%, 5%, 10% respectively 

 

Table 3.5 documents the empirical results for employees between the ages of 25 and 34. 

Robots have significant impact on this age group’s employment with a10% significance 

level. The coefficient of stock of robots is negative and lower than the age group 15-24; 

each 100 additional robots cause a decrease in the number of employees by 12.2 

according to two-step system GMM. Value added has not a significant effect on age 

group 25-34 as it does for the age group 15-24. Moreover similar with the youngerage 

group, labor compensation has negative and significant impact with 1% significance 

level. Nevertheless 25-34 age group is more sensitive to changes in labor compensation. 

Likethe previous age group, GDP per capita has positive and significant impact with 5% 

significance level.   
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 (                                                                           (         

 

Table 3.6. System GMM Estimation Results for Age Group 35-44 

  Dependent Variable: lnemployment between age groups 35-44 

  OLS  FE  SYS GMM 1 SYS GMM 2 

L1.lnemployment  - - 0.957 0.793 

  - - (0.000)* (0.000)* 

lnrobot 0.482 -0.034 0.035 0.447 

  (0.000) (0.001)*  (0.020)** (0.016)** 

lnvalueadded -1.271 0.529 0.045 0.108 

  (0.000)* (0.000)* (0.503) (0.401) 

lnLaborCompen. -1.536 0.126 0.151 0.222 

  0.000 (0.256) (0.170) (0.200) 

lngdppercapita -1.211 -0.218 0.154 0.202 

  (0.000)* (0.016)** (0.004)* (0.039)** 

First and second are coefficient levels and probability levels respectively  

Number of groups: 28                    Number of instruments: 21 

One-Step GMM/AR(2):  0.250    Two-Step GMM/AR(2): 0.341 

One-Step Hansen Test: 0.352        Two-Step Hansen test: 0.530 

*, **, *** represents the significance at 1%, 5%, 10% respectively 

 

According to the empirical estimation results listed in table 3.6, the robotic impact on 

employees aged between 35 and 44 is positive and significant. For this age group, each 

100 additional robots cause an increase in the number of employees by an amount of 

44.7. In the light of this result, this group of workers, who might be considered as 

middle-aged group, is acting complementary to robots. Also they are vulnerable to 

changes inGDP per capita, which has positive and significant impact. 

 

            (                            (                           

                                                                          (         
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Table 3.7. System GMM Estimation Results for Age Group 45-54 

  Dependent Variable: lnemployment between age groups 45-54 

  OLS  FE  SYS GMM 1 SYS GMM 2 

L1.lnemployment  - - 0.701 0.460 

  - - (0.000)* (0.000)* 

lnrobot 0.468 -0.035 -0.022 -0.014 

  (0.000)* (0.000)*  (0.020)** (0.047)** 

lnvalueadded -1.153 0.429 0.060 0.035 

  (0.000)* (0.000)* (0.258) (0.516) 

lnLaborCompen. -1.018 0.203 0.01 -0.003 

  (0.006)* (0.018) (0.994) (0.963) 

lngdppercapita -1.061 -0.215 0.052 0.020 

  (0.000)* (0.002)** (0.072)** (0.519) 

First and second are coefficient levels and probability levels respectively  

Number of groups: 28                    Number of instruments: 22 

One-Step GMM/AR(2):  0.293    Two-Step GMM/AR(2): 0.306 

One-Step Hansen Test: 0.501       Two-Step Hansen test: 0.352 

*, **, *** represents the significance at 1%, 5%, 10% respectively 

      

As employees get closer to retirement, the effect of robotization becomes negative 

again. AB two-step system GMM results show that the coefficient of stock of robots is 

negative and the impact of robots is significant with 5% significance level. Compared to 

younger ages,employment is not as vulnerable as the 15-24 and 25-34 age groups. 

 

            (                           (            

 (                  (                                                

                            (         

3.4.2. Empirical Results for Gender Groups 

 

The dynamic estimation results for the two gender groups are listed in tables 3.8 and 

3.9. As listed in table 3.8, AB two-step system GMM results indicate that robots have 

negative and significant impact on female workers with 10% significance level. On the 
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other hand,male workers are slightly more affected by robots. Also both gender groups 

are affected by GDP per capita positively and by share of labor compensation 

negatively, whereas they are indifferent to value added. 

 

             (                             (             (                  

 (                         (               (                    (         

 

Table 3.8. System GMM Estimation Results for Female Employment 

  Dependent Variable: lnemployment, Female  

  OLS  FE  SYS GMM 1 SYS GMM 2 

L1.lnemployment  - - 0.957 0.937 

  - - (0.000)* (0.000)* 

lnrobot 0.456 -0.031 0.091 -0.040 

  (0.000)* (0.000)*  (0.008)* (0.076)** 

lnvalueadded -1.270 0.287 0.011 0.105 

  (0.000)* (0.000)* (0.871) (0.715) 

lnLaborCompen. -1.391 0.451 -0.029 -1.164 

  (0.000)* (0.000) (0.685) (0.001)* 

lngdppercapita -1.096 0.161 -0.053 0.698 

  (0.000)* (0.002)** (0.182)** (0.001)* 

First and second are coefficient levels and probability levels respectively  

Number of groups: 28                    Number of instruments: 26 

One-Step GMM/AR(2):  0.763   Two-Step GMM/AR(2): 0.449 

One-Step Hansen Test: 0.293      Two-Step Hansen test: 0.852 

*, **, *** represents the significance at 1%, 5%, 10% respectively 

 

 

             (                           (           (                  

 (                         (                        (                             (  
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Table 3.9. System GMM Estimation Results for Male Employment 

  Dependent Variable: lnemployment, Male 

  OLS  FE  SYS GMM 1 SYS GMM 2 

L1.lnemployment  - - 0.959 0.887 

  - - (0.000)* (0.000)* 

lnrobot 0.483 -0.042 -0.136 -0.050 

  (0.000)* (0.000)*  (0.023)** (0.097)*** 

lnvalueadded -1.380 0.332 -0.052 -0.030 

  (0.000)* (0.000)* (0.323) (0.812) 

lnLaborCompen. -1.836 0.632 -0.068 -1.550 

  (0.000)* (0.000)* (0.265) (0.000)* 

lngdppercapita -1.205 0.365 -0.030 1.152 

  (0.000)* (0.000)* (0.271)** (0.000)* 

First and second are coefficient levels and probability levels respectively  

Number of groups: 28                    Number of instruments: 20 

One-Step GMM/AR(2):  0.706   Two-Step GMM/AR(2): 0.685 

One-Step Hansen Test: 0.292     Two-Step Hansen test: 0.328 

*, **, *** represents the significance at 1%, 5%, 10% respectively 

 

In line with vast literature, the results found for four different age groups and gender 

groups indicate that inequality will increase among workers as a result of the increase in 

the number of robots. Some groups are relatively less affected by robots, some are more 

vulnerable, and some employees are positively affected depending on the characteristics 

of their age group.  

 

Table 3.10 summarizes the robotic impact on employment with respect to age groups 

and gender.  
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Table 3.10. Summary of the results  

 

Responses of age groups and gender groups to each 

increase of robots 

Age Groups    

15-24 -21.5%    ( ) 

25-34 -12.2%    ( ) 

35-44 44.7%     ( ) 

45-54 -1.4%      ( ) 

Gender Groups    

Female  -4%          ( ) 

Male  -5%          ( ) 

 

Regarding the analyses based on age groups, findings support the results of Chiacchio et 

al. (2018)Muro et al. (2019) and Dauth et al.(2019)showing that the most negatively 

affected group is young people under the age of 25. As a result of every 100 robot 

increase, the number of employees in the 15-24 age group decreases by 21.5, while this 

amount in the 25-34 age group is around 12, and 1.4 in the 45-54 age group. On the 

other hand for the ages of 35-44, every 100 robot increase leads a reduction in a number 

of employees by an amount of 44.  

 

These varying impacts, created by the rising robots, also support the SBTC hypothesis. 

In terms of both experience and skill, one group establishes complementary dynamics to 

robots, while the other group is affected negatively due to the replacement effect 

depending on their demographic characteristics, especially skills. SBTC highlights labor 

market polarization referring an employment and wage gap occurred among 

heterogeneous employment groups. Skill level and educational attainment play an 

important role in this polarization and these two key factors are closely related with 

experience level. This also how Caselli (2015) explains this age-related concerns on 

employment polarization. According to this study, skills are growing according to 

experience; as moving to older ages, experience and skills also accumulate. The results 

of our thesis also support this argument. As the age progresses, the robots' power to 

replace workers decreases and even turns to positive. 



79 
 

In terms of gender, the estimation results are in parallel with the TBTC hypothesis. As a 

result of the increase of 100 additional robots, the number of female employees 

decreased by 4, while the number of male workers decreased by 5. It has been proven 

that robots are more unfavorable to men. This situation is explained conceptually within 

TBTC; that because of male workers are more involved in routine or repetitive jobs than 

women, they are more exposed to the substitution of robots (Autor et al., 2003). Also 

this response gap our thesis indicates supports the findings of Autor and Dorn (2013).  
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CHAPTER 4 

 

CONCLUSION 

 

The concern for the technological unemployment that has existed since machines began 

replacing human labor continues to a larger extent today. The world economy has 

experienced mechanization since the first industrial revolution. In fact, every machine 

used in the production of goods and services naturally replaces human labor. However, 

machines used until about three decade ago, so-called conventional machines, cannot 

take over every job from people. Therefore, while they substitute human labor in limited 

scope of jobs, they also act as complementary to human labor in jobs they could not 

take over.Thus, technology-anxiety has never been as strong as it is today, and the fear 

that machines will cause permanent unemployment has never been so severe. 

 

So, why is technology-anxiety so strong today?The answer to this question is closely 

related to what type of machines or technologies we are talking about. In general, these 

technologies include Information and Communication Technologies (ICT), Artificial 

Intelligence (AI), the Internet of Things (IoT) and smart robots. Once the necessary 

hardware is installed, these machines only need big data to get action, with productivity 

107% above the human labor’s (Ford, 2015). 

 

Although these machines, which are attractive to firms, have not yet become 

widespread, experience so far is sufficient to reinforce the technological-anxiety of 

workers.Considering the rapid spread of industrial robots
12

, robot unemployment has 

begun to appear in the manufacturing industry. In China, where the manufacturing 

industry is one of the leading industries, the number of people who lost their jobs due to 

                                                           
12see IFR’srobot stock data in chapter 2 
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the displacement effects of robots already reached 16 million between 1995 and 2002 

(Baum, 2013). 

 

In this thesis, the question of unemployment, which is the main center of technological-

anxiety, is investigated. The possible effect of robots on employment is examined both 

theoretically and empirically. Therefore, first of all, the question of whether robots are 

substitutes or complementary is answered. The theoretical and empirical findings, 

which indicate that robots are not acting labor-friendly in the economies, are later 

extended by seeking an answer to the question of 'which labor'.So we also develop an 

answer to the question of whether there is a market polarization in the heterogeneous 

labor market in terms of different age groups and gender as a result of robots.  

 

In the first chapter, the negative impact of robots on the labor market is explained by 

taking into account the dynamics between two generations through the OLG economy. 

Simply, we develop an OLG model, where only young individuals take part in the labor 

market, as well as in saving decisions. The only source of investments in the economy is 

these young individuals’ savings. Firms are operating in single-output economy with 

mainly two production factors: physical capital and human labor. And all firms (in this 

model we use representative firm) have access to automation technology, in which they 

can produce robots from some part of physical capital and this decision also depends on 

the robot productivity rate. The novelty of this model is robots are perfect substitutes of 

human labor; hence in the long-run robots push wages downwards. The downward 

pressure on wages causes immiseration in the economy in the long run; and the main 

reason for this is the decrease in savings.Since our model includes the full employment 

economy, it does not present the impact of the downward pressure on wages on 

employment. But the results of the model offer us a clear comparative statics. The 

results, supported by the literature, point to the negative impact of robots on 

employment. 
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The second chapter empirically analyzes the effect of robots on employment. According 

to dynamic panel study results, we arrive to the empirical evidence that is consistent 

with theoretical analysis. According to the results, each robot increase causes a 0.7% 

drop in employment-to-population ratio for 47 selected countries in a period of 2004-

2016. Two-step system GMM estimation is preferred in order to control potential 

endogeneity among all independent variables and also to avoid any problems that may 

arise from country-specific effects. Since the AR(2) and Hansen Test results provide 

more significant results in two-step system GMM, two-step system GMM is preferred 

instead of one step-system GMM estimator. 

 

The limited data set due to the availability of robot stock data, doesn’t allow sufficient 

analysis for all the country income groups; for this reason, analysis is made only on 

high-income countries. Results show that negative robotic impact on employment is 

slightly higher in high-income countries (-3.1%), which hold a large part of the global 

robot stock.  

 

Although the direction of impact on employment provides an important data, the world 

we live in today has a heterogeneous labor market. Therefore, it is expected that each 

form of labor will be affected by robots in different intensities and directions. In this 

regard, an empirical analysis is developed over labor classifications based on age and 

gender groups in the labor market. Chapter 3, which is devoted to the estimate that takes 

into account this heterogeneity, presents results that fit the concepts of SBTC and 

TBTC.In line with SBTC, young workers are predicted to be more negatively affected 

by robotization. Moreover, men are more involved in routine jobs than women workers. 

Therefore, compatible with the TBTC hypothesis, male workers are anticipated to be 

more negatively affected by the robot increase. According to dynamic panel data 

estimation results, it is found that every 100 increase in the number of robots decreases 

the number of male workersby 5, whereas it decreases the number of female workers 

by4. 
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The above results also shed light on some suggestions and needs for future studies.  

 

As the findings in the first chapter point out, the increase in robot productivity allows 

countries with lower capital stocks to enter robot technology. Therefore, analyzes to be 

made on developing countries, which are known to have more routine work, will make 

a significant contribution to the literature.However, in order for such a study to be 

performed through panel data analysis, sufficient robot stock data is required. Once this 

problem is resolved, a comparison between different country income groups also stands 

as an opportunity for future studies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



84 
 

BIBLIOGRAPHY 

 

 

Acemoglu, D. &Restrepo P. (2016). The Race Between Machine and Man: Implications  

of Technology for Growth, Factor Shares and Employment. NBER Working 

Paper No. 22252. 

Acemoglu, D. &Restrepo P. (2017). Robots and Jobs: Evidence from US Labor  

Markets. NBER Working Paper No. 23285.  

Acemoglu, D. &Restrepo P. (2018). Modeling Automation.  AEA Papers and  

Proceedings, American Economic Association, vol. 108, pp. 48-53. 

Acemoglu, D. &Restrepo P. (2019). Automation and New Tasks: How Technology  

Displaces and Reinstates Labor.  IZA Discussion Papers 12293, Institute of 

Labor Economics (IZA). 

Aghion P, Jones BF, Jones CI.(2017). Artificial Intelligence and Economic Growth.  

Harvard University Press.  

Antràs, P. (2004). Is the U.S. Aggregate Production Function Cobb-Douglas? New  

Estimates of the Elasticity of Substitution. Contributions in Macroeconomics 

4. 

Arntz, M. T. G. &Zierahn U. (2016). The risk of automation for jobs in OECD  

countries: a comparative analysis. OECD Social, Employment and Migration 

Working Papers No 189. 

Arrow, K. J., Chenery, H. B., Minhas, B. S., and Solow, R. M. (1961). Capitallabor 

substitution and economic efficiency. Review of Economics and Statistics, 

43(3):225–250. 

Autor, D., Katz, L., Krueger, A. (1998). Computing inequality: Have computers  

changed the labor market?, Quarterly Journal of Economics, 113, 1169-1214. 

Autor, D., Frank L, Richard M. (2003). The Skill Content of Recent   

Technological Change: An Empirical Exploration. Quarterly Journal of 

Economics, 118(4): 1279–1333.  

Autor, D.H., Katz, L., Kearney, M., (2006). The polarization of U.S. labor market.  

American Economic Review, 96, 184-194. 

 



85 
 

Autor, D., David D. (2013). The Growth of Low-Skill Service Jobs and the  

Polarization of the US Labor Market. American Economic Review, 103(5): 

1553–1597.     

Autor, D. (2015). Why Are There Still So Many Jobs? The History and Future of  

Workplace Automation. Journal of Economic Perspectives—Volume 29, 

Number 3, pp. 3-30.  

Autor, D. &Salomons A. (2018). Is Automation Labor Share-Displacing? :  

Productivity Growth, Employment, and the Labor Share. Brookings Papers on 

Economic Activity, Vol. 2018(1), pages 1-87. 

Baldwin, R. (2017), Forget A.I. ‘Remote Intelligence’ Will Be Much More  

Disruptive, Huffington Post, NYC, U.S.A.  

 

Baltagi, B.H. (2005) Econometric Analysis of Panel Data. 3rd Edition, John Wiley & 

Sons Inc., New York. 

Baum, C. (2006). An Introduction to Modern Econometrics using STATA. 

Baum, C. (2003). So who’s stealing China’s manufacturing Jobs?, Bloomberg News,  

October 14, 2003. Availa 

Berg, A. &Buffie, E. &Zanna, L. (2015). Should We Fear the Robot Revolution? :  

The Correct Answer is Yes. IMF Working Papers. 18. 1. 

10.5089/9781484300831.001. 

Berg, J. (2015). Labour Markets, Institutions and Inequality: Building just societies in  

The21st century, International Labour Office (ILO), Geneva, Switzerland.  

Bessen, J. E. (2017). Automation and Jobs: When Technology Boosts Employment.  

Boston University School of Law, Law and Economics Research Paper 17-09. 

Benzell S. G. &Kotlikoff L. J.  &LaGarda G. & Sachs, J. D, 2015. Robots Are Us:  

Some Economics of Human Replacement. NBER Working 

Papers 20941,National Bureau of Economic Research, Inc. 

Berman, E., Bound, J., Griliches, Z., (1994). Changes in the demand for skilled labor  

within US manufacturing industries: Evidence from the annual survey of 

manufacturing. Quarterly Journal of Economics, 109, 367-397. 

 

 



86 
 

Bodkin, R. G., & Klein, L. R. (1967). Nonlinear Estimation of Aggregate Production  

Functions. The Review of Economics and Statistics, 49(1), 28–44. doi: 

10.2307/1937881 

Bowles, J. (2014). The Computerisation of European Jobs. Blog, Bruegel. Available  

at: http://bruegel.org/2014/07/the-computerisation-of-europeanjobs/. 

Brzeski, C. & Burk, I. (2015). The robots are coming: Consequences of automation  

for the German labor market,.INGDiBa Economic Research.  

Brynjolsson, E. & McAfee, A. (2014). The Second Machine Age: Work, Progress,  

and Prosperity in a Time of Brilliant Technologies. First Edition. New York: 

W. W. Norton & Company, 2014. 

Caselli, F. (1999). Technological Revolutions,  American Economic Review 

Carbonero, F. & Ernst, E. & Weber, E. (2018). Robots worldwide the impact of  

automation on employment and trade. ILO Working 

Papers 995008793402676,  

Chiacchio, F., Petropoulos, G., and Pichler, D. (2018). The Impact of Industrial  

Robots on EU Employment and Wages: A Local Labor Market Approach. 

Working Paper no. 02, Bruegel, Brussels 

Dauth, W. &Findeisen, S. &Südekum J. &Wößner, N. (2017). German Robots – The  

Impact of Industrial Robots on Workers. CEPR Discussion Paper DP12306. 

De la Croix D. & Michel P. (2002). A Theory of Economic Growth: Dynamics and  

Policy in Overlapping Generations. Cambridge University Press.  

DeCanio, Stephen J., (2016). Robots and Humans – Complements or 

Substitutes?. Journal of Macroeconomics, Elsevier, vol. 49(C), pages 280-291. 

Diamond, P. (1965). National debt in a neoclassical growth model. American  

Economic Review 55 (5): 1126–1150 

Dawn of the Post-Market Era. New York: Putnam Publishing Group. 

Roodman, D. (2006). How to do xtabond2: an introduction to ‘difference’ and 

system GMM in Stata. Center for Global Development Working Paper No. 

103.  

 

Eaton, M. (2015). Evolutionary humanoid robotics, Heidelberg, Springer, p. 40. 

 



87 
 

Fanti, L. &Gori, L. (2007). Economic Growth and Welfare in a Simple Neoclassical  

OLG Model with Minimum Wage and Consumption Taxes support, 

discussion Papers 2007/68, Dipartimento di Economia e Management (DEM), 

University of Pisa, Pisa, Italy. 

Feenstra, R.C., Robert I. and Marcel P. T. (2015). The Next Generation of the Penn  

World Table. American Economic Review, 105(10), 3150-3182, available for 

download at www.ggdc.net/pwt 

Frey, C.B. & Osborne, M. A. (2017). The future of employment: How susceptible are  

jobs to computerisation?. Technological Forecasting and Social Change, 

Elsevier, vol. 114(C), pages 254-280. 

Freeman, R. (2015). Who owns the robots rules the world. IZA World of Labor: 5  

doi: 10.15185/izawol.5. 

Freeman, C., Soete, L., (1994). Work for All or Mass Unemployment? Computerized  

Technical Change into the Twenty-first Century. London-New York: Pinter. 

Ford, M. (2015). The Rise of the Robots: Technology and the Threat of Mass  

Unemployment.  London: Oneworld Publications. 

Gasteiger, E., Prettner, K. (2017).  A note on automation, stagnation, and the  

implications of a robot tax, Diskussionsbeiträge. No. 2017/17, FreieUniversität 

Berlin, FachbereichWirtschaftswissenschaft, Berlin 

Glyn, A. & Hughes, A. &Lipietz, A. & Singh, A. (1988). The Rise And Fall Of The  

Golden Age, Cambridge Working Papers in Economics 884, Faculty of 

Economics, University of Cambridge. 

Graetz, G. & Michaels G. (2015). Robots at Work. CEPS Discussion Paper 1335,  

London: London School of Economics. 

Goos, M., and Manning A. (2007). Lousy and Lovely Jobs: The Rising Polarization of   

Work in Britain. Review of Economics and Statistics, 89(1): 118–33. 

Goos, M., Manning, A., Salomons, A., (2014). Explaining job polarization: Routine- 

biased technological change and offshoring. American Economic Review, 

104, 2509-2526. 

Goldin, C. and Lawrence F. K. (2008). The Race Between Education and  

Technology. Cambridge MA: Belknap Press.  

 



88 
 

Gordon, R. (2012). Is U.S. Economic Growth Over? Faltering Innovation Confronts  

the Six Headwinds. NBER Working Papers, No. 18315. 

Gordon, R. (2014). The Demise of U.S. Economic Growth: Restatement, Rebuttal,  

and Reflections,  NBER Working Papers 19895, National Bureau of Economic 

Research, Inc. 

Hanson, R. (2001). Economic growth given machine intelligence. Journal of Artificial  

Intelligence Research. 

Hartmann, B. & King, W. & Narayanan S. (2015). Digital manufacturing: The  

revolution will be virtualized. McKinsey &Company. Available at: 

https://www.mckinsey.com/business-functions/operations/our-insights/digital-

manufacturing-the-revolution-will-be-virtualized 

International Monetary Fund (IMF) (2019). World Economic Outlook 2019: Global  

Manufacturing Downturn, Rising Trade Barriers. Washington, DC, October. 

International Labour Office (ILO) (2019). World Employment and Social Outlook    

2017: Trends 2019, Geneva. 

International Federation of Robotics (IFR) (2016). Industrial Robots: Definition and  

Classification. International Federation of Robotics (IFR), Frankfurt.  

Irwin, N. (2010). Aughts were a lost decade for U.S. economy, workers, Washington  

Post, Available at:https://www.washingtonpost.com/wpdyn/ 

content/article/2010/01/01/AR2010010101196.html 

Karabarbounis, L., & Neiman, B. (2014). The global decline of the labor  

share. Quarterly Journal of Economics, 129(1), 61-103. 

Kalt, Joseph P. (1978). Technological Change and Factor Substitution in the United  

States: 1929-1967, International Economic Review, 19, pp.761- 775. 

Keynes J.M. (2010), Economic Possibilities for Our Grandchildren. In: Essays in  

Persuasion. Palgrave Macmillan, London, p.3. 

Klump, R., McAdam, P. and Willman, A., (2007). Factor Substitution and Factor- 

Augmenting Technical Progress in the United States: A Normalized Supply-

Side System Approach. The Review of Economics and Statistics, 89, issue 1, 

p. 183-192. 

 

 



89 
 

Leduc, S., Zheng L. (2020). Robots or Workers? A Macro Analysis of Automation  

and Labor Markets, Federal Reserve Bank of San Francisco Working Paper 

2019-17. Available at: https://doi.org/10.24148/wp2019-17 

Leontief, W. (1983), The New New Age That’s Coming is Already Here., Bottom  

Lane, Personal, Vol4 :8 p.  1 April. 

Levy, G. &Murnane R. (004). The New Division of Labor: How Computers Are  

Creating the Next Job Market. Russell Sage Foundation, New York; Princeton 

University Press, Princeton  

Manyika, J.& Chui, M. &Bughin, J. & Dobbs, R. &Bisson P. &Marrs, A. (2013).  

Disruptive technologies: Advances that will transform life, business, and the 

global economy. McKinsey Global Institute.  

Manyika, J. (2017). A Future That Works: Ai, Automation, Employment, and  

Productivity. McKinsey Global Institute. 

Mokyr, J. & Vickers, C. &Ziebarth, N. (2015). The History of Technological Anxiety  

and the Future of Economic Growth: Is This Time Different?, Journal of 

Economic Perspectives, American Economic Association, vol. 29(3), pages 

31-50. 

Morikawa, M. (2017). Who Are Afraid of Losing Their Jobs to Artificial Intelligence  

and Robots? Evidence from a Survey. GLO Discussion Paper Series 71, 

Global Labor Organization (GLO). 

Muro, M, Maxim R., Whiton J. (2019). Automation and Artificial Intelligence: How  

Machines are affecting people and places. Metropolitan Policy Program, 

Brookings Institution.  

Marx, Karl (1973) Grundrisse: Foundations of the Critique of Political Economy.  

Harmondsworth: Penguin; New York: Vintage Books, pp. 690-712.  

Morrison Paul, C.J., Siegel, D.S., (2001). The impacts of technology, trade and  

outsourcing on employment and labor composition. Scandinavian Journal of 

Economics, 103, 241-264. 

Nordhaus, W. (2015). Are We Approaching an Economic Singularity? Information 

Technology and the Future of Economic Growth. NBER Working Paper No. 

21547.  

 



90 
 

 

Olsen, M. &Hemous, D. (2014). The Rise of the Machines: Automation, Horizontal  

Innovation and Income Inequality. 2014 Meeting Papers 162, Society for 

Economic Dynamics. 

OECD (2012). Equity and Quality in Education: Supporting Disadvantaged Students  

and Schools. OECD Publishing. http://dx.doi.org/10.1787/9789264130852-en 

OECD (2017a). Going Digital: Making the Transformation Work for Growth and  

Well-Being. OECD publishing, Paris. Available at:   

https://www.oecd.org/mcm/documents/C-MIN-2017-4%20EN.pdf 

Pellegrino, G. &Piva, M. &Vivarelli, M. (2017). Are Robots Stealing Our Jobs?. IZA  

Discussion Papers 10540, Institute of Labor Economics (IZA). 

Piketty, T., &Goldhammer, A. (2014). Capital in the twenty-first century. Cambridge  

Massachusetts: The Belknap Press of Harvard University Press. 

PwC (2017). Will robots really steal our jobs?: An international analysis of the  

potential long term impact of automation. Available at https://www.pwc.com/ 

hu/hu/kiadvanyok/assets/pdf /impact_of_automation_on_jobs.pdf.  

Pajarinen, M. &Rouvinen, P. (2014). Computerization Threatens One Third of  

Finnish Employment. ETLA, The Research Institute of the Finnish Economy 

vol. 22.  

Prettner, K. &Strulik, H. (2017).  The lost race against the machine: Automation,  

education and inequality in an R&D-based growth model. Hohenheim 

Discussion Papers in Business, Economics and Social Sciences, No. 08-2017. 

UniversitätHohenheim, FakultätWirtschafts- und Sozialwissenschaften, 

Stuttgart. 

Rader, T., (1968). Normally, factor inputs are never gross substitutes. Journal of  

Political Economy, Vol. 76, No. 1, pp. 38–43. 

Rifkin, J., (1995). The End of Work: The Decline of the Global Labor Force and the  

Roodman, D. (2009). A note on the theme of too many instruments. Oxford Bulletin  

of Economics and Statistics, 71(1), 135–158. 

Sachs J. &Kotlikoff, L. (2012). Smart Machines and Long-Term Misery.  NBER  

Working Papers 18629, National Bureau of Economic Research, Inc. 

 



91 
 

Sakellaris P. & Wilson D. (2004). Quantifying Embodied Technological  

Change, Review of Economic Dynamics, vol. 7(1), pages 1-26, January. 

Sato, K. (1967). A Two-Level Constant-Elasticity-of-Substitution Production  

Function. The Review of Economic Studies, 34(2), 201–218. doi: 

10.2307/2296809 

Schumpeter, J. A. (1939). Business Cycles. McGraw-Hill.vol. 1, pp. 161-74,  

New York.  

Siegel, D. & Paul, C. (2001). The Impacts of Technology, Trade and  

Outsourcing on Employment and Labor Composition. Scandinavian Journal of 

Economics. 103. 241-64. 10.1111/1467-9442.00243. 

Schumpeter JA (1912). The theory of economic development, Harvard University  

Press, Cambridge (Mass.) Engl. Ed. 1968.  

Smith, R. (2019). How Robots and AI are Creating the 21st-Century Surgeon. Robotic       

Business Review. Available at https://www.roboticsbusinessreview.com 

/health-medical/how-robots-and-ai-are-creating-the-21st-century-surgeon/.  

Tilley, J. (2017). Automation, robotics, and the factory of the future. McKinsey,  

California. Available at https://www.mckinsey.com/business-functions  

/operations/our-insights/automation-robotics-and-the-factory-of-the-future 

Turing, A.M., 1950. Computing machinery and intelligence. Mind 59 (236), 433– 

460.  

UNDP (2017). Technological Change and The Future Of Jobs, The United Nations  

Development Programme  Seoul Policy Centre, South Korea, available at: 

https://www.undp.org/content /dam/uspc /docs/ Technological%20Change 

%20and%20the%20Future%20of%20Jobs.pdf 

UNCTAD (2019). World Investment Report 2019, The United Nations Conference on  

Trade and Development, Geneva, Switzerland, available at: 

https://unctad.org/en/PublicationsLibrary /wir2019_en.pdf 

World Robotic Report 2019. International Federation of Robotics (IFR), Frankfurt,  

Germany, available at: https://ifr.org/downloads/press2018/IFR%20World 

%20Robotics%20Presentation%20-%2018%20Sept%202019.pdf. 

 

 



92 
 

World Economic Forum (2016). The Future of Jobs: Employment, Skills and  

Workforce Strategy for The Fourth Industrial Revolution, Global Challenge 

Insight Report, WorldEconomic Forum, Geneva.  

World Economic Outlook (2019). International Monetary Fund, Washington, D.C.  

Availableat: https://www.imf.org/en/Publications 

/WEO/Issues/2019/03/28/world-economic-outlook-april-2019 

World Development Indicators, The World Bank. 

Available at: http://databank.worldbank.org/data/reports.aspx?source 

=worlddevelopmentindicators&preview=on 

World Robotics Industrial Robots 2019, International Federation of Robotics.  

World Robotics Service Robots 2019, International Federation of Robotics. 

West, D. (2015). What happens if robots take the jobs?: The impact of emerging  

technologies on employment and public policy, Brookings Institution 

TechTank. Available at https://www.brookings.edu/wp-content/uploads/ 

2016/06/robotwork.pdf.  

Zeira J. (1998). Workers, Machines, and Economic Growth. The Quarterly Journal of     

Economics, Volume 113, Issue 4, pp 1091–1117.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



93 
 

APPENDIX A.  

 

Robot average distribution of robots,  

country income groups 

 
H: High income countries; LM: Lower-middle income economies;  

UM: Upper-middle income countries 
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Stock of Robots At High Income Countries, 2004-2016 
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Average ln(Stock Of Robots), High Income Countries 

Country Name  
Avg. ln(stock 

of robots)  
Country Name  

Avg. ln(stock 

of robots)  

Australia 13.2991 Denmark  8.2984 

Japan 12.6876 Poland  7.9901 

United States 12.0908 Portugal 7.7252 

Germany  11.9301 France  7.6059 

Republic of Korea 11.5789 Slovakia 7.3567 

Italy 11.0047 Hungary  7.3561 

Spain  10.2282 Slovenia 6.9383 

United Kingdom  9.633 Norway 6.8914 

Sweden 9.166 Argentina 6.5962 

New Zealand 8.8443 Israel  6.3041 

Belgium 8.8279 Hong Kong  5.9437 

Canada  8.717 Ireland  5.8169 

Austria 8.6598 Greece  5.3754 

Netherlands 8.6367 Chile  3.5097 

Singapore 8.6038 Estonia  3.0792 

Czech Republic 8.4865 Iceland  2.6594 

Switzerland 8.4586 Lithuania 2.5162 

Finland  8.3749 Latvia 2.0787 

 

 

Trends In Robot Stock In High Income Countries  
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Stock of Robots AtUpper-Middle Income, 2004-2016 

 

 

Average ln(stock of robots), Upper-Middle Income 

Country Name  Avg. ln(stock of robots)  

China  10.8969 

Thailand 9.0668 

Mexico 8.8945 

Brazil 8.6313 

Malaysia 8.1556 

Turkey  7.6302 

South Africa 7.5653 

Russian Federation 6.7637 

Colombia 3.3679 
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Trends In Robot Stock In Upper-Middle Income Countries  

 

 

Stock of robots at lower-middle income countries, 2004-2016 

 

Average ln(stock of robots), Lower-Middle Income  

Country Name  Avg. ln(stock of robots)  

India  8.4162 

Indonesia  7.21 
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Trends in robot stock in lower-middle income countries 

 

 

Stock of robots at high income countries, 2004-2016 
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Stock of robots at upper-middle incomecountries, 2004-2016 
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APPENDIX B.  

 

Average ⍙ln(Emp15-24) 

 

 

Average ⍙ln(Emp25-34) 

 

 

Average ⍙ln(Emp35-44) 
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Average ⍙ln(Emp45-54) 
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