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ABSTRACT 

 

OPTIMIZATION OF COMPOSITE PARTS PLACEMENT IN 

AUTOCLAVE 

 

Gözdenur KIRDAR 

 

Master Thesis, Department of Industrial Engineering 

Supervisor: Asst. Prof. Dr. Diclehan TEZCANER ÖZTÜRK 

Co- Supervisor: Prof. Dr. Murat Caner TESTİK 

August 2020, 69 Pages 

 

In the production of composite parts, usually multiple parts are loaded into the autoclave 

in one batch. A typical autoclave curing cycle has three main phases and proceeds as 

follows: all parts are heated until they reach the curing temperature during the heat-up 

phase, they are then held at this temperature for a certain period of time during the dwell 

period, and then they are cooled in the cooling phase. The main goal in a curing cycle is 

the complete curing of all parts. In an ideal curing cycle, all parts reach the curing 

temperature at the same time, avoiding any over-curing. However, due to some factors 

such as part positions, geometries, total mass in the load, it is often not possible to realize 

this requirement without any delays between parts. The parts that reach the curing 

temperature earlier than the others are over-cured as much as it takes for the last part (the 

lagging part) to reach the curing temperature. This time delay can be monitored via 

thermocouples on all parts during the curing cycle and it affects the product quality to a 

great extent. If these delays are minimized, higher quality products can be produced. 

Another consideration is minimization of the total process duration by shortening the 

heat-up phase. This way, time and energy savings can be obtained.  

In this work, we develop a two-stage approach to minimize both the time delay between 

parts and the duration of the heat-up phase. In the first stage, we determine the factors 
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affecting the time to reach the curing temperature. We divide the autoclave charge floor 

to 18 regions, evaluate different parameters and their interactions that are assumed to 

affect the curing process. Then, regression models that relate the curing duration of each 

area with those parameters are developed. In the second stage, we determine the 

placement of the products in the autoclave using the regression models of the first stage. 

We develop a multi-objective nonlinear mixed integer programming model that 

minimizes the two objectives mentioned above. We linearize this model using additional 

variables and use 𝜀-constraint method to generate the nondominated frontier. To obtain 

solutions in shorter durations, we employed one of the well-known multi-objective 

evolutionary algorithms, Nondominated Sorting Genetic Algorithm-II (NSGA-II). The 

validity of the practical use of the model is tested on real cases in a composite factory in 

Turkey. 

 

Key words: Composite, Autoclave, Regression, Multi-objective Layout Optimization, 

NSGA-II 
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Kompozit parça üretiminde çoğu zaman birden fazla parça tek bir parti halinde otoklava 

yüklenir. Tipik bir otoklav kür döngüsünün üç ana fazı vardır ve şu şekilde gerçekleşir; 

ısıtma fazında tüm parçalar kür sıcaklığına ulaşana dek ısıtılır, ardından bekleme fazında 

parçalar belirli ve sabit bir süre bu sıcaklıkta bekletilir ve son olarak soğuma aşamasında 

parçalar soğutularak kür döngüsü tamamlanır. Bir kür döngüsünde ana hedef tüm 

parçaların tam olarak kürlenmesidir. İdeal bir kür döngüsünde, tüm parçalar aşırı 

kürlenmeden kaçınarak aynı zamanda kür sıcaklığına ulaşır. Fakat bu şartı sağlamak 

parça konumlarına, geometrilerine, yüklemedeki toplam kütleye, vb. faktörlere bağlı 

olarak çoğu zaman mümkün olmamaktadır. Kür sıcaklığına ulaşan ilk parça (önden 

giden), son parçanın (geciken) kür sıcaklığına ulaşması için gereken süre farkı kadar fazla 

kürlenir. Bu zaman farkı, kür döngüsü sırasında tüm parçalar üzerindeki termokuplar ile 

izlenebilir ve ürün kalitesini büyük ölçüde etkiler. Bu gecikme en aza indirilirse, daha 

kaliteli ürünler üretilebilir. Bir diğer husus, ısıtma aşamasını kısaltarak toplam proses 

süresinin en aza indirilmesidir. Bu şekilde zaman ve enerji tasarrufu elde edilebilir. 

 



iv 
 

Bu çalışmada hem parçalar arasındaki zaman gecikmesini hem de ısıtma fazının süresini 

en aza indirmek için iki aşamalı bir yaklaşım geliştirdik. İlk aşamada, kür sıcaklığına 

ulaşma süresini etkileyen faktörleri belirledik. Otoklav şarj tabanını 18 bölgeye ayırdık 

ve kürleme sürecini etkilediği varsayılan farklı parametreleri ve bunların etkileşimlerini 

değerlendirdik. Ardından her bir alanın kürlenme süresini bu parametrelerle ilişkilendiren 

regresyon modelleri geliştirdik. İkinci aşamada, ürünlerin ilk aşamadaki regresyon 

modellerini kullanarak otoklavdaki yerleşimini belirledik. Yukarıda belirtilen iki hedefi 

en aza indiren doğrusal olmayan karma bir tamsayılı programlama modeli geliştirdik. Bu 

modeli ek değişkenler kullanarak doğrusallaştırdık ve etkin çözümleri ε-kısıt yöntemi ile 

bulduk. Daha kısa sürelerde çözüm elde etmek için yaygın kullanılan çok amaçlı evrimsel 

algoritmalardan birini, Nondominated Sorting Genetic Algorithm-II (NSGA-II), 

kullandık. Modelin pratik kullanımının geçerliliğini Türkiye'deki bir kompozit 

fabrikadaki gerçek durumlarda test ettik. 

 

Anahtar Kelimeler: Kompozit, Otoklav, Regresyon, Çok Kriterli Yerleşim 

Optimizasyonu, NSGA-II 
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1. INTRODUCTION 

In recent years, with the increasing number of studies on composite technologies, 

aluminum and metal materials are increasingly being replaced by composite materials 

due to their low density, high corrosion resistance and design flexibility. After Boeing 

and Airbus announced in 2010 that the materials used in the production of 787 Dreamliner 

and Airbus A350XWB were about 50% by weight composite, aircraft manufacturers have 

begun to give more importance to this field and almost all of them  have added some kind 

of composite material to their new aircraft designs[1]. As well as civilian and military 

airplanes, with the increasing applications in defense industry, composite materials have 

been started to be used in military aircrafts such as helicopters, armored vehicles such as 

tanks, panzers, heavy vehicles used in military transportation, bulletproof vests, and 

weapon bodies[2]. 

 

In composite industry, pre-impregnated carbon, glass or aramid fibers impregnated with 

resin are called prepregs. Prepreg fibers are generally processed by autoclave method. In 

this method, the prepreg layers are placed on top of each other over a lay-up mold by a 

technician. Then, this group of composite parts (whole of molds and prepregs) with 

similar curing properties are put into the pressurized oven called autoclave together in 

batches. The aim is to heat all materials up to the curing temperature (that is common for 

all parts put together), stay at that temperature for a certain duration (the dwell period), 

and then cool all parts by lowering the autoclave temperature and pressure. As a process 

rule, the dwell period starts after all parts reach the curing temperature. In general, it is 

often not possible for all parts to reach the curing temperature simultaneously. Reaching 

this temperature depends on the locations of the parts in the autoclave charge floor since 

the parts closer to the hot gas source heats up faster that the distant ones. In addition to 

distance, another important factor is the relative positioning of the parts in the autoclave 

due to forced convection. Total batch weight, individual part weight and size are also 

considered as important factors in this study since mass and shape play important roles in 

heat transmission. 

 

For a part, the time interval between the instant it reaches the curing temperature and the 

start of the dwell period is called delay. This has impact on product quality as the parts 
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that reach the curing temperature earlier than the others wait for the others, while they are 

overexposed to that temperature. This, in turn, worsens their product quality.  Dwell 

period is defined by the customer and cannot be changed. All parts must be cured during 

this time interval. Also, due to the amount of energy that an autoclave consumes, the 

autoclave curing process is quite expensive. However, it is possible to reduce the total 

processing time by shortening the heat-up and cool-down periods without changing the 

dwell period. For heat-up period, if all parts reach the curing temperature earlier, the 

process time gets shorter. This provides a considerable amount of time and energy saving 

and better quality.  

 

Considering these three important effects; time, cost and quality, the main objectives of 

this study are to minimize both the heat-up period and the maximum delay of the parts, 

by arranging the part placements in the autoclave charge floor. For this purpose, we divide 

the autoclave charge floor into 18 rectangular areas and develop a multiple regression 

model for each area that predicts the time to reach the curing temperature. For these 

models, we use the data collected in 2017-2018 for 23 different parts from 3 different 

families. Then, using the regression models, we develop a MOMILPM that minimizes 

both the heat-up period and the maximum delay of the parts. We employ ε-constraint 

method to determine the efficient solutions. To decrease the computational burden 

further, we use NSGA-II to approximate the nondominated frontier. We test our approach 

using real cases in a composite factory in Turkey.  

 

Following shows the thesis’ structure; Chapter 2 presents the literature survey about 

autoclave process optimization. Chapter 3 introduces the problem definition.  Chapter 4 

focuses on our solution approach. Chapter 5 discusses the results. Ultimately, Chapter 6 

contains the conclusions and some further study. 
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2. LITERATURE REVIEW  

There are many studies in the literature on curing process for composite parts. Some 

studies are about improving heat transfer via mold design and layout.  Wang et al.[3] have 

presented a method for uniform heating of the mold. They have also numerically 

investigated the curing efficiency of curved composite parts based on thermal gradients 

of molds[4]. Jian Hu et al.[5] have proposed another method for uniform heating of the 

mold by using a "heat conducting fin". Haskilic[6], on the other hand, have developed a 

MILPM for autoclave loading and scheduling. 

To the best of our knowledge, the literature on autoclave parts placement is quite scarce.  

One of the most recent studies on a similar subject has been done by Maffezzoli and 

Grieco[7]. Similar to our problem, their aim is to optimally locate different tools inside 

the autoclave minimizing the delay function. To do that, they have developed an 

assignment model, where each tool-location assignment has a penalty that depends on the 

thermal characteristics of the parts, their horizontal and vertical positions, and their 

shadow effects. With this method, delay time can be found for each piece. Their method 

is valid for a certain type of autoclave and the problem is modelled over parts. Also, the 

penalty coefficient is studied as a function of the absolute position, ignoring the effect of 

the other tools, and of the relative position considering for the effect of the close parts. 

As a result, they have achieved a significant reduction in the cure time after simulating 

behavior of three real autoclave batches. 

Unlike the model offered by Maffezzoli and Grieco[7], taking into account the 

coordinates and orientation of the part, Dios et al.[1] have proposed a more general model 

that can be used in different autoclaves. They have approached the problem as a two-

dimensional Bin Packing Problem based on the container-loading model by Chen et al.[8] 

and developed a MILPM by using penalties introduced in Maffezzoli and Grieco[7]. They 

test their model using the scenarios given in [7] and achieved better results.  

In another study by Nele et al.[9], a parameter, S, based on the geometry of the part-mold 

combination and thermal inertia has been determined in order to find the optimal position 

to minimize maximum delay in the heat-up and cool-down periods for the entire batch.  

They propose putting parts with larger S values closer to the door.  

As seen, in the literature, the studies on optimization of the curing time of the parts in the 

autoclave are very limited due to the fact that autoclave process highly depends on 

autoclave type and the parts assigned to it. In our study, we also employ a problem-
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specific approach. We address the parts placement problem for an autoclave that is 

capable of curing 18 parts simultaneously. We divide the autoclave charge floor into 18 

areas and predict the curing time of each of the areas, while other studies in the literature 

predict the curing time by modelling over parts. Also, we consider two conflicting 

objectives in deciding on the placements that none of the studies have considered.  

Given 18 areas and 18 products, our problem can be categorized as a Facility Layout 

Problem which optimally finds the placement of the composite parts in the autoclave so 

that the time difference between leading (the part that reaches the curing temperature first) 

and lagging (the part that reaches the curing temperature the latest) parts and the heat-up 

period are minimized. By this minimization, it is expected to have more efficient 

operations and better quality in addition to less manufacturing costs and shorter lead 

times[10]. The layout problems are addressed via exact or approximated approaches as 

given in Figure 2.1. In this study, we employ ε-constraint method to find all efficient 

solutions, and NSGA-II to approximate these efficient solutions. 

 

 

Figure 2.1 Methods for Solving Multi-Criterion FLPs [11] 
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3. PROBLEM DEFINITION 

3.1. Autoclave Curing Process 

The autoclave used in this study is heated via nitrogen. It has an internal length of 275 

inch and a diameter of 98 inch as given in Figure 3.1. It utilizes H-Slot air flow adjustment 

panels at the door side to balance air flow in the autoclave.  H-slot adjusters provide 

evenly distributed, turbulent flow in 100% of the working area and allow uniform heating 

and cooling of the part load. This type of autoclave incorporates floor-mounted heaters 

and cooling radiators. The fan is located at the back of the autoclave. The gas in the 

autoclave is transferred from the rear of the autoclave to the front via floor duct by passing 

floor-mounted heater or cool radiator. Then the gas meets with H-Slot panels at the door 

and goes towards rear of the autoclave. This circulation continues through the process. 

This autoclave is a typical industrial autoclave in which composite parts are subjected to 

a temperature/pressure cycle known as the “process cycle” in order to cure the matrix 

resin, accomplish ideal fiber and resin distribution and to minimize the void content. The 

quality of the parts profoundly depends on this cycle; hence it is important that all 

perspectives of the cycle is planned well. The process is carried through three periods; 

heat-up, dwell and cooling as depicted in Figure 3.2. In the heat-up period, both 

temperature and pressure increase. When all parts reach the curing temperature, dwell 

period starts and the parts are maintained at this temperature for a defined period of time 

so that polymerization takes place. At the end of this period, cooling phase begins and the 

temperature and pressure decrease until the defined values to open autoclave door safely. 

 

 

 

 

 



6 
 

 

 

Figure 3.1 Picture and Sketch of Studied Autoclave  

 

 

  Figure 3.2 Autoclave Curing Cycle Stages 
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3.2. Parts Loaded in the Autoclave 

The process parameters given in the recipe is controlled by a software, “Composite 

Processing Control”, via thermocouples and pressure sensors during a cure cycle. It has 

36 thermocouples to record the temperature of the parts loaded in the autoclave and 12 

pressure sensors to monitor the pressure on the parts. As a process rule, there should be 2 

thermocouples located on each part to prevent data losses in case one thermocouple 

becomes disabled during the curing cycle. So, maximum number of parts that can be 

cured together in one cycle is 18. The locations of the thermocouples on the parts are 

decided with customer during preproduction verification step.  

The products used in our experimental studies belong to 3 families namely; 9 parts from 

Family A, 2 parts from Family B and 16 parts from Family C and their basic features are 

given in Table 3.1. The families consist of different parts in size but they have common 

fabrication features.  

Table 3.1 Basic Features of the Parts 

Family Part 
Contour Material Tool 

Material 
Number 
of Parts 

Weight 
(lb) 

Width 
(inch) 

Length 
(inch) 

A Complex 
Curvature 

-Prepreg 
Carbon Fiber 
-Honeycomb 

Core 
-Adhesive 

Film 
-Tedlar Film 

ST52-
Steel 9 128-208 14-17 37-67 

B Flat -Prepreg 
Carbon Fiber 

ST52-

Steel 
2 183 8 70 

C Flat -Prepreg 
Carbon Fiber 

ST52-

Steel 
16 16-31 10-12 10-15 

 

3.3. Planning the Autoclave Cure Cycle 

In the autoclave curing cycle, one of the most critical steps for final laminate properties 

is reaching and maintaining at the curing temperature. In the ideal case, all parts reach 

this temperature at the same time and none is exposed to additional heating. However, it 

is almost not possible for all parts to reach the curing temperature at the same time in one 

autoclave cycle. Delays between parts usually occur. To understand delay, let’s consider 

an autoclave process with a curing temperature of 170oC and a dwell period of 150 

minutes. We may assume that part A is the leading part (the part that reaches the curing 
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temperature the first) that reaches the curing temperature in 100 minutes and part B is the 

lagging part (the part that reaches the curing temperature the latest) that reaches the curing 

temperature in 120 minutes. Then, the dwell period starts at the 120th minute for both. 

Thus, instead of remaining at the curing temperature for 150 minutes, part A remains at 

there for 170 minutes and is over-cured for 20 minutes. This over-cure duration worsens 

the quality of part A.  

Another important consideration is the duration of the overall autoclave curing cycle. If 

the curing cycle is shortened, the process becomes more time-efficient and less costly.  

For example, considering that this autoclave works 3 times a day for an average of 7 hours 

for each run, and that 1 hour is reserved for set-up in total, even achieving a 10-minute 

improvement in the total working time will allow 1 extra run in 2 weeks. Among the three 

periods, dwell period’s duration cannot be changed since it is determined by the customer. 

However, if all products reach the curing temperature earlier, the heat-up period can be 

shortened.  

Both the quality of the final products and cost/time efficiency of the cure cycle are 

affected by the duration that each part reaches the curing temperature. This duration is 

mainly affected by how the parts are placed in the autoclave. For example, in the past 

data, there are three different layouts that the same 18 parts are placed previously, and all 

parts’ temperature values during the curing cycle were recorded. The heat-up period 

durations are 27.5, 63.0 and 25.4. The maximum delay values for the corresponding 

layouts are 127.1, 139.3 and 130.1. The only difference between those curing processes 

is how the parts are placed in the autoclave.   In our study, we consider two objectives 

while determining the parts placement in the autoclave: minimization of heat-up period, 

and minimization of maximum delay to reach the curing temperature. For our case, there 

are no relations established between the time to reach the curing temperature and how the 

part is placed. In our approach, we first develop the relation between the time to reach the 

curing temperature and how the product is placed. Using this relation, we then find 

efficient placements of parts that consider both of the objectives.  

We explain our two-stage solution approach in Section 4. In the first stage, we develop 

the relation between the time to reach the curing temperature and how the product is 

placed with respect to the other products. We first determine the factors that may affect 

the time to reach the curing temperature. Mass and shape play important roles in heat 
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transmission, in addition to location, total batch weight, individual part weight and size 

were also considered as important factors in this work. Using multiple regression models, 

we relate these factors with the time to reach the curing temperature. In the second stage, 

we use this relation to find efficient placements of a group of parts in the autoclave that 

optimizes the two objectives. We first develop a nonlinear mixed integer programming 

model which is then linearized. Using this linear model, we find the efficient placements. 

We also employ a multi-objective evolutionary algorithm to approximate these efficient 

solutions in case good solutions are required in shorter durations.  
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4. SOLUTION APPROACH 

In this section, we explain our two-step solution approach.  

4.1. Phase 1: Estimating the Time to Reaching Curing Temperature 

We first evaluate the effect of location on the time to reach the curing temperature. We 

divide the autoclave charge floor into 18 areas as in Figure 4.1. The length and the width 

are divided to 6 and 3 equal-length grids, respectively. The reason for dividing it into 18 

areas is that the autoclave capacity is 18 parts at most and each rectangular area is in the 

most suitable form for loading in terms of shape of the parts by this approach.  

Additionally, in the previous data, there were sketches of the part placements in the 

autoclave. Although the autoclave floor was not divided to 18 areas explicitly, with our 

division, all parts fit in one of these areas suitably. We examined 705 data including part 

name, location, thermocouple readings according to time, coming from 62 separate runs 

of 27 different parts belonging to 3 different families with respect to their areas. We 

grouped the data with respect to the area the product is put. Average times of reaching 

curing temperature according to areas are given in Figure 4.2. It is obvious that location 

has a considerable effect on timing as having similar trend in reaching the curing 

temperature when parts are put in the same area. It also shows that curing time gets longer 

as we move from back side to front side of the autoclave. This is unexpected because the 

temperature is higher at the door side. However, this proves that location is not the only 

variable that affects the curing temperature. Therefore, we decided to build a regression 

model for each of the 18 areas to estimate the time to reach the curing temperature by 

using extra factors in addition to location.     

 FAN SIDE  

1 7 13 

2 8 14 

3 9 15 

4 10 16 

5 11 17 

6 12 18 

 DOOR SIDE  

Figure 4.1 Autoclave Charge Floor Layout 
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Figure 4.2 Average Time to Reach Curing Temperature for Each Area 

The factors that we consider as important in the regression model are weight of the parts 

in front of each part (towards the door) (F), total batch weight (B), individual part weight 

(P), length of the part (L) and width of the part (W). Consider an example layout given in 

Figure 4.3. The total batch weight, B, is the sum of the weights of all parts. The other 

measure, F, depends on the area the part is placed. For instance, the total weight in the 

front of area 1, F1, is calculated by summing the weights of all parts in areas 2 and 3.  

Here, note that, we allow at most two parts to be placed in one area.   

B= P1+P2+P3+P4+P5+P6+P7+ P8+P9+ P10+P11+ P12 

F1= P2+P3+P4+P5 

F5= P9 

FAN SIDE 
Area 1 Area 4 Area 7 

Part 1  Part 6  Part 10  

Area 2 Area 5 Area 8 
Part 2 Part 3 Part 7 Part 8 Part 11  

Area 3 Area 6 Area 9 
Part 4 Part 5  Part 9  Part 12 

DOOR SIDE 

 Figure 4.3 Layout Example 
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4.1.1. The Multiple Regression Models  

As explained above, we develop regression models for each of the 18 areas. Our response 

variable is the time to reach the curing temperature, and our predictor variables are weight 

of the parts in front of each part (F), total batch weight (B), individual part weight (P), 

length of the part (L) and width of the part (W). 

We next need to determine the variables to include in the area regression models and 

whether we need to model interactions between those variables. While doing this, 

attention was paid to determine models with neither more nor less predictors than 

necessary[13].  

For this purpose, Minitab provides different methods to choose the significant predictor 

variables. Among these methods, stepwise regression is used in this study. According to 

this method, in each step, it is decided whether a variable should remain in the model or 

be discarded depending on predefined criterion[14]. This strategy was utilized including 

second order terms un-hierarchically. For example, if A, B and C are selected as 

predictors, the two-way interactions A*B, A*C, B*C are also tested and the best subset 

among them is chosen. In an un-hierarchical model, it is not necessary for lower-order 

terms to be included in the model. To illustrate, a model that includes variable A*B*C 

does not need to include the variables: A, B, C, A*B, A*C, and B*C. We have chosen to 

use this method to keep the models as simple as possible, preventing having too many 

terms in the model. 

With a significance level of 0.10, the following regression models for 18 areas are 

obtained via Minitab. In obtaining the regression models, we used “subtract the mean” 

method in which after calculating the mean for a variable, this mean is subtracted from 

each observed value of the variable.  

T1=𝛽1,0 + 𝛽1,1(𝐵-�̅�1)+ 𝛽1,2(P-�̅�1) + 𝛽1,3(L-�̅�1)2 

T2=𝛽2,0+𝛽2,1(L-�̅�2)  + 𝛽2,2(P-�̅�2) (L-�̅�2)  + 𝛽2,3(P-�̅�2) (W-�̅�2) 

T3=𝛽3,0+𝛽3,1 (L-�̅�3) + 𝛽3,2(𝐵-�̅�3)2 + 𝛽3,3(P-�̅�3) (L-�̅�3) 

T4=𝛽4,0+ 𝛽4,1(P-�̅�4)  + 𝛽4,2(W-�̅�4) + 𝛽4,3(F4-�̅�4)(W-�̅�4) 

T5=𝛽5,0+𝛽5,1(𝐵-�̅�5)+ 𝛽5,2(F5-�̅�5) + 𝛽5,3(P-�̅�5) (W-�̅�5)+ 𝛽5,4(W-�̅�5) (F5-�̅�5) 

T6=𝛽6,0 + 𝛽6,1(P-�̅�6) 

T7=𝛽7,0+ 𝛽7,1(𝐵-�̅�7)+𝛽7,2(F7-�̅�7)+𝛽7,3(𝐵-�̅�7) (F7-�̅�7) 
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T8=𝛽8,0+ 𝛽8,1(P-�̅�8)  + 𝛽8,2(P-�̅�8)2+𝛽8,3(W-�̅�8)(L-�̅�8) 

T9=𝛽9,0+ 𝛽9,1(L-�̅�9)  + 𝛽9,2(W-�̅�9)(L-�̅�9) +𝛽9,3(𝐵-�̅�9)2 

T10=𝛽10,0+ 𝛽10,1(𝐵-�̅�10) + 𝛽10,2(W-�̅�10) + 𝛽10,3(𝐵-�̅�10) (P-�̅�10)  + 𝛽10,4(𝐵-�̅�10) (W-�̅�10) 

T11=𝛽11,0+ 𝛽11,1(𝐵-�̅�11) + 𝛽11,2(W-�̅�11) (F11-�̅�11)   

T12=𝛽12,0+ 𝛽12,1(𝐵-�̅�12) + 𝛽12,2(W-�̅�12) + 𝛽12,3(L-�̅�12)2 

T13=𝛽13,0+ 𝛽13,1(P-�̅�13)  + 𝛽13,2(L-�̅�13)2 

T14=𝛽14,0+ 𝛽14,1(𝐵-�̅�14) + 𝛽14,2(L-�̅�14) + 𝛽14,3(W-�̅�14) + 𝛽14,4(L-�̅�14)2 + 𝛽14,5(𝐵-�̅�14) (W-�̅�14) 

T15=𝛽15,0+ 𝛽15,1(P-�̅�15) + 𝛽15,2(W-�̅�15)+ 𝛽15,3(P-�̅�15)2 + 𝛽15,4(𝐵-�̅�15)  (F15-�̅�15) + 𝛽15,5(L-�̅�15)(W-

�̅�15) 

T16=𝛽16,0+ 𝛽16,1(P-�̅�16) + 𝛽16,2(𝐵-�̅�16)2 + 𝛽16,3(P-�̅�16)2 + 𝛽16,4(F16-�̅�16)(P-�̅�16) 

T17=𝛽17,0+ 𝛽17,1(P-�̅�17) 

T18=𝛽18,0+ 𝛽18,1(P-�̅�18) 

Where 𝑇  is the time to reach the curing temperature in the 𝑗𝑡ℎ  area, 𝛽𝑗,𝑟 is the 𝑟𝑡ℎ  

coefficient of regression model of 𝑗𝑡ℎ  area, 𝐵  is the total batch weight, 𝑃  is the part 

weight, 𝑊 is the part width, 𝐿 is the part length, 𝐹𝑗 is the total weight of all materials put 

in front of the 𝑗𝑡ℎ area until the door, and 𝑥�̅� indicates the average of the observed values 

of predictor variable 𝑥 in area 𝑗. 

For the areas 2, 6, 8, 13, 17, 18 the time to reach the curing temperature only depends on 

the properties of the material placed in that area, while for the remaining areas, it depends 

on both the part and the parts in / around it. In total, we have 16 different predictor 

variables.  We divide these variables to two, depending on whether they include a variable 

with term 𝐹 or not as explained in Section 4.6. We give the regression coefficients of the 

predictor variables that do not include the term 𝐹 in Table 4.1, and that include 𝐹 in Table 

4.2.   
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Table 4.1 Regression Coefficients of Variables without 𝐹 Term 

  Variable 

        Area 

1 2 3 4 5 6 7 8 9 10 11 12 13 

Constant 𝑩 𝑷 𝑾 𝑩𝟐  𝑳𝟐  𝑳 𝑩 ∗ 𝑾 𝑩 ∗ 𝑷 𝑷𝟐  𝑷 ∗ 𝑳 𝑷 ∗ 𝑾 𝑾 ∗ 𝑳 

1 99.39000 0.01690 -0.18720 - - 0.02008 - - - - - - - 
2 100.41000 - - - - - -0.64000 - - - 0.01165 -0.06240 - 
3 100.51000 - - - 0.00001 - -0.71310 - - - 0.00477 - - 
4 114.91100 - -0.09020 -2.81700 - - - - - - - - - 
5 129.10000 0.00555 - - - - - - - - - 0.02006 - 
6 129.68800 - -0.18490 - - - - - - - - - - 
7 168.30000 -0.06710 - - - - - - - - - - - 
8 99.28000 - -0.13520 - - - - - - 0.00159 - - -0.08000 
9 105.81000 - - - 0.00003 - -0.74940 - - - - - -0.07180 
10 109.19000 -0.00861 - -5.84800 - - - -0.00651 0.00022 - - - - 
11 129.14000 0.00711 - - - - - - - - - - - 
12 125.86800 0.00890 - -1.25700 - -0.02648 - - - - - - - 
13 92.89000 - -0.09950 - - 0.02839 - - - - - - - 
14 136.10000 0.04440 - 1.20000 - 0.02564 -2.64500 -0.00253 - - - - - 
15 104.69000 - -0.15120 -1.11000 - - - - - 0.00174 - - -0.06140 
16 114.94000 - -0.25920 - -0.00002 - - - - 0.00097 - - - 
17 129.61000 - -0.20800 - - - - - - - - - - 
18 128.30000 - -0.13680 - - - - - - - - - - 
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Table 4.2 Regression Coefficients of Variables with 𝐹 Term 

  Variable 

        Area 

1 2 3 4 

𝑭 𝑭 ∗ 𝑩 𝑭 ∗ 𝑷 𝑭 ∗ 𝑾 

1 - - - - 
2 - - - - 
3 - - - - 
4 - - - -0.01877 
5 0.22220 - - 0.13970 
6 - - - - 
7 -0.28850 0.00026 - - 
8 - - - - 
9 - - - - 

10 - - - - 
11 - - - 0.22780 
12 - - - - 
13 - - - - 
14 - - - - 
15 - 0.00008 - - 
16 - - 0.00028 - 
17 - - - - 
18 - - - - 
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4.1.1.1. Assumptions 

Linear Relationship: The assumption of linear association between the response variable 

and the predictor variables is first checked by the scatter plots given in Appendix A. All 

relations are assumed to be monotonic. We next checked the relation via Spearman's 

correlation. It gives an idea about the power of relationship between two variables. The 

coefficient (rs) takes values between +1 and -1 and it shows a strong association as it 

approaches 1, a weak association around 0. 

The rs values are given in Table 4.3. Although we have a few variables as defined “weak” 

which are still acceptable, in general, the rs values indicate that there are moderate or 

strong relations between variables for most of the areas. The p-values given in the third 

column of the table also show that there is monotonic correlation for all variable pairs for 

0.05 significance level, rejecting the null hypothesis; “H0: There is no relationship 

between the two variables.” 

Table 4.3 Spearman’s Correlation Coefficient and P-value of Variables 

10,5  Variable rs p-values   Variable rs p-values 

Area 1 
𝐵 -0.6 0.05  

Area 12 
𝐵 0.3 0.01 

𝑃 -0.8 0.00  𝑊 -0.3 0.01 
𝐿 ∗ 𝐿 -0.7 0.01  𝐿 ∗ 𝐿 -0.3 0.01 

Area 2 
𝐿 -0.7 0.00  Area 13 𝑃 -0.7 0.00 

𝑃 ∗ 𝐿 -0.7 0.00  𝐿 ∗ 𝐿 -0.4 0.01 
𝑃 ∗ 𝑊 -0.8 0.00  

Area 14 

𝐵 -0.4 0.04 

Area 3 
𝐿 -0.8 0.00  𝑊 -0.8 0.00 

𝐵 ∗ 𝐵 -0.7 0.00  𝐿 -0.5 0.01 
𝑃 ∗ 𝐿 -0.8 0.00  𝐿 ∗ 𝐿 -0.5 0.01 

Area 4 
𝑃 -0.7 0.00  𝐵 ∗ 𝑊 -0.6 0.00 
𝑊 -0.8 0.00  

Area 15 

𝑃 -0.7 0.00 
𝑊 ∗ 𝐹 -0.6 0.00  𝑊 -0.7 0.00 

Area 5 

𝐵 0.2 0.05  𝑃 ∗ 𝑃 -0.7 0.00 
𝐹 0.3 0.00  𝐵 ∗ 𝐹 -0.4 0.03 

𝑃 ∗ 𝑊 -0.3 0.02  𝑊 ∗ 𝐿 -0.8 0.00 
𝑊 ∗ 𝐹 0.3 0.01  

Area 16 

𝑃 -0.8 0.00 
Area 6 P -0.4 0.00  𝐵 ∗ 𝐵 -0.5 0.00 

Area 7 
𝐵 -0.7 0.05  𝑃 ∗ 𝑃 -0.8 0.00 
𝐹 -0.7 0.05  𝐹 ∗ 𝑃 -0.7 0.00 

𝐵 ∗ 𝐹 -0.4 0.04  Area 17 𝑃 -0.5 0.00 

Area 8 
P -0.5 0.03  Area 18 𝑃 -0.4 0.01 

𝑃 ∗ 𝑃 -0.5 0.03      
𝑊 ∗ 𝐿 -0.6 0.01      

Area 9 
𝐿 -0.7 0.00      

𝑊 ∗ 𝐿 -0.7 0.00      
𝐵 ∗ 𝐵 -0.6 0.00      
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Normality: It is checked whether the residuals are distributed normally by checking the 

normal probability plots given in Appendix A. Except for areas which have few data, 

mostly, the data points lie on the diagonal line. We therefore assume that the residuals 

follow a normal distribution. 

 

No Multicollinearity: Polynomial terms or interaction terms may cause 

multicollinearity. It can be checked via VIF which is the indicator for the power of the 

relationship between a predictor and the other predictors in the model. It is expected to 

have VIF value between 1 and 10[15]. VIF values of each predictor variables for all areas 

are given in Appendix A, in the ANOVA tables. All values are between 1 and 10 so 

independent variables are not highly correlated with each other. 

  

Homoscedasticity:  The residuals should have the similar scatter. Scatterplots of 

“residuals vs. fits” are checked for homoscedasticity as given in Appendix A.  As seen, 

there are no extreme deviations in the plots, so this assumption is acceptable. 

4.1.1.2. Regression Models’ Adequacy  

To obtain a realistic regression model, while some researchers suggest 10 cases of data 

for each predictor, some follow a statistical formula to calculate the sample size[15]. 

Table 4.4 shows the number of variables used and data that we have. From the perspective 

of nearly 10 cases of data per predictor, data of most of the areas are enough according to 

the rule. For areas that do not comply with the 10-cases rule, due to data availability, it is 

assumed that the number of collected data is enough to represent the process.  
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Table 4.4 Number of Data Collected and Number of Variable 
 # of Data #of Predictors 

Area 1 11 3 
Area 2 31 3 
Area 3 35 3 
Area 4 51 3 
Area 5 70 4 
Area 6 101 1 
Area 7 8 3 
Area 8 23 3 
Area 9 22 3 
Area 10 31 4 
Area 11 36 2 
Area 12 78 3 
Area 13 17 2 
Area 14 30 5 
Area 15 32 5 
Area 16 36 4 
Area 17 43 1 
Area 18 50 1 

 

After that S (the standard error) and R² were checked. S and R² are the two measures of 

how well the regression model fits the data. While S represents the absolute measure of 

the difference between the data and the fitted values, R² shows the relative measure of the 

percentage of the dependent variable variation that the model explains. From this 

perspective, S is the main indicator to directly assess how well the model describes the 

response. It is expected that S to be as small as possible. In our study, S is chosen to be 

acceptable as around 5.  

As for R², higher R² values signifies that regression model is capable of explaining higher 

percentages of the variation. However, even if additional variables are not significant, 

including more variables to a regression model may cause the R² statistic to increase. For 

this reason, it is suggested that if there are many variables included in a regression model 

checking adjusted R² can be a more appropriate[16]. It increases only if the added term 

increases the explanatory power of the model. In addition, predicted R² the indicator of 

overfitting if it is distinctly smaller than R² should also be checked.  

For goodness-of-fit test, S, R², adjusted R² and predicted R² values are given in Table 4.5. 

The R² and adjusted R² values of the areas (5 and 18, and partly areas 6, 11, 12, and 17) 

are relatively low. A common property of those areas is that they are on the door side and 

other factors or variables might be affecting their warming, which are not considered in 
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this study. However, as explained before, R-square is a measure of explanatory power, 

not fit. So, we can still count on related regression models. As for the areas whose S 

values are around 7, although dropping nearly 3 outlier data per area due to being 

obviously measurement error, there may still be outliers in the raw data which should be 

investigated in detail and discarded. Since data was collected in 2017-2018, there was no 

chance to investigate the reasons. So, we did not discard any more data. In addition to 

that, it is seen that predicted R² is not distinctly smaller than R². 

Table 4.5 Goodness-of-fit Statistics  
 S R² R² (adj) R² (pred) 

Area 1 4.8 93.2 90.3 84.0 
Area 2 6.6 83.6 81.8 78.8 
Area 3 5.6 89.9 88.9 86.2 
Area 4 6.3 83.3 82.3 79.2 
Area 5 8.2 41.5 37.9 30.5 
Area 6 7.5 62.1 61.7 59.6 
Area 7 3.8 94.1 89.7 77.4 
Area 8 5.5 82.6 79.8 69.0 
Area 9 6.6 84.3 81.6 77.18 
Area 10 6.5 87.0 85.0 81.1 
Area 11 5.1 62.9 60.6 50.8 
Area 12 7.4 70.4 69.2 65.6 
Area 13 4.7 92.1 91.0 88.4 
Area 14 4.6 92.2 90.9 88.3 
Area 15 4.7 88.5 86.3 83.5 
Area 16 5.9 88.0 86.7 85.9 
Area 17 5.3 60.1 59.2 56.3 
Area 18 7.4 46.0 44.9 38.6 

 

4.1.1.3. Regression Models’ Verification 

We evaluated generated regression models by an experiment as given in Section 5. To do 

that, we defined a new layout and estimated curing times via generated regression models. 

Then, we tested performance of regression models by comparing the predicted curing 

times with actual curing times. Table 4.6 shows the comparison of the real times and the 

estimated times. As seen from the table, our estimation for every part and for the 

difference is satisfactorily close to the real times. So, it can be said that our models can 

make accurate predictions. 
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Table 4.6 Predicted vs. Realized Heat-up Durations (min) 

  
Predicted T 

(min) 
Realized T 

(min) 
Difference 

(min) 
Part 1 122.95 117.93 5.02 
Part 2 122.07 120.98 1.09 
Part 3 115.28 111.83 3.50 
Part 4 115.41 118.95 -3.54 
Part 5 122.95 125.05 -2.10 
Part 6 120.62 110.82 9.80 
Part 7 112.84 106.75 6.09 
Part 8 121.44 120.98 0.46 
Part 9 121.72 113.87 7.85 
Part 10 121.95 114.88 7.07 
Part 11 112.84 108.78 4.06 
Part 12 110.78 105.73 5.05 
Part 13 114.81 105.73 9.08 
Part 14 112.78 106.75 6.03 
Part 15 110.78 112.85 -2.07 
Part 16 114.03 114.88 -0.86 
Part 17 121.06 123.02 -1.99 
Part 18 112.44 117.93 -5.49 

 

4.2. Phase 2: Finding the Placement of Parts in the Autoclave 

In our second stage, we find the efficient placements of parts to the areas in the autoclave. 

We decide on which part is placed to which area, while minimizing the two objectives: 

the duration of the heat-up phase and the maximum delay of the parts.  

Before we continue with our solution approach, we give some definitions. The definitions 

are taken from [12]. Here, let x denote the decision variable vector, X denote the feasible 

set, Z denote the image of the feasible set in objective function space, and point 

z(x)=(z1(x), z2(x),…, zp(x)) be the objective function vector corresponding to the decision 

vector x, where p is the number of objectives and zk(x) is the performance of solution x 

in objective k. We assume without loss of generality, that all objectives are to be 

minimized. 

Definition 1: A solution x∈X is an efficient solution if there does not exist y∈X such that 

zk(y)≤ zk(x), for at least one k. Otherwise, x is an inefficient solution. The efficient set is 

made of all efficient solutions. 

Definition 2: If x is efficient (inefficient), then z(x) is said to be nondominated 

(dominated).  
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We next explain our assumptions in placing a batch of products in an autoclave. 

- At most two products can be placed in an area, 

- Orientations of all parts in the autoclave are decided by the customer according to 

the part-mold thermal profile, therefore their orientations are considered as 

constant, 

- The total width of parts placed horizontally can be at most 96 inches,  

- The total length of parts placed vertically can be at most 275 inches, 

- Maximum 4 parts can be placed next to each other horizontally. 

Due to the variables including the term 𝐹, our first model is a mixed integer nonlinear 

program. The parameters and variables used when constructing mathematical model are 

given as follows: 

Sets and Indices 

𝑖 ∈  𝐼 =  {1, . . . , 18} Set of composite parts  

𝑗, 𝑘 ∈  𝐽 =  {1, . . . , 18} Set of areas in autoclave charge floor 

𝑎 ∈ 𝐴 = {1,2,3} Set of vertical divisions in the autoclave  

𝑙 ∈  𝐿 =  {1, . . . , 13} Set of predictor variables without the term 𝐹 

𝑢 ∈  𝑈 =  {1, . . . , 4} Set of predictor variables including the term 𝐹 

Parameters 

𝑃𝑖  Weight of part 𝑖 

𝐿𝑖  Length of part 𝑖 

𝑊𝑖  Width of part 𝑖 

𝐻 Maximum number of parts that can be placed horizontally in the autoclave 

𝑊 Width of the autoclave 

𝐿 Length of the autoclave 

𝛽𝑗𝑙  Regression coefficient of predictor variable 𝑙 ∈  𝐿 in area 𝑗 

𝛽𝑗𝑢 Regression coefficient of predictor variable 𝑢 ∈  𝑈 in area 𝑗  

𝑐𝑖𝑙 The value of predictor variable 𝑙 ∈  𝐿 of part 𝑖 

𝑑𝑖𝑢 
The partial value of predictor variable 𝑢 ∈  𝑈 of part 𝑖 that is made of the 

terms not including 𝐹;  𝑑𝑖1=1, 𝑑𝑖2= 𝐵, 𝑑𝑖3=𝑃𝑖 , 𝑑𝑖4= 𝑊𝑖 for all 𝑖 ∈  𝐼 

𝑐�̅�𝑙 Average of the observed values of predictor variable 𝑙 ∈  𝐿 in area 𝑗 
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�̅�𝑗𝑢 
Average of the observed values of predictor variable 𝑢 ∈  𝑈 in area 𝑗 that is 

made of the terms not including 𝐹 

𝑓�̅� Average of the observed values of front part weights in area 𝑗 

Decision Variables 

𝑥𝑖𝑗 = 1, if part 𝑖 is placed in area 𝑗; 0, otherwise 

𝑓𝑗 Total part weight in front of area 𝑗 

 𝑦𝑗 The maximum length of the parts placed in area 𝑗 

𝑡𝑙𝑒𝑎𝑑 Time to reach the curing temperature for the leading part 

 𝑡𝑙𝑎𝑔 Time to reach the curing temperature for the lagging part 

 𝑡𝑖 Time to reach the curing temperature for part 𝑖 

Mixed Integer Nonlinear Programming Formulation (Model N) 

min 𝑧1 = 𝑡𝑙𝑎𝑔 − 𝑡𝑙𝑒𝑎𝑑  (1) 
min 𝑧2 = 𝑡𝑙𝑎𝑔  (2) 

Subject to 

𝑡𝑖 = ∑ 𝑥𝑖𝑗[∑ 𝛽𝑗𝑙

13

𝑙=1

18

𝑗=1

(𝑐𝑖𝑙 − 𝑐�̅�𝑙) + ∑ 𝛽𝑗𝑢(𝑑𝑖𝑢 − �̅�𝑗𝑢)(𝑓𝑗 − 𝑓�̅�)]

4

𝑢=1

 ∀ 𝑖 ∈  𝐼 (3) 

∑ 𝑥𝑖𝑗 = 1

18

𝑗=1

 ∀ 𝑖 ∈  𝐼 (4) 

∑ 𝑥𝑖𝑗 ≤

18

𝑖=1

2 ∀ 𝑗 ∈  𝐽 (5) 

∑(𝑥𝑖,𝑗 + 𝑥𝑖,𝑗+6 + 𝑥𝑖,𝑗+12) ≤ 𝐻

18

𝑖=1

 𝑗 = 1, … , 6 (6) 

∑ 𝑊𝑖(𝑥𝑖,𝑗 + 𝑥𝑖,𝑗+6 + 𝑥𝑖,𝑗+12) ≤

18

𝑖=1

𝑊 𝑗 = 1, … , 6 (7) 

𝑦𝑗 + 𝑦𝑗+1 + 𝑦𝑗+2 + 𝑦𝑗+3 + 𝑦𝑗+4 + 𝑦𝑗+5 ≤ 𝐿 𝑗 = 1,7,13 (8) 

𝑦𝑗 ≥ 𝐿𝑖𝑥𝑖𝑗 ∀ 𝑖 ∈  𝐼, 𝑗 ∈  𝐽 (9) 

𝑓𝑗 = ∑ ∑ 𝑃𝑖𝑥𝑖𝑘

18

𝑖=1

6𝑎

𝑘=𝑗+1

 𝑎 ∈ 𝐴, 
 𝑗 = 6𝑎 − 5, … , 6𝑎 − 1 (10) 

𝑡𝑙𝑎𝑔 ≥ 𝑡𝑖 ∀ 𝑖 ∈  𝐼 (11) 

𝑡𝑙𝑒𝑎𝑑 ≤ 𝑡𝑖 ∀ 𝑖 ∈  𝐼 (12) 

𝑥𝑖𝑗  ∈   {0,1} ∀ 𝑖 ∈  𝐼, 𝑗 ∈  𝐽 (13) 
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The model finds the optimal locations of parts to be cured in autoclave and it has two 

objectives; the first one is minimization of the time difference between leading and 

lagging parts at reaching curing temperature and the second one is minimization of the 

heat-up period. The heat-up period ends when all parts reach the curing temperature, so 

that the part that reaches the curing temperature the latest determines the duration of the 

heat-up period. Constraint (3) is constructed as above due to using subtract the mean 

method and it finds the time to reach the curing temperature of each part 𝑖 The regression 

coefficient is multiplied with the parameter value of the part that is deduced by the mean 

of the observed values.  Constraint (4) places each part in one area. Constraints (5) and 

(6) ensure that maximum 2 parts can be in one area and maximum 4 parts can be placed 

next to each other horizontally, respectively. Constraints (7), (8) and (9) are defined for 

limitation of autoclave dimension. The total width of parts placed horizontally can be at 

most 𝑊 inches, and the total length of parts placed vertically can be at most 𝐿 inches. 

Since we can place more than one part in an area, we find the maximum length placed in 

each area and add those maximum values to restrict by 𝐿 inches. Constraint (10) calculate 

the total front weight of each area. Lastly, constraints (11) and (12) are for identifying 

lagging and leading parts temperature and constraint (13) define the decision variables. 

In our model, we set 𝐻 = 4, 𝑊 = 98  and 𝐿 = 275. 

Model N is a nonlinear model due to constraint (3) that includes the multiplication of 

decision variables 𝑥𝑖𝑗  and 𝑓𝑗. We thus convert it to an equivalent linear model by defining 

a new variable 𝑒𝑖𝑗𝑢. By using 𝑒𝑖𝑗𝑢, constraint (3) is replaced with constraint (3*) and new 

constraints (14)-(17) are included. We give the modified formulation below, and the 

whole formulation in Appendix B for completeness.  

 Mixed Integer Linear Programming Formulation (Model L) 

Min (1)  

Min (2)  

Subject to 

𝑡𝑖 = ∑ 𝑥𝑖𝑗 ∑ 𝛽𝑗𝑙

13

𝑙=1

18

𝑗=1

(𝑐𝑖𝑙 − 𝑐�̅�𝑙) + ∑ ∑ 𝑒𝑖𝑗𝑢

4

𝑢=1

18

𝑗=1

 ∀ 𝑖 ∈  𝐼 (3*) 

𝑒𝑖𝑗𝑢 ≤ 𝑀𝑥𝑖𝑗 ∀ 𝑖 ∈  𝐼, 𝑗 ∈  𝐽, 𝑢 ∈  𝑈 (14) 
𝑒𝑖𝑗𝑢 ≥ −𝑀𝑥𝑖𝑗 ∀ 𝑖 ∈  𝐼, 𝑗 ∈  𝐽, 𝑢 ∈  𝑈 (15) 
𝑒𝑖𝑗𝑢 ≤ 𝛽𝑗𝑢(𝑑𝑖𝑢 − �̅�𝑗𝑢)(𝑓𝑗 − 𝑓�̅�) + 𝑀(1 − 𝑥𝑖𝑗) ∀ 𝑖 ∈  𝐼, 𝑗 ∈  𝐽, 𝑢 ∈  𝑈 (16) 
𝑒𝑖𝑗𝑢 ≥ 𝛽𝑗𝑢(𝑑𝑖𝑢 − �̅�𝑗𝑢)(𝑓𝑗 − 𝑓�̅�) − 𝑀(1 − 𝑥𝑖𝑗) ∀ 𝑖 ∈  𝐼, 𝑗 ∈  𝐽, 𝑢 ∈  𝑈                   (17) 
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Constraints (14) and (15) ensure that if 𝑥𝑖𝑗 = 0 , 𝑒𝑖𝑗𝑢  becomes zero for all predictor 

variables 𝑢 ∈  𝑈 , and constraints (16) and (17) ensure that if 𝑥𝑖𝑗 = 1 ,  𝑒𝑖𝑗𝑢  equals 

𝛽𝑗𝑢(𝑑𝑖𝑢 − �̅�𝑗𝑢)(𝑓𝑗 − 𝑓�̅�). Here, 𝑀 is a large positive number.  

4.2.1. Generating the Nondominated Frontier 

The combinatorial problems can be solved via exact and heuristic methods. The optimal 

solutions can be found by exact algorithms. However, the run-time usually increases with 

the problem size. In addition, often up to moderately-sized problems can be solved to 

optimality. As for larger cases, to get solutions in a shorter time via heuristic algorithms 

by trading optimal solutions off is quite common[17]. Considering that the autoclave runs 

three times a day in busy periods, the new layout plans should be obtained as quickly as 

possible for situations such as changes in the parts to be loaded and due date restrictions.  

So, due to computational time concerns both an exact method and a heuristic method are 

proposed in this study as below subsections. 

4.2.1.1. 𝜺 -Constraint Method 

In this study, we find the efficient solutions of Model L by using the 𝜀 -constraint 

method[18]. In this method, all but one objective is transformed to constraints and 

constrained by an 𝜀  value. In our case, time difference between parts while reaching 

curing temperature was retained as the objective function while tlag was constrained to be 

less than or equal to a specific value 𝜀. The 𝜀-constraint formulation in this study is given 

below. Here 𝜌 is a small positive constant, and it is multiplied with the second objective 

and added to the objective function to guarantee obtaining efficient solutions.  

min 𝑧1 = 𝑡𝑙𝑎𝑔 − 𝑡𝑙𝑒𝑎𝑑 + 𝜌 ∗ 𝑡𝑙𝑎𝑔 
Subject to  

 (3*) - (19) 
𝑡𝑙𝑎𝑔 ≤  𝜀 

 

4.2.1.2. A Heuristic Approach: NSGA-II 

NSGA-II procedure [19] is an improved version of NSGA and it employs an elitist 

principle. The purpose of elitism is the keeping best solutions to the next generations. It 

also supports the diversity in the population. 

The procedure is illustrated in Figure 4.4. It starts with the formation of new population, 

Rt the union of parent population, Pt and child population, Qt. Both Pt and Qt have size of 
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N. Rt is therefore twice the size of the Pt. Then, every individual is ranked based on its 

performance regarding the objective function values. The better the performance, the 

better it is ranked. The ranking occurs in different fronts as F1, F2, …, Fn. In next step, the 

next population, Pt+1 is created by taking all individuals of the best fronts until the size of 

the original population is reached. If the last front like F3 in Figure 4.4 is too big that all 

individuals can get in the new parent population of the next generation, crowding distance 

sorting is used to select individuals from the same front. To calculate the crowding 

distance, the distance between nearest neighbors as given in Figure 4.5 is computed at 

first. Then the delta is divided by the difference of the maximum and the minimum of the 

objective values. Lastly, this calculation is added up to already calculated distance for the 

other objectives. After calculating it, the one with a larger crowding distance is chosen. 

Then, Pt+1 is used to create offspring population Qt+1. To do that, members of Pt+1 are 

matched two by two so that each member joins to two tournaments. Again, the pairs are 

compared according to their ranks and crowding distances. At the end of this stage, 

mating pool is ready for crossover and mutation operators[20].  

 

 
 

Figure 4.4 Schematic of the NSGA-II Procedure[19] Figure 4.5 The Crowding Distance 
Calculation [19] 

4.2.1.2.1. Development of NSGA-II 

4.2.1.2.1.1. Representation and Initial Population 

In our study, each chromosome in the population represents a layout and each gene 

represents the possible area that a part can be put. Due to having at most 18 parts to locate, 

the length of a chromosome can be at most 18. Each part can be placed to one area in a 

chromosome, and each area can have at most two parts. To handle these two limitations, 

we increase the number of possible regions to 36 where two regions correspond to one 



26 
 

area in the original model. For instance, regions 1 and 2 correspond to area 1, regions 3 

and 4 correspond to area 2, etc. Each gene is randomly assigned to a number between 1 

and 36. An example of an initial population is given Figure 4.6. In the first chromosome, 

parts 1 and 5 are placed to regions 27 and 28, so that they both are put to area 14. After 

the initial population is created, each chromosome is subjected to a feasibility check that 

is explained below. 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 
Chr. 1 27 15 31 2 28 11 23 17 34 25 22 30 29 13 18 35 10 21 
Chr. 2 10 31 26 27 20 28 17 33 9 13 1 3 14 32 4 30 32 21 
Chr. 3 23 14 29 36 5 22 17 6 15 23 10 3 9 18 2 21 28 35 

… 
… 
…  

… 
… 
… 

… 
… 
… 

… 
… 
… 

… 
… 
… 

… 
… 
… 

… 
… 
… 

… 
… 
… 

… 
… 
… 

… 
… 
… 

… 
… 
… 

… 
… 
… 

… 
… 
… 

… 
… 
… 

… 
… 
… 

… 
… 
… 

… 
… 
… 

… 
… 
… 

… 
… 
… 

Chr. N 18 30 9 8 10 25 32 23 34 29 10 31 20 3 11 17 15 26 

Figure 4.6 An Example of Initial Population Structure 

4.2.1.2.1.2. Feasibility Check 

In the chromosome, each part is located to one of 36 regions, satisfying constraint (4). As 

for the remaining constraints (5), (6), (7), (8), we check whether any of them is violated 

through the following steps.  

Check 1. Check all regions whether they contain maximum 2 parts. 

Check 2. Check each row whether the sum of the number of the parts in a row is lower 

than or equal to 4. 

Check 3. Check each row whether the sum of the width of the parts in a row is lower than 

or equal to 96 inches. 

Check 4. Check each column whether the sum of the maximum lengths is lower than or 

equal to 275 inches. 

If for a chromosome any of the constraints are violated, we employ two different methods. 

Our first method is a penalty approach in which if any of the constraints is violated, a cost 

is added to both of the fitness values. By this, the chromosome which violates at least one 

constraint takes very high fitness values and its selection becomes less likely after sorting.  

Our second method is repair approach. This repair algorithm is applied when new 

solutions are created (after initial population and mutation in every generation) to check 

above statements. After each check, if the constraint is violated, the solution is modified 

to satisfy that violated constraint. First constraints (5) and (6) are checked because it is 

easier to protect the original chromosome string and it is possible to automatically satisfy 
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the other constraints (7) and (8) by satisfying constraints (5) and (6). So, we start with 

Check 1 and if it is provided by all of the areas, we continue with Check 2 and so on. If 

any violation is detected in one of the checks, it repairs all violations for that constraint, 

then continues with next check. After all repairs, it runs all checks again until there is no 

violation left.  

To illustrate, a string is given in Table 4.7. As explained before, each area consists of two 

regions. In terms of constraint (5), there is no problem to locate maximum two parts into 

one area. However, locating two parts into one region causes violation. In this example, 

Parts 6, 12 and 16 are assigned to the same region. Also, in the solution in Table 4.7, Parts 

15 and 18 are also violating constraint (5) because they are in Area 1 since both are 

assigned to Region 1. This situation is quite possible because while there is no chance to 

locate more than one part in the same region in the initial population generation stage, 

there is a chance to share same region by more than one part after crossover or mutation.  

Table 4.7 Area and Region Representation of a Layout 

Parts 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 
Area 16 10 4 17 10 12 7 5 14 3 11 12 2 8 1 12 16 1 

Region 31 19 7 33 20 23 14 9 27 5 22 24 4 15 1 23 32 1 
 

To solve this situation, the repair algorithm searches other unoccupied regions to place 

one of the parts that violate Check 1. This search starts by checking whether conjugate 

region is available. The aim in this is to protect the original version of the chromosome 

by not changing its original area. If the conjugate region is not available, we first generate 

an unoccupied region list that the part can be assigned to. It is made of the regions that do 

not violate Checks 1 and 2. We then assign the part randomly to one of the regions in the 

list.  

Before and after repair of an autoclave charging floor for the layout in Table 4.7 is given 

in Table 4.8. In this example, the algorithm firstly controls whether Region 2 is available 

to assign one of the Parts 15 or 18 randomly. As seen, Region 2 is available, and Part 15 

can be assigned there. After relocating Part 15, we continue checking regions and detect 

that Area 12 is over-occupied due to Parts 6 and 16. This time, Region 24 is not available 

and 4th row is already full. So, one of the parts can be sent to only one the regions from 

{3, 6, 10, 12, 13, 16, 17, 18, 21, 25, 26, 28, 29, 30, 34, 35, 36}. We then locate Part 16 to 

Region 30 and all duplication problems are resolved. 
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Table 4.8 Before and After Repair for Check 1 

Before Repair for Check 1 
Area Regions Part/s Area Regions Part/s Area Regions Part/s 

1 1, 2 15,18 7 13, 14 7 13 25, 26  
2 3, 4 13 8 15, 16 14 14 27,28 9 
3 5, 6 10 9 17, 18  15 29, 30  

4 7, 8 3 10 19, 20 2, 5 16 31, 32 1,17 
5 9, 10 8 11 21, 22 11 17 33, 34 4 
6 11, 12  12 23, 24 6, 16, 12 18 35, 36  

After Repair for Check 1 
Area Regions Part/s Area Regions Part/s Area Regions Part/s 

1 1, 2 15,18 7 13, 14 7 13 25, 26  

2 3, 4 13 8 15, 16 14 14 27,28 9 
3 5, 6 10 9 17, 18  15 29, 30 16 
4 7, 8 3 10 19, 20 2, 5 16 31, 32 1,17 
5 9, 10 8 11 21, 22 11 17 33, 34 4 
6 11, 12  12 23, 24 6, 12 18 35, 36  

 

After that, the checking algorithm continues with Check 2. As seen, 4th row has 5 parts 

violating constraint (6). Again, available regions are detected by eliminating the rows 

already full. Then, one of the parts is randomly selected and sent to an available region. 

In this example, Part 5 is chosen and located at Region 18. Table 4.9 shows the final 

layout of the example above. After these steps, the algorithm continues by controlling 

Check 3 and Check 4 with the same logic of Check 2. 

Table 4.9 After Repair for Check 2 for an Autoclave Charging Floor Layout 

After Repair for Check 2 
Area Regions Part/s Area Regions Part/s Area Regions Part/s 

1 1, 2 15,18 7 13, 14 7 13 25, 26  

2 3, 4 13 8 15, 16 14 14 27,28 9 
3 5, 6 10 9 17, 18 5 15 29, 30 16 
4 7, 8 3 10 19, 20 2 16 31, 32 1,17 
5 9, 10 8 11 21, 22 11 17 33, 34 4 
6 11, 12  12 23, 24 6, 12 18 35, 36  
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4.2.1.2.1.3. Crowded Tournament Selection Operator 

Two solutions are compared by using this operator while determining the mating pool. 

There are two possible ways to win the tournament for a solution. Firstly, the one with 

the better Pareto front is the winner. Secondly, if both of them are sharing the same Pareto 

front, the one with better crowding distance wins the tournament[20].  

4.2.1.2.1.4. Crossover Operator 

In this study, uniform crossover with crossover probability (pc ∈ [0; 1]) is used as a 

crossover operator. In this method, a random number is generated for each pair. If the 

number is greater than crossover probability, crossover does not occur, and the two 

parents are replicated as offspring. Otherwise, a binary vector is created to decide which 

gene of the two chromosomes will be included in the offspring. If 1 is assigned to a gene, 

offspring i takes the assignment from parent i and if it is 0, it takes the assignment from 

the other parent. Figure 4.7 shows an example of the uniform crossover. In this example, 

crossover is carried over 0100110101 binary vector.  

0 1 2 3 4 5 6 7 8 9 
→ 

3 1 1 5 4 5 9 7 5 9 

3 4 1 5 6 7 9 3 5 6 0 4 2 3 6 7 6 3 8 6 

Figure 4.7 Uniform Crossover 

4.2.1.2.1.5. Mutation Operator 

As for mutation operator, swap mutation with mutation probability (pm ∈ [0; 1]) is used. 

Two genes of a chromosome are chosen randomly, and two values are interchanged if the 

random number produced for that chromosome is lower than the mutation probability. 

Otherwise, mutation does not occur. Figure 4.8 shows an example of the swap mutation. 

0 1 2 3 4 5 6 7 8 9 → 0 1 2 6 4 5 3 7 8 9 

Figure 4.8 Swap Mutation 

4.2.1.2.1.6. Fitness Evaluation 

We predict the two objective values using regression equations. Knowing the part-region 

assignments, we find the time to reach the curing temperature for each part.  We set the 

maximum duration as heat-up duration and the difference between maximum and 

minimum duration as delay.  
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4.2.1.2.1.7. Improvement Strategy 

After obtaining a set of solutions in each generation, we check if we can further improve 

the objective function values of the solutions in Front 1 by relocating some of the parts. 

The part that is determinant in both of the objectives is the part that reaches the curing 

temperature the latest. If this part is placed to another empty region that makes it reach 

the curing temperature earlier, both of the objective function values improve. Another 

part that is important in finding the delay is the part that reaches the curing temperature 

the earliest. If it is also placed to another region that makes it reach the curing temperature 

later, we may reduce the delay objective.   

We start with the part that reaches the curing temperature the latest. Due to having 36 

regions and 18 products, there are 18 empty locations that this part can be put. Keeping 

the feasibility, this part is placed to an unoccupied region and the changes in the two 

fitness function values are calculated. If the newly obtained solution dominates the 

previous solution or cannot be dominated by the previous solution, this new solution is 

added to the population. After all front 1 solutions are evaluated and new solutions 

generated, sorting is applied again, and fronts are regenerated. Same approach can be also 

applied to the part that reaches the curing temperature the earliest. 

4.2.1.2.1.8. Termination 

If prespecified number of generations are achieved, the algorithm stops. 

4.2.1.2.2. Implementation of the NSGA-II 

Our algorithm consists of the following steps: 

Step 0. Initialization 

0.1.  Create an initial population of size N. 

0.2.  Perform feasibility check for each solution. 

0.3. Feasibility Check 

0.3.1. Check the feasibility of all solution in the population. 

0.3.2. If the penalty approach is used, increment the fitness values of the 

infeasible chromosomes. 

0.3.3. If the repair approach is used, repair the infeasible chromosomes. 

Step 1. Ranking and Parent Selection 

1.1. Sort the population into fronts. 

1.2. Perform crowded tournament selection to choose the parents. 
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Step 2. Crossover 

2.1. For each pair of parents, generate a random number to decide whether crossover 

occurs. 

2.1.1. If the number generated is larger than the crossover probability, do not 

conduct crossover and copy the parents to the offspring population. 

2.1.2. If the number generated is smaller than the crossover probability, create 

N/2 binary vectors, conduct uniform crossover using binary vectors and create 2 

offspring from each pair. 

Step3. Mutation 

3.1. For each offspring, generate a random number to decide whether mutation occurs. 

3.1.1. If the number generated is larger than the mutation probability, do not 

conduct mutation. 

3.1.2. If the number generated is smaller than the mutation probability, select 

two genes and change them. 

Step 4. Feasibility Check 

4.1. Check the feasibility of the offspring population as in Step2.  

Step 5. Combined Population 

Create a combined population of size 2N by combining the current population with the offspring 

population, each of size N. 

5.1. Determine the fronts of the combined population. 

5.2. Take Front 1 solutions and perform Solution Improvement. 

Step 6. Solution Improvement 

6.1. For each solution in Front 1, determine a part to relocate. 

6.2. Find 18 empty regions and derive at most 18 new solutions by locating this part to 

these locations. 

6.3. Check the feasibility of the new solutions and keep only the feasible ones. 

6.4. Check if the new solutions are dominated by the previous solutions. If not, keep those 

new solutions in the combined population.  

6.5. Partition the combined population into fronts.  

6.6. Select the best N solutions and transfer them to the next population. 
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Step 7. Termination 

Stop if the prespecified number of generations have been achieved. Otherwise, go to Step 1. 

Using the structure above, we determine six alternatives to apply NSGA-II to our 

problem; two alternatives for the constraint handling approach (penalty or repair) and 

three alternatives for the improvement step (no improvement, relocate tlag, or relocate 

tlead). These alternatives are given below:   

Alternative 1: NSGA-II with repair and no improvement (R/-) 

Alternative 2: NSGA-II with penalty and no improvement (P/-) 

Alternative 3: NSGA-II with repair and improvement via relocating tlag (R/tlag) 

Alternative 4: NSGA-II with penalty and improvement via relocating tlag (P/tlag) 

Alternative 5: NSGA-II with repair and improvement via relocating tlead (R/tlead) 

Alternative 6: NSGA-II with penalty and improvement via relocating tlead (P/tlead) 

4.2.1.2.3. Performance Evaluation Metric 

Numerous performance metrics have been proposed in the literature[18][21][22] [23][24] 

to measure the performance of the MOEA[25]. In this paper, we choose to use the hyper-

volume indicator. In Figure 4.9, for a bi-objective problem, each nondominated point 

dominates an area that is shown with rectangles up until a reference point (called as the 

Nadir point). The hyper-volume of the solution set is the area of the union of all 

rectangles. In the figure, NSGA-II and 𝜀 -constraint method’s final nondominated points 

are shown by circles and squares, respectively. Hyper-volume ratio is calculated by 

finding the ratio of the area covered by Front 1 solutions of NSGA-II to the area covered 

by the solutions of the  𝜀 -constraint method. The larger the hyper-volume ratio, the better 

the algorithm[26]. In this study, Nadir Point is set as (1.001, 1.001), and objective 

function values of all solutions are standardized between 0 and 1 using the minimum and 

maximum values of all solutions’ objective function values. 
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Figure 4.9 Graphical Illustration of the Hyper-volume (HV) Metric 
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5. COMPUTATIONAL TESTS AND RESULTS 

We performed all the computational work by using a computer with Intel Core i7-6700K 

CPU and 8 GB RAM. CPLEX solver in GAMS software is used to solve Model L using 

the 𝜀  -constraint method, and NSGA-II is implemented in MATLAB R2018a. We 

perform the computational tests in two steps. In the first step, we evaluate the regression 

models’ performance in estimating the times to reach the curing temperature. In the 

second step, we compare the two solution approaches, generating the nondominated 

frontier using 𝜀 -constraint method and approximating the nondominated frontier using 

NSGA-II in terms of solution quality and computational times. 

5.1. Evaluation of the Regression Models 

In this step, we select a previously-loaded group of parts consisting of 18 parts; 6 parts 

from Family-A, 10 parts from Family-B, 2 parts from Family-C from the past data. 

According to the data, the heat-up phase lasted for 131 minutes, and the delta between 

lagging and leading parts was around 41 minutes for the layout used. Using the same set 

of parts, we find all efficient solutions using the ε-constraint method. We start with a large 

value for ε, and each time we solve the mathematical model, we set ε to a value that is 

0.01 smaller than the last solution’s second objective value.  These efficient solutions are 

presented in Table 5.1. The run time to generate all efficient solutions is 13210 CPU 

seconds. The solutions were evaluated by production engineers and layout of the 5th 

efficient solution given in Figure 5.1 was chosen to be implemented. Table 5.2 shows the 

time estimations of the regression models and the observed times of the implementation 

to reach the curing temperature for 18 parts. According to this layout, our expectation is 

to reduce it to around 12 minutes. Likewise, our expectation was to reduce the heat-up 

phase to around 123 minutes. The realizations are indeed close to our estimations. We 

observe a heat-up period of 125 minutes and a delta value around 19 minutes. The 

durations to reach the curing temperature for individual parts deviate as much as 10 

minutes, where most of the estimations are within 5 minutes of the observed values.  This 

is expected since there may be additional factors that affect the heating transfer between 

the parts, and regression models are not exact.  

In addition to that, while the total process duration of the previously-loaded group was 

402 minutes, it decreases to 375 minutes with our layout suggestion. So, there is 27 

minutes of gain. Considering that the dwell period is fixed as 120 minutes, we can say 
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that this gain is achieved by 6 minutes shortening in heat-up and 21 minutes shortening 

in cooling duration. Although we did not make an analysis for the cooling phase, it was 

naturally affected by the initial placement in the autoclave. 

Table 5.1 GAMS Results 

Efficient Solution 1 2 3 4 5 6 
tlag (min) 115.28 120.46 120.92 121.19 122.95 130.55 

Delta (min) 23.19 22.99 21.10 17.99 12.19 11.42 
 

Area 1 Area 7 Area 13 
Part 14 Part 17 Part 7 Part 11  

Area 2 Area 8 Area 14 
Part 1 Part 5 Part 8 Part 10  

Area 3 Area 9 Area 15 
  Part 13 Part18 

Area 4 Area 10 Area 16 
Part 2 Part 16  Part 6 Part 9 

Area 5 Area 11 Area 17 
Part 3 Part 4   

Area 6 Area 12 Area 18 
  Part 12 Part 15 

Figure 5.1 Layout of Efficient Solution 5 

 

Table 5.2 Predicted vs. Realized Times to Reach Curing Temperature (min) 
  Predicted T (min) Realized T (min) Difference (min) 

Part 1 122.95 117.93 5.02 
Part 2 122.07 120.98 1.09 
Part 3 115.28 111.83 3.50 
Part 4 115.41 118.95 -3.54 
Part 5 122.95 125.05 -2.10 
Part 6 120.62 110.82 9.80 
Part 7 112.84 106.75 6.09 
Part 8 121.44 120.98 0.46 
Part 9 121.72 113.87 7.85 
Part 10 121.95 114.88 7.07 
Part 11 112.84 108.78 4.06 
Part 12 110.78 105.73 5.05 
Part 13 114.81 105.73 9.08 
Part 14 112.78 106.75 6.03 
Part 15 110.78 112.85 -2.07 
Part 16 114.03 114.88 -0.86 
Part 17 121.06 123.02 -1.99 
Part 18 112.44 117.93 -5.49 

tlag 122.95 125.05 -2.10 
tlead 110.78 105.73 5.05 

Delta 12.18 19.32 -7.14 
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5.2. Determining the Mechanisms for NSGA-II  

We next find the best alternative for NSGA-II. For this, we evaluate the results of all 

alternatives in terms of closeness to the exact solutions via HVI (Hyper-volume 

Indicator). In addition to HVI, computational time is also a concern due to practical use 

of the algorithm. To begin with, we chose a batch including 18 parts and found the 

efficient layouts of it using the 𝜀 -constraint method. We employ 𝜀 -constraint method as 

explained in Section 5.1. We found 13 efficient solutions. Then, we run all six alternative 

implementations of NSGA-II five times for this batch.  

Depending on the similar experiments in the literature[10][27][28][29][30][31], both the 

population size (N) and the number of generations are set to 100. As for crossover 

probability (pc) and mutation probability (pm), they were decided as 0.8 and 0.6, 

respectively. The average HVI’s and computational times of the five runs are given in 

Table 5.3. As seen in the table, all computational times are quite shorter than the 

computational time of the 𝜀-constraint method. The repair mechanism always performs 

better than the penalty approach in terms of HVI measure in exchange for a slight increase 

in the computational times. Relocating the lagging part also proves to be efficient 

according to the results. As a result, relocating the lagging part and employing the repair 

mechanism seems to be the best alternative with HVI value of 0.84. We continue with 

these mechanisms in our further computations.  

Table 5.3 HVI and CPU Results of Six Different Alternatives for NSGA-II 
 HVI CPU (s) 

Alternative 1 (R/-) 0.70 30.19 
Alternative 2 (P/-) 0.17 25.08 

Alternative 3 (R/tlag) 0.84 47.88 
Alternative 4 (P/tlag) 0.76 47.05 
Alternative 5 (R/tlead) 0.48 49.09 
Alternative 6 (P/tlead) 0.36 47.39 

As a second step, we run NSGA-II for different values of parameters N, pc, pm using same 

batch. We use two values for N (100 and 200), three values for pc (0.4, 0.6, and 0.8), and 

two values for pm (0.8 and 0.9), and run each combination five times with different seeds. 

The average HVI values and run times of five trials for all settings are given in Table 5.4. 

The HVI values are large enough for both population sizes. However, considering the run 

times, population size of 200 runs approximately 4 times longer than the population size 

of 100. There is a difference of about 2 minutes between the two populations. This 
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difference becomes significant when it is assumed that at the beginning of the week about 

21 plans will be made at the same time. But if daily planning is to be made, N = 200 can 

be also used. In this study, we prefer to continue with the population size of 100. As seen 

from the table, run times are very close for this population size for all pm and pc values. 

Thus, run times are not a decisive factor this time and we can choose pm and pc values 

only by looking at the HVI values. Consequently, with the HVI value of 0.84, the pc, pm 

are both set to 0.8. 

Table 5.4 HVI and CPU Results of Algorithm 3 

 pc pm HVI CPU (s) 

N=100 

0.4 
0.8 

0.75 45.22 
0.6 0.69 47.78 
0.8 0.84 47.88 
0.4 

0.9 
0.77 46.08 

0.6 0.78 47.18 
0.8 0.83 48.68 

N=200 

0.4 
0.8 

0.82 165.02 
0.6 0.84 170.73 
0.8 0.86 174.07 
0.4 

0.9 
0.79 166.88 

0.6 0.80 170.88 
0.8 0.85 173.89 

 

5.3. Evaluation of NSGA-II  

After deciding on the setting of NSGA-II, we compare NSGA-II with the 𝜀 −constraint 

method using five different batches. We use the batches explained in Sections 5.1 and 5.2 

as Batch 1 and Batch 2, and choose three additional batches from the previous data. All 

batches contain 18 parts and differ from each other in content and layout. We first 

generate each batch’s efficient solutions using the 𝜀 -constraint method. We then 

approximate the efficient solutions using NSGA-II with the setting chosen in the previous 

sections. The number of efficient solutions of all batches are reported in the first column 

of Table 5.5, and the results of the two methods are given in columns 2-4.  The HVI value 

of Batch 2 and Batch 5 are lower than the others due to having fewer efficient solutions. 

For the remaining three batches, the HVI values are greater than 0.75. The solution times 

of NSGA-II are considerably smaller than the duration of the 𝜀 −constraint method.  

We also give the spread of the real efficient set and the approximated set in Figures 5.2-

5.6 for all batches. We choose one of the five runs to show the effectiveness of the NSGA-
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II. The spread of NSGA-II is close to the efficient set, especially if the number of efficient 

solutions is larger. NSGA-II approximates the middle solutions better, and in general 

misses the extreme solutions. This is acceptable, since for implementation, middle 

solutions are preferred. Also, we found the distance of each solution of NSGA-II to the 

nearest efficient solution by using Chebyshev distance metric and calculated their average 

for each run.  The average distance for all runs is less than 4.2, with a range from 0.3 to 

6.8. So, the delay and the heat-up phase of any solution of NSGA-II is, on the average, at 

most 4.2 minutes more than those of the closest efficient solution. This is a reasonable 

deviation considering the factory activities. Overall, the performance of NSGA-II in 

terms of both computational times and closeness to real efficient solutions is satisfactory. 

If the planner needs to decide on a layout for a batch in short times, the efficient set can 

be approximated using NSGA-II initially. A layout can be chosen to be implemented, or 

efficient solutions close to that layout can be searched with bounds set on the two-

objective function.   

Table 5.5 Results for 5 Different Batches 

 Number of 
Efficient Solutions 

𝜀 -constraint 
method NSGA-II 

 CPU (s) HVI CPU (s) 

Batch 1 13 13320 0.83 49.70 

Batch 2 6 13210 0.51 54.09 

Batch 3 12 11189 0.91 49.90 

Batch 4 10 5587 0.77 55.85 

Batch 5 5 1924 0.44 54.32 
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Figure 5.2 Results of Both Methods for Batch 1 

 

Figure 5.3 Results of Both Methods for Batch 2 
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Figure 5.4 Results of Both Methods for Batch 3 

 

Figure 5.5 Results of Both Methods for Batch 4 
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Figure 5.6 Results of Both Methods for Batch 5 
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6. CONCLUSIONS AND FUTURE WORK 

The autoclave curing cycle that is made of three phases: heat-up phase, dwell period, and 

cooling phase. We consider the heat-up phase of this cycle and develop approaches to 

place parts in the autoclave while minimizing the duration of the heat-up phase and 

minimizing the delay between parts in reaching the curing temperature. We employ a 

two-stage approach. In the first stage, we use multiple regression to estimate the time to 

reach the curing temperature. With this aim, firstly, autoclave data collected in the recent 

years was investigated to determine the factors affecting the time to reach the curing 

temperature. The most important factors are decided as the location, total batch weight, 

individual part weight, length and width of the part, and weight of the parts in front of 

each part until the door. We then divide the autoclave into 18 areas and obtain regression 

models for each area which enables to predict the time to reach the curing temperature 

when a part is placed on that specific area. All predictor variables and their combinations 

are included in the regression model and the significant ones are selected with stepwise 

regression. We obtain different equations for each area with satisfactory estimation 

power.  

In the second stage, we determine the efficient placements of parts in the autoclave. Our 

initial mathematical model is a MINLPM which we then convert into an equivalent 

MILPM. We then generate the whole efficient solutions by the ε -constraint method. One 

of the efficient solutions of a batch is implemented in the autoclave. As well as proving 

that our estimations were very close to realizations, it resulted in a significant reduction 

in the heat-up phase. We also develop mechanisms for NSGA-II to solve the parts 

placement problem optimizing the two objectives explained above. Specifically, we 

develop a repair mechanism to repair infeasible solutions that violate at least one of the 

four constraints. We also propose an improvement mechanism that allows obtaining new 

efficient solutions when the part that reaches the curing temperature the latest is replaced 

to one of the empty regions in a layout. The demonstrations on five different batches show 

that NSGA-II approximates the efficient solutions well. The average hypervolume 

indicator is 0.70 and NSGA-II runs in significantly shorter duration when compared with 

the solution times of the exact method. This algorithm can be used as an alternative to the 

exact method when solutions are needed in short times in cases such as a change in the 

batch composition.   
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By the proposed solution methods in this study, it will be possible to predict the time to 

reach the curing temperature for a batch of parts, and to develop a layout that minimizes 

the heat-up period and the time delay between reaching the curing temperature. As a result 

of this study, as well as facilitating production engineer’s work in deciding how to place 

a batch during autoclave loading, the composite parts will be produced in standard quality, 

in a shorter period and with less cost.  

As a future study, more predictor variables can be used while developing regression 

models. In addition to that, in spite of the fact that the proposed technique was applied to 

a particular autoclave, the procedure can be generalized for different types of parts and 

autoclaves with different sizes. We currently find the best placement of a set of parts in 

the autoclave. If we have more parts than the capacity of the autoclave to be loaded, the 

grouping of parts to batches is another interesting research direction.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



44 
 

REFERENCES 

[1] M. Dios, P. L. Gonzalez-R, D. Dios, and A. Maffezzoli, “A mathematical modeling 

approach to optimize composite parts placement in autoclave,” International 

Transactions in Opereational. Research, vol. 24, no. 1–2, pp. 115–141, 2017. 

[2] E. Eryıldız and A. Akdoğan Eker, “Savunma Sanayinde Kullanılan İleri Kompozit 

Malzemeler ve Uygulama Alanları,” International Journal of Engineering 

Research and Development, Vol.7, No.4, 2015. 

[3] L. Wang, W. Zhu, Q. Wang, Q. Xu, and Y. Ke, “A heat-balance method for 

autoclave process of composite manufacturing,” Journal of Composite Materials, 

vol. 53, no. 5, pp. 641–652, 2019. 

[4] Q. Wang, L. Wang, W. Zhu, Q. Xu, and Y. Ke, “Numerical investigation of the 

effect of thermal gradients on curing performance of autoclaved laminates,” 

Journal of Composite Materials, vol. 54, no. 1, pp. 127–138, 2020. 

[5] J. Hu, L. Zhan, X. Yang, R. Shen, J. He, and N. Peng, “Temperature optimization 

of mold for autoclave process of large composite manufacturing,” Journal of 

Physics: Conference Series., vol. 1549, no. 3, 2020. 

[6] V. Haskilic, “Kompozit Üretiminde Otoklav Yükleme Ve Çizelgeleme İçin Yeni 

Bir Model Önerisi : Savunma Sanayii Uygulaması,” 2019. 

[7] A. Maffezzoli and A. Grieco, “Optimization of parts placement in autoclave 

processing of composites,” Applied Composite Materials, vol. 20, no. 3, pp. 233–

248, 2013. 

[8] C. S. Chen, S. M. Lee, and Q. S. Shen, “An analytical model for the container 

loading problem,” European Journal of Operational Research, vol. 80, no. 1, pp. 

68–76, 1995. 

[9] L. Nele, A. Caggiano, and R. Teti, “Autoclave Cycle Optimization for High 

Performance Composite Parts Manufacturing,” Procedia CIRP, vol. 57, pp. 241–

246, 2016. 



45 
 

[10] M. G. Misola and B. B. Navarro, “Optimal facility layout problem solution using 

generic algorithm,” International Journal of  Mechanical, Aerospace, Industrial, 

Mechatronic and Manufacturing Engineering, vol. 7, no. 8, pp. 1691–1696, 2013. 

[11] H. Hosseini-Nasab, S. Fereidouni, S. M. T. Fatemi Ghomi, and M. B. Fakhrzad, 

“Classification of facility layout problems: a review study,” The International 

Journal of Advanced Manufacturing Technology, vol. 94, no. 1–4, pp. 957–977, 

2018. 

[12] M. Köksalan and D. Tezcaner Öztürk, “An evolutionary approach to generalized 

biobjective traveling salesperson problem,” Computers&OperationsResearch, vol. 

79, pp. 304–313, 2017. 

[13] A. Michael Olusegun, “Identifying the Limitation of Stepwise Selection for 

Variable Selection in Regression Analysis,” American Journal of Theoretical and 

Applied Statistics, vol. 4, no. 5, p. 414, 2015. 

[14] J. O. Rawlings, S. G. Pantula, D. A. Dickey, Applied Regression Analysis: A 

Research Tool, 2nd ed., Springer-Verlag New York, 2018. 

[15] A. Field, Discovering Statistics Using IBM SPSS Statistics: And Sex and Drugs 

and Rock 'n' Roll, 3rd ed., SAGE Publications Ltd., London, 2009. 

[16] S. A. Lesik, Applied statistical inference with MINITAB®, CRC Press Taylor & 

Francis Group, LLC, Florida, 2009. 

[17] J. Puchinger and G. R. Raidl, “Combining metaheuristics and exact algorithms in 

combinatorial optimization: A survey and classification,” International Work-

Conference on the Interplay Between Natural and Artificial Computation, pp. 41-

53, 2005. 

[18] D. A. Van Veldhuizen and G. B. Lamont, “Multiobjective evolutionary algorithms: 

analyzing the state-of-the-art.,” Evolutionary computation, 2000. 

[19] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective 

genetic algorithm: NSGA-II,” IEEE Transactıons on Evolutıonary Computatıon, 

vol. 6, no. 2, pp. 182–197, 2002. 



46 
 

[20] K. Deb, “Multi-objective Optimisation Using Evolutionary Algorithms: An 

Introduction,” in Multi-objective Evolutionary Optimisation for Product Design 

and Manufacturing, 2011. 

[21] D. Knowles, J. and Corne, “On metrics for comparing nondominated sets,” 

Evolutionary Computation, vol. 1, pp. 711–716, 2002. 

[22] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G. Da Fonseca, 

“Performance assessment of multiobjective optimizers: An analysis and review,” 

IEEE Transactions on Evolutionary Computation, 2003. 

[23] E. Zitzler, K. Deb, and L. Thiele, “Comparison of multiobjective evolutionary 

algorithms: empirical results.,” Evolutionary Computation, 2000. 

[24] A. Zhou, B. Y. Qu, H. Li, S. Z. Zhao, P. N. Suganthan, and Q. Zhangd, 

“Multiobjective evolutionary algorithms: A survey of the state of the art,” Swarm 

and Evolutionary Computation, 2011. 

[25] K. T. Lwin, R. Qu, and B. L. MacCarthy, “Mean-VaR portfolio optimization: A 

nonparametric approach,” European Journal of Operational Research, 2017. 

[26] Y. Li, F. Chu, C. Feng, C. Chu, and M. C. Zhou, “Integrated Production Inventory 

Routing Planning for Intelligent Food Logistics Systems,” IEEE Intelligent 

Transportation Systems Transactions, vol. 20, no. 3, pp. 867–878, 2019. 

[27] S. Yamani Douzi Sorkhabi, D. A. Romero, J. C. Beck, and C. H. Amon, 

“Constrained multi-objective wind farm layout optimization: Novel constraint 

handling approach based on constraint programming,” Renewable Energy, 2018. 

[28] F. Azadivar and J. Wang, “Facility layout optimization using simulation and 

genetic algorithms,” International Journal of Production Research, 2000. 

[29] N. Srinivas and K. Deb, “Muiltiobjective Optimization Using Nondominated 

Sorting in Genetic Algorithms,” Evolutionary Computation, 1994. 

[30] A. Ghosh and M. K. Das, “Non-dominated rank based sorting genetic algorithms,” 

Fundamenta Informaticae, 2008. 



47 
 

[31] O. Abdoun, J. Abouchabaka, and C. Tajani, “Analyzing the Performance of 

Mutation Operators to Solve the Travelling Salesman Problem,” 2012. 

 

 

 

 



48 
 

APPENDIX A 

AREA 1: 

Number of data: 11 

Analysis of Variance 

 

Source      DF  Adj SS   Adj MS  F-Value  P-Value 

Regression   3  2224,1   741,36    32,10    0,000 

  B          1   118,7   118,74     5,14    0,058 

  P          1  1271,1  1271,09    55,03    0,000 

  L*L        1   327,9   327,91    14,20    0,007 

Error        7   161,7    23,10 

Total       10  2385,8 

 

Model Summary 

      S    R-sq  R-sq(adj)  R-sq(pred) 

4,80585  93,22%     90,32%      84,04% 

 

Coded Coefficients 

 

Term         Coef      SE Coef     T-Value P-Value  VIF 

Constant     99,39     2,82        35,23    0,000 

B            0,01690   0,00745     2,27     0,058   2,42 

P            -0,1872   0,0252      -7,42    0,000   1,96 

L*L          0,02008   0,00533     3,77     0,007   1,34 

 

Regression Equation in Coded Units 

 

MaxTime = 99,39 + 0,01690 B - 0,1872 P + 0,02008 L*L 
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AREA 2: 

Number of data: 31 

Analysis of Variance 

 

Source      DF  Adj SS   Adj MS  F-Value  P-Value 

Regression   3    6021  2006,96    46,00    0,000 

  L          1    3339  3338,53    76,52    0,000 

  P*L        1    2478  2477,87    56,79    0,000 

  P*W        1    1462  1462,29    33,52    0,000 

Error       27    1178    43,63 

Total       30    7199 

 

Model Summary 

      S    R-sq  R-sq(adj)  R-sq(pred) 

6,60528  83,64%     81,82%      78,78% 

 

Coded Coefficients 

 

Term         Coef  SE Coef  T-Value  P-Value   VIF 

Constant   100,41     1,83    55,01    0,000 

L         -0,6400   0,0732    -8,75    0,000  1,27 

P*L        0,01165  0,00155    7,54    0,000  2,03 

P*W       -0,0624   0,0108    -5,79    0,000  2,34 

 

Regression Equation in Coded Units 

 

MaxTime = 100,41 - 0,6400 L + 0,01165 P*L - 0,0624 P*W 
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AREA 3: 

Number of data: 35 

Analysis of Variance 

 

Source           DF   Adj SS   Adj MS  F-Value  P-Value 

Regression        3  8638,60  2879,53    91,31    0,000 

  L               1  7909,28  7909,28   250,79    0,000 

  B*B             1    91,80    91,80     2,91    0,098 

  P*L             1   432,09   432,09    13,70    0,001 

Error            31   977,64    31,54 

Total            34  9616,25 

 

 

Model Summary 

 

      S    R-sq  R-sq(adj)  R-sq(pred) 

5,61577  89,83%     88,85%      86,24% 

 

 

Coded Coefficients 

 

Term         Coef     SE Coef  T-Value  P-Value VIF 

Constant    100,51    2,53      39,67    0,000 

L           -0,7131   0,0450   -15,84    0,000  1,02 

B*B         0,000014  0,000008   1,71    0,098  1,05 

P*L         0,00477   0,00129    3,70    0,001  1,04 

 

 

Regression Equation in Coded Units 

 

MaxTime = 100,51 - 0,7131 L + 0,000014 B*B + 0,00477 P*L 
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AREA 4: 

Number of data: 51 

Analysis of Variance 

 

Source         DF   Adj SS   Adj MS  F-Value  P-Value 

Regression      3   9383,3  3127,76    78,35    0,000 

  P             1    971,9   971,89    24,34    0,000 

  W             1   1118,6  1118,58    28,02    0,000 

  F*W           1    517,2   517,23    12,96    0,001 

Error          47   1876,4    39,92 

  Lack-of-Fit  45   1842,9    40,95     2,45    0,333 

  Pure Error    2     33,5    16,73 

Total          50  11259,7 

 

 

Model Summary 

 

      S    R-sq  R-sq(adj)  R-sq(pred) 

6,31844  83,34%     82,27%      79,20% 

 

 

Coded Coefficients 

 

Term          Coef  SE Coef     T-Value  P-Value VIF 

Constant     114,911  0,946     121,49   0,000 

P           -0,0902   0,0183    -4,93    0,000  2,53 

W           -2,817    0,532     -5,29    0,000  2,51 

F*W         -0,01877  0,00521   -3,60    0,001  1,01 

 

 

Regression Equation in Coded Units 

 

MaxTime = 114,911 - 0,0902 P  - 2,817 W - 0,01877 F*W 
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AREA 5: 

Number of data: 70 

 

Analysis of Variance 

 

Source         DF   Adj SS   Adj MS  F-Value  P-Value 

Regression      4  3174,90   793,73    11,55    0,000 

  B             1   296,89   296,89     4,32    0,042 

  F             1  1407,70  1407,70    20,48    0,000 

  P*W           1   327,81   327,81     4,77    0,033 

  W*F           1  2834,93  2834,93    41,24    0,000 

Error          65  4467,97    68,74 

  Lack-of-Fit  63  4455,05    70,72    10,95    0,087 

  Pure Error    2    12,92     6,46 

Total          69  7642,87 

 

 

Model Summary 

 

      S    R-sq  R-sq(adj)  R-sq(pred) 

8,29084  41,54%     37,94%      30,49% 

 

 

Coded Coefficients 

 

Term         Coef  SE Coef  T-Value  P-Value   VIF 

Constant   129,10     1,05   122,73    0,000 

B         0,00555  0,00267     2,08    0,042  1,02 

F          0,2222   0,0491     4,53    0,000  2,46 

P*W       0,02006  0,00918     2,18    0,033  1,19 

W*F        0,1397   0,0218     6,42    0,000  2,25 

 

 

Regression Equation in Coded Units 

 

MaxTime = 129,10 + 0,00555 B + 0,2222 F + 0,02006 P*W 

+ 0,1397 W*F 
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AREA 6: 

Number of data: 101 

Analysis of Variance 

 

Source          DF  Adj SS   Adj MS  F-Value  P-Value 

Regression       1    9215  9214,94   161,97    0,000 

  P              1    9215  9214,94   161,97    0,000 

Error           99    5632    56,89 

  Lack-of-Fit   82    4510    55,00     0,83    0,717 

  Pure Error    17    1123    66,04 

Total          100   14847 

 

 

Model Summary 

 

      S    R-sq  R-sq(adj)  R-sq(pred) 

7,54278  62,06%     61,68%      59,57% 

 

 

Coded Coefficients 

 

Term         Coef  SE Coef  T-Value  P-Value   VIF 

Constant  122,171    0,751   162,78    0,000 

P         -0,1849   0,0145   -12,73    0,000  1,00 

 

 

Regression Equation in Uncoded Units 

 

MaxTime = 129,688 - 0,1849 P 
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AREA 7: 

Number of data: 8 

 

Analysis of Variance 

 

Source      DF  Adj SS  Adj MS  F-Value  P-Value 

Regression   3  923,85  307,95    21,21    0,006 

  B          1  140,15  140,15     9,65    0,036 

  F          1  134,35  134,35     9,25    0,038 

  B*F        1  299,97  299,97    20,66    0,010 

Error        4   58,08   14,52 

Total        7  981,93 

 

 

Model Summary 

 

      S    R-sq  R-sq(adj)  R-sq(pred) 

3,81050  94,09%     89,65%      77,36% 

 

 

Coded Coefficients 

 

Term          Coef   SE Coef     T-Value  P-Value  VIF 

Constant     99,25      2,59      38,37    0,000 

B          -0,02004   0,00645     -3,11    0,036  2,84 

F          -0,0769    0,0253      -3,04    0,038  7,13 

B*F        0,000258   0,000057     4,55    0,010  4,06 

 

 

Regression Equation in Uncoded Units 

 

MaxTime = 168,30 - 0,0671 B - 0,2885 F + 0,000258 B*F 
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AREA 8: 

Number of data: 23 

Analysis of Variance 

 

Source      DF  Adj SS  Adj MS  F-Value  P-Value 

Regression   3  2746,1  915,37    30,00    0,000 

  P          1   985,2  985,22    32,29    0,000 

  P*P        1   641,3  641,32    21,02    0,000 

  W*L        1   426,1  426,13    13,97    0,001 

Error       19   579,7   30,51 

Total       22  3325,8 

 

 

Model Summary 

 

      S    R-sq  R-sq(adj)  R-sq(pred) 

5,52357  82,57%     79,82%      68,96% 

 

 

Coded Coefficients 

 

Term          Coef   SE Coef  T-Value  P-Value   VIF 

Constant     99,28      1,77    56,17    0,000 

P          -0,1352    0,0238    -5,68    0,000  1,65 

P*P       0,001592  0,000347     4,58    0,000  1,37 

W*L        -0,0800    0,0214    -3,74    0,001  1,41 

 

 

Regression Equation in Coded Units 

 

MaxTime = 99,28 - 0,1352 P + 0,001592 P*P - 0,0800 W*L 
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AREA 9: 

Number of data: 22 

Analysis of Variance 

 

Source      DF  Adj SS   Adj MS  F-Value  P-Value 

Regression   3  4225,9  1408,62    32,11    0,000 

  L          1  2999,0  2998,98    68,37    0,000 

  B*B        1   209,1   209,13     4,77    0,042 

  W*L        1   173,2   173,22     3,95    0,062 

Error       18   789,6    43,87 

Total       21  5015,5 

 

 

Model Summary 

 

      S    R-sq  R-sq(adj)  R-sq(pred) 

6,62320  84,26%     81,63%      77,18% 

 

 

Coded Coefficients 

 

Term          Coef   SE Coef  T-Value  P-Value   VIF 

Constant    105,81      2,63    40,24    0,000 

L          -0,7494    0,0906    -8,27    0,000  1,55 

B*B       0,000027  0,000012     2,18    0,042  1,09 

W*L        -0,0718    0,0361    -1,99    0,062  1,56 

 

 

Regression Equation in Coded Units 

 

MaxTime = 105,81 - 0,7494 L + 0,000027 B*B - 0,0718 W*L 
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AREA 10: 

Number of data: 31 

Analysis of Variance 

 

Source          DF  Adj SS   Adj MS  F-Value  P-Value 

Regression       4  7407,3  1851,84    43,41    0,000 

  B              1   162,2   162,21     3,80    0,062 

  W              1  2516,6  2516,57    58,99    0,000 

  B*P            1   210,1   210,14     4,93    0,035 

  B*W            1   122,8   122,83     2,88    0,102 

Error           26  1109,2    42,66 

Total           30  8516,5 

 

 

Model Summary 

 

      S    R-sq  R-sq(adj)  R-sq(pred) 

6,53148  86,98%     84,97%      81,13% 

 

 

Coded Coefficients 

 

Term      Coef      SE Coef  T-Value    P-Value VIF 

Constant  109,19     1,58      69,05    0,000 

B        -0,00861   0,00441    -1,95    0,062  2,52 

W        -5,848     0,761     -7,68     0,000  2,15 

B*P      0,000216   0,000098   2,22     0,035  3,87 

B*W      -0,00651   0,00384    -1,70    0,102  4,64 

 

 

Regression Equation in Coded Units 

 

MaxTime = 109,19 - 0,00861 B - 5,848 W + 0,000216 B*P 

- 0,00651 B*W 
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AREA 11: 

Number of data: 36 

Analysis of Variance 

 

Source      DF  Adj SS   Adj MS  F-Value  P-Value 

Regression   2  1438,4   719,19    27,96    0,000 

  B          1   242,8   242,83     9,44    0,004 

  W*F        1  1175,8  1175,83    45,72    0,000 

Error       33   848,7    25,72 

Total       35  2287,1 

 

 

Model Summary 

 

      S    R-sq  R-sq(adj)  R-sq(pred) 

5,07145  62,89%     60,64%      50,75% 

 

 

Coded Coefficients 

 

Term         Coef  SE Coef  T-Value  P-Value   VIF 

Constant  129,140    0,867   149,01    0,000 

B         0,00711  0,00231     3,07    0,004  1,00 

W*F        0,2278   0,0337     6,76    0,000  1,00 

 

 

Regression Equation in Coded Units 

 

MaxTime = 129,140 + 0,00711 B + 0,2278 W*F 
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AREA 12: 

Number of data: 78 

 

Analysis of Variance 

 

Source         DF   Adj SS   Adj MS  F-Value  P-Value 

Regression      3   9673,6  3224,53    58,66    0,000 

  B             1    931,6   931,62    16,95    0,000 

  W             1    168,0   168,03     3,06    0,085 

  L*L           1   4577,9  4577,86    83,28    0,000 

Error          74   4067,9    54,97 

  Lack-of-Fit  63   3712,8    58,93     1,83    0,137 

  Pure Error   11    355,0    32,28 

Total          77  13741,5 

 

 

Model Summary 

 

      S    R-sq  R-sq(adj)  R-sq(pred) 

7,41426  70,40%     69,20%      65,64% 

 

 

Coded Coefficients 

 

Term          Coef  SE Coef  T-Value  P-Value   VIF 

Constant   125,868    0,872   144,37    0,000 

B          0,00890  0,00216     4,12    0,000  1,08 

W           -1,257    0,719    -1,75    0,085  1,66 

L*L       -0,02648  0,00290    -9,13    0,000  1,77 

 

 

Regression Equation in Coded Units 

 

MaxTime = 125,868 + 0,00890 B - 1,257 W - 0,02648 L*L 

 

 

 

160012008004000 1816141210

150

125

100

75

50

40003000200010000

150

125

100

75

50

B

M
a
x
T

im
e

W

L*L

Scatterplot of MaxTime vs B; W; L*L



60 
 

AREA 13: 

Number of data: 17 

Analysis of Variance 

 

Source      DF  Adj SS   Adj MS  F-Value  P-Value 

Regression   2  3575,2  1787,59    81,44    0,000 

  P          1   527,7   527,67    24,04    0,000 

  L*L        1  1055,0  1054,97    48,06    0,000 

Error       14   307,3    21,95 

Total       16  3882,5 

 

 

Model Summary 

 

      S    R-sq  R-sq(adj)  R-sq(pred) 

4,68512  92,08%     90,95%      88,38% 

 

 

Coded Coefficients 

 

Term         Coef     SE Coef  T-Value  P-Value   VIF 

Constant    92,89     1,87     49,57    0,000 

P           -0,0995   0,0203   -4,90    0,000    1,47 

L*L         0,02839   0,00410   6,93    0,000    1,47 

 

 

Regression Equation in Coded Units 

 

MaxTime = 92,89 - 0,0995 P + 0,02839 L*L 
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AREA 14: 

Number of data: 30 

Analysis of Variance 

 

Source      DF   Adj SS   Adj MS  F-Value  P-Value 

Regression   5  6001,98  1200,40    56,86    0,000 

  B          1   227,88   227,88    10,79    0,003 

  L          1  1401,31  1401,31    66,38    0,000 

  W          1   186,54   186,54     8,84    0,007 

  L*L        1   974,41   974,41    46,16    0,000 

  B*W        1    81,69    81,69     3,87    0,061 

Error       24   506,64    21,11 

Total       29  6508,61 

 

 

Model Summary 

 

      S    R-sq  R-sq(adj)  R-sq(pred) 

4,59455  92,22%     90,59%      88,26% 

 

 

Coded Coefficients 

 

Term          Coef    SE Coef   T-Value  P-Value VIF 

Constant     97,13    1,72       56,37   0,000 

B            0,01139  0,00347    3,29    0,003  2,23 

L           -0,4819   0,0592    -8,15    0,000  2,02 

W           -1,324    0,445     -2,97    0,007  2,13 

L*L          0,02564  0,00377    6,79    0,000  2,66 

B*W         -0,00253  0,00129   -1,97    0,061  1,46 

 

 

Regression Equation in Uncoded Units 

 

MaxTime = 136,1 + 0,0444 B - 2,645 L + 1,20 W + 0,02564 L*L 

- 0,00253 B*W 
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AREA 15: 

Number of data: 32 

Analysis of Variance 

 

Source         DF   Adj SS  Adj MS  F-Value  P-Value 

Regression      5  4376,02  875,20    40,02    0,000 

  P             1   906,09  906,09    41,43    0,000 

  W             1    75,58   75,58     3,46    0,074 

  P*P           1   435,50  435,50    19,91    0,000 

  B*F           1   108,17  108,17     4,95    0,035 

  L*W           1   212,30  212,30     9,71    0,004 

Error          26   568,65   21,87 

Total          31  4944,67 

 

 

Model Summary 

 

      S    R-sq  R-sq(adj)  R-sq(pred) 

4,67666  88,50%     86,29%      83,53% 

 

 

Coded Coefficients 

 

Term             Coef   SE Coef  T-Value  P-Value   VIF 

Constant       104,69    2,28      45,91    0,000 

P             -0,1512    0,0235    -6,44    0,000  4,84 

W              -1,110    0,597    -1,86     0,074  3,52 

P*P            0,001738  0,000390  4,46     0,000  2,79 

B*F            0,000082  0,000037  2,22     0,035  1,16 

L*W           -0,0614    0,0197    -3,12    0,004  2,07 

 

 

Regression Equation in Coded Units 

 

MaxTime = 104,69 - 0,1512 P     - 1,110 W + 0,001738 P    *P     

+ 0,000082 B*F - 0,0614 L*W 
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AREA 16: 

Number of data: 36 

Analysis of Variance 

 

Source           DF   Adj SS   Adj MS  F-Value  P-Value 

Regression        4  7893,01  1973,25    56,94    0,000 

  P               1  2798,41  2798,41    80,75    0,000 

  B*B             1   137,69   137,69     3,97    0,055 

  P*P             1   200,78   200,78     5,79    0,022 

  F*P             1    99,03    99,03     2,86    0,101 

Error            31  1074,28    34,65 

Total            35  8967,29 

 

 

Model Summary 

 

      S    R-sq  R-sq(adj)  R-sq(pred) 

5,88678  88,02%     86,47%      85,89% 

 

 

Coded Coefficients 

 

Term          Coef      SE Coef     T-Value  P-Value   VIF 

Constant      114,94    2,63        43,67    0,000 

P            -0,2592    0,0288      -8,99    0,000    3,95 

B*B          -0,000019  0,000010    -1,99    0,055    1,59 

P *P         0,000971   0,000403     2,41    0,022    3,65 

F*P          0,000275   0,000162     1,69    0,101    1,29 

 

 

Regression Equation in Coded Units 

 

MaxTime = 114,94 - 0,2592 P - 0,000019 B*B + 0,000971 P*P     

+ 0,000275 F*P     

 

 
 

200150100500 2400000180000012000006000000

140

120

100

80

400003000020000100000

140

120

100

80

800006000040000200000

P

M
a
x
T

im
e

B*B

P*P F*P

Scatterplot of MaxTime vs P; B*B; P*P; F*P



64 
 

AREA 17: 

Number of data: 43 

Analysis of Variance 

 

Source      DF  Adj SS   Adj MS  F-Value  P-Value 

Regression   1    1728  1727,93    61,87    0,000 

  P          1    1728  1727,93    61,87    0,000 

Error       41    1145    27,93 

Total       42    2873 

 

 

Model Summary 

 

      S    R-sq  R-sq(adj)  R-sq(pred) 

5,28465  60,14%     59,17%      56,29% 

 

 

Coded Coefficients 

 

Term         Coef  SE Coef  T-Value  P-Value   VIF 

Constant  123,443    0,806   153,17    0,000 

P         -0,2080   0,0264    -7,87    0,000  1,00 

 

 

Regression Equation in Uncoded Units 

 

MaxTime = 129,61 - 0,2080 P 
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AREA 18: 

Number of data: 50 

Analysis of Variance 

 

Source      DF  Adj SS   Adj MS  F-Value  P-Value 

Regression   1    2240  2240,06    40,94    0,000 

  P          1    2240  2240,06    40,94    0,000 

Error       48    2626    54,72 

Total       49    4866 

 

 

Model Summary 

 

      S    R-sq  R-sq(adj)  R-sq(pred) 

7,39710  46,03%     44,91%      38,55% 

 

 

Coded Coefficients 

 

Term         Coef  SE Coef  T-Value  P-Value   VIF 

Constant   123,26     1,05   117,83    0,000 

P         -0,1368   0,0214    -6,40    0,000  1,00 

 

 

Regression Equation in Uncoded Units 

 

MaxTime = 128,30 - 0,1368 P 
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APPENDIX B 

Mixed Integer Linear Programming Formulation (Model L) 

Sets and Indices 

𝑖 ∈  𝐼 =  {1, . . . , 18} Set of composite parts  
𝑗, 𝑘 ∈  𝐽 =  {1, . . . , 18} Set of areas in autoclave charge floor 

𝑎 ∈ 𝐴 = {1,2,3} Set of vertical divisions in the autoclave  
𝑙 ∈  𝐿 =  {1, . . . , 13} Set of predictor variables without the term 𝐹 
𝑢 ∈  𝑈 =  {1, . . . , 4} Set of predictor variables including the term 𝐹 

 

Parameters 

𝑃𝑖  Weight of part 𝑖 
𝐿𝑖  Length of part 𝑖 
𝑊𝑖  Width of part 𝑖 
𝐻 Maximum number of parts that can be placed horizontally in the autoclave 
𝑊 Width of the autoclave 
𝐿 Length of the autoclave 

𝛽𝑗𝑙  Regression coefficient of predictor variable 𝑙 ∈  𝐿 in area 𝑗 
𝛽𝑗𝑢 Regression coefficient of predictor variable 𝑢 ∈  𝑈 in area 𝑗  
𝑐𝑖𝑙 The value of predictor variable 𝑙 ∈  𝐿 of part 𝑖 

𝑑𝑖𝑢 
The partial value of predictor variable 𝑢 ∈  𝑈 of part 𝑖 that is made of the 
terms not including 𝐹;  𝑑𝑖1=1, 𝑑𝑖2= 𝐵, 𝑑𝑖3=𝑃𝑖 , 𝑑𝑖4= 𝑊𝑖 for all 𝑖 ∈  𝐼 

𝑐�̅�𝑙 Average of the observed values of predictor variable 𝑙 ∈  𝐿 in area 𝑗 

�̅�𝑗𝑢 Average of the observed values of predictor variable 𝑢 ∈  𝑈 in area 𝑗 that 
is made of the terms not including 𝐹 

𝑓�̅� Average of the observed values of front part weights in area 𝑗 
 

Decision Variables 

𝑥𝑖𝑗 = 1, if part 𝑖 is placed in area 𝑗; 0, otherwise 
𝑓𝑗 Total part weight in front of area 𝑗 
 𝑦𝑗 The maximum length of the parts placed in area 𝑗 

𝑡𝑙𝑒𝑎𝑑 Time to reach the curing temperature for the leading part 
 𝑡𝑙𝑎𝑔 Time to reach the curing temperature for the lagging part 

 𝑡𝑖 Time to reach the curing temperature for part 𝑖 
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min 𝑧1 = 𝑡𝑙𝑎𝑔 − 𝑡𝑙𝑒𝑎𝑑 

 
(1) 

min 𝑧2 = 𝑡𝑙𝑎𝑔  (2) 
 

Subject to 

𝑡𝑖 = ∑ 𝑥𝑖𝑗 ∑ 𝛽𝑗𝑙

13

𝑙=1

18

𝑗=1

(𝑐𝑖𝑙 − 𝑐�̅�𝑙) + ∑ ∑ 𝑒𝑖𝑗𝑢

4

𝑢=1

18

𝑗=1

 ∀ 𝑖 ∈  𝐼  (3*) 

∑ 𝑥𝑖𝑗 = 1

18

𝑗=1

 ∀ 𝑖 ∈  𝐼 (4) 

∑ 𝑥𝑖𝑗 ≤

18

𝑖=1

2 ∀ 𝑗 ∈  𝐽 (5) 

∑(𝑥𝑖,𝑗 + 𝑥𝑖,𝑗+6 + 𝑥𝑖,𝑗+12) ≤ 𝐻

18

𝑖=1

 𝑗 = 1, … , 6 (6) 

∑ 𝑊𝑖(𝑥𝑖,𝑗 + 𝑥𝑖,𝑗+6 + 𝑥𝑖,𝑗+12) ≤

18

𝑖=1

𝑊 𝑗 = 1, … , 6 (7) 

𝑦𝑗 + 𝑦𝑗+1 + 𝑦𝑗+2 + 𝑦𝑗+3 + 𝑦𝑗+4 + 𝑦𝑗+5 ≤ 𝐿 𝑗 = 1,7,13 (8) 

𝑦𝑗 ≥ 𝐿𝑖𝑥𝑖𝑗 ∀ 𝑖 ∈  𝐼, 𝑗 ∈  𝐽 (9) 

𝑓𝑗 = ∑ ∑ 𝑃𝑖𝑥𝑖𝑘

18

𝑖=1

6𝑎

𝑘=𝑗+1

 𝑎 ∈ 𝐴, 
 𝑗 = 6𝑎 − 5, … , 6𝑎 − 1 (10) 

𝑡𝑙𝑎𝑔 ≥ 𝑡𝑖 ∀ 𝑖 ∈  𝐼 (11) 

𝑡𝑙𝑒𝑎𝑑 ≤ 𝑡𝑖 ∀ 𝑖 ∈  𝐼 (12) 

𝑥𝑖𝑗  ∈   {0,1} ∀ 𝑖 ∈  𝐼, 𝑗 ∈  𝐽 (13) 

𝑒𝑖𝑗𝑢 ≤ 𝑀𝑥𝑖𝑗 ∀ 𝑖 ∈  𝐼, 𝑗 ∈  𝐽, 𝑢 ∈  𝑈 (14) 

𝑒𝑖𝑗𝑢 ≥ −𝑀𝑥𝑖𝑗 ∀ 𝑖 ∈  𝐼, 𝑗 ∈  𝐽, 𝑢 ∈  𝑈 (15) 

𝑒𝑖𝑗𝑢 ≤ 𝛽𝑗𝑢(𝑑𝑖𝑢 − �̅�𝑗𝑢)(𝑓𝑗 − 𝑓�̅�) + 𝑀(1 − 𝑥𝑖𝑗) ∀ 𝑖 ∈  𝐼, 𝑗 ∈  𝐽, 𝑢 ∈  𝑈 (16) 

𝑒𝑖𝑗𝑢 ≥ 𝛽𝑗𝑢(𝑑𝑖𝑢 − �̅�𝑗𝑢)(𝑓𝑗 − 𝑓�̅�) − 𝑀(1 − 𝑥𝑖𝑗) ∀ 𝑖 ∈  𝐼, 𝑗 ∈  𝐽, 𝑢 ∈  𝑈 (17) 

 

 

 

 


