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ABSTRACT

RELIABILITY AND ENERGY OPTIMIZATION IN HIGH LEVEL
SYNTHESIS OF INTEGRATED CIRCUITS

Rawan SMRI

Master of Science, Computer Engineering Department
Supervisor: Prof. Dr. Siileyman TOSUN
January 2020, 60 pages

Ever-increasing performance demand for the computer applications has resulted in shrinking
the technology sizes of the CMOS circuits over the past 50 years, which made it possible to
increase the number of transistors on a single chip. On the other hand, the increase in circuit
densities makes the design process more challenging. For example, circuits become more
vulnerable to radiation effects due to lower supply and threshold voltage levels; thus, the
number of transient faults in circuits increases. While a reduced technology size makes cir-
cuits more susceptible to transient faults, some energy reduction techniques also negatively
affect their reliability. Traditional high level synthesis (HLS) methods usually consider only
area and latency along with either energy or reliability. To the best of our knowledge, there
is no prior work that takes area and latency as constraints and energy and reliability as op-
timization parameters. Especially, the effect of DVS on reliability is completely ignored by
the previous studies. In this work, we aim to develop new HLS methods for application spe-
cific integrated circuit (ASIC) design under area and timing constraints with the objectives of
low energy consumption and high reliability. For the mapping and scheduling steps of HLS,
we propose genetic algorithm (GA)-based optimization method, and also use a selective du-
plication method. And for comparison purposes we introduced integer linear programming
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(ILP) method. While the ILP-based method determines the optimum results, the CPU time
exponentially increases with the number of the application nodes. Therefore, we propose a
GA-based metaheuristic that is faster and determines optimum or near-optimum results in
shorter times than ILP. In addition, we characterize a resource library consisting of three
adders and two multipliers with varying area, delay, energy, and reliability parameters under

two voltage levels

Keywords: High-Level Synthesis (HLS), Dynamic Voltage Scaling (DVS), reliability, soft

errors, energy.
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OZET

ENTEGRE DEVRELERIN YUKSEK SEVIYESINDE GUVENILIRLIK
VE ENERJI OPTIMIZASYONU

Rawan SMRI

Yiiksek Lisans, Bilgisayar Miihendisligi
Damisman: Prof. Dr.Silleyman TOSUN
Ocak 2020, 60 sayfa

Bilgisayar uygulamalarina yonelik artan performans talebi, CMOS devrelerinin teknoloji
boyutlarmin son 50 yilda azalmasina neden oldu ve bu da tek bir yonga iizerindeki tran-
sistorlerin sayisim artirmay1 miimkiin kildi. Ote yandan, devre boyutlarindaki artis tasarim
siirecini daha da zorlastirmaktadir. Ornegin, devreler, daha diisiik besleme ve esik voltaj
seviyeleri nedeniyle radyasyon etkilerine neden olur; boylece devrelerdeki gecici hatalarin
sayisi artar. Azalan teknoloji boyutu devreleri gecici arizalara kars1 daha hassas hale ge-
tirirken, bazi enerji azaltma teknikleri de giivenilirliklerini olumsuz yonde etkilemektedir.
Geleneksel yiiksek seviyeli sentez (HLS) yontemleri genellikle enerji ve giivenilirligin yani
sira onearea ve gecikmeyi de dikkate alir. Bildigimiz kadariyla, alan ve gecikmeyi kisitlayici,
enerji ve giivenilirligi op-enimizasyon parametreleri olarak alan onceki bir ¢alisma yok-
tur. Ozellikle DVS’nin giivenilirlik iizerindeki etkisi 6nceki calismalarda tamamen goz ardi
edilmektedir. Bu calismada, diisiik enerji tiiketimi ve yiiksek giivenilirlik hedefleri ile alan
ve zamanlama kisitlamalari altinda 6zel entegre devre (ASIC) tasarimi uygulamasi i¢in yeni
HLS yontemleri gelistirmeyi hedefliyoruz. HLS’nin haritalama ve cizelgeleme adimlari
icin genetik algoritma (GA) tabanli optimizasyon yOntemi Oneriyoruz ve ayrica segici bir
du-plication yontemi kullaniyoruz. Karsilastirma amaciyla tamsay1 dogrusal programlama
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(ILP) yontemini tanittik. ILP tabanli yontem optimum sonuglar1 belirlerken, CPU uygulama
diigiimlerinin sayisiyla birlikte katlanarak artar. Bu nedenle, ILP’den daha hizli ve optimum
veya optimumya yakin sonuglar1 daha kisa siirede belirleyen aGA tabanli bir metaheuris-
tic Oneriyoruz. Buna ek olarak, lic kademeli ve de8isken alan, gecikme, enerji ve giive-
nilirlik parametrelerine sahip iki carpandan olusan gerilim seviyelerinin altindaki kaynak

kiitiiphanesini karakterize ediyoruz.

Anahtar Kelimeler: Yiiksek Seviyeli Sentez (HLS), Dinamik Gerilim Ol(;ekleme (DVS),

giivenilirlik, yumusak bagliklar, enerji
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1. INTRODUCTION

Ever increasing performance demand for the computer applications has resulted in shrinking
the technology sizes of the complementary metal-oxide-semiconductor (CMOS) circuits ev-
ery 18 months over the past 50 years driven by the Moore’s Law. Shrinking the technology
sizes made it possible to increase the number of transistors on chips, thus allowing the de-
signers to embed more components in their designs than before. While the smaller transistor
sizes reduce the cost of the integrated circuits as a result of having a smaller chip area, the
increase in the circuit densities makes the design process more challenging. Furthermore,
each technology generation also introduces new design problems in digital systems. For
example, when the technology sizes are reduced, circuits become more vulnerable to radi-
ation effects due to lower supply and threshold voltage levels; therefore, the number of the
transient faults in circuits increases [3]. Figure 1.1, adopted from [1], shows how the soft
error rates (SERs) of sequential circuits (SRAM and latches) and combinational logic with
different sizes change with each technology generation. While sequential elements still has
high SER rates by keeping almost the same values, the SER of combinational logic increases
dramatically. Therefore, tackling the soft error (SE) problem of combinational circuits has
also become a major concern. Although combinational circuits can mask the transient er-
rors to some extend, they cannot eliminate them completely without some extra precautions.
Thus, new design methods for mitigating them before they are latched to memory elements

are crucial.

While a reduced technology size makes the circuits more susceptible to transient faults, some
energy reduction techniques also negatively affect their reliability. For example, when dy-
namic voltage scaling (DVS) is applied as an energy reduction method, a circuit consumes
less energy under lower voltage levels; however, lowering the supply voltage also reduces
the reliability of the circuit [4, 5]. Furthermore, when we consider the design of an ap-
plication with large number of components, tackling all system requirements such as area,
performance, energy consumption, and reliability becomes cumbersome. Therefore, a de-
sign automation tool is a must to ease the design process and to determine the best design in
terms of the given objective function and the constraints. Generally, it is much more practi-
cal and efficient to tackle several constraints and optimization parameters at higher levels of
abstraction for designing Application Specific Integrated Circuits (ASICs). High-level syn-

thesis (HLS) process aims to integrate all system requirements on higher level of abstraction
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FIGURE 1.1: Predicted Soft Error rates of sequential and combinational logic under different
technology sizes [1].

and shields the designer from lower level design burdens [6].

Traditional HLS methods usually consider only area and latency together with either energy
[7] or reliability [8]. To the best of our knowledge, there is no prior work that takes area and
latency as constraints and energy and reliability as optimization parameters. Especially, the
effect of DVS on reliability is completely ignored by the previous studies. In this work, we
aim to develop new HLS methods for ASIC design under area and timing constraints with
objectives of low energy consumption and high reliability. In our work, we use different
versions of the same resources in terms of area, performance, energy, and reliability. For this
purpose, we implemented several adders and multiplier circuits to utilize in the design of the
given application. For our optimization function with two parameters, we blend the energy
and reliability values by assigning weights to each of them in order to be able to handle
our multi-optimization problem. For the mapping and scheduling steps of the HLS, we
use Genetic Algorithm (GA) based optimization methods, and compare it to Integer Linear
Programming (ILP) method. While the ILP-based method determines the optimum results,
it takes too much time for some problems consisting of large number of variables. Therefore,
we propose a GA-based metaheuristic that determines optimum or near-optimum results in

a reasonable amount of time.

We can summarize the contributions of this work as follows:



e We characterize a resource library with three adders and two multipliers under varying
area, delay, energy, and reliability parameters. We list the same resource parameters
under two voltage levels. We believe that our resource library will also be useful for

future HLS studies.

e We present a GA-based metaheuristic method for mapping and scheduling steps of our
HLS design flow. Our GA-based method obtains optimal or near-optimal results for
most of the test instances in very short run-times, even for very large-sized applica-
tions. The strength of our GA-based method comes from the intelligent mutation and

cross-over operators that diversify the solution population.

e We show that there is still a room for the reliability improvement after the mapping and

scheduling steps are completed, and use a selective duplication method in this respect.

e We illustrate the effectiveness of GA-based methods on several benchmarks in terms
of energy and reliability by conducting rigorous experimental analysis, and compare it

to integer linear programming (ILP) based method.

The rest of this work are organized as follows. Related work is presented in the next Chapter.
We explain SEs, DVS, and effects of DVS on SEs in Chapter 3. In Chapter 4.0, we introduce
our library characterization and the problem definition. We present our GA-based method in
Chapter 5. In section 5.5.0, we explain the duplication method for further maximization of
the reliability. In Chapter 6.0 we introduced the ILP Formulations for comparing purpose.
We illustrate the effectiveness of the proposed methods by discussing the experimental results

in Chapter 7. We finally conclude this paper in Chapter 8.



2. RELATED WORK

There have been several HLS-related studies in the literature [9]. Earlier publications usually
focus on latency and area as constraints and/or objective functions [6]. In this study, we in-
corporate energy and reliability metrics into the HLS process unlike the previous studies that
only focus on one of these metrics along with area and latency. In the following subsections,

the related studies are reviewed according to their field of concern.

2.1. Reliability-Aware HLS

Reliability was treated as a first-class citizen in a very old work under the fault-tolerance cri-
teria for HLS designs in [10]. This work aimed to design circuits under area and performance
constraints to maximize the fault-tolerance by adding extra duplicated resources. Some other
studies took advantage of the fact that the reliability of different implementations of the same
function may be different due to their internal logic and masking capabilities. In addition,
their area and latency values are also different. Optimization of a circuit by using these dif-
ferent resources is known as an NP-hard problem, therefore a heuristic method was proposed
in [2] . There have also been metaheuristic attempts for optimizing the reliability using dif-
ferent versions of a particular resource [11]. Some prior studies also presented HLS methods
to design fault-tolerant data-paths in case of multi-cycle transient faults [12]. Authors of [13]
presented a simulation-based method for combinational circuit synthesis considering soft er-
rors. Reliability-aware resource allocation and binding in HLS is an NP-hard optimization
problem. There have been several HLS-related studies in the literature [9]. Earlier publica-
tions usually focus on latency and area as constraints and/or objective functions [6]. In this
study, we incorporate energy and reliability metrics into the HLS process unlike the previous
studies that only focus on one of these metrics along with area and latency. In the following

subsections, the related studies are reviewed according to their field of concern.

2.2. Energy-Aware HLS

Dynamic voltage scaling (DVS) has been the most commonly used energy consumption
minimization method since it was introduced by [14] and [15]. Since the dynamic energy

consumption decreases proportionally with the square of the voltage level, many commercial
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CPUs are implemented with this in mind, and new scheduling methods for varying voltage
level assignments have been proposed for these new architectures [16—-19]. However, the
target platform for these studies are either homogeneous or heterogeneous multiprocessor
systems unlike our ASIC design platform. There are also prior studies in the context of
HLS focusing on energy or power consumption [20-23]. [20] presents a novel scheduling
algorithm for minimizing energy, while [21] and [22] propose new methods to reduce the
power consumption of circuits. There are even game theoretical scheduling algorithms using
DVS for HLS [23]. The interested readers can find several methods about low power HLS

design for nanoscale CMOS circuits in [24].

2.3. Energy- and Reliability-Aware Design

There has been some prior research that focused on both energy and reliability simultane-
ously [25-28]. However, none of the existing studies incorporate these metrics in the HLS
steps. Additionally, their target platforms are multiprocessor systems rather than ASICs. To
the best of our knowledge, there has not been any previous research in the HLS field that
considered area, performance, reliability, and energy all together in a single study. Most of
the prior research discussed the methods of increasing the system reliability under the area
and latency constraints without considering the energy consumption of a system, or they
suggested approaches to minimize the energy consumption of a system ignoring the effect of

those approaches on the reliability.



3. BACKGROUND

In the following subsections, we first discuss soft errors and reliability in digital systems. We
then explain DVS, which is used to minimize the energy consumption. We finally present
the effects of DVS on reliability of the circuits.

3.1. Soft Errors and Reliability

Function values in digital systems are generated as a result of switching in transistors. These
physical elements can be affected by a number of external factors, which can cause undesir-
able switching situations that may lead to wrong results. If these non-persistent errors cause
the data stored in memory to be erroneous even for a short period of time, all operations
using that data will yield erroneous results until the data is updated. These errors in digital

systems are called transient errors or soft errors (SEs).

A soft error is a signal fluctuation or an unexpected bit flip in semiconductor fabrics, which
may occur due to radiation, alpha particles, or high-energy cosmic rays in the environment
of the device containing the digital system. These errors generally do not corrupt the device;
however, they may result in malfunctions. They usually occur when the energy accumulated
in a transistor (()) exceeds the critical energy (Q. isicar)- Figure 3.1 shows the occurrence of

transient errors in the silicon view and the transistor view.

A particle
strike

Voo

Bit Flip! 1+ 0
FIGURE 3.1: Occurrence of SEs: silicon view (left) and transistor view (right) (adapted

from [2]).

As the technology size decreases and the chip circuit densities increase, SERs increase sig-

nificantly, particularly in combinational circuits as shown in Figure 1.1. This increase in



SERs negatively affects the reliability of a running system during its operation. Hence, it has

become inevitable to consider the effects of transient errors during the design process.

The reliability of a system can be calculated with the formula given in Equation (1), where A

is SER, while ¢ is the running time of the system.

R(t) = e (1)

From the equation it is evident that the higher the SER value the lower the reliability. One
way to improve the reliability of a system is to back up its components (i.e., to create a
replica.) If two different versions of the system produce two different outputs, the result
is incorrect. In such case, the system can be restarted or, alternatively, checkpoints can be
added to the system to avoid the necessity for a complete restart. When a replica of a thread
is created, the increased reliability value is calculated with the formula given in Equation
(2), where IR, represents the total reliability after duplication, while 1?; and R represent the

reliability values of a system component and its replica, respectively.

Ry =R+ Ry — R Ry 2)

There are a lot of studies that focus on using replicas or multiple spare circuit elements to
increase the reliability of the systems with multiple circuit elements. These backups are
usually selected to be the same as the original ones. However, circuit elements implemented
in a different manner exhibit different behavior against transient errors. For instance, an
adder circuit with a larger but faster operating area may have lower reliability values than
a smaller but slower one. A previous study showed that the SER values of circuit elements
implemented in different ways can also be different, and that by taking this into consideration
during the design process the reliability of a system can be affected [2]. Nonetheless, in the
design of integrated circuits, the energy consumption of a circuit is also an important criteria
along with reliability, area, and performance constraints. We also incorporate duplication in
our final design to further increase its reliability without increasing its area, which will be

explained in Section 5.5..



3.2. Dynamic Voltage Scaling

Performance (runtime of an application) is the most important requirement that needs to
be achieved for ASICs. Furthermore, while the energy consumption plays a significant role,
especially in battery-powered systems, the reliability comes to the fore in critical applications
such as rocket control circuits, satellites, and nuclear power plant control circuits. Therefore,
when designing such systems, it should be ensured that they meet the given time and energy

constraints, while maximizing the reliability.

DVS was introduced in 1996 by [14], and since then it has become the most popular method
for reducing the energy consumption in digital circuits. The reason behind the widely adop-
tion of this method relies on the fact that when digital circuits operate under a low voltage,
their energy consumption decreases in proportion to the square of the voltage, while the worst
case execution time (WCET) only increases proportionally to the decrease in voltage. If the
operation time requirement for a digital circuit is sufficient for the application of DVS, the
circuit may be operated at a lower voltage to reduce the overall energy consumption. Modern
digital circuits can be designed to operate at multiple voltage levels, allowing for the imple-
mentation of the DVS method. The effect of DVS on a circuit’s energy and performance can
be explained by the power consumption of a CMOS circuit. The dynamic power consump-
tion of CMOS circuits is expressed by the Equation (3), where P is the power consumption,
(', is the load capacitance, N; is the number of switching cycles per hour, v is the source

voltage, and f is the operating frequency of the circuit.

P = C.LN*f (3)
If the source voltage of the circuit is reduced, the execution time of the circuit will also

change proportionally according to the Equation (4), where k and « are constants varying

based on the applied technology dimensions, and v; is the threshold voltage value.

t=Crv/k(v—v,) 4)

If the WCET of a digital circuit under high voltage (vy) is known, the WCET value under

low voltage (v;) can be calculated from the Equation (5) derived from the Equation (4).



. Uy, U — Vt\9
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Similarly, if the high-voltage energy consumption (£, ) of the circuit is known, the low-

voltage energy consumption (£,) can be calculated using the Equation (6).
—)° (©6)

Although most of the previous studies have adopted DVS as main energy minimization
method, they have only considered the negative effects of DVS on performance, while ne-
glecting its negative impact on the reliability. One of the most unique contributions of this
study is the analysis of the effect of different voltage levels on the reliability of a system

when employing the DVS.

3.3. Effects of DVS on Reliability

DVS is a very efficient technique when it comes to reducing the energy consumption. On the
other hand, when a digital circuit operates at a low voltage, it becomes more vulnerable to
soft errors since ().,itica; Values of the transistors can be more easily exceeded, and as a result,
the total reliability of the system decreases. In other words, when we use the DVS technique
to reduce the energy consumption, lowering the operating voltage of a digital circuit (and
therefore its frequency as well) will lead to both an increase in its execution time and a

decrease in its reliability.

The fault rate of a system at frequency f (voltage v) is expressed by means of the Equation

7, where A refers to the SER, and )\, refers to the average error rate at frequency f.

A(f) = Xog(f) (7

Let the operating frequency at the highest operating voltage (v,,4.) be fiae = 1. Transient
errors generally occur when the critical voltage of the circuit is reached. This critical voltage
is proportional to the system voltage. That is, when the system voltage is reduced, the critical

threshold voltage will also decrease. Thus, at low voltages, the circuit will be more sensitive



to soft errors. Error rates according to the voltage changes can be calculated by the Equation

(8).

d(1—f)

A(f) = Aol0TTmin) (8)

Here, the maximum error rate is expressed as A(fiae) = Ao10%, which is the minimum
operating frequency. d > 0 is a constant. The higher the value of d the higher the error rate

in the circuit (i.e., the lower the value of d the more resistant the circuit to faults.)

Using the Equation (8), the new reliability values can be calculated according to the changing
energy levels and the execution time of a digital circuit. In this study, we consider the effect
of DVS on reliability, the energy consumption, and the latency of digital circuits at different

voltage levels.
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4. LIBRARY CHARACTERIZATION AND PROBLEM DEFINITION

4.1. Library Characterization

A function can be implemented in multiple ways in the hardware using different design
methods, which produce several different versions of the same function. For example, an
adder can be implemented as a ripple-carry adder, carry-lookahead adder, prefix adder etc.
[29]. Different implementations of the same function may have different area, latency, and
energy consumption values. Additionally, they can exhibit diverse behavior in terms of the
error resilience when a soft error hits a part of the circuit. Some circuits can tolerate faults
better than others since their transistor layouts and logic functions are different. This is
due to the fact that each combinational circuit has fault masking capabilities to some extent.
Therefore, different versions of the same function may have different reliability values in
addition to the area, latency, and energy consumption. The HLS methods proposed in this
thesis utilize different versions of the same resource in an attempt to find the optimum energy
and reliability values under given latency and area constraints for a given application. In this

respect, a resource library is characterized to be employed in the proposed methods.

We implemented three adders and two multipliers in Verilog and synthesized them using
Cadence Genus synthesis tool [30]. We obtained the area, latency, and energy values for
each resource under 1.2V supply and 0.5V threshold voltage levels. We then scaled each
parameter. We used the reliability values estimated in [8] for these resources. Finally, we
obtained the new latency, energy, and reliability values for 1.0V supply and 0.5V threshold
voltage levels using the Equations (6), (5), and (8), respectively. The details of the resource
library after the characterization are given in Table 4.1. In this table, A is the area of the

resource measured in mm?

. Ly and L; represent the latency values of the corresponding
resources under high and low voltage respectively, and they are measured in time steps.
Similarly, R;, and R; represent the reliability values, whereas E;, and E; represent the energy

consumption under high and low voltage measured in nanojoules, respectively (nJ).
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TABLE 4.1: Resource Library.

Type Resource Name A L Ry En

L, R, E;
S o 1 4 o o
S ) 19 50
S e 3000
WAy 10 109 100
I oy g 12 039100

4.2. Problem Definition

The aim of this study is to propose HLS methods for the resource allocation and scheduling
steps to maximize the reliability and minimize the energy consumption of the final design un-
der the given latency and area constraints. HLS is an automated design process that converts
a given behavioral description of an application into a synthesized hardware. A behavioral
description can be written in a high-level language and it is converted to a data flow rep-
resentation in the form of directed acyclic graph (DAG) before the HLS process starts. In
Figure 4.1, we show the behavioral model for the differential equation solver, its data flow
representation with the precedence constraints, and the final DAG adopted from [6]. The first
and last dummy nodes (source and sink nodes) are added to the DAG as reference points to

ease the implementation of the scheduling algorithms.

The goal of the resource allocation is to assign a resource from the resource library to each
node of the DAG while taking the area constraint into consideration whereas a scheduling
algorithm assigns the start times for the each node of the DAG under latency constraints. The
objective here is to minimize the total energy consumption and maximize the reliability of

the final design.

There are several challenges to this problem, which make its optimization a very cumber-
some task. First of all, we have a variety of possible resources (i.e. functional units) with
different reliability, area, latency, and energy values that need to be taken into consideration
simultaneously in the process of resource allocation and scheduling. Additionally, schedul-

ing must take the task dependencies into account, so that dependent tasks will execute in
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xl=x+dxz;
ul=u- (3*x*u*dx) - (3*y*dx):

yl=ytu*dx;
c=xl1<a;
/E\
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3 won,  dE 3 1 dx dx 4 74 | N Mg

ul (b) (c)

FIGURE 4.1: (a) An example design specification, (b) Data flow representation with prece-
dence constraints, and (c) Directed Acyclic Graph (DAG) of the design specification.

the required order, and no precedence constraint is violated. Finally, different voltage levels
assigned to different resources (DVS) introduces further complication into the model. We
propose GA-based method to solve such a problem and compare it with ILP method in order

to show the accuracy and execution times of different optimization methods.
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5. GA-BASED METHOD

In the past decade, genetic algorithms have evolved as an optimization technique that is more
practical, time saving and efficient compared to other traditional optimization techniques.
GAs are categorized as metaheuristic methods that obtain optimum or near-optimum solu-
tions in a reasonable amoun of time. They search the whole solution space randomly via the
genetic operators; hence, they reduce the chance of trapping of local minima. In our work,
we propose a GA-based method for finding the most reliable and concurrently the least en-
ergy consuming solution for our HLS problem. The proposed method follows the three main
stages of GAs: population generation, applying genetic operators, and selection based on the

fitness function. These stages are explained in more detail in the following subsections.

5.1. Population Generation

The very first step in a genetic algorithm is to generate an initial population of solutions to
the problem. Individuals of the population could be initialized either totally at random or
heuristically to a certain extent. In our study, the population is created totally at random with
a size of 100 individual. We adopt the chromosome representation to symbolize a solution.
Figure 5.1 shows the chromosome representation of the DES graph given in Figure 4.1, with
the chosen voltage level under each resource (1 represents high while O represents the low

voltage level).

Node 1 2 3 4 5 6 7 8 9 10 1 A L R E
Resources M1 M1 M2 A2 A2 M1 M2 | M1 A2 A3 A2 ? ? ? ?
Voltage Level 1 1 1 1 1 1 1 0 1 1 1

FIGURE 5.1: A chromosome symbolization of a solution for the DES benchmark after re-
source assignment, with its Area (A), Latency (L), Reliability (R) and Energy (F) values
not calculated yet.

A chromosome is an array of genes, where each gene’s value represents its randomly as-
signed resource from our resource library in Table 4.1. The Area (A), Latency (L), Reliabil-
ity (R), and Energy (E) of this solution are not calculated before the scheduling and resource

assignment stages. This is denoted by question marks in their related cells.
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5.2. Scheduling and Binding

The second stage of our GA is the calculation of the fitness value of each solution, with the
goal of keeping the best individuals for the next generation. Consequently, the proposed GA
first applies the HLS step to all solutions, and then calculates their fitness values (i.e. the
reliability of each solution). The well-known List Scheduling (LS) [6] is performed in two
steps: first, the mobility of each node/gene in the chromosome is determined, and then the
resource binding is carried out. The mobility (m) of a node (¢) is the time difference between
the earliest and latest time steps that a node can be assigned. The earliest time step (¢(i)447)
and the latest time step (t(i)ALAP ) are determined using the As Soon As Possible (ASAP)
and As Late As Possible (ALAP) scheduling algorithms based on the resource assignment of

the chromosome. We then use Equation 9 to calculate the mobility of each node.

m(z) — t(i)ALAP o t(i)ASAP (9)

The LS algorithm does not change the nodes with zero mobility (critical path nodes), even
if more than one node on different critical paths need to use the same resource at the same
time, which results in higher area values. We adjusted the LS results to allow the critical path
nodes to share resources with other nodes; hence, the total area is decreased. The change was
made by adding only one extra time step to the critical path. This approach slightly increases

the latency, but at the same time it significantly reduces the area.

ASAP scheduling identifies the minimum latency that can be obtained with the assigned
resources. In ASAP, every node is scheduled at the earliest time step possible. The overall
minimum latency is the time step at which the last node of the chromosome is scheduled.
ALAP scheduling does the opposite of ASAP as it returns the starting time steps for every
node in the solution with the maximum possible latency. This is done by comparing the

latency constraint with the latency returned from ASAP, and then using the higher of both.

The ASAP and ALAP scheduling for the chromosome in Figure 5.1 are shown in Figure 5.2.
In this figure, each dashed horizontal line shows the starting steps of some nodes. We do not
draw each step in our scheduling figures to prevent overcrowding the illustration; instead,
we only show the time steps if there is a node starting its execution in these time steps. To

explain the GA operators on our running example, we assume the area (A) and latency (L)
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constraints as 23 units and 30 time steps, respectively. The minimum latency returned from
ASAP is 31, which is calculated by subtracting 1 from the starting step of the sink node
(i.e., Lyin = t(n)494F — 1), Then, after applying the ALAP scheduling under L = 31 and
determining the ALAP starting time step of each node, the algorithm calculates the mobility

of each node as shown in Table 5.1.

Step 1

ASAP Scheduling ALAFP Scheduling

FIGURE 5.2: ASAP and ALAP scheduling for the chromosome representation given in
Figure 5.1.

After calculating the mobility of the nodes, our algorithm applies the modified list schedul-
ing, and subsequently returns A, L, R, and E values of the solution as shown in Figure
5.3.

TABLE 5.1: Node mobilities for the schedules in Figure 5.2.

Node@) 1 2 3 4 5 6 7 8 9 10 11

t(3)A5AP 1126 29 1 11 1 17 1 3
11 26 29 7 17 13 29 27 29
mi 00 0 0 0 6 6 12 12 26 26

—
—

t@;)ALAP

—
—
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A=28, L=32, R=0.81299, E=641.56

FIGURE 5.3: Final scheduling of the chromosome in Figure 5.1.

5.3. Genetic Operators

The third stage of a genetic algorithm is to apply the genetic operators. We use crossover,

mutation, and selection operators, which are the three most common ones.

Crossover

In crossover operation, we select two chromosomes randomly from the population to be
the parent . We then swap part of each parent chromosomes to create two offspring in an
attempt to inherit better parts of each parent to their children. The most commonly used
crossover types are one-point, two-point, and uniform crossover. In order to identify which
one is the most suitable for our problem, we applied all three of them on a study similar

to ours mentioned in [8], and found that uniform crossover gives the best results for such
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problems. Uniform crossover swaps genes between both parents and makes two new children
chromosomes. It assigns a random number « to every gene, where 0 < u < 1, and compares
that number with the swapping probability p,. We chose p, to be 0.5 in order to give the

equivalent swapping chance for all genes as described in Algorithm 1.

In Figure 5.4, we demonstrate an example of applying the crossover operator on the solution
in Figure 5.1. This chromosome is the first parent for the crossover and the second parent is
randomly chosen by the algorithm. After applying crossover on parents, two new children
chromosomes are produced as demonstrated. It is evident that although the first child meets
both latency and area constraints with better reliability value than both parents, the second

child does not.

Algorithm 1 Uniform Crossover
Data: X,: Crossover population; n;, i=0,1,..., n: number of nodes; p,: Probability of swapping;

Result: Two new chromosomes: C'(¢+1) pD(t+1)

1 begin
2 Randomly select two chromosomes A*) and B(*) from X,,. Create two empty chromosomes C'**1) and
DD wirh the size n.

3 for 0 <i:<ndo

4 Choose a random real number v € [0,1] if u < p, then /* Swap genes x/
5

] CFD 2 B0 pE+D _ 40

7 else /* Don’t Swap genes x/
8

\ CHD _ 40

10 DEtH) = Bi(t)

11 end

12 end

13
14 end

Mutation

Mutation is an important and effective genetic operator to converge to optimum solution.
It modifies the randomly or heuristically selected genes to obtain a new chromosome. The

goal of mutation is to diversify the population so that the chance of escaping from the local
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Before Crossover

1 2 3 4 5 6 7 8 Q9 10 11 A L R E

First Parent ML | ML | M2 | A2 | AZ | MI | M2 | M1 | A2 | A3 A2 28 32

0.812 [641.56

Voltage Level i 1 1 1 1 1 1 0 1 1 1

(N | |

Second Parent ML | M2 | ML | A3 A3 M2 | M1 | M1 Al A2 A3

30 20 |0.870| 675

Voltage Level 1 1 1 1 1 1 1 1 1 1 1

After Crossover

1 2 3 4 5 6 7 8 9 10 11 A L R E

First Child ML | ML | ML | A3 | A3 | MI | M1 | M1 | A2 | A2 | A3 16 25 (0.886 | 483

1 1 1 1 1 1 1 ] 1 1 1

1 2 3 4 5 [+] 7 8 9 10 11 A L R E

Second Child M1 M2 M2 A2 A2 M2 M2 M1 Al A3 A2

30 36

0.789 833

1 1 1 1 1 1 1 1 1 1 1

FIGURE 5.4: An example of uniform crossover.

minima increases. However, if the mutation ratio becomes very high, then our GA-based
search algorithm behaves like a random search. Thus, we set the mutation ratio to 10% of

the total population in our method.

We followed the random resetting mutation operator. At first it randomly select a chromo-
some from the population. Then, to increase the diversity of the solution space, we directly
pick genes randomly from the chromosome at hand. The number of mutated genes is also

determined randomly so that the number of modified genes is less than N nodes of the cir-

cuits.

In Figure 5.6, we illustrate the aforementioned mutation operation. After choosing the chro-
mosome to be mutated, it picked the number of genes to be mutated to be 3. In reference to
Figure 5.3, the node number 3 has the resource M, assigned to it, it was randomly chosen
and changed to M; at high voltage level with the latency of 10 time steps instead of 15, e.g.
reducing the critical path latency by five time steps. Also node 5 was randomly chosen and
assigned the resource As (L;,= 2) instead of Ay (L,= 3) which also reduces the latency by
one step, since it is a critical path node. The last randomly modified node is the seventh
from M, to My, which in turn reduced the used resources in the design, and hence the total

area is reduced by 12 units (area of M5). Ultimately, after the mutation process, both design

constraints are met in this example.
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A=186, L=25, R=0.896, E=483

FIGURE 5.5: The scheduling of first child of the crossover given in Figure 5.4.

While we are applying both crossover and mutation, we make sure the shared resources use
the same voltage level to construct power islands [31]. Although it is possible to switch from
one voltage level to another, this process also takes extra latency and power consumption.
Instead, we simply place the resources running on low voltage level to one power island and

others to high voltage level.

Before Mutation

1 2 3 4 5 ] 7 2 9 0 N A L R E
M| omt | omz | oAz | oAz ] omt | omz | om1 | oAz | a3 a2 28 | 32 |0812 64156
Voltage Level | 1 1 1 1 1 1 1 il
After Mutation
1 2 3 4 5 6 7 3 9 MmN A L R E
Mt w2z ) A3 omi ] |m a2 | A3 | A2 16 | 26 |0.881|482.56

Voltage Level 1 1 1 1 1 1 0

FIGURE 5.6: The mutation operator applied to the chromosome in Figure 5.1.

Selection

Our algorithm selects the parent chromosomes randomly to apply crossover and mutation.

After applying crossover and mutation, the total population doubles because of the newly
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added individuals. While 90% of the new population comes from the crossover, the remain-
ing 10% comes from the mutation. Since the total population size must be kept fixed, the
algorithm applies a fitness based selection. It adds the new generated chromosomes to the
ones from previous iteration, then order them according to the objective function presented
in section 5.4., the objective function given in Equation (12) attempts to maximize the relia-
bility and minimize the energy consumption for a single chromosome. We use this objective
function in our fitness calculation. We then select the best 100 chromosomes from the or-

dered chromosomes set.

Our three main steps is iterated for fixed number of times. We selected our iteration count
experimentally. We finally return the the chromosome with the best fitness value as our

solution.

5.4. Energy and objective function

The goal is to maximize the overall reliability of the circuit while minimizing its total energy

consumption (formulated as objective functions (10) and (11) respectively).

Maximize Rioq = Y pi (10)
1€Tasks

Minimize E,,;,; = Z ; (11)
1€Tasks

This bi-objective problem is formulated as a single objective function given in Equation (12)
by employing the scalarization technique in which we combine the weighted sum of energy
and reliability values. The parameter « serves for the purpose of assigning weight to both
reliability maximization and energy minimization. That is, through choosing different o
values we can prioritize either objective function to a certain degree, or assign equal weight

to both (by taking o = 0.5).

Minimize 0bj = « - (1 — Ryuorm) + (1 — @) - (Eporm) (12)
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Ryorm and FE,,,.,, are the values of the total reliability and the total energy consumption

normalized to the range [0,1], calculated as given in (13) and (14) respectively.

Rtotal - Rmin

Roormm = ——mmm 13
Rmaa} - Rmin ( )
Etotal - Emzn

Enorm = = = 14
Emax - Emm ( )

Rynin and R,,,, are the minimum and maximum values the reliability of a given circuit can
have. The minimum (or maximum) achievable reliability of a circuit can be calculated by
assigning the least (or most) reliable resources in the resource library to every task. Similarly,
we can calculate F,,;, and E,,,., which are the minimum and maximum values of the energy

amount a circuit can consume.

5.5. Duplication-Based Post-processing

After the algorithm described in Section 5. returns the final scheduled solution, we take that
solution with its latency, area, reliability and energy as an input to a subsequent process to
enhance its reliability without violating the constraints. We employ a method similar to the
duplication algorithm proposed in [8], which duplicates the nodes as much as it can using
simple heuristic rules: it tests the potential of each node to have a duplicate resource from
other resources that are previously allocated in the design. The nominated nodes are not on
the critical path, so the latency of the solution is maintained. It also checks that the nominated
resource is not scheduled for use at the same time step, so the area will not be increased
either. For cases of multi-duplicable candidates, the precedence is given to the nodes with
lower reliability values. The difference in our approach is that we also incorporate DVS in
the duplication process. That is, when we are selecting a resource for duplication we give
priority to the one with lower voltage level. To calculate the reliability of the duplicated

version, we use Equation (2).

The pseudocode of the duplication process is given in Algorithm 2. The duplication process
applied to the solution given in Figure 5.5 is illustrated in Figure 5.7. The shaded nodes are

the added duplicate nodes. Furthermore, checkers are added at the end of each node and
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its duplicate to ascertain the similarity of the results. From figure 5.7, it is evident that the
duplication process increased the total system reliability from 0.896 to 0.938 (4.2% higher).
The algorithm simultaneously ensures that the duplicates do not add to the overall area or
latency of the solution. Nevertheless, the overall energy consumption is increased. However,
we try to decrease this energy increase as much as possible. For example, in Figure 5.7, we
have two voltage level options for resource M1 when we duplicate node 8. Although the
version that uses low voltage has longer latency than its high voltage counterpart, we select
M1 with low voltage since it does not violate the latency constraint and results in smaller

energy increase.

Algorithm 2 Selective Duplication

Data: B=b,, r=1,2,...,k: resources library; T=t;, i= 0,1,...,n: nodes’ start times; 5: Resources allocation;
A, A, L, M=m,,i=0,1,...,n: nodes’ mobilities.

Result: 3/, T".

begin

I=1; T'=T; p'=p;

while ! < L do

foreach n; where t;=1 do

foreach b, € 3 where n/’"* = rtvP¢ do

foreach Time Step t; in m; do

Determine number of b,. operations in step t; (i.e.,

b’r'l |)
() by |+ <|br |V + A< A)A(t; +d; <t;; Ve €F)then
Duplicate n; by binding to b, in step t;: T" =T +t); ' =+ biy;

Add checker to time step max(t; + d; , t;; + di; );

end

end

end

end

end

end
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A=16, L=25, R=0.938, E=549.56

FIGURE 5.7: The scheduling after the duplication of the solution from Figure 5.5.
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6. ILP FORMULATION

In this section, we present the ILP formulation of the problem, which maximizes the total
reliability while minimizing the total energy consumption, to compare its results with our
GA method. The notations used in the ILP formulation of the problem are defined in Table
6.1.

G ; refers to the compatibility of 7; with 12; (e.g. an addition operation can only be assigned

an adder resource) and is formulated in Equation (15).

1 IfTType; = RType;
Gij = ! (15)

0 otherwise
Assigned, ; is a Boolean variable which specifies if R; is assigned to T; (see Equation (16)).
1 if 7} is assigned to RR;

Assigned; ;, = under V,, (16)

0 otherwise

Only one resource should be assigned to each task under a single voltage level, while taking

the compatibility into consideration. This is formulated in Equation (17).

Vi €T Z Assigned; j, =1
JERvEV

Start, s is a Boolean variable which specifies if 7; started at C'step; (see Equation (18)).

1 if T; started at C'step,
Start; s = (18)

0 otherwise

A task may start at only one control step (see Equation (19)).
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TABLE 6.1: ILP Notations.

T=AT,:i=1,.

TType;

V ={Vi,Vi}

Vi

RType;

Gij

Assigned; ;.
Csteps

Start;

Starty

G = (1, PREC)

K:i,s,r.,v

NumR;;,

Rt otal
Rnor m

Etotal
Enorm

obj
A
A

LN

M}

A set of N tasks (additions, multiplications, NOPs)
where T; is the i*" task in T
The type of T; (addition, multiplication, NOP)
A library of M available hardware resources with
different area, latency, reliability, and energy
consumption values (adders, multipliers), where R; is
the ™ resource in R
A set of available voltage levels (high voltage
Vi, = 1.2V, low voltage V; = 1.0V)
The voltage at the voltage level ¢
The type of R;
The compatibility of the task T; with the resource R;
Denotes whether R; is assigned to T} under V/,
A set of control steps
Denotes whether C'step; is the start time of the task T;
The start time of the last sink task
Precedence graph G’ where PREC!(i, j) means T;
precedes T
The reliability of 12; under V,,
The area occupied by R;
The latency of I; under V,,
The energy consumption of R; under V,
The reliability of 7T;
The delay of T;
The energy consumed by 7;

1 If T; started at C'step, and R, is assigned to

it under V,,

0 otherwise
The total number of instances of ; used at C'step,
under V,,
The total number of instances of ?; used within the
circuit under V,,
The minimum reliability value of a given circuit
The maximum reliability value of a given circuit
The minimum energy consumption of a given circuit
The maximum energy consumption of a given circuit
The final total reliability of a given circuit
The normalized value of the total reliability to the
range [0,1]
The final total energy consumption of a given circuit
The normalized value of the total energy consumption
to the range [0,1]
The objective function
Area constraint
Latency constraint
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VieT: »  Start;,=1 (19)

s€Csteps

The delay of a task depends on the latency of the resource assigned to it and the voltage level
(see Equation (20)).

Vi €T (20)
0 = Z L,, - Assigned,

reRveV

For dependent tasks, precedence constraints must be considered. The start time of a task that
depends on a completion of another task must be greater than the end time of the precedent

task. This is formulated in Equation (21).

Z Starts-s > Z Start; s - s + 01
s €Csteps seCsteps

The reliability of a task depends on the reliability of its assigned resource under the applied

voltage level. This is formulated in Equation (22).

Vi €T (22)
pi = Z Rel,, - Assigned, ,

reRveV
Ki srv 1 a Boolean variable which specifies if 7; started at C'step, and if R, has been assigned

to it under V,, (see Equation (23)).

1 If T; started at C'step, and R, is assigned
Kisoro = to it under V,, (23)

0 otherwise
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Each task can only start at one control step and only one resource can be assigned to it under

a single voltage level. We ensure this using Equations (24) and (25)).

Vi €T : (24)

g Risrp = 1

r €ER,s€Csteps,veV

YieT,r € R,s € Csteps,v € V) : (25)
Kisro > Assigned, ., + Start; s — 1

The total amount of energy consumed by a task depends on the energy consumption of its

assigned resource under the applied voltage. This is formulated in Equation (26).

Vi €T (26)
€ = Z Er,v ) ASSignedi,T7U

reRveEV

To calculate the number of instances of each available resource used in the overall design,
we have to determine the resources that are assigned to tasks starting at that control step. We
only check the start times for each task at each control step since we assume that pipelined
resources will be used in the design. NumR, ;, represents the total number of instances of

R; at CUstep, under V, and is formulated in Equation (27).

V(r € R,s € Csteps,v € V) : 27)
NumRr,s,v - Z Ri srv
i€Tasks

T, ., represents the total number of instances of each available resource under each volt-
age level that needs to be used in the overall circuit design, and it is the maximum of all
NumR, ;, (see Equation (28)).

Ve RuveV) : (28)
T,, = max NumR,,,
’ seCsteps =
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6.1. Constraints

The total area should not exceed the given area constraint. This is formulated in Inequality
(29).

> T A <A (29)

reRveEV

Latency constraint will be met if the start time of the last sink task (denoted as Starty and
defined in Equation (30) is less than or equal to the given maximum allowed latency. This is

formulated in Inequality (31).

Starty = Z Startns - s (30)
seC'steps
Starty < A (31
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7. RESULTS AND ANALYSIS

In this chapter, the effectiveness of our proposed methods is investigated through several sets
of experiments. We selected four most commonly used benchmarks in literature: Differential
Equation Solver (DES), Finite Impulse Response (FIR) filter, Auto-Regressive (AR) filter,
and Elliptic Wave Filter (EWF). The benchmark features (the number of nodes and edges
in their respective data flow graphs, as well as addition and multiplication operations) are
briefly summarized in Table 7.1. More detailed specifications and data flow graphs for the

benchmarks we used can be found in [2] and [32].

TABLE 7.1: Summary of Benchmarks.

Benchmark Nodes Edges Additions Multiplications

DES 11 8 5 6
FIR 23 22 15 8
EWF 26 40 26 0
AR 28 30 12 16

We give the resource library we used in our experiments in Table 4.1, where we list area,
latency, reliability, and energy consumption values of each resource under low and high

2 and

voltage levels. We measure latency in time steps (e.g., clock cycles), area in mm
energy consumption in nanojoules (nJ). It is worth noting that our proposed methods can be
used with any resource library that has clearly defined area, latency, reliability, and energy

consumption values for each resource under different voltage levels.

The experiments of the proposed methods which attempt to solve the bi-objective problem
formulated in Equation (12) were performed using four benchmarks from Table 7.1 for vary-

ing area and latency constraints, as well as different «v values.

The minimum latency constraints for each benchmark were obtained from ASAP scheduling
algorithm by using the fastest resource for each type of the operations. Once the minimum
circuit delay is obtained, the latency constraint can be increased gradually to test for less
delay-sensitive cases, which may allow utilization of slower but more reliable resources in the
design, and/or allow operation of certain resources at the low voltage level, as to reduce the
overall energy consumption of the circuit. The minimum area constraints, on the other hand,
were obtained by assigning a single resource with 38 the smallest area for each different type
of operation within a benchmark. Testing for different area constraints allows the algorithms

to find solutions with lower latency and higher reliability values.
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Since the objective function combines the weighted sum of energy and reliability values, by
choosing different values of the parameter o (which assigns weight to reliability maximiza-
tion and energy minimization) we can prioritize either objective function to a certain degree,
or assign an equal weight to both. The experiments with varying area and latency constraints
were performed for « values of 0.0, 0.5, and 1.0. The « value of 0.0 means that we give the
maximum priority to the minimization of energy consumption, while disregarding the relia-
bility of the circuit altogether. Similarly, the o value of 1.0 means that we give the maximum
priority to maximizing reliability, without taking energy consumption into consideration at
all. Finally, by taking o« = 0.5, we assign an equal weight to both objective functions, making
the problem bi-objective in nature. Furthermore, in Subsection 7.3., we present more detailed
results that demonstrate how reliability and energy consumption values change when the pa-
rameter « varies in steps of 0.1 (assigning varying weights to either reliability maximization

or energy minimization).

The experiments were performed on a computer with the following configurations: Intel
Core(TM)2 Duo CPU E8500, at 3.16 GHz, with 2 cores, 2 logical processors, and a total
physical memory of 5,823 MB.

7.1. Comparison of GA and ILP Methods

Tables 7.2, 7.3, 7.4, and 7.5 show the reliability and energy consumption results of the pro-
posed GA method compared to ILP for DES, FIR, AR, and EWF benchmarks, respectively.

The first column specifies the value of the a. The second column indicates the latency (L)
and area (A) constraints used in that particular test instance. The third and fourth columns
give the reliability values from the solutions obtained by ILP and GA-based methods, re-
spectively. Similarly, the sixth and seventh columns give the energy consumption values.
Delta (A) represents the percentage change of the GA result relative to the ILP result, and
the percentage changes in reliability and energy consumption results are given in the fifth
and eighth columns respectively. The reliability A is calculated according to the percentage
change increase formula since a higher reliability value means a better solution, whereas the
energy consumption A is calculated according to the percentage change decrease formula as

lower energy consumption is a more desirable outcome.
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TABLE 7.2: Results of DES Benchmark.

Reliability Energy
Alpha L, A) ILP GA A(%) ILP GA A(%)
(31,10) 0.99 0.99 0 540 540 0
(31,20) 0.99 0.98 -1.2 540 534 1.1
(31,30) 0.99 0.98 -1.2 540 534 1.1
(28,20) 0.98 0.98 0 534 534 0
10 (28,30) 0.98 0.98 0 534 534
(28,40) 0.98 0.97 -1.2 534 528 1.12
(25,20) 0.97 0.97 0 528 528
(25,30) 0.97 0.97 0 528 528 0
(25,40) 0.97 0.97 0 528 528 0
Average A (%) -0.4 Average A (%) 0.37
(31,10) 0.99 0.99 0 540 540 0
(31,20) 0.98 0.99 04 480.11 4904 -2.14
(31,30) 0.96 0.94 -1.81 419.23 430 -2.57
(28,20) 0.97 0.98 0.3 522.99 538 -2.87
05 (28,30) 0.97 0.95 -1.83 474.11 472.16 0.41
(28,40) 0.97 0.94 -2.95 474.11 450.68 4.94
(25,20) 0.96 0.97 0.3 516.99 528 -2.13
(25,30) 0.96 0.94 2 492.55 516 -4.76
(25,40) 0.96 0.94 -2 492.55 516 -4.76
Average A (%) -1.06 Average A (%) -1.54
(31,10) 0.99 0.99 0 540 540 0
(31,20) 0.72 0.74 2.6 448.47 450.44 -0.44
(31,30) 0.80 0.80 0.9 404.65 405.62 -0.24
(28,20) 0.85 0.86 1.9 480.56 481.56 -0.21
0.0 (28,30) 0.76 0.75 -1.3 451 452.1 -0.24
(28,40) 0.76 0.77 14 451 452.1 -0.24
(25,20) 0.80 0.81 1 502.41 508 -1.11
(25,30) 0.80 0.81 1.1 477.97 481.56 -0.75
(25,40) 0.79 0.81 2.3 476.14 481.56 -1.14
Average A (%) 1.1 Average A (%) -0.41

For « values of 1.0 and 0.0 the GA-based method obtains optimum or near-optimum results
in most of the cases. In these two cases, the solver is trying to either maximize the total
reliability (for « = 1.0) or minimize the overall energy consumption (for o = 0.0). For (o =
0.5) the deference from optimum solutions is a little bit higher than other values of alpha,
which means that when assigning equal weight to the bi-objective problem of maximizing
reliability and minimizing energy GA is not doing as well as ILP,this could be explained by
the randomness of GAs in general. Also, while the number of benchmark nodes increases

the disparity in the obtained values grows as well.
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TABLE 7.3: Results of FIR Benchmark.

Reliability Energy
Alpha L,A ILP GA A(%) ILP GA A(%)
(51,10) 0.98 0.98 0 820 820 0
(35,15) 0.91 0.91 0 784 784 0
(40,15) 0.93 0.93 0 796 796 0
(40,20) 0.93 0.93 0 796 796 0
10 (50,20) 0.98 0.97 -1.2 820 814 0.7
(35,30) 0.92 0.90 2.4 790 778 1.5
(40,30) 0.93 0.93 0 796 796 0
(45,30) 0.95 0.95 0 808 808 0
(50,30) 0.98 0.97 -1.2 820 814 0.7
Average A (%) -0.53 Average A (%) 0.33
(51,10) 0.98 0.98 0 820 820 0
(35,15) 0.85 0.84 -2.14 546.13 549 -0.53
(40,15) 0.88 0.86 -2.24 553.12 556.11 -0.54
(40,20) 0.88 0.85 -3.64 553.12 580.64 -4.98
05 (50,20) 0.90 0.87 -3.45 561.45 562.46 -0.18
(35,30) 0.89 0.87 -2.16 564.13 572 -1.4
(40,30) 0.88 0.84 -4.75 553.12 560.48 -1.33
(45,30) 0.89 0.90 0.91 555.45 568.48 -2.35
(50,30) 0.90 0.90 -0.1 557.78 564.48 -1.2
Average A (%) -1.95 Average A (%) -1.39
(51,10) 0.98 0.98 0 820 820 0
(35,15) 0.81 0.79 -2.89 534.48 548 -2.53
(40,15) 0.81 0.79 -2.89 534.48 548 -2.53
(40,20) 0.69 0.67 -2.77 508.86 510.83 -0.39
0.0 (50,20) 0.44 0.46 3.74 499.33 500.73 -0.28
(35,30) 0.58 0.59 2.06 513.81 528.48 -2.86
(40,30) 0.54 0.52 -3.9 502.83 510.7 -1.57
(45,30) 0.48 0.50 5.21 500.73 517.15 -3.28
(50,30) 0.42 0.43 1.2 498.63 500.03 -0.28
Average A (%) -0.03 Average A (%) -1.52

7.2. Execution Time Analysis

While the ILP-based method determines the optimum results, it takes too much time for
problems with a large number of variables. Resource scheduling and binding under given
constraints are NP-hard problems. Thus, the execution time of an ILP-based solution grows
exponentially as the number of nodes increases, and becomes computationally impractical
for more complex circuits. Therefore, the proposed GA-based method provides a faster
solution with near-optimum results. Figure 7.1 demonstrates the comparison between the

average execution times of ILP and GA methods for varying number of benchmark nodes.

33




TABLE 7.4: Results of AR Benchmark.

Reliability Energy
Alpha L, A) ILP GA A ILP GA A
(65,15) 0.97 0.96 -1.36 1,424 1,412 0.84
(55,20) 0.93 0.93 0.00 1,400 1,400 0.00
(60,20) 0.97 0.96 -1.36 1,424 1,412 0.84
(65,20) 0.97 0.96 -1.36 1,424 1,412 0.84
10 (50,30) 0.92 0.90 -1.20 1,394 1,420 -1.87
(55,30) 0.95 0.94 -1.20 1,412 1,406 0.42
(60,30) 0.97 0.97 0.00 1,424 1,424 0.00
(50,40) 0.93 0.93 0.00 1,400 1,400 0.00
(55,40) 0.97 0.96 -1.20 1,424 1,418 0.42
Average A (%) -0.85 Average A (%) 0.17
(65,15) 0.86 0.88 2.43 978.96 1,012 -3.38
(55,20) 0.92 0.92 -0.43 1,392.66 1,405 -0.89
(60,20) 0.97 0.93 -3.78 1,409.32 1,411 -0.12
(65,20) 0.86 0.90 4.81 971.62 1,106 -13.83
0.5 (50,30) 0.85 0.83 -2.51 1,161.14 1,211 -4.29
(55,30) 0.83 0.83 -0.55 1,058.72 1,108 -4.65
(60,30) 0.85 0.89 5.45 965.62 1,024 -6.05
(50,40) 0.88 0.87 -1.09 1,180.48 1,211 -2.59
(55.,40) 0.85 0.85 0.11 1,063.38 1,125 -5.79
Average A (%) 0.49 Average A (%) -4.62
(65,15) 0.83 0.79 -5.10 960.96 1,005 -4.58
(55,20) 0.67 0.71 6.53 1,144.48 1,176 -2.75
(60,20) 0.67 0.64 -4.75 1,071.16 1,140.68 -6.49
(65,20) 0.77 0.76 -1.26 949.98 961.96 -1.26
00 (50,30) 0.74 0.73 -1.49 1,147.76 1,188 -3.51
(55,30) 0.83 0.75 -9.37 1,058.72 1,075 -1.54
(60,30) 0.75 0.75 0.11 955.9 971.88 -1.67
(50,40) 0.71 0.75 4.62 1,142.27 1,165 -1.99
(55,40) 0.73 0.79 8.91 1,048.17 1,131 -7.90
Average A (%) -0.2 Average A (%) -3.52

As it is evident from the figure, while the execution time of the ILP method starts growing
exponentially for benchmarks that have more than 20 nodes, the average execution time of
the GA-based method remains to be around one second for any benchmark size, making it a

practical method of choice for complex circuits with a large number of nodes.

7.3. Effects of DVS on Reliability

Figures 7.2, 7.3, 7.4, and 7.5 demonstrate the changes in reliability and energy consumption

values for different values of «, for DES, FIR, AR, and EWF benchmarks, respectively.
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TABLE 7.5: Results of EWF Benchmark.

Reliability Energy

Alpha (L,A) ILP GA A ILP GA A
(30,10) 0.82 0.8 -2.34 228 220 3.51
(30,20) 0.82 0.8 -2.34 228 220 3.51

(40,10) 091 091 0 276 276 0
(40,20) 091 0.9 -1.2 276 270 2.17

10 (40,30) 0.91 0.91 0 276 276 0
(50,5) 0.89 0.86 -3 291 284 2.41

(50,10) 0.95 0.95 0 300 300 0

(50,20) 0.95 0.95 0 300 300 0

(50,30) 0.95 0.95 0 300 300 0
Average A (%) -0.99 Average A (%) 1.29
(30,10) 0.57 0.59 4.03 1194 116 2.85
(30,20) 0.55 0.57 3.95 113.91 119 -4.47
(40,10) 0.53 0.57 7.50 108.42 119 -9.76
(40,20) 0.53 0.56 5.62 108.42 116 -6.99
0.5 (40,30) 0.53 0.57 6.47 108.42 106 2.23
(50,5) 0.53 0.56 5.60 108.42 105.55 2.65
(50,10) 0.53 0.56 5.60 108.42 116 -6.99
(50,20) 0.53 0.56 5.60 108.42 116 -6.99
(50,30) 0.53 0.56 5.60 108.42 116 -6.99
Average A (%) 5.55 Average A (%) -3.83
(30,10) 0.57 0.55 -3.01 119.4 122 -2.18
(30,20) 0.43 0.44 2.34 109.71 115 -4.82
(40,10) 0.30 0.33 8.27 98.62 100.02 -1.42
(40,20) 0.30 0.32 4.05 98.62 99.32 -0.71
0.0 (40,30) 0.30 0.32 4.1 98.62 101.42 -2.84
(50,5) 0.53 0.49 -6.98 108.42 111.7 -3.03
(50,10) 0.21 0.22 3.58 92.32 93.72 -1.52
(50,20) 0.21 0.22 3.28 92.32 94.42 -2.27

(50,30) 0.21 0.21 0 92.32 92.32 0
Average A (%) 1.74 Average A (%) -2.09

The figures present more de