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In the production of composite parts, usually multiple parts are loaded into the autoclave
in one batch. A typical autoclave curing cycle has three main phases and proceeds as
follows: all parts are heated until they reach the curing temperature during the heat-up
phase, they are then held at this temperature for a certain period of time during the dwell
period, and then they are cooled in the cooling phase. The main goal in a curing cycle is
the complete curing of all parts. In an ideal curing cycle, all parts reach the curing
temperature at the same time, avoiding any over-curing. However, due to some factors
such as part positions, geometries, total mass in the load, it is often not possible to realize
this requirement without any delays between parts. The parts that reach the curing
temperature earlier than the others are over-cured as much as it takes for the last part (the
lagging part) to reach the curing temperature. This time delay can be monitored via
thermocouples on all parts during the curing cycle and it affects the product quality to a
great extent. If these delays are minimized, higher quality products can be produced.
Another consideration is minimization of the total process duration by shortening the

heat-up phase. This way, time and energy savings can be obtained.

In this work, we develop a two-stage approach to minimize both the time delay between

parts and the duration of the heat-up phase. In the first stage, we determine the factors



affecting the time to reach the curing temperature. We divide the autoclave charge floor
to 18 regions, evaluate different parameters and their interactions that are assumed to
affect the curing process. Then, regression models that relate the curing duration of each
area with those parameters are developed. In the second stage, we determine the
placement of the products in the autoclave using the regression models of the first stage.
We develop a multi-objective nonlinear mixed integer programming model that
minimizes the two objectives mentioned above. We linearize this model using additional
variables and use e-constraint method to generate the nondominated frontier. To obtain
solutions in shorter durations, we employed one of the well-known multi-objective
evolutionary algorithms, Nondominated Sorting Genetic Algorithm-II (NSGA-II). The
validity of the practical use of the model is tested on real cases in a composite factory in

Turkey.

Key words: Composite, Autoclave, Regression, Multi-objective Layout Optimization,

NSGA-II
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Kompozit parga iiretiminde ¢cogu zaman birden fazla parga tek bir parti halinde otoklava
yiiklenir. Tipik bir otoklav kiir déngiisiiniin ii¢ ana faz1 vardir ve su sekilde gerceklesir;
1sitma fazinda tiim pargalar kiir sicakligina ulasana dek 1sitilir, ardindan bekleme fazinda
parcalar belirli ve sabit bir siire bu sicaklikta bekletilir ve son olarak soguma asamasinda
parcalar sogutularak kiir dongiisii tamamlanir. Bir kiir dongiisiinde ana hedef tiim
pargalarin tam olarak kiirlenmesidir. ideal bir kiir ddngiisiinde, tiim parcalar asiri
kiirlenmeden kacinarak ayni zamanda kiir sicakligina ulasir. Fakat bu sarti saglamak
parca konumlarina, geometrilerine, yiiklemedeki toplam kiitleye, vb. faktorlere bagh
olarak ¢ogu zaman miimkiin olmamaktadir. Kiir sicakligina ulasan ilk par¢a (6nden
giden), son parcanin (geciken) kiir sicakligina ulagmasi i¢in gereken siire farki kadar fazla
kiirlenir. Bu zaman farki, kiir dongiisii sirasinda tiim pargalar iizerindeki termokuplar ile
izlenebilir ve iiriin kalitesini biiyiik dl¢iide etkiler. Bu gecikme en aza indirilirse, daha
kaliteli tiriinler Uretilebilir. Bir diger husus, 1sitma agamasini kisaltarak toplam proses

stiresinin en aza indirilmesidir. Bu sekilde zaman ve enerji tasarrufu elde edilebilir.

il



Bu ¢aligmada hem pargalar arasindaki zaman gecikmesini hem de 1sitma fazinin siiresini
en aza indirmek icin iki asamali bir yaklasim gelistirdik. Ik asamada, kiir sicakligma
ulagma siiresini etkileyen faktorleri belirledik. Otoklav sarj tabanini 18 bdlgeye ayirdik
ve kiirleme siirecini etkiledigi varsayilan farkli parametreleri ve bunlarin etkilesimlerini
degerlendirdik. Ardindan her bir alanin kiirlenme siiresini bu parametrelerle iliskilendiren
regresyon modelleri gelistirdik. ikinci asamada, iiriinlerin ilk asamadaki regresyon
modellerini kullanarak otoklavdaki yerlesimini belirledik. Yukarida belirtilen iki hedefi
en aza indiren dogrusal olmayan karma bir tamsayili programlama modeli gelistirdik. Bu
modeli ek degiskenler kullanarak dogrusallastirdik ve etkin ¢oziimleri e-kisit yontemi ile
bulduk. Daha kisa siirelerde ¢ozliim elde etmek i¢in yaygin kullanilan ¢ok amagli evrimsel
algoritmalardan birini, Nondominated Sorting Genetic Algorithm-II (NSGA-II),
kullandik. Modelin pratik kullaniminin gegerliligini Tiirkiye'deki bir kompozit
fabrikadaki ger¢ek durumlarda test ettik.

Anahtar Kelimeler: Kompozit, Otoklav, Regresyon, Cok Kriterli Yerlesim
Optimizasyonu, NSGA-II
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1. INTRODUCTION

In recent years, with the increasing number of studies on composite technologies,
aluminum and metal materials are increasingly being replaced by composite materials
due to their low density, high corrosion resistance and design flexibility. After Boeing
and Airbus announced in 2010 that the materials used in the production of 787 Dreamliner
and Airbus A350XWB were about 50% by weight composite, aircraft manufacturers have
begun to give more importance to this field and almost all of them have added some kind
of composite material to their new aircraft designs[1]. As well as civilian and military
airplanes, with the increasing applications in defense industry, composite materials have
been started to be used in military aircrafts such as helicopters, armored vehicles such as
tanks, panzers, heavy vehicles used in military transportation, bulletproof vests, and

weapon bodies[2].

In composite industry, pre-impregnated carbon, glass or aramid fibers impregnated with
resin are called prepregs. Prepreg fibers are generally processed by autoclave method. In
this method, the prepreg layers are placed on top of each other over a lay-up mold by a
technician. Then, this group of composite parts (whole of molds and prepregs) with
similar curing properties are put into the pressurized oven called autoclave together in
batches. The aim is to heat all materials up to the curing temperature (that is common for
all parts put together), stay at that temperature for a certain duration (the dwell period),
and then cool all parts by lowering the autoclave temperature and pressure. As a process
rule, the dwell period starts after all parts reach the curing temperature. In general, it is
often not possible for all parts to reach the curing temperature simultaneously. Reaching
this temperature depends on the locations of the parts in the autoclave charge floor since
the parts closer to the hot gas source heats up faster that the distant ones. In addition to
distance, another important factor is the relative positioning of the parts in the autoclave
due to forced convection. Total batch weight, individual part weight and size are also
considered as important factors in this study since mass and shape play important roles in

heat transmission.

For a part, the time interval between the instant it reaches the curing temperature and the

start of the dwell period is called delay. This has impact on product quality as the parts



that reach the curing temperature earlier than the others wait for the others, while they are
overexposed to that temperature. This, in turn, worsens their product quality. Dwell
period is defined by the customer and cannot be changed. All parts must be cured during
this time interval. Also, due to the amount of energy that an autoclave consumes, the
autoclave curing process is quite expensive. However, it is possible to reduce the total
processing time by shortening the heat-up and cool-down periods without changing the
dwell period. For heat-up period, if all parts reach the curing temperature earlier, the
process time gets shorter. This provides a considerable amount of time and energy saving

and better quality.

Considering these three important effects; time, cost and quality, the main objectives of
this study are to minimize both the heat-up period and the maximum delay of the parts,
by arranging the part placements in the autoclave charge floor. For this purpose, we divide
the autoclave charge floor into 18 rectangular areas and develop a multiple regression
model for each area that predicts the time to reach the curing temperature. For these
models, we use the data collected in 2017-2018 for 23 different parts from 3 different
families. Then, using the regression models, we develop a MOMILPM that minimizes
both the heat-up period and the maximum delay of the parts. We employ e-constraint
method to determine the efficient solutions. To decrease the computational burden
further, we use NSGA-II to approximate the nondominated frontier. We test our approach

using real cases in a composite factory in Turkey.

Following shows the thesis’ structure; Chapter 2 presents the literature survey about
autoclave process optimization. Chapter 3 introduces the problem definition. Chapter 4
focuses on our solution approach. Chapter 5 discusses the results. Ultimately, Chapter 6

contains the conclusions and some further study.



2. LITERATURE REVIEW

There are many studies in the literature on curing process for composite parts. Some
studies are about improving heat transfer via mold design and layout. Wang et al.[3] have
presented a method for uniform heating of the mold. They have also numerically
investigated the curing efficiency of curved composite parts based on thermal gradients
of molds[4]. Jian Hu et al.[5] have proposed another method for uniform heating of the
mold by using a "heat conducting fin". Haskilic[6], on the other hand, have developed a
MILPM for autoclave loading and scheduling.

To the best of our knowledge, the literature on autoclave parts placement is quite scarce.
One of the most recent studies on a similar subject has been done by Maffezzoli and
Grieco[7]. Similar to our problem, their aim is to optimally locate different tools inside
the autoclave minimizing the delay function. To do that, they have developed an
assignment model, where each tool-location assignment has a penalty that depends on the
thermal characteristics of the parts, their horizontal and vertical positions, and their
shadow effects. With this method, delay time can be found for each piece. Their method
is valid for a certain type of autoclave and the problem is modelled over parts. Also, the
penalty coefficient is studied as a function of the absolute position, ignoring the effect of
the other tools, and of the relative position considering for the effect of the close parts.
As a result, they have achieved a significant reduction in the cure time after simulating
behavior of three real autoclave batches.

Unlike the model offered by Maffezzoli and Grieco[7], taking into account the
coordinates and orientation of the part, Dios et al.[1] have proposed a more general model
that can be used in different autoclaves. They have approached the problem as a two-
dimensional Bin Packing Problem based on the container-loading model by Chen et al.[8]
and developed a MILPM by using penalties introduced in Maffezzoli and Grieco[7]. They
test their model using the scenarios given in [7] and achieved better results.

In another study by Nele et al.[9], a parameter, S, based on the geometry of the part-mold
combination and thermal inertia has been determined in order to find the optimal position
to minimize maximum delay in the heat-up and cool-down periods for the entire batch.
They propose putting parts with larger S values closer to the door.

As seen, in the literature, the studies on optimization of the curing time of the parts in the
autoclave are very limited due to the fact that autoclave process highly depends on

autoclave type and the parts assigned to it. In our study, we also employ a problem-



specific approach. We address the parts placement problem for an autoclave that is
capable of curing 18 parts simultaneously. We divide the autoclave charge floor into 18
areas and predict the curing time of each of the areas, while other studies in the literature
predict the curing time by modelling over parts. Also, we consider two conflicting
objectives in deciding on the placements that none of the studies have considered.

Given 18 areas and 18 products, our problem can be categorized as a Facility Layout
Problem which optimally finds the placement of the composite parts in the autoclave so
that the time difference between leading (the part that reaches the curing temperature first)
and lagging (the part that reaches the curing temperature the latest) parts and the heat-up
period are minimized. By this minimization, it is expected to have more efficient
operations and better quality in addition to less manufacturing costs and shorter lead
times[ 10]. The layout problems are addressed via exact or approximated approaches as
given in Figure 2.1. In this study, we employ e-constraint method to find all efficient

solutions, and NSGA-II to approximate these efficient solutions.
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3. PROBLEM DEFINITION

3.1. Autoclave Curing Process

The autoclave used in this study is heated via nitrogen. It has an internal length of 275
inch and a diameter of 98 inch as given in Figure 3.1. It utilizes H-Slot air flow adjustment
panels at the door side to balance air flow in the autoclave. H-slot adjusters provide
evenly distributed, turbulent flow in 100% of the working area and allow uniform heating
and cooling of the part load. This type of autoclave incorporates floor-mounted heaters
and cooling radiators. The fan is located at the back of the autoclave. The gas in the
autoclave is transferred from the rear of the autoclave to the front via floor duct by passing
floor-mounted heater or cool radiator. Then the gas meets with H-Slot panels at the door
and goes towards rear of the autoclave. This circulation continues through the process.
This autoclave is a typical industrial autoclave in which composite parts are subjected to
a temperature/pressure cycle known as the “process cycle” in order to cure the matrix
resin, accomplish ideal fiber and resin distribution and to minimize the void content. The
quality of the parts profoundly depends on this cycle; hence it is important that all
perspectives of the cycle is planned well. The process is carried through three periods;
heat-up, dwell and cooling as depicted in Figure 3.2. In the heat-up period, both
temperature and pressure increase. When all parts reach the curing temperature, dwell
period starts and the parts are maintained at this temperature for a defined period of time
so that polymerization takes place. At the end of this period, cooling phase begins and the

temperature and pressure decrease until the defined values to open autoclave door safely.
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3.2. Parts Loaded in the Autoclave

The process parameters given in the recipe is controlled by a software, “Composite
Processing Control”, via thermocouples and pressure sensors during a cure cycle. It has
36 thermocouples to record the temperature of the parts loaded in the autoclave and 12
pressure sensors to monitor the pressure on the parts. As a process rule, there should be 2
thermocouples located on each part to prevent data losses in case one thermocouple
becomes disabled during the curing cycle. So, maximum number of parts that can be
cured together in one cycle is 18. The locations of the thermocouples on the parts are

decided with customer during preproduction verification step.

The products used in our experimental studies belong to 3 families namely; 9 parts from
Family A, 2 parts from Family B and 16 parts from Family C and their basic features are
given in Table 3.1. The families consist of different parts in size but they have common

fabrication features.

Table 3.1 Basic Features of the Parts

Famil Part Material Tool Number | Weight | Width | Length
Y| Contour Material | of Parts (1b) (inch) | (inch)
-Prepreg
Carbon Fiber
-Honeycomb
A | Complex Core ST52- 9 | 128208 | 14-17 | 37-67
Curvature . Steel
-Adhesive
Film
-Tedlar Film
B Fl Prepreg ST52- )
at -
Carbon Fiber Steel 183 8 70
ST52-
C Flat “Prepreg 16 16-31 | 10-12 | 10-15

Carbon Fiber Steel

3.3. Planning the Autoclave Cure Cycle

In the autoclave curing cycle, one of the most critical steps for final laminate properties
is reaching and maintaining at the curing temperature. In the ideal case, all parts reach
this temperature at the same time and none is exposed to additional heating. However, it
is almost not possible for all parts to reach the curing temperature at the same time in one
autoclave cycle. Delays between parts usually occur. To understand delay, let’s consider
an autoclave process with a curing temperature of 170°C and a dwell period of 150

minutes. We may assume that part A is the leading part (the part that reaches the curing

7



temperature the first) that reaches the curing temperature in 100 minutes and part B is the
lagging part (the part that reaches the curing temperature the latest) that reaches the curing
temperature in 120 minutes. Then, the dwell period starts at the 120th minute for both.
Thus, instead of remaining at the curing temperature for 150 minutes, part A remains at
there for 170 minutes and is over-cured for 20 minutes. This over-cure duration worsens

the quality of part A.

Another important consideration is the duration of the overall autoclave curing cycle. If
the curing cycle is shortened, the process becomes more time-efficient and less costly.
For example, considering that this autoclave works 3 times a day for an average of 7 hours
for each run, and that 1 hour is reserved for set-up in total, even achieving a 10-minute
improvement in the total working time will allow 1 extra run in 2 weeks. Among the three
periods, dwell period’s duration cannot be changed since it is determined by the customer.
However, if all products reach the curing temperature earlier, the heat-up period can be

shortened.

Both the quality of the final products and cost/time efficiency of the cure cycle are
affected by the duration that each part reaches the curing temperature. This duration is
mainly affected by how the parts are placed in the autoclave. For example, in the past
data, there are three different layouts that the same 18 parts are placed previously, and all
parts’ temperature values during the curing cycle were recorded. The heat-up period
durations are 27.5, 63.0 and 25.4. The maximum delay values for the corresponding
layouts are 127.1, 139.3 and 130.1. The only difference between those curing processes
1s how the parts are placed in the autoclave. In our study, we consider two objectives
while determining the parts placement in the autoclave: minimization of heat-up period,
and minimization of maximum delay to reach the curing temperature. For our case, there
are no relations established between the time to reach the curing temperature and how the
part is placed. In our approach, we first develop the relation between the time to reach the
curing temperature and how the product is placed. Using this relation, we then find

efficient placements of parts that consider both of the objectives.

We explain our two-stage solution approach in Section 4. In the first stage, we develop
the relation between the time to reach the curing temperature and how the product is
placed with respect to the other products. We first determine the factors that may affect

the time to reach the curing temperature. Mass and shape play important roles in heat



transmission, in addition to location, total batch weight, individual part weight and size
were also considered as important factors in this work. Using multiple regression models,
we relate these factors with the time to reach the curing temperature. In the second stage,
we use this relation to find efficient placements of a group of parts in the autoclave that
optimizes the two objectives. We first develop a nonlinear mixed integer programming
model which is then linearized. Using this linear model, we find the efficient placements.
We also employ a multi-objective evolutionary algorithm to approximate these efficient

solutions in case good solutions are required in shorter durations.



4. SOLUTION APPROACH

In this section, we explain our two-step solution approach.
4.1. Phase 1: Estimating the Time to Reaching Curing Temperature

We first evaluate the effect of location on the time to reach the curing temperature. We
divide the autoclave charge floor into 18 areas as in Figure 4.1. The length and the width
are divided to 6 and 3 equal-length grids, respectively. The reason for dividing it into 18
areas is that the autoclave capacity is 18 parts at most and each rectangular area is in the
most suitable form for loading in terms of shape of the parts by this approach.
Additionally, in the previous data, there were sketches of the part placements in the
autoclave. Although the autoclave floor was not divided to 18 areas explicitly, with our
division, all parts fit in one of these areas suitably. We examined 705 data including part
name, location, thermocouple readings according to time, coming from 62 separate runs
of 27 different parts belonging to 3 different families with respect to their areas. We
grouped the data with respect to the area the product is put. Average times of reaching
curing temperature according to areas are given in Figure 4.2. It is obvious that location
has a considerable effect on timing as having similar trend in reaching the curing
temperature when parts are put in the same area. It also shows that curing time gets longer
as we move from back side to front side of the autoclave. This is unexpected because the
temperature is higher at the door side. However, this proves that location is not the only
variable that affects the curing temperature. Therefore, we decided to build a regression
model for each of the 18 areas to estimate the time to reach the curing temperature by

using extra factors in addition to location.

FAN SIDE
1 7 13
2 8 14
3 9 15
4 10 16
5 11 17
6 12 18
DOOR SIDE

Figure 4.1 Autoclave Charge Floor Layout
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3,9,15
410,16
5 11,17
6,12, 18
Areas

Figure 4.2 Average Time to Reach Curing Temperature for Each Area

The factors that we consider as important in the regression model are weight of the parts
in front of each part (towards the door) (F), total batch weight (B), individual part weight
(P), length of the part (L) and width of the part (W). Consider an example layout given in
Figure 4.3. The total batch weight, B, is the sum of the weights of all parts. The other
measure, F, depends on the area the part is placed. For instance, the total weight in the
front of area 1, Fi, is calculated by summing the weights of all parts in areas 2 and 3.

Here, note that, we allow at most two parts to be placed in one area.

B= P +P2tP3+P4+Ps+Pst+P7+ Ps+Po+ P1ot+P11+ P12
Fi= Py+P3+P4+Ps

Fs= P9
FAN SIDE
Area 1 Area 4 Area 7
Part 1 | Part6 | Part 10 |
Area 2 Area 5 Area 8
Part 2 Part 3 Part 7 Part 8 Part 11
Area 3 Area 6 Area 9
Part 4 Part 5 Part 9 Part 12
DOOR SIDE

Figure 4.3 Layout Example
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4.1.1. The Multiple Regression Models

As explained above, we develop regression models for each of the 18 areas. Our response
variable is the time to reach the curing temperature, and our predictor variables are weight
of the parts in front of each part (F), total batch weight (B), individual part weight (P),
length of the part (L) and width of the part (W).

We next need to determine the variables to include in the area regression models and
whether we need to model interactions between those variables. While doing this,
attention was paid to determine models with neither more nor less predictors than
necessary[13].

For this purpose, Minitab provides different methods to choose the significant predictor
variables. Among these methods, stepwise regression is used in this study. According to
this method, in each step, it is decided whether a variable should remain in the model or
be discarded depending on predefined criterion[ 14]. This strategy was utilized including
second order terms un-hierarchically. For example, if A, B and C are selected as
predictors, the two-way interactions A*B, A*C, B*C are also tested and the best subset
among them is chosen. In an un-hierarchical model, it is not necessary for lower-order
terms to be included in the model. To illustrate, a model that includes variable A*B*C
does not need to include the variables: A, B, C, A*B, A*C, and B*C. We have chosen to
use this method to keep the models as simple as possible, preventing having too many

terms in the model.

With a significance level of 0.10, the following regression models for 18 areas are
obtained via Minitab. In obtaining the regression models, we used “subtract the mean”
method in which after calculating the mean for a variable, this mean is subtracted from

each observed value of the variable.

T1=Py0 + P11(B-B1)+ 1 2(P-Py) + P 5(L-Ly)°

T2=Py0+Po1(L-Ly) + PBr(P-Py) (L-Ly) + Bas(P-Py) (W-Wy)

Ts=Ps0+ P31 (L-Ls) + B32(B-B3)* + B33(P-P3) (L-Ls)

Ts=PBao+ Bai(P-Ps) + Pao(W-W,) + By3(Fa-Fy)(W-W,)
Ts=Ps,0+Ps,1(B-Bs)+ Bs 2 (Fs-Fs) + Ps3(P-Ps) (W-Ws)+ fs 4(W-Ws) (Fs-Fs)
Te=Ps,0 + o1 (P-Pe)

T7=B70% B71 (B'§7)+.87,2 (F7'F7)+B7,3 (B '57) (F7'F7)
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Ts=Pg o+ Bs1(P-Pg) + Bgo(P-Pg)*+Pg5(W-Wg)(L-Lg)

To=Poo+ Bo1(L-Lg) + Boo(W-Wy)(L-Ly) +fo3(B-By)?

T10=P10,0+ B101(B-B10) + B1o2(W-Wyo) + B1o3(B-B1g) (P-Pio) + Bro4(B-Big) (W-Wyg)

Tu=Py10% B111(B-B11) + 112 (W-Wy,) (Fu-Fiq)

T12=P120+ B121(B-B12) + Bra2a(W-Wy5) + Byp3(L-L;)?

T15=P130+ P131(P-Pi3) + Pi32(L-Ly3)?

T1a=P140+ Pra1(B-B1s) + Praz(L-L1y) + Bras(W-Wyy) + Braa(L-L14)? + Byras(B-Byy) (W-Wiy)
T15=Pis0+ Bisi(P-Pis) + Bisa(W-Wys)+ Biss(P-Pis)? + Bisa(B-Bys) (Fis-Fis) + Biss(L-Lys)(W-
WlS)

T16=B16,0%+ B16,1(P-Pi6) + Br62(B-B16)* + B163(P-P16)* + Br6a(Fis-Fi6) (P-Pis)

T1=P170+ P171(P-P17)

T18=B1g0+ Bis,1(P-Pis)

Where T is the time to reach the curing temperature in the j* area, i ris the rth
coefficient of regression model of jt" area, B is the total batch weight, P is the part
weight, W' is the part width, L is the part length, F; is the total weight of all materials put
in front of the j*" area until the door, and X, indicates the average of the observed values
of predictor variable x in area j.

For the areas 2, 6, 8, 13, 17, 18 the time to reach the curing temperature only depends on
the properties of the material placed in that area, while for the remaining areas, it depends
on both the part and the parts in / around it. In total, we have 16 different predictor
variables. We divide these variables to two, depending on whether they include a variable
with term F or not as explained in Section 4.6. We give the regression coefficients of the

predictor variables that do not include the term F in Table 4.1, and that include F in Table
4.2.
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Table 4.1 Regression Coefficients of Variables without F Term

Variable 1 2 3 4 5 6 7 8 9 10 11 12 13
Area Constant B P w B? L? L BxW BxP P? PxL PxW WL
1 99.39000 | 0.01690 | -0.18720 - - 0.02008 - - - - - - -
2 100.41000 - - - - - -0.64000 - - - 0.01165 | -0.06240 -
3 100.51000 - - - 0.00001 - -0.71310 - - - 0.00477 - -
4 114.91100 - -0.09020 | -2.81700 - - - - - - - - -
5 129.10000| 0.00555 - - - - - - - - - 0.02006 -
6 129.68800 - -0.18490 - - - - - - - - - -
7 168.30000| -0.06710 - - - - - - - - - - -
8 99.28000 - -0.13520 - - - - - - 0.00159 - - -0.08000
9 105.81000 - - - 0.00003 - -0.74940 - - - - - -0.07180
10 109.19000| -0.00861 - -5.84800 - - - -0.00651 | 0.00022 - - - -
11 129.14000| 0.00711 - - - - - - - - - - -
12 125.86800| 0.00890 - -1.25700 - -0.02648 - - - - - - -
13 92.89000 - -0.09950 - - 0.02839 - - - - - - -
14 136.10000| 0.04440 - 1.20000 - 0.02564 | -2.64500 | -0.00253 - - - - -
15 104.69000 - -0.15120 | -1.11000 - - - - - 0.00174 - - -0.06140
16 114.94000 - -0.25920 - -0.00002 - - - - 0.00097 - - -
17 129.61000 - -0.20800 - - - - - - - - - -
18 128.30000 - -0.13680 - - - - - - - - - -
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Table 4.2 Regression Coefficients of Variables with F Term

Variable 1 2 3 4

Area F F B F P FsW

2

3

4 - - - -0.01877
5 0.22220 - - 0.13970
6

7

8

-0.28850 | 0.00026 - -

15 - 0.00008 - -
16 - - 0.00028 -
17 - - - -
18 - - - -
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4.1.1.1. Assumptions

Linear Relationship: The assumption of linear association between the response variable
and the predictor variables is first checked by the scatter plots given in Appendix A. All
relations are assumed to be monotonic. We next checked the relation via Spearman's
correlation. It gives an idea about the power of relationship between two variables. The
coefficient (rs) takes values between +1 and -1 and it shows a strong association as it

approaches 1, a weak association around 0.

The 15 values are given in Table 4.3. Although we have a few variables as defined “weak”
which are still acceptable, in general, the rs values indicate that there are moderate or
strong relations between variables for most of the areas. The p-values given in the third
column of the table also show that there is monotonic correlation for all variable pairs for
0.05 significance level, rejecting the null hypothesis; “Ho: There is no relationship

between the two variables.”

Table 4.3 Spearman’s Correlation Coefficient and P-value of Variables

10,5 Variable Is p-values Variable Is p-values
B -0.6 0.05 B 0.3 0.01
Area l P -0.8 0.00 Area 12 W -0.3 0.01
LxL -0.7 0.01 LxL -0.3 0.01
L -0.7 0.00 Area 13 P -0.7 0.00
Area 2 PxL -0.7 0.00 LxL -0.4 0.01
PxW -0.8 0.00 B -0.4 0.04
L -0.8 0.00 w -0.8 0.00
Area 3 B *x B -0.7 0.00 Area 14 L -0.5 0.01
PxL -0.8 0.00 LxL -0.5 0.01
P -0.7 0.00 B*xW -0.6 0.00
Area 4 w -0.8 0.00 P -0.7 0.00
W F -0.6 0.00 W -0.7 0.00
B 0.2 0.05 Area 15 PxP -0.7 0.00
Area 5 F 0.3 0.00 BxF -0.4 0.03
PxW -0.3 0.02 W L -0.8 0.00
W F 0.3 0.01 P -0.8 0.00
Area 6 P -0.4 0.00 Area 16 B * B -0.5 0.00
B -0.7 0.05 PxP -0.8 0.00
Area 7 F -0.7 0.05 F x P -0.7 0.00
B *F -0.4 0.04 Area 17 P -0.5 0.00
P -0.5 0.03 Area 18 P -0.4 0.01
Area 8 PxP -0.5 0.03
W L -0.6 0.01
L -0.7 0.00
Area 9 W L -0.7 0.00
B * B -0.6 0.00
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Normality: It is checked whether the residuals are distributed normally by checking the
normal probability plots given in Appendix A. Except for areas which have few data,
mostly, the data points lie on the diagonal line. We therefore assume that the residuals

follow a normal distribution.

No Multicollinearity: Polynomial terms or interaction terms may cause
multicollinearity. It can be checked via VIF which is the indicator for the power of the
relationship between a predictor and the other predictors in the model. It is expected to
have VIF value between 1 and 10[15]. VIF values of each predictor variables for all areas
are given in Appendix A, in the ANOVA tables. All values are between 1 and 10 so

independent variables are not highly correlated with each other.

Homoscedasticity: The residuals should have the similar scatter. Scatterplots of
“residuals vs. fits” are checked for homoscedasticity as given in Appendix A. As seen,

there are no extreme deviations in the plots, so this assumption is acceptable.
4.1.1.2. Regression Models’ Adequacy

To obtain a realistic regression model, while some researchers suggest 10 cases of data
for each predictor, some follow a statistical formula to calculate the sample size[15].
Table 4.4 shows the number of variables used and data that we have. From the perspective
of nearly 10 cases of data per predictor, data of most of the areas are enough according to
the rule. For areas that do not comply with the 10-cases rule, due to data availability, it is

assumed that the number of collected data is enough to represent the process.
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Table 4.4 Number of Data Collected and Number of Variable

# of Data #of Predictors
Area 1 11 3
Area 2 31 3
Area 3 35 3
Area 4 51 3
Area 5 70 4
Area 6 101 1
Area 7 8 3
Area 8 23 3
Area 9 22 3
Area 10 31 4
Area 11 36 2
Area 12 78 3
Area 13 17 2
Area 14 30 5
Area 15 32 5
Area 16 36 4
Area 17 43 1
Area 18 50 1

After that S (the standard error) and R? were checked. S and R? are the two measures of
how well the regression model fits the data. While S represents the absolute measure of
the difference between the data and the fitted values, R? shows the relative measure of the
percentage of the dependent variable variation that the model explains. From this
perspective, S is the main indicator to directly assess how well the model describes the
response. It is expected that S to be as small as possible. In our study, S is chosen to be
acceptable as around 5.

As for R?, higher R? values signifies that regression model is capable of explaining higher
percentages of the variation. However, even if additional variables are not significant,
including more variables to a regression model may cause the R? statistic to increase. For
this reason, it is suggested that if there are many variables included in a regression model
checking adjusted R? can be a more appropriate[16]. It increases only if the added term
increases the explanatory power of the model. In addition, predicted R? the indicator of
overfitting if it is distinctly smaller than R? should also be checked.

For goodness-of-fit test, S, R?, adjusted R? and predicted R? values are given in Table 4.5.
The R? and adjusted R? values of the areas (5 and 18, and partly areas 6, 11, 12, and 17)
are relatively low. A common property of those areas is that they are on the door side and

other factors or variables might be affecting their warming, which are not considered in
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this study. However, as explained before, R-square is a measure of explanatory power,
not fit. So, we can still count on related regression models. As for the areas whose S
values are around 7, although dropping nearly 3 outlier data per area due to being
obviously measurement error, there may still be outliers in the raw data which should be
investigated in detail and discarded. Since data was collected in 2017-2018, there was no
chance to investigate the reasons. So, we did not discard any more data. In addition to

that, it is seen that predicted R? is not distinctly smaller than R2.

Table 4.5 Goodness-of-fit Statistics

S R? R? (adj) | R* (pred)
Area 1 4.8 93.2 90.3 84.0
Area 2 6.6 83.6 81.8 78.8
Area 3 5.6 89.9 88.9 86.2
Area 4 6.3 83.3 82.3 79.2
Area 5 8.2 41.5 37.9 30.5
Area 6 7.5 62.1 61.7 59.6
Area 7 3.8 94.1 89.7 77.4
Area 8 5.5 82.6 79.8 69.0
Area 9 6.6 84.3 81.6 77.18
Area 10 6.5 87.0 85.0 81.1
Area 11 5.1 62.9 60.6 50.8
Area 12 7.4 70.4 69.2 65.6
Area 13 4.7 92.1 91.0 88.4
Area 14 4.6 92.2 90.9 88.3
Area 15 4.7 88.5 86.3 83.5
Area 16 59 88.0 86.7 85.9
Area 17 53 60.1 59.2 56.3
Area 18 7.4 46.0 44.9 38.6
4.1.1.3. Regression Models’ Verification

We evaluated generated regression models by an experiment as given in Section 5. To do
that, we defined a new layout and estimated curing times via generated regression models.
Then, we tested performance of regression models by comparing the predicted curing
times with actual curing times. Table 4.6 shows the comparison of the real times and the
estimated times. As seen from the table, our estimation for every part and for the
difference is satisfactorily close to the real times. So, it can be said that our models can

make accurate predictions.
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Table 4.6 Predicted vs. Realized Heat-up Durations (min)

Predicted T | Realized T Difference

(min) (min) (min)
Part 1 122.95 117.93 5.02
Part 2 122.07 120.98 1.09
Part 3 115.28 111.83 3.50
Part 4 115.41 118.95 -3.54
Part 5 122.95 125.05 -2.10
Part 6 120.62 110.82 9.80
Part 7 112.84 106.75 6.09
Part 8 121.44 120.98 0.46
Part 9 121.72 113.87 7.85
Part 10 121.95 114.88 7.07
Part 11 112.84 108.78 4.06
Part 12 110.78 105.73 5.05
Part 13 114.81 105.73 9.08
Part 14 112.78 106.75 6.03
Part 15 110.78 112.85 -2.07
Part 16 114.03 114.88 -0.86
Part 17 121.06 123.02 -1.99
Part 18 112.44 117.93 -5.49

4.2. Phase 2: Finding the Placement of Parts in the Autoclave

In our second stage, we find the efficient placements of parts to the areas in the autoclave.
We decide on which part is placed to which area, while minimizing the two objectives:

the duration of the heat-up phase and the maximum delay of the parts.

Before we continue with our solution approach, we give some definitions. The definitions
are taken from [12]. Here, let x denote the decision variable vector, X denote the feasible
set, Z denote the image of the feasible set in objective function space, and point
z(x)=(z1(x), z2(X),. .., Zp(X)) be the objective function vector corresponding to the decision
vector X, where p is the number of objectives and zk(x) is the performance of solution x
in objective k. We assume without loss of generality, that all objectives are to be

minimized.

Definition 1: A solution X€X is an efficient solution if there does not exist yEX such that
zk(y)< zk(x), for at least one k. Otherwise, x is an inefficient solution. The efficient set is

made of all efficient solutions.

Definition 2: If x is efficient (inefficient), then z(x) is said to be nondominated

(dominated).
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We next explain our assumptions in placing a batch of products in an autoclave.

- At most two products can be placed in an area,

- Orientations of all parts in the autoclave are decided by the customer according to
the part-mold thermal profile, therefore their orientations are considered as
constant,

- The total width of parts placed horizontally can be at most 96 inches,

- The total length of parts placed vertically can be at most 275 inches,

- Maximum 4 parts can be placed next to each other horizontally.

Due to the variables including the term F, our first model is a mixed integer nonlinear
program. The parameters and variables used when constructing mathematical model are

given as follows:
Sets and Indices

iel =1{1,..,18} Set of composite parts
Jj,k € ] = {1,...,18} Set of areas in autoclave charge floor
a€A=1{123} Set of vertical divisions in the autoclave
lel=1{1,..,13} Set of predictor variables without the term F

ue€eU={1,...,4} Set of predictor variables including the term F

Parameters

P; Weight of part i

L; Length of part i

W; Width of part i

H Maximum number of parts that can be placed horizontally in the autoclave
w Width of the autoclave

L Length of the autoclave

Bt Regression coefficient of predictor variable [ € L in area j
Bju Regression coefficient of predictor variable u € U in area j

Cit The value of predictor variable [ € L of part i

The partial value of predictor variable u € U of part i that is made of the

G terms not including F; d;;=1, d;;= B, d;3=P; djy=W; foralli € I
Cj1 Average of the observed values of predictor variable [ € L in area j
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Average of the observed values of predictor variable u € U in area j that is
T made of the terms not including F
ﬁ- Average of the observed values of front part weights in area j

Decision Variables

Xij =1, if part i is placed in area j; 0, otherwise
fi Total part weight in front of area j
Yj The maximum length of the parts placed in area j
ticad Time to reach the curing temperature for the leading part
tiag Time to reach the curing temperature for the lagging part
t; Time to reach the curing temperature for part i

Mixed Integer Nonlinear Programming Formulation (Model N)

minz; = tlag — tiead (1)
Subject to

18 13 4
ti :inj[ B (Ciz—C_jl)+2ﬁju(diu—dju)(fj_f;')]Vi €l (3)

j=1 =1 u=1
18
inj =1 Viel &)
=1
18
inj =2 Vj €] (5)
i=1
18
Z(xi,j + Xij+6 + Xijr12) < H j=1,..,6 (6)
i=1
18

Wilxij + Xijie + X jr12) SW j=1..6 (7)
i=1
Vit YViertVie2 v Vjezs t Vjra t Yjrs < L j=1713 (8)
Yj = Lix;j Vielje] )
6a 18
a €A,

/i = Z Epix“‘ j=6a-5,.,6a—1 10

k=j+1i=1
tiag = t; VieEl (11)
tieaa =t Vi €1 (12)
*ij € {01} Vielje] (13)
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The model finds the optimal locations of parts to be cured in autoclave and it has two
objectives; the first one is minimization of the time difference between leading and
lagging parts at reaching curing temperature and the second one is minimization of the
heat-up period. The heat-up period ends when all parts reach the curing temperature, so
that the part that reaches the curing temperature the latest determines the duration of the
heat-up period. Constraint (3) is constructed as above due to using subtract the mean
method and it finds the time to reach the curing temperature of each part i The regression
coefficient is multiplied with the parameter value of the part that is deduced by the mean
of the observed values. Constraint (4) places each part in one area. Constraints (5) and
(6) ensure that maximum 2 parts can be in one area and maximum 4 parts can be placed
next to each other horizontally, respectively. Constraints (7), (8) and (9) are defined for
limitation of autoclave dimension. The total width of parts placed horizontally can be at
most W inches, and the total length of parts placed vertically can be at most L inches.
Since we can place more than one part in an area, we find the maximum length placed in
each area and add those maximum values to restrict by L inches. Constraint (10) calculate
the total front weight of each area. Lastly, constraints (11) and (12) are for identifying
lagging and leading parts temperature and constraint (13) define the decision variables.
In our model, we set H = 4, W =98 and L = 275.

Model N is a nonlinear model due to constraint (3) that includes the multiplication of
decision variables x;; and f;. We thus convert it to an equivalent linear model by defining
anew variable e;j,,. By using e; j,,, constraint (3) is replaced with constraint (3*) and new
constraints (14)-(17) are included. We give the modified formulation below, and the
whole formulation in Appendix B for completeness.

Mixed Integer Linear Programming Formulation (Model L)

Min (1)

Min (2)

Subject to
18

13 18 4
t; = zxij B (ciy — ;) + Z Z €iju Vi el (3%)
=1

=1 j=1u=1
eijuSMxij VieljejJuel (14)
eiju = —Mx;; VieljejJuel (15)
eiju < Bpu(di —dp)(ff—fi) + ML —x;) Vi€Lj€Juel ()
eiju = Biu(di — dp)(f; — ;) — M(1 — x;5) vieljeJuelU (17)
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Constraints (14) and (15) ensure that if x;; = 0, e;,, becomes zero for all predictor
variables u € U, and constraints (16) and (17) ensure that if x;; =1, e;;, equals
,Bju(dl-u - chu)(fj - f]) Here, M is a large positive number.

4.2.1. Generating the Nondominated Frontier

The combinatorial problems can be solved via exact and heuristic methods. The optimal
solutions can be found by exact algorithms. However, the run-time usually increases with
the problem size. In addition, often up to moderately-sized problems can be solved to
optimality. As for larger cases, to get solutions in a shorter time via heuristic algorithms
by trading optimal solutions off is quite common[17]. Considering that the autoclave runs
three times a day in busy periods, the new layout plans should be obtained as quickly as
possible for situations such as changes in the parts to be loaded and due date restrictions.
So, due to computational time concerns both an exact method and a heuristic method are

proposed in this study as below subsections.
4.2.1.1. £ -Constraint Method

In this study, we find the efficient solutions of Model L by using the &-constraint
method[18]. In this method, all but one objective is transformed to constraints and
constrained by an ¢ value. In our case, time difference between parts while reaching
curing temperature was retained as the objective function while ti,; was constrained to be
less than or equal to a specific value €. The e-constraint formulation in this study is given
below. Here p is a small positive constant, and it is multiplied with the second objective

and added to the objective function to guarantee obtaining efficient solutions.

minz; = tigg — tieaq + P * tigg

Subject to
(3%)-(19)
tlag < ¢
4.2.1.2. A Heuristic Approach: NSGA-II

NSGA-II procedure [19] is an improved version of NSGA and it employs an elitist
principle. The purpose of elitism is the keeping best solutions to the next generations. It

also supports the diversity in the population.

The procedure is illustrated in Figure 4.4. It starts with the formation of new population,

R¢ the union of parent population, Pyand child population, Q. Both P;and Qhave size of
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N. Ry is therefore twice the size of the Pi. Then, every individual is ranked based on its
performance regarding the objective function values. The better the performance, the
better it is ranked. The ranking occurs in different fronts as Fi, F», ..., Fi. In next step, the
next population, P+ is created by taking all individuals of the best fronts until the size of
the original population is reached. If the last front like F3 in Figure 4.4 is too big that all
individuals can get in the new parent population of the next generation, crowding distance
sorting is used to select individuals from the same front. To calculate the crowding
distance, the distance between nearest neighbors as given in Figure 4.5 is computed at
first. Then the delta is divided by the difference of the maximum and the minimum of the
objective values. Lastly, this calculation is added up to already calculated distance for the
other objectives. After calculating it, the one with a larger crowding distance is chosen.
Then, P+ is used to create offspring population Q1. To do that, members of Py are
matched two by two so that each member joins to two tournaments. Again, the pairs are
compared according to their ranks and crowding distances. At the end of this stage,

mating pool is ready for crossover and mutation operators[20].

Non-dominated Crowding
sorting distance P
sorting t+1 i
o [ E—— JEm qg
P, F |- -] o
.
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( e
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Figure 4.4 Schematic of the NSGA-II Procedure[19] Figure 4.5 The Crowding Distance
Calculation [19]

4.2.1.2.1. Development of NSGA-II
4.2.1.2.1.1. Representation and Initial Population

In our study, each chromosome in the population represents a layout and each gene
represents the possible area that a part can be put. Due to having at most 18 parts to locate,
the length of a chromosome can be at most 18. Each part can be placed to one area in a
chromosome, and each area can have at most two parts. To handle these two limitations,

we increase the number of possible regions to 36 where two regions correspond to one
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area in the original model. For instance, regions 1 and 2 correspond to area 1, regions 3
and 4 correspond to area 2, etc. Each gene is randomly assigned to a number between 1
and 36. An example of an initial population is given Figure 4.6. In the first chromosome,
parts 1 and 5 are placed to regions 27 and 28, so that they both are put to area 14. After
the initial population is created, each chromosome is subjected to a feasibility check that
is explained below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Chr.1 27 15 31 2 28 11 23 17 34 25 22 30 29 13 18 35 10 21

Chr.2 10 31 26 27 20 28 17 33 9 13 1 3 14 32 4 30 32 21
Chr.3 23 14 29 36 5 22 17 6 15 23 10 3 9 18 2 21 28 35

Chr.N 18 30 9 8 10 25 32 23 34 29 10 31 20 3 11 17 15 26
Figure 4.6 An Example of Initial Population Structure
4.2.1.2.1.2.  Feasibility Check

In the chromosome, each part is located to one of 36 regions, satisfying constraint (4). As
for the remaining constraints (5), (6), (7), (8), we check whether any of them is violated

through the following steps.

Check 1. Check all regions whether they contain maximum 2 parts.

Check 2. Check each row whether the sum of the number of the parts in a row is lower
than or equal to 4.

Check 3. Check each row whether the sum of the width of the parts in a row is lower than
or equal to 96 inches.

Check 4. Check each column whether the sum of the maximum lengths is lower than or

equal to 275 inches.

If for a chromosome any of the constraints are violated, we employ two different methods.
Our first method is a penalty approach in which if any of the constraints is violated, a cost
is added to both of the fitness values. By this, the chromosome which violates at least one

constraint takes very high fitness values and its selection becomes less likely after sorting.

Our second method is repair approach. This repair algorithm is applied when new
solutions are created (after initial population and mutation in every generation) to check
above statements. After each check, if the constraint is violated, the solution is modified
to satisfy that violated constraint. First constraints (5) and (6) are checked because it is

easier to protect the original chromosome string and it is possible to automatically satisfy

26



the other constraints (7) and (8) by satisfying constraints (5) and (6). So, we start with
Check 1 and if it is provided by all of the areas, we continue with Check 2 and so on. If
any violation is detected in one of the checks, it repairs all violations for that constraint,
then continues with next check. After all repairs, it runs all checks again until there is no
violation left.

To illustrate, a string is given in Table 4.7. As explained before, each area consists of two
regions. In terms of constraint (5), there is no problem to locate maximum two parts into
one area. However, locating two parts into one region causes violation. In this example,
Parts 6, 12 and 16 are assigned to the same region. Also, in the solution in Table 4.7, Parts
15 and 18 are also violating constraint (5) because they are in Area 1 since both are
assigned to Region 1. This situation is quite possible because while there is no chance to
locate more than one part in the same region in the initial population generation stage,

there is a chance to share same region by more than one part after crossover or mutation.

Table 4.7 Area and Region Representation of a Layout

Parts 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Area 16 10 4 17 10 12 7 5 14 3 11 12 2 8 1 12 16 1
Region 31 19 7 33 20 23 14 9 27 5 22 24 4 15 1 23 32 1

To solve this situation, the repair algorithm searches other unoccupied regions to place
one of the parts that violate Check 1. This search starts by checking whether conjugate
region is available. The aim in this is to protect the original version of the chromosome
by not changing its original area. If the conjugate region is not available, we first generate
an unoccupied region list that the part can be assigned to. It is made of the regions that do
not violate Checks 1 and 2. We then assign the part randomly to one of the regions in the

list.

Before and after repair of an autoclave charging floor for the layout in Table 4.7 is given
in Table 4.8. In this example, the algorithm firstly controls whether Region 2 is available
to assign one of the Parts 15 or 18 randomly. As seen, Region 2 is available, and Part 15
can be assigned there. After relocating Part 15, we continue checking regions and detect
that Area 12 is over-occupied due to Parts 6 and 16. This time, Region 24 is not available
and 4" row is already full. So, one of the parts can be sent to only one the regions from
{3,6,10, 12, 13, 16, 17, 18, 21, 25, 26, 28, 29, 30, 34, 35, 36}. We then locate Part 16 to

Region 30 and all duplication problems are resolved.
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Table 4.8 Before and After Repair for Check 1
Before Repair for Check 1

Area | Regions | Part/s | Area | Regions | Part/s Area | Regions | Part/s
1 1,2 15,18 7 13, 14 7 13 25,26
2 3,4 13 8 15,16 14 14 27,28 9
3 5,6 10 9 17,18 15 29, 30
4 7,8 3 10 19, 20 2,5 16 31,32 1,17
5 9,10 8 11 21,22 11 17 33,34 4
6 11,12 12 23,24 | 6,16,12 18 35, 36

After Repair for Check 1
Area | Regions | Part/s | Area | Regions | Part/s Area | Regions | Part/s

1 1,2 15,18 7 13, 14 7 13 25,26

2 3,4 13 8 15,16 14 14 27,28 9
3 5,6 10 9 17,18 15 29, 30 16
4 7,8 3 10 19, 20 2,5 16 31,32 1,17
5 9,10 8 11 21,22 11 17 33,34 4
6 11,12 12 23,24 6, 12 18 35, 36

After that, the checking algorithm continues with Check 2. As seen, 4™ row has 5 parts
violating constraint (6). Again, available regions are detected by eliminating the rows
already full. Then, one of the parts is randomly selected and sent to an available region.
In this example, Part 5 is chosen and located at Region 18. Table 4.9 shows the final
layout of the example above. After these steps, the algorithm continues by controlling

Check 3 and Check 4 with the same logic of Check 2.

Table 4.9 After Repair for Check 2 for an Autoclave Charging Floor Layout

After Repair for Check 2

Area | Regions | Part/s | Area | Regions | Part/s Area | Regions | Part/s
1 1,2 15,18 7 13, 14 7 13 25, 26
2 3,4 13 8 15, 16 14 14 27,28 9
3 5,6 10 9 17,18 5 15 29, 30 16
4 7,8 3 10 19, 20 2 16 31,32 | 1,17
5 9,10 8 11 21,22 11 17 33,34 4
6 11,12 12 23,24 6, 12 18 35, 36
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4.2.1.2.1.3. Crowded Tournament Selection Operator

Two solutions are compared by using this operator while determining the mating pool.
There are two possible ways to win the tournament for a solution. Firstly, the one with
the better Pareto front is the winner. Secondly, if both of them are sharing the same Pareto

front, the one with better crowding distance wins the tournament[20].
4.2.1.2.1.4.  Crossover Operator

In this study, uniform crossover with crossover probability (pc € [0; 1]) is used as a
crossover operator. In this method, a random number is generated for each pair. If the
number is greater than crossover probability, crossover does not occur, and the two
parents are replicated as offspring. Otherwise, a binary vector is created to decide which
gene of the two chromosomes will be included in the offspring. If 1 is assigned to a gene,
offspring i takes the assignment from parent i and if it is 0, it takes the assignment from
the other parent. Figure 4.7 shows an example of the uniform crossover. In this example,

crossover is carried over 0100110101 binary vector.

O(1 (2|34 ,5(6|7]8]9 371115451917 ]5]9
3141|5679 ]3]5]6 0142 |3|]6|7|6|3]8]6

Figure 4.7 Uniform Crossover
4.2.1.2.1.5. Mutation Operator

As for mutation operator, swap mutation with mutation probability (pm € [0; 1]) is used.
Two genes of a chromosome are chosen randomly, and two values are interchanged if the
random number produced for that chromosome is lower than the mutation probability.

Otherwise, mutation does not occur. Figure 4.8 shows an example of the swap mutation.

0111234 |5|6|7(8|9| 50|12 |6|4|5|3]|7|8]9

Figure 4.8 Swap Mutation
4.2.1.2.1.6.  Fitness Evaluation

We predict the two objective values using regression equations. Knowing the part-region
assignments, we find the time to reach the curing temperature for each part. We set the
maximum duration as heat-up duration and the difference between maximum and

minimum duration as delay.
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4.2.1.2.1.7. Improvement Strategy

After obtaining a set of solutions in each generation, we check if we can further improve
the objective function values of the solutions in Front 1 by relocating some of the parts.
The part that is determinant in both of the objectives is the part that reaches the curing
temperature the latest. If this part is placed to another empty region that makes it reach
the curing temperature earlier, both of the objective function values improve. Another
part that is important in finding the delay is the part that reaches the curing temperature
the earliest. If it is also placed to another region that makes it reach the curing temperature

later, we may reduce the delay objective.

We start with the part that reaches the curing temperature the latest. Due to having 36
regions and 18 products, there are 18 empty locations that this part can be put. Keeping
the feasibility, this part is placed to an unoccupied region and the changes in the two
fitness function values are calculated. If the newly obtained solution dominates the
previous solution or cannot be dominated by the previous solution, this new solution is
added to the population. After all front 1 solutions are evaluated and new solutions
generated, sorting is applied again, and fronts are regenerated. Same approach can be also

applied to the part that reaches the curing temperature the earliest.
4.2.1.2.1.8. Termination

If prespecified number of generations are achieved, the algorithm stops.
4.2.1.2.2. Implementation of the NSGA-II

Our algorithm consists of the following steps:

Step 0. Initialization

0.1. Create an initial population of size N.

0.2. Perform feasibility check for each solution.

0.3. Feasibility Check
0.3.1. Check the feasibility of all solution in the population.
0.3.2. If the penalty approach is used, increment the fitness values of the
infeasible chromosomes.

0.3.3. If the repair approach is used, repair the infeasible chromosomes.
Step 1. Ranking and Parent Selection

1.1. Sort the population into fronts.

1.2. Perform crowded tournament selection to choose the parents.
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Step 2. Crossover

2.1. For each pair of parents, generate a random number to decide whether crossover

OcCcurs.

2.1.1. If the number generated is larger than the crossover probability, do not

conduct crossover and copy the parents to the offspring population.

2.1.2. If the number generated is smaller than the crossover probability, create
N/2 binary vectors, conduct uniform crossover using binary vectors and create 2

offspring from each pair.
Step3. Mutation
3.1. For each offspring, generate a random number to decide whether mutation occurs.

3.1.1. If the number generated is larger than the mutation probability, do not

conduct mutation.

3.1.2. If the number generated is smaller than the mutation probability, select
two genes and change them.

Step 4. Feasibility Check
4.1. Check the feasibility of the offspring population as in Step2.
Step 5. Combined Population

Create a combined population of size 2N by combining the current population with the offspring

population, each of size N.

5.1. Determine the fronts of the combined population.

5.2. Take Front 1 solutions and perform Solution Improvement.
Step 6. Solution Improvement

6.1. For each solution in Front 1, determine a part to relocate.

6.2. Find 18 empty regions and derive at most 18 new solutions by locating this part to

these locations.
6.3. Check the feasibility of the new solutions and keep only the feasible ones.

6.4. Check if the new solutions are dominated by the previous solutions. If not, keep those

new solutions in the combined population.
6.5. Partition the combined population into fronts.

6.6. Select the best N solutions and transfer them to the next population.
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Step 7. Termination
Stop if the prespecified number of generations have been achieved. Otherwise, go to Step 1.

Using the structure above, we determine six alternatives to apply NSGA-II to our
problem; two alternatives for the constraint handling approach (penalty or repair) and
three alternatives for the improvement step (no improvement, relocate ti.g, or relocate

tiead). These alternatives are given below:

Alternative 1: NSGA-II with repair and no improvement (R/-)

Alternative 2: NSGA-II with penalty and no improvement (P/-)

Alternative 3: NSGA-II with repair and improvement via relocating tiag (R/tiag)
Alternative 4: NSGA-II with penalty and improvement via relocating tiag (P/tiag)
Alternative 5: NSGA-II with repair and improvement via relocating ticad (R/ticad)

Alternative 6: NSGA-II with penalty and improvement via relocating ticad (P/ticad)
4.2.1.2.3. Performance Evaluation Metric

Numerous performance metrics have been proposed in the literature[18][21][22] [23][24]
to measure the performance of the MOEA[25]. In this paper, we choose to use the hyper-
volume indicator. In Figure 4.9, for a bi-objective problem, each nondominated point
dominates an area that is shown with rectangles up until a reference point (called as the
Nadir point). The hyper-volume of the solution set is the area of the union of all
rectangles. In the figure, NSGA-II and ¢ -constraint method’s final nondominated points
are shown by circles and squares, respectively. Hyper-volume ratio is calculated by
finding the ratio of the area covered by Front 1 solutions of NSGA-II to the area covered
by the solutions of the ¢ -constraint method. The larger the hyper-volume ratio, the better
the algorithm[26]. In this study, Nadir Point is set as (1.001, 1.001), and objective
function values of all solutions are standardized between 0 and 1 using the minimum and

maximum values of all solutions’ objective function values.
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S. COMPUTATIONAL TESTS AND RESULTS

We performed all the computational work by using a computer with Intel Core 17-6700K
CPU and 8 GB RAM. CPLEX solver in GAMS software is used to solve Model L using
the & -constraint method, and NSGA-II is implemented in MATLAB R2018a. We
perform the computational tests in two steps. In the first step, we evaluate the regression
models’ performance in estimating the times to reach the curing temperature. In the
second step, we compare the two solution approaches, generating the nondominated
frontier using € -constraint method and approximating the nondominated frontier using

NSGA-II in terms of solution quality and computational times.
5.1.  Evaluation of the Regression Models

In this step, we select a previously-loaded group of parts consisting of 18 parts; 6 parts
from Family-A, 10 parts from Family-B, 2 parts from Family-C from the past data.
According to the data, the heat-up phase lasted for 131 minutes, and the delta between
lagging and leading parts was around 41 minutes for the layout used. Using the same set
of parts, we find all efficient solutions using the e-constraint method. We start with a large
value for g, and each time we solve the mathematical model, we set € to a value that is
0.01 smaller than the last solution’s second objective value. These efficient solutions are
presented in Table 5.1. The run time to generate all efficient solutions is 13210 CPU
seconds. The solutions were evaluated by production engineers and layout of the 5%
efficient solution given in Figure 5.1 was chosen to be implemented. Table 5.2 shows the
time estimations of the regression models and the observed times of the implementation
to reach the curing temperature for 18 parts. According to this layout, our expectation is
to reduce it to around 12 minutes. Likewise, our expectation was to reduce the heat-up
phase to around 123 minutes. The realizations are indeed close to our estimations. We
observe a heat-up period of 125 minutes and a delta value around 19 minutes. The
durations to reach the curing temperature for individual parts deviate as much as 10
minutes, where most of the estimations are within 5 minutes of the observed values. This
is expected since there may be additional factors that affect the heating transfer between

the parts, and regression models are not exact.

In addition to that, while the total process duration of the previously-loaded group was
402 minutes, it decreases to 375 minutes with our layout suggestion. So, there is 27

minutes of gain. Considering that the dwell period is fixed as 120 minutes, we can say
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that this gain is achieved by 6 minutes shortening in heat-up and 21 minutes shortening

in cooling duration. Although we did not make an analysis for the cooling phase, it was

naturally affected by the initial placement in the autoclave.

Table 5.1 GAMS Results

Efficient Solution 1 2 3 4 5 6
tlag (Min) 11528 | 12046 | 120.92 | 121.19 | 122.95 130.55
Delta (min) 23.19 22.99 21.10 17.99 12.19 11.42
Areal Area 7 Area 13
Part14 | Part17 Part7 | Partll
Area 2 Area 8 Area 14
Part1 | Part5s Part8 | Part10
Area 3 Area 9 Area 15
Part13 | Partl8
Area 4 Area 10 Area 16
Part2 | Part16 Part6 | Part9
Area 5 Area 11 Area 17
Part3 | Partd
Area 6 Area 12 Area 18
Part12 | Part 15

Figure 5.1 Layout of Efficient Solution 5

Table 5.2 Predicted vs. Realized Times to Reach Curing Temperature (min)

Predicted T (min) Realized T (min) Difference (min)

Part 1 122.95 117.93 5.02
Part 2 122.07 120.98 1.09
Part 3 115.28 111.83 3.50
Part 4 115.41 118.95 -3.54
Part 5 122.95 125.05 -2.10
Part 6 120.62 110.82 9.80
Part 7 112.84 106.75 6.09
Part 8 121.44 120.98 0.46
Part 9 121.72 113.87 7.85
Part 10 121.95 114.88 7.07
Part 11 112.84 108.78 4.06
Part 12 110.78 105.73 5.05
Part 13 114.81 105.73 9.08
Part 14 112.78 106.75 6.03
Part 15 110.78 112.85 -2.07
Part 16 114.03 114.88 -0.86
Part 17 121.06 123.02 -1.99
Part 18 112.44 117.93 -5.49
tiag 122.95 125.05 -2.10
ticad 110.78 105.73 5.05
Delta 12.18 19.32 -7.14
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5.2. Determining the Mechanisms for NSGA-I1

We next find the best alternative for NSGA-II. For this, we evaluate the results of all
alternatives in terms of closeness to the exact solutions via HVI (Hyper-volume
Indicator). In addition to HVI, computational time is also a concern due to practical use
of the algorithm. To begin with, we chose a batch including 18 parts and found the
efficient layouts of it using the € -constraint method. We employ ¢ -constraint method as
explained in Section 5.1. We found 13 efficient solutions. Then, we run all six alternative

implementations of NSGA-II five times for this batch.

Depending on the similar experiments in the literature[ 10][27][28][29][30][31], both the
population size (N) and the number of generations are set to 100. As for crossover
probability (pc) and mutation probability (pm), they were decided as 0.8 and 0.6,
respectively. The average HVI’s and computational times of the five runs are given in
Table 5.3. As seen in the table, all computational times are quite shorter than the
computational time of the e-constraint method. The repair mechanism always performs
better than the penalty approach in terms of HVI measure in exchange for a slight increase
in the computational times. Relocating the lagging part also proves to be efficient
according to the results. As a result, relocating the lagging part and employing the repair
mechanism seems to be the best alternative with HVI value of 0.84. We continue with

these mechanisms in our further computations.

Table 5.3 HVI and CPU Results of Six Different Alternatives for NSGA-II

HVI CPU (s)
Alternative 1 (R/-) 0.70 30.19
Alternative 2 (P/-) 0.17 25.08
Alternative 3 (R/tiag) 0.84 47.88
Alternative 4 (P/tia) 0.76 47.05
Alternative 5 (R/ticad) 0.48 49.09
Alternative 6 (P/ticad) 0.36 47.39

As a second step, we run NSGA-II for different values of parameters N, pc, pm using same
batch. We use two values for N (100 and 200), three values for p¢ (0.4, 0.6, and 0.8), and
two values for pm (0.8 and 0.9), and run each combination five times with different seeds.
The average HVI values and run times of five trials for all settings are given in Table 5.4.
The HVI values are large enough for both population sizes. However, considering the run
times, population size of 200 runs approximately 4 times longer than the population size

of 100. There is a difference of about 2 minutes between the two populations. This
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difference becomes significant when it is assumed that at the beginning of the week about
21 plans will be made at the same time. But if daily planning is to be made, N =200 can
be also used. In this study, we prefer to continue with the population size of 100. As seen
from the table, run times are very close for this population size for all pm and pc values.
Thus, run times are not a decisive factor this time and we can choose pm and pc values
only by looking at the HVI values. Consequently, with the HVI value of 0.84, the pc, pm
are both set to 0.8.

Table 5.4 HVI and CPU Results of Algorithm 3

pe Pm HVI | CPU(s)
0.4 0.75 45.22
0.6 0.8 0.69 47.78
NZ100 0.8 0.84 47.88
0.4 0.77 46.08
0.6 0.9 0.78 47.18
0.8 0.83 48.68
0.4 0.82 165.02
0.6 0.8 0.84 170.73
NZ200 0.8 0.86 174.07
0.4 0.79 166.88
0.6 0.9 0.80 170.88
0.8 0.85 173.89

5.3. Evaluation of NSGA-II

After deciding on the setting of NSGA-II, we compare NSGA-II with the &€ —constraint
method using five different batches. We use the batches explained in Sections 5.1 and 5.2
as Batch 1 and Batch 2, and choose three additional batches from the previous data. All
batches contain 18 parts and differ from each other in content and layout. We first
generate each batch’s efficient solutions using the ¢ -constraint method. We then
approximate the efficient solutions using NSGA-II with the setting chosen in the previous
sections. The number of efficient solutions of all batches are reported in the first column
of Table 5.5, and the results of the two methods are given in columns 2-4. The HVI value
of Batch 2 and Batch 5 are lower than the others due to having fewer efficient solutions.
For the remaining three batches, the HVI values are greater than 0.75. The solution times

of NSGA-II are considerably smaller than the duration of the € —constraint method.

We also give the spread of the real efficient set and the approximated set in Figures 5.2-

5.6 for all batches. We choose one of the five runs to show the effectiveness of the NSGA-
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II. The spread of NSGA-I1 is close to the efficient set, especially if the number of efficient
solutions is larger. NSGA-II approximates the middle solutions better, and in general
misses the extreme solutions. This is acceptable, since for implementation, middle
solutions are preferred. Also, we found the distance of each solution of NSGA-II to the
nearest efficient solution by using Chebyshev distance metric and calculated their average
for each run. The average distance for all runs is less than 4.2, with a range from 0.3 to
6.8. So, the delay and the heat-up phase of any solution of NSGA-II is, on the average, at
most 4.2 minutes more than those of the closest efficient solution. This is a reasonable
deviation considering the factory activities. Overall, the performance of NSGA-II in
terms of both computational times and closeness to real efficient solutions is satisfactory.
If the planner needs to decide on a layout for a batch in short times, the efficient set can
be approximated using NSGA-II initially. A layout can be chosen to be implemented, or
efficient solutions close to that layout can be searched with bounds set on the two-

objective function.

Table 5.5 Results for 5 Different Batches

Number of ‘ -;(:;sl:zzlnt NSGA-II
Efficient Solutions CPU (5) HVI CPU (5)
Batch 1 13 13320 0.83 49.70
Batch 2 6 13210 0.51 54.09
Batch 3 12 11189 0.91 49.90
Batch 4 10 5587 0.77 55.85
Batch 5 5 1924 0.44 54.32
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6. CONCLUSIONS AND FUTURE WORK

The autoclave curing cycle that is made of three phases: heat-up phase, dwell period, and
cooling phase. We consider the heat-up phase of this cycle and develop approaches to
place parts in the autoclave while minimizing the duration of the heat-up phase and
minimizing the delay between parts in reaching the curing temperature. We employ a
two-stage approach. In the first stage, we use multiple regression to estimate the time to
reach the curing temperature. With this aim, firstly, autoclave data collected in the recent
years was investigated to determine the factors affecting the time to reach the curing
temperature. The most important factors are decided as the location, total batch weight,
individual part weight, length and width of the part, and weight of the parts in front of
each part until the door. We then divide the autoclave into 18 areas and obtain regression
models for each area which enables to predict the time to reach the curing temperature
when a part is placed on that specific area. All predictor variables and their combinations
are included in the regression model and the significant ones are selected with stepwise
regression. We obtain different equations for each area with satisfactory estimation

power.

In the second stage, we determine the efficient placements of parts in the autoclave. Our
initial mathematical model is a MINLPM which we then convert into an equivalent
MILPM. We then generate the whole efficient solutions by the € -constraint method. One
of the efficient solutions of a batch is implemented in the autoclave. As well as proving
that our estimations were very close to realizations, it resulted in a significant reduction
in the heat-up phase. We also develop mechanisms for NSGA-II to solve the parts
placement problem optimizing the two objectives explained above. Specifically, we
develop a repair mechanism to repair infeasible solutions that violate at least one of the
four constraints. We also propose an improvement mechanism that allows obtaining new
efficient solutions when the part that reaches the curing temperature the latest is replaced
to one of the empty regions in a layout. The demonstrations on five different batches show
that NSGA-II approximates the efficient solutions well. The average hypervolume
indicator is 0.70 and NSGA-II runs in significantly shorter duration when compared with
the solution times of the exact method. This algorithm can be used as an alternative to the
exact method when solutions are needed in short times in cases such as a change in the

batch composition.
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By the proposed solution methods in this study, it will be possible to predict the time to
reach the curing temperature for a batch of parts, and to develop a layout that minimizes
the heat-up period and the time delay between reaching the curing temperature. As a result
of this study, as well as facilitating production engineer’s work in deciding how to place
a batch during autoclave loading, the composite parts will be produced in standard quality,

in a shorter period and with less cost.

As a future study, more predictor variables can be used while developing regression
models. In addition to that, in spite of the fact that the proposed technique was applied to
a particular autoclave, the procedure can be generalized for different types of parts and
autoclaves with different sizes. We currently find the best placement of a set of parts in
the autoclave. If we have more parts than the capacity of the autoclave to be loaded, the

grouping of parts to batches is another interesting research direction.
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AREA 1:
Number of data: 11

Analysis of Variance

Source DF Adj SS Adj MS F-Value P-Value
Regression 3 2224,1 741,36 32,10 0,000

B 1 118,7 118,74 5,14 0,058

P 1 1271,1 1271,09 55,03 0,000

L*L 1 327,9 327,91 14,20 0,007
Error 7 161,7 23,10
Total 10 2385,8
Model Summary

S R-sg R-sg(adj) R-sqg(pred)

4,80585 93,22% 90,32% 84,04%
Coded Coefficients
Term Coef SE Coef T-Value P-Value VIF
Constant 99,39 2,82 35,23 0,000
B 0,01690 0,00745 2,27 0,058 2,42
P -0,1872 0,0252 -7,42 0,000 1,96
L*L 0,02008 0,00533 3,717 0,007 1,34

Regression Equation in Coded Units

MaxTime = 99,39 + 0,01690 B - 0,1872 P + 0,02008 L*L

APPENDIX A

Residual Plots for MaxTime
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AREA 2:
Number of data: 31

Analysis of Variance

Source DF Adj SS Adj MS F-Value P-Value
Regression 3 6021 2006,96 46,00 0,000
L 1 3339 3338,53 76,52 0,000
P*L 1 2478 2477,87 56,79 0,000
P*W 1 1462 1462,29 33,52 0,000
Error 27 1178 43,63
Total 30 7199
Model Summary
S R-sqg R-sg(adj) R-sqg(pred)
6,60528 83,64% 81,82% 78,78%
Coded Coefficients
Term Coef SE Coef T-Value P-Value VIF
Constant 100,41 1,83 55,01 0,000
L -0,6400 0,0732 -8,75 0,000 1,27
P*L 0,01165 0,00155 7,54 0,000 2,03
P*W -0,0624 0,0108 -5,79 0,000 2,34

Regression Equation in Coded Units

MaxTime = 100,41 -

0,6400 L + 0,01165 P*L - 0,0624
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AREA 3:
Number of data: 35

Analysis of Variance

Source DF Adj SS Adj MS
Regression 3 8638,60 2879,53
L 1 7909,28 7909,28
B*B 1 91,80 91,80
P*L 1 432,09 432,09
Error 31 977,64 31,54
Total 34 9616,25
Model Summary
S R-sqg R-sg(adj) R-sqg(pred)
5,61577 89,83% 88,85% 86,24%

Coded Coefficients

Term Coef
Constant 100,51
L -0,7131
B*B 0,000014
P*L 0,00477

SE Coef T-Value

2,53 39,67
0,0450 -15,84
0,000008 1,71
0,00129 3,70

Regression Equation in Coded Units

F-Value P-Value
91,31 0,000

250,79 0,000
2,91 0,098
13,70 0,001

P-Value VIF

0,000

0,000 1,02
0,098 1,05
0,001 1,04

MaxTime = 100,51 - 0,7131 L + 0,000014 B*B + 0,00477 P*L

Residual Plots for MaxTime
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AREA 4:
Number of data: 51

Analysis of Variance

Source DF Adj SS
Regression 3 9383,3
P 1 971, 9
W 1 1118, 6
F*W 1 517,2
Error 47 1876,4
Lack-of-Fit 45 1842,9
Pure Error 2 33,5
Total 50 11259,7

Model Summary

S R-sg R-sg(adj)
6,31844 83,34% 82,27%

Coded Coefficients

Term Coef SE Coef
Constant 114,911 0,946
P -0,0902 0,0183
W -2,817 0,532
F*W -0,01877 0,0052

Adj MS F-Value P-Value
3127,76 78,35 0,000

971,89 24,34 0,000
1118,58 28,02 0,000
517,23 12,96 0,001
39,92
40,95 2,45 0,333
16,73
R-sqg(pred)
79,20%

T-Value P-Value VIF

121,49 0,000

-4,93 0,000 2,53

-5,29 0,000 2,51
1 -3,60 0,001 1,01

Regression Equation in Coded Units

MaxTime = 114,911 - 0,0902 P

- 2,817 W - 0,01877 F*W
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AREA 5:
Number of data: 70

Analysis of Variance

Source DF Adj SS
Regression 4 3174,90
B 1 296,89
F 1 1407,70
P*W 1 327,81
W*F 1 2834,093
Error 65 4467,97
Lack-of-Fit 63 4455,05
Pure Error 2 12,92
Total 69 76042,87
Model Summary
S R-sg R-sg(adj)
8,29084 41,54% 37,94%
Coded C