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ABSTRACT 
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SUPERVISOR: ASST. PROF. DR. BARBAROS YET 

June 2020, 74 Pages 

 

 

Machine learning (ML) which is a branch of artificial intelligence (AI), has been an 

important approach used in the medical domain. ML approaches learn from historical 

data to evaluate and predict patient status. These approaches have been successful in 

medical domains, such as radiology and dermatology, where a large amount of data exists 

with clearly labelled patient outcomes. However, such clearly labelled outcome data do 

not exist in large amounts in most medical domains. Patient reported outcome measures 

(PROMS) are the primary way to assess patient outcomes in many medical areas. Filling 

in PROMs regularly and repetitively can be difficult due to time and cognitive-load 

requirements. Considering that some PROMs contain over 30 questions, collecting large 

amounts of patient outcome data can be difficult in these domains. This study proposes 

an approach for collecting patient outcome data with less time and cognitive-load 

requirements. In this context, an ML approach called Bayesian networks (BNs) is used to 

predict patient outcomes with missing PROM inputs, and to identify the most informative 

PROM questions for specific patients. Also, random questions were selected from the 

PROMs and these questions were used to determine the patient status. The obtained 
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estimation results were compared with the estimation results obtained by using the most 

informative questions. The proposed approach has been applied to PROMS used in the 

musculo-skeletal domain. Results were evaluated by cross validation method. Cross-

validation results show that the proposed approach can accurately predict patient 

outcomes with fewer PROM questions.  

 

Key words: Bayesian Networks, Musculo-Skeletal Disorders, Structure Learning, 

Information Theory, Artificial Intelligence 
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ÖZET 

 

 

KAS-İSKELET RAHATSIZLIKLARI İÇİN HASTA TARAFINDAN 

BİLDİRİLEN SONUÇ ÖLÇEKLERİNİ TEMEL ALAN BAYES 

AĞLARI GELİŞTİRİLMESİ 

 

HAKAN YÜCETÜRK 

 

 

YÜKSEK LİSANS, ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜMÜ  

TEZ DANIŞMANI: DR. ÖĞR. ÜYESİ BARBAROS YET 

Haziran 2020, 74 Sayfa 

 

 

Yapay zekânın bir kolu olan makine öğrenimi, tıp alanında kullanılan önemli bir yaklaşım 

olmuştur. Makine öğrenimi yaklaşımları, hastanın durumunu değerlendirmek ve tahmin 

etmek için geçmiş verilerden öğrenir. Makine öğrenimi yöntemleri, radyoloji ve 

dermatoloji gibi, hasta sonuçlarının veride net bir şekilde belirtildiği ve yüksek miktarda 

veri kümelerinin bulunduğu alanlarda başarılı olmuştur. Fakat birçok tıp alanında bu 

şekilde yüksek miktarda temiz bir hasta sonucu verisinin bulunması mümkün değildir. 

Çoğu alanda hasta sonucuna ilişkin veriler, hasta tarafından bildirilen sonuç ölçütleri 

(PROMs) olarak adlandırılan tıbbi anketler aracılığıyla toplanır. Hastaların PROM 

düzenli ve yinelemeli olarak PROM doldurmaları gerektirdiği zaman ve bilişsel yük 

yüzünden zor olabilir. Bazı PROM’ların 30 veya daha fazla soru içerdiği 

düşünüldüğünde, bu alanlarda yüksek miktarda hasta sonucu verisi toplanması güçtür. Bu 

çalışmada, hastalardan daha az ve bilişsel yük gerektirerek, yüksek doğrulukta hasta 

çıktısı toplanması için bir yaklaşım önerilmektedir. Bir makine öğrenmesi yöntemi olan 

Bayes ağları kullanılarak, hastalara en çok bilgi veren PROM sorularının sorulmasına 

olanak verilmekte ve eksik PROM sorularıyla da hasta sonuçları tahmin edilmektedir. 
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Ayrıca, PROM’lardan rasgele sorular seçilmiş ve hasta durumunu belirlemek için bu 

sorular kullanılmıştır. Elde edilen tahmin sonuçları, en bilgilendirici sorular kullanılarak 

elde edilen tahmin sonuçlarıyla karşılaştırılmıştır. Geliştirilen yaklaşım kas-iskelet 

rahatsızlıkları alanında kullanılan PROM’lara uygulanmış, sonuçları çapraz validasyon 

yöntemiyle değerlendirilmiştir. Sonuçlar incelendiğinde, hasta durumunun az sayıda 

PROM sorusuyla yüksek doğrulukla tahmin edilebildiği görülmüştür. 

 

Anahtar Kelimeler: Bayes Ağları, Kronik Kas ve İskelet Rahatsızlıkları, Yapı Öğrenme, 

Bilgi Teorisi, Yapay Zekâ 
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1. INTRODUCTION 

 

Artificial intelligence (AI) is transforming the way decisions made in the medical domain. 

Early medical applications of AI methods focused on using rule-based systems [1]. In 

such systems, a set of if-then based rules is used to define domain knowledge. However, 

in this approach, there are two problems. Firstly, a large number of rules have to be 

defined to model moderately complex systems. If the system does not perform as desired, 

even more rules need to be added. The addition of new rules to the system may cause the 

system to become inconsistent as they may change the logical relations between the 

existing rules. Secondly, and more importantly, rule systems do not incorporate 

uncertainty whereas medical decisions are inherently uncertain [2] [3]. 

 

More recently, machine learning (ML) approaches have become the primary approach in 

medical AI. ML uses computer algorithms to learn from past observations and data, and 

provides predictions and decision support accordingly [4]. ML algorithms are based on 

data mining [5], optimization [6], and statistical [7] techniques, and they are successfully 

used in many domains [8] [9] [10]. Probabilistic ML approaches, such as those based on 

Bayesian Networks (BNs), can handle uncertainty as well. 

 

Medicine is one of the primary application domains of ML approaches. Successful 

medical applications of ML include oncology [11], diagnosing dermatoglyphic [12], 

thyroid [13], liver-related diseases [14] and cardiology [15]. Radiography and 

dermatology have been the main success stories of medical ML. These domains have a 

large amount of data where the patient outcomes (i.e. benign or malign) are clearly 

labelled. However, such clearly labelled patient outcomes data are not present in many 

other clinical domains which could potentially benefit from AI. ML could not provide 

successful results in most of these domains as the current ML techniques struggle to 

provide accurate results when there is a lack of clearly labelled data [16]. 

 

In many medical domains, patient outcomes are measured by using medical 

questionnaires. These are called patient reported outcome measures (PROMS). PROMs 

are used to measure a wide variety of patient outcomes including biomedical status, 
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psychosocial status, and quality [17]. PROMS are typically composed of Likert or visual 

scale questions. Some PROMS may have over 30 questions [18] [19] [20], and the 

patients may be asked to fill them in regularly. Therefore, cognitive-load and time 

requirements for filling in these questionnaires can be difficult for patients to give 

accurate responses regularly [21]. This makes it difficult to collect a large amount of high-

quality patient outcome data which can be used to train ML and AI tools. 

 

This study focuses on developing intelligent PROMs that can learn from the patient’s 

previous responses to PROM questionnaires, and that asks only the most informative 

questions to the patient. ML approaches can potentially be used for learning the relations 

between questions in the PROMs. Therefore, it can provide a way to understand the 

patients’ health status with fewer inputs. This can be to assess whether the questions asked 

to a patient are sufficient to understand the patient’s current situation or whether further 

questions should be asked in a dynamic and automated way. Bayesian networks (BNs) 

offer a suitable ML tool for this approach as they have algorithms for learning the causal 

and associational relationships among variables [22]. This can be used to learn the 

relations between different PROM questions. Moreover, BNs have also inference 

algorithms for computing probabilistic inference. This can be used to identify the most 

informative PROM questions to identify the state of a specific patient. 

 

This study proposes an approach to build BN models for PROMs to predict the patient 

outcome when some PROM inputs are missing and to identify the most informative 

PROM questions for predicting patient-specific outcomes. We apply this approach to 

multiple PROMs from the musculo-skeletal disorders domain. Since the condition of each 

patient and their responses to PROM are different from each other, the most informative 

questions suggested by our approach can differ between different patients. The proposed 

approach asks PROM questions in iterations until the stopping rule is satisfied. It uses the 

posteriors calculated by the BN model and conditional entropy to calculate the most 

informative questions given the patient’s previous answers in each iteration. The stopping 

rule assesses whether the uncertainty about the predicted outcomes is below a certain 

threshold. Therefore, the proposed approach can potentially reduce the time and effort 

required for collecting patient outcome data. To create relevant BN models, we use the 
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patient data obtained from PROMs conducted by experts. We use data-driven algorithms 

to create BN models. 

 

The PROM data in the study were collected by the physiotherapy unit located at Queen 

Mary University of London. Data are completely anonymous and provided by the 

physiotherapy unit of Queen Mary University of London. Therefore, further ethical 

permissions are not required for this data set.  

 

In the remainder of this thesis, the second chapter presents an overview of BNs. Bayes' 

theorem and elements of it are described, then BNs introduced. BN parameters and 

parameter estimation methods are described as well as connection types in BNs. 

Necessary algorithms to build BN models are presented. Finally, Bayesian inference 

methods are examined in detail. 

 

In the third chapter, previous medical applications of BNs are reviewed, and the previous 

studies that use the questionnaire data to create the BN model are examined. Early and 

modern applications of medical BNs that were established by using expert knowledge, 

data, and a combination of both have been analyzed. 

 

In the fourth chapter, an approach to build BN models based on PROMs is shown. This 

chapter presents an overview of learning from PROMs, and shows the steps to create BN 

models and methods for evaluation. Also, an algorithm that is based on information 

theory elements to calculate estimates is shown.  

 

In the fifth chapter, the proposed approach is applied to case studies. Methods that were 

shown in the fourth chapter have been used to learn different BN models. Prediction 

accuracies of different BN models were calculated. In addition, the patient status was 

estimated by the random questions in the PROMs. The estimation results obtained  

through random questions were compared with the estimation results of the method we 

proposed. At the end of this chapter, different models established by using different 

approaches have been discussed along with the validation results. In the final chapter, the 

conclusions of this thesis are presented. 
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2. BAYESIAN NETWORKS  

 

This section provides an overview of BNs. Sections 2.1 and 2.2 introduces the Bayes 

theorem and BNs. In Sections 2.3 and 2.4 independence assertions in BNs and term d-

separation are examined. In Section 2.5, algorithms and techniques to build BN models 

are reviewed. Finally, in Section 2.6 BN parameters and parameter estimation methods 

are discussed. 

 

2.1. Bayes’ Theorem 

Bayes’ theorem calculates the conditional probability 𝑃(𝐻|𝐸)  from its inverse 

conditional probability 𝑃(𝐸|𝐻) is shown in Equation.(1.1). 

 

  𝑃(𝐻|𝐸) =
𝑃(𝐸|𝐻) 𝑥 𝑃(𝐻)

𝑃(𝐸)
     (2.1) 

 

where E and H are two separate events and 𝑃(𝐸)≠ 0 and 𝑃(𝐻)≠ 0. The Bayes theorem 

provides a way of revising existing ‘prior’ beliefs given new data and evidence 𝑃(𝐻|𝐸) 

when H is interpreted as a hypothesis and E is interpreted as the data or evidence about a 

concept [23]. In other words, Bayes' Theorem enables individuals to update their 

subjective beliefs based on objective data. Owing to this useful feature, this theorem is 

used in various fields including AI and ML [24], time series models [25], medical field 

[24] [26], as well as data mining [27]. However, representing the problem and making 

Bayesian computations for a large and interrelated set of variables can be challenging. 

BNs offers a suitable environment for representing and making calculations of complex 

probability distributions in such cases. 

 

2.2. Introduction to Bayesian Networks 

BNs are graphical models and they represent the joint probability distributions. BNs can 

be used to define networks of causal and associational relations, and use a graphical 

framework to identify these causal relations [28]. The graphical structure of BNs is 

suitable to represent expert knowledge about causal relations. Using the graphical 

structure, we can evaluate the independence assertions imposed on the joint probability 

distribution. Data-driven algorithms are available to learn the BN partially or completely 
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from data. Therefore, BNs offer a suitable modelling approach for combining data and 

expert knowledge. 

 

A BN includes two essential components: one of them is a directed acyclic graph (DAG), 

the other one is node probability tables (NPT) [28]. Nodes represents variables in the 

graph, and arcs denotes the dependencies among these variables. Nodes and arcs create 

structure of DAG [29]. An example of a DAG is shown in Figure 1. 

 

 

Figure 1 An Example Directed Acyclic Graph 

 

Nodes in the Figure 1 denotes variables and arcs between them displays relationships of 

the variables. Direct causal relation which is represented by the arc from A to B means 

that A has influence on B. In that case, it is said that A is a parent node of node B. In the 

same context, node B is child node of node A. Since node A doesn’t have any parent node, 

it is said that node A is a root node. The essential part of the DAG is that there is no loop 

between nodes. There is connection from A to C and C to D, in this case there cannot be 

arc from D to A, so that circular reasoning is avoided [28].  

 

Given that parent nodes, the conditional probability of the child node is represented by 

NPTs which are associated probability tables of nodes in directed graphs. NPTs consist 

of probability values of nodes which have different states. For any root node, NPT is 

defines the marginal probability distribution of that node. For variables with parents, NPT 

defines the conditional probability distribution of the node [30]. An example for NPT 

shown in Table 1. Table 1 shows an example of the parameters of a node with two parents. 

BN variables can also be continuous, however, we only focus on discrete BNs in this 

study. 
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In a BN, any subset of variables can be observed, and the posterior probability of variables 

could be calculated using inference algorithms. These variables are the other unobserved 

variables given the observed ones. Observing a variable is also called ‘entering an 

evidence on a variable’. This enables the BN to be used as an inference or a predictive 

tool. Efficient inference algorithms [31] are widely implemented in commercial and open-

source BN software, therefore they are not the focus of this study.  

 

Table 1 An Example Node Probability Table 

 B b1 b1 b2 b2 

 C c1 c2 c1 c2 

D 
d1 0.4 0.3 0.2 0.5 

d2 0.6 0.7 0.8 0.5 

 

2.3. Connection Types and d-Separation in Bayesian Networks 

Connections between variables in a BN can be classified into three types: i.e. serial, 

diverging and converging connections [32]. These three types of connections can be used 

to describe the conditional independency assertions encoded in a BN. 

 

2.3.1. Serial Connections 

An example of a serial connection between 3 variables is shown in Figure 2.  In this case, 

if K has no evidence (observation), then H and L are dependent on each other. Given that 

the state of K is unknown, there is an evidential influence between H and L. On the other 

hand, if the state of K is known, then states of H and L become independent each other; 

this means H and L are conditionally independent of each other given K. In this context, 

if the evidence is entered in node K, information flow between H and L is interrupted. If 

node K has no observation, when any evidence is entered node H or L, this would update 

the states of the other nodes in the causal network [33] [34]. 

 

 

Figure 2 Serial Connection in Bayesian Network 
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2.3.2. Converging Connections 

In a converging connection which is denoted in Figure 3, if the state of K is not known, 

then H and L are independent of each other. H and L have an evidential influence on node 

K, however, information cannot be transferred from H to L. In this case, parent nodes H 

and L are independent. However, if the evidence is entered in node K, parents of K become 

conditionally dependent given K. In this case, evidence entered on the parents of node K 

will update the probability distribution of the other parents of node K which are not 

instantiated. This situation is called “explaining away” [35] [34]. 

 

 

Figure 3 Converging Connection in Bayesian Network 

 

2.3.3. Diverging Connections 

In diverging connections shown in Figure 4, information can be transmitted between all 

the children of K if the state of K is unknown. If evidence entered into a child of K, the 

information will be transmitted to the other children through K. However, the children of 

K become independent once K is known [35] [34]. 

 

 

Figure 4 Diverging Connection in Bayesian Network 



 

 8 

2.4. D-Separation 

D-separation formally defines the conditional independence (CI) assertions for serial, 

converging, and diverging relations. The letter “D” stands for dependence. Given that two 

nodes H and L are d-separated relative to a node set of C, it can be said that these two 

nodes are independent conditional on C. In other words, node H and node L are 

conditionally independent on C if there is information about C and information about H 

gives no additional information about L or information about L gives no additional 

information about H. 

 

Let H, L and V be three distinct node sets in BN structure G. H and L are d-separated 

given V, denoted dsepG(H; L|V), if and only if there is no active path between any node H 

∈ H and L ∈ L given V. If there is an active path between two nodes, any information can 

be transmitted between these two nodes. Given that evidence nodes E, an active path 

requires two conditions: 

 

 For every converging connection (X→Y←Z) on the path, node Y or one of its child 

nodes is in node set E. 

 Other nodes on the path can’t be in node set E. 

 

If H and L are not d-separated, they are d-connected [34]. 

 

In Figure 5 a larger BN example is shown. The evidence is entered in node F. Given this 

case if the evidence is entered in node A, it affects the state of node B. On the other hand, 

information cannot be transmitted to node H since variable F is blocked. However, 

information can be transferred to node C due to the serial connection. 

 

In the context of d-separation, a minimal set of nodes that makes a node d-separated from 

the rest of the nodes in the BN is called the Markov blanket. Children of any node in the 

network, parents of the node, and parents of its children create the Markov blanket for 

that node [34]. 
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Figure 5 A Bayesian Network with F Instantiated. 

 

2.5. Building Bayesian Network Structure 

Creating BNs consists of two phases [36]; 

 

 Determining the structure of the BNs 

 Obtaining NPTs of each node in the structure 

 

The BN structure and NPTs in BNs can be determined by expert knowledge, data, or a 

combination of both. Defining a network structure by experts could be complex especially 

if number of variables that need to be defined are large. In such cases, the BN structure 

and parameters of each node are learned from data through data-driven approaches. 

 

There are several data-driven algorithms used to learn BN structure from data. These 

algorithms are divided into three categories: constraint-based algorithms, score-based 

algorithms, and hybrid algorithms that combine constraint and score-based techniques. 

 

2.5.1. Score-Based Algorithms  

Score-based algorithms are used to find the BN structure which optimizes a performance 

score. Often heuristic search algorithms are used [37]. Bayesian information criterion 

(BIC) is a commonly used score for this task. In statistics, it is sometimes referred as 

Schwarz information criterion. BIC aims to find the structure that maximizes the 

likelihood but it also has a penalty term for additional relations to avoid overly complex 

structures and overfitting [38]. The Akaike information criterion (AIC) is another similar 
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score used for this task. AIC also rewards likelihood and penalizes complexity but with 

different coefficients [39].  

 

Hill climbing (HC) is a commonly used score-based algorithm. HC uses a greedy 

approach to find optimize the performance score. It adds, removes and changes the directs 

of arcs in the BN model to optimize the score. At every step, it chooses the arc operation 

that provides the highest increase in the score [40]. HC gets stuck at local optima or 

plateau situations where any single arc operations does not increase the score. For 

avoiding from this case random starting points can be chosen and algorithm can keep 

searching until the global maximum point is found [41]. The pseudocode of the HC is 

shown in Table 2. 

 

Table 2 Pseudocode of the HC Algorithm 

1:procedure Hill Climbing(D) 

   Input: Data D 

   Output: DAG 

2: for every variable X in set V do 

3: Start with empty graph or random solution 

4: S = adding, subtracting, and changing the direction of the arc 

6: Hx = HC(D,X,S) 

7: If score difference f(S) ≤ 0  

    Return the highest scoring DAG 

8: End If   

9: End For 

10: end procedure 

 

Tabu-Search algorithm also aims to maximize the score but it avoids doing operations 

that reverse the arc operations in a certain number of most recent previous operations. 

This aids the algorithm to avoid getting stuck at a local optimum [42]. The pseudocode 

of the Tabu is denoted in Table 3. 
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Table 3 Pseudocode of the Tabu Search Algorithm 

1:procedure Tabu Search(D) 

   Input: Data D, m : number of operations, C: stopping condition 

   Output: DAG 

2: for  every variable X in set V Loop do 

3: n_iter = 0 

4: Start with empty graph or random solution 

5: S = adding, subtracting, and changing the direction of the arc 

6: Tx = Tabu(D,X,S,num_iter) 

7: n_iter = n_iter +1 

8: If  n_iter = m 

    Return the DAG  

9: End For 

10: If C is met  

    Return the DAG 

    Else return Loop 

11:End If 

12: end procedure 

 

 

2.5.2. Constraint-Based Algorithms 

Constraint-based algorithms aim to identify conditional independence assertions between 

the variables in the data and builds a structure that is consistent with them. They apply 

statistical tests to the data to identify conditional independence. Constraint-based 

algorithms can be used for learning some causal relations in the form of converging 

relations from observational data [43]. Table 4 shows the pseudocode for the Grow-

Shrink (GS) algorithm which is a widely used constraint-based algorithm [44]. There are 

two phases in this algorithm. The first one is the growing phase, the second is the 

shrinking phase. The algorithm starts with an empty set S, in the growing phase, each 

variable that is dependent with X is added to the set S. In the shrinking phase conditional 

independence between each X and each variable within S are tested to identify the Markov 

Blanket B(X) of variable X. Note that, B(X) is the minimal set of variables that makes X 

independent of the rest of the variables in the BN when they are observed [44]. 
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Table 4 Pseudocode of the GS Algorithm 

1:procedure Grow-Shrink (GS) Markov Blanket 

   Input: Empty Set: S, Set of Variables: U  

   Output: Markov Blanket of variable X  

2: While every Z ∈ 𝑈 − {X} such that Z is dependent of 𝑋 | 𝑆 do 

3: S ← S ∪ {Z} 

4: While every Z ∈ S such that Z is independent of X |( 𝑆 − {𝑍} )do 

5: S ← 𝑆 − {𝑍} 

6: B(X) ← S. 

7: return B(X) 

8: end procedure 

 

Another constraint-based algorithm is the PC algorithm. There are two different steps in 

the PC; the first step is the process of learning the skeleton structure from data. The second 

step is the process of aligning undirected edges to obtain the DAG structure [45]. Let Z 

be a subset and include all the neighbors of X and Y and let S be an empty set. In the 

skeleton structure learning step, to decide on about removing an edge or not, CI tests are 

applied to a fully connected network structure. CI testing for each edge is done. The tests 

check whether node X and node Y are independent conditionally on Z. By considering 

levels that are based on conditioning set sizes which are denoted by "d", CI tests are 

organized. These sizes are also called depth. When depth equals to zero, CI tests are 

applied to all vertices pairs conditioning on S. Edges between pairs are deleted if there is 

independency between two variables, and the algorithm continues with remaining edges. 

The level of depth increases progressively by one each time. When the level of depth 

becomes greater than the size of the vertices that are tested, the algorithm stops. The PC 

algorithm is efficient because when any edge is removed, adjacent sets of a certain node 

are updated [45]. The pseudocode of the PC is shown in Table 5. 
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Table 5 Pseudocode of the PC Algorithm 

1:procedure PC  

   Input: Empty Set: S, Depth:d = 0 

   Output: DAG  

2: For each edge in DAG do 

3: Start with fully connected network 

4: Independence test I(X,Y|S) 

5: Remove edge X−Y if X does not depend on Y given S 

6: Number of element: 𝑠(𝑆)  =  𝑆 + 1, S = {each neighbor of test nodes} 

7: 𝑑 =  𝑑 + 1   

8: If  d > s(S)  

    Return DAG 

9: End If   

10: End For 

11: end procedure 

 

2.5.3. Hybrid Algorithms 

Min-Max Hill Climbing (MMHC) algorithm is a hybrid algorithm. In hybrid algorithms, 

both score-based and constraint-based techniques are used. MMHC defines the frame BN 

structure by using a constraint-based algorithm, and the direction of the arcs are 

determined by maximizing the scoring function [46]. Unlike the standard HC algorithm, 

arc addition operation is only performed if the arc was discovered by Min-Max Parents 

and Children (MMPC) algorithm. The pseudocode of the MMHC is shown in Table 6.  

 

In the first step, a heuristic search algorithm called MMPC is used which is shown in the 

third step of the pseudocode. MMPC is an algorithm that is used to obtain the skeleton 

structure of BN. Children and parents set of nodes of every variable X are found by 

MMPC and they are assigned to the PCx variable. PC in the third step of pseudocode 

refers to children and parents set of variable X. After obtaining children and parents set 

of variable X, the standard HC algorithm is applied to find DAG with the highest score. 
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Table 6 Pseudocode of the MMHC Algorithm 

1:procedure Max-Min Hill Climbing(D) 

   Input: Data D 

   Output: DAG 

2: for every variable X in set V do 

3: PCx = MMPC (D,X) 

4: End For 

5: Start with empty graph and apply Hill-Climbing algorithm by adding, 

subtracting, and changing the direction of the arcs. If S ∈ PCx  adding 

operation is performed (S → X). 

6: Return the highest scoring DAG 

7: end procedure 

 

2.6. Defining Parameters of Bayesian Networks 

NPTs of a BN can be defined by using data or knowledge of expert. The maximum 

likelihood estimation approach can be used to learn the parameters from data [47]. 

Alternatively, Bayesian parameter estimation approaches can be used to learn from data 

based on prior information about the parameters [23]. Methods which are used to learn 

parameters enable to combine expert knowledge and data have been proposed [48]. 

 

If the data is a missing data set or there is no data available for some variables; the 

expectation maximization (EM) algorithm can be applied. EM is an iterative algorithm 

and has two steps. In step “E”, started by assigning random values to the parameters of 

BN and the calculation is made according to parameters. At each iteration, the expected 

value is calculated by taking the missing data into consideration and the missing data is 

updated according to the expected value, and data were completed by this expected value. 

In step “M”, the maximum likelihood of the parameters was estimated. EM does not 

necessarily converge to a global maximum of likelihood, it can get stuck at local 

maximum [49].  

 

Computation complexity in BNs increases with the size of parameters. To decrease 

parameter size and complexity in BN, different methods could be used. These methods 

could be used to decrease the size of parameters that are required to inferred from experts  

or learned from data. One way to simplify NPTs is to add an intermediate node between 
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parent and child node. This process is called "parent divorcing" [50]. Noisy-OR and 

Noisy-Max gates can also be used to simplify NPTs [51] [52]. These models are useful 

to decrease the size of parameters in the BN model by assuming independence between 

and no interaction of effects between the parent nodes. 
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3. CLINICAL AND QUESTIONNAIRE BASED BAYESIAN 

NETWORKS 

 

This section reviews the previous medical applications of BN models (Section 3.1), and 

previous studies that used questionnaire data for BN learning (Section 3.2). 

 

3.1. Medical Bayesian Networks 

Medical decision making involves diagnosing patients in uncertain conditions and 

selecting the treatment with the best possible outcomes. Bayesian networks are suitable 

for this kind of reasoning as they can make diagnostic and causal inferences under 

uncertainty. Therefore, since the late 1980s, BNs have been widely used for medical 

applications [53]. In this section, some articles containing developed clinical Bayes 

networks will be examined. The readers are referred to [54] for a detailed review. 

 

Medical BN models can be created based on expert knowledge using knowledge 

engineering approaches, or purely through data using ML methods. Also, some medical 

BNs can be constructed by combining expert opinions and learning from data.  

 

Early applications of medical BNs were purely based on expert knowledge. Heckerman 

et al. [55] developed Pathfinder project in 1989, which is a system based on purely expert 

knowledge for diagnosing hematopathology and diseases that appear in different lymph 

nodes. In their study, they developed a methodology for finding relations between 

findings and disease. They constructed a large probabilistic network after identifying 

features and diseases. Relationships between features and diseases were identified by 

experts beforehand. The accuracy of the model was compared earlier version of the 

program. The diagnostic accuracy of probabilistic model was measured by using two 

score-based metrics (expert-rating, formal decision-theoretic). 

 

Beinlich et al. [56] developed an application, called ALARM (A Logical Alarm 

Reduction Mechanism), which is used to research techniques of reasoning in BNs. It was 

used to calculate differential diagnosis probabilities by using observations. They used 

medical knowledge in order to create a graphical structure that consists of diagnoses, 

findings, and intermediate variables. Purely expert-based knowledge was used to create 

a relevant network. Two distinct algorithms were applied to BN; one of them is a 
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message-passing algorithm by Pearl [56] and the other one is the Lauritzen-Spiegelhalter 

[31] algorithm. These algorithms were used for probability computations and probability 

updating.  

 

Another purely expert-driven BN for the medical domain was developed by Oniśko & 

Druzdzel [57]. They developed a BN model called in order to diagnose liver disorders. 

Also, six other BNs were developed by using knowledge of experts. Variables including 

liver diseases and findings were used in the structure of the model. Expert elicitation was 

used to determine relationships among variables. In the model validation phase, leave one 

out cross validation was used and diagnostic accuracy of all models was tested. 

 

A knowledge-driven BN model was constructed by Sanders & Aronsky [58] to detect 

asthma attacks. They also used data from the pediatric emergency department. They 

learned BN parameters by using this data. They used Netica 2.0 software to develop three 

BN models which were based on expert knowledge and parameter learning was done via 

the same software. They assessed the prediction performance of BN through receiver 

operating characteristic (ROC) curves by using three-fold cross validation. Calculated 

area under curve (AUC) values were compared for evaluation. A comparison of the 

networks built by expert knowledge was made and the network with the highest prediction 

performance was chosen. 

 

Advances in BN learning algorithms increased the number of purely data-driven 

applications of medical BNs. In 2009, Himes et al. [59] used data-driven approaches to 

construct BN in this context. In their study, the prediction of chronic obstructive 

pulmonary disease (COPD) is performed through BN. In order to find BN, they 

discovered different network models, and each of them was scored by their probability 

when the data was entered as evidence. They chose a model which had a maximum 

posterior probability. The network found by using K2 score-based algorithm. The focus 

of the study was about finding the nodes that have a direct effect on COPD and BN was 

constructed according to these nodes. Model validation was done by performing five-fold 

cross validation.  

 

Another data-based BN was developed by Zheng et al. [60] in 1999 to diagnose breast 

cancer. Results of mastography findings, physical examinations, and related properties as 
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well as clinical histories of patients were used to construct three Bayesian belief networks. 

The BNs in this study were constructed by applying ML algorithms. A training set was 

used to build BN considering dependence and independency of the selected variables. A 

BN with the highest prediction performance was chosen. The network in the study was 

built via Hugin software. Related probabilities were calculated from data that was 

selected for BN learning. Five-fold cross validation method was used to obtain prediction 

performance of BN which was performed by using the program ROCFIT. Zhao & Weng 

[61] developed a BN model to predict pancreatic cancer. Experts in the study determined 

variables in the model through a literature review. Risk factors that can affect pancreatic 

cancer were categorized under some variables which will be used later in BN 

development. The BN model was developed via expert knowledge. The prediction 

accuracy of the BN model developed in the study was compared with two different 

models using validation data. According to ROC curve results, the current BN model 

outperformed the other models and shows high prediction accuracy.  

 

Petousis et al. [62] focused on the prediction of lung diseases. Dataset taken from lung 

cancer patients was used to create different dynamic Bayesian networks (DBNs) by using 

different processes such as forward and reversed arrow approaches in order to examine 

patient status. Variables in DBN were obtained from previous studies. Variables also 

included personal questions as well as questions such as family and personal cancer 

history. In order to reduce the dimension size of NPTs, some variables aggregated into 

one variable. States of variables were discretized by experts in advance. Since the dataset 

includes some missing data EM algorithm was applied in order to compute NPTs. DBNs 

were also compared to expert-driven model and other data-driven models such as logistic 

regression models. Model validations were done by applying the ten-fold cross validation 

method to overcome overfitting. Model comparisons were made by taking AUC results 

into account. According to results, DBNs outperformed expert-driven and logistic 

regression models.  

 

In 2014, Jiang et al. [63] created a BN model to predict patient survivorship in the case 

of breast cancer and they used purely data-driven approaches. A developed model was 

used to predict survivorship for each year individually. The developed model could also 

handle large data. The model in the study was compared to other models and according 

to significance testing, it showed better performance than others. Five-fold cross 
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validation method was used to test model robustness and related results are obtained for 

evaluation.  

 

Hybrid approaches that benefit from expert knowledge and data have been used in the 

medical domain. These approaches use the graphical structure of the BN to encode expert 

knowledge. Then, BN structure and probability distributions are learned by using data 

and parameter algorithms. In 2005, Hoot & Aronsky [64] developed a BN to predict 

survival rates. In the study, the UNOS database which is a nationwide organization 

providing the suitable conditions to organ transplantation was used. After determining 

necessary predictors of survival for BN by using knowledge of clinical experts and by 

doing literature search relevant BN was constructed. Predictors that are used in BN were 

chosen from the pre-transplant variables that were available for the transplantation 

process. Analysis of performance and data operations was done through Matlab, whereas 

the creation of BN and relevant simulation was done via Netica software. A final BN 

model was created using data from 2000-2001, and three-fold cross validation was 

performed for prediction performance tests using an independent set which consists of 

data from 2002. Evaluation of prediction performance was done by using ROC curves 

and relevant AUC values.  

 

A knowledge-based BN model was developed by Ahmed et al. [65] in 2009, was used for 

assessing patients suffer from abdominal and chest injury. Trauma SCAN-Web (TSW) 

which is a computer-based decision support system that is used for evaluating patients 

that have trauma resulting from the chest and abdominal injury was used in the study. All 

relevant probabilities were learned from data and with the help of expert knowledge, BN 

was constructed. In the study, there were also two networks that were created by ML 

approaches. One of BNs was including external wound variables, the other one didn't. 

And prediction performances of original BN for TSW were compared to performances of 

two BNs. Data in the study that were obtained from three hospitals and prediction 

performances were measured using ten-fold cross validation. Accuracy results of BNs 

were compared according to AUC values. BNs that were used by a decision support 

system, was determined sufficient to evaluate penetrating injuries. 

 

Survival prediction model for non-small cell lung cancer (NSCLC) patients developed by 

Jochems et al. [66] is another example of an expert-based BN model. In the study, they 
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developed the BN model to predict the survival of the patient. Experts defined the network 

structure in advance and variables of the BN model and they also determined relationships 

among variables. The conditional probability tables (CPTs) of each node (variable) were 

calculated by the use of a maximum likelihood technique. Maximum likelihood is a 

technique that is based on the EM algorithm. The BN model in the study was constructed 

through the JSMILE framework. Prediction performance analysis of data was done in R 

by using ROC curves. They performed five-fold cross validation on an independent set 

of data. According to prediction performances, the current BN model in the study 

outperformed previously developed models for this study. Jayasurya et al. [67] also 

predicted the survival rate of lung cancer patients. BN and support vector machine (SVM) 

models were constructed by using patient data. All variables were predefined by experts 

and the Markov chain Monte Carlo algorithm was used to create the BN model by using 

missing data. Parameter estimation was done through the EM algorithm. Two different 

models were compared using validation sets and comparisons were made according to 

AUC results. According to performance metrics, the BN model showed better prediction 

accuracy. 

 

Yet et al. [68] combined both clinical data-based approach and expert knowledge to 

establish a BN model that consists of multiple variables. One of the main aims of the 

study was that the developed technique provides a way to obtain parameters from 

complex models. But especially it provides a way to learn parameters from the reduced 

size of the dataset. They used the developed technique in a case study to estimate the 

survival rate of patients with severely injured lower extremities. Experts in the domain 

determined relevant variables that will be used in the BN model. They also determined 

relationships between variables. They also proposed a method that combines data and 

univariate meta-analysis for learning parameters from the BN model that has multiple 

parents. The BN model developed in the study was compared with other models created 

through data-driven algorithms as well as different scoring models. They compared the 

performance of models using ten-fold cross validation method. According to AUC 

results, the developed model in the study outperformed other models.  

 

Yet et al. [69] proposed a method for building clinical BNs that can make reasoning and 

predict in the presence of latent variables. They used both expert knowledge and data in 

order to create relevant models. Then, they applied the developed methodology to a case 
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study. Developed BN model was used to predict acute traumatic coagulopathy (ATC) 

which is a blood disorder that increases the risk of death. Domain experts developed a 

model with variables including latent variables. Experts in the domain also elicited causal 

relationships between variables. They used the EM algorithm to learn the parameters of 

the model. By using a ten-fold cross validation method, model accuracy was tested. They 

measured model accuracy, discrimination, calibration. By examining AUC results and 

Brier scores, they evaluated the performance of the model. 

 

Yet et al. [70] also proposed a clinical decision support system (CDSS) by using BNs in 

2013. They tried to assist clinicians in Warfarin therapy management, which is therapy 

about preventing disorders including pulmonary embolism and atrial fibrillation. They 

developed a CDSS with the collaboration of Swedish hospital groups that are dealing with 

this therapy. The model they developed could help clinicians to make decisions about 

adjusting dose and follow-up intervals. It could also help clinicians to investigate 

variation causes and help them to evaluate risks related to therapy. They built the model 

structure with the help of medical literature in the domain, and with the assistance of 

physicians and nurses that were working in the therapy. They used Genie-SMILE 

software to build a BN structure. Model parameters were learned from a dataset of 

patients that received therapy for more than 14 days. Some parameters between some 

factors and variables were elicited by experts because data in the study were not enough 

to learn parameters from data. The variables and states of the variables were identified by 

nurses. Since the number of probabilities was high Noisy-OR/MAX gate models were 

used to deal with this problem. After they constructed a model and learned parameters of 

it, model validation and verification were tested. They applied the ten-fold cross 

validation model to measure prediction accuracy. They compared decisions that were 

made in the past cases and evaluate the model performance by looking at whether the 

model predicted the same decisions about dose adjustment as in the past. 

 

Although BNs have been widely popular in the clinical domain, the use of BNs for PROM 

data has been limited. The following section reviews the BN models developed from 

questionnaire data in medical and other domains.  
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3.2. Questionnaire Based Bayesian Networks 

Variables and the data required in the BN models can also be obtained from 

questionnaires. Fortini et al. [71] used a household survey and analyzed its variables to 

create a BN model. Data was obtained through conducting the survey in UK households 

and the BN model was built by the Bayes ware Discoverer program. After the data were 

obtained, by using the K2 greedy search algorithm four different BN models were 

obtained. Four different global precision values (i.e. α =1, 5, 10, 20) were used in order 

to build BN models. Accuracy measures of four different models were compared and 

according to evaluation, the most accurate model (α = 5) was chosen. In the same context, 

Constantinou et al. [72] created a BN model from questionnaires to provide medical 

decision support. Expert knowledge was used in the study to develop the BN model 

structure and data were collected from complex and incomplete questionnaires. One of 

the main aims of the study was to show how to build BN when the data is limited. They 

used different methods and compared predictive performances by considering AUC 

results. 

 

Kaya & Yet [73] proposed a new method that uses a Multi-Criteria Decision Making 

(MCDM) approach called Decision Making Trial and Evaluation Laboratory 

(DEMATEL) to create BN models. DEMATEL uses survey questions to elicit causal 

relations, and their proposed method transformed the DEMATEL results into a BN 

model. The applied a proposed method to a case study. The robustness of the BN model 

was assessed through applying sensitivity analysis. 

 

In 2017, a survey-based BN was developed by Bakshan et al. [74] for providing decision 

support for construction waste management (CWM). They created and applied a 

questionnaire to field workers in construction sites. They combined survey questions 

under certain factors and BN was obtained by using these factors. An associated BN 

model was created by determining factors that have a direct effect on behaviors towards 

CWM with the help of experts. Data collected from the survey was used to learn the CPTs 

in the BN model. Sensitivity analysis for single and multiple factors was done to see 

which factor or factors affect the behavior of workers toward CWM.  

 

Borchani et al. [75] used Multi-dimensional Bayesian network classifiers (MBCs). MBCs 

are the models that have probabilistic graphs. These models were developed to deal with 
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multi-dimensional classification problems. Features of the one vector or dataset are 

assigned to other features of the different datasets. The difference from normal 

classification problems is that features of the dataset are not assigned to single class value, 

instead features of the dataset are assigned multiple values. Since patients can have more 

than one disease, using the MBCs model would be a suitable option in this case. In the 

study, they used Markov blanket based algorithm for the model mentioned. The algorithm 

they used called HITON focuses on building the Markov blanket around each class 

variable. They tried to predict European Quality of Life-5 Dimensions (EQ-5D) by using 

items in the Parkinson’s Disease Questionnaire (PDQ-39). They firstly used algorithm 

and performed evaluations on generated and yeast data. Yeast is the multivariate dataset 

that was obtained from the ML repository. Two datasets were used to evaluate prediction 

performances. They also compared Markov blanket based algorithm with other BN based 

algorithms such as class-bridge decomposable, independent Markov blankets, PC, and k 

nearest neighbor. Then, they finally applied algorithms to real-world Parkinson’s disease 

data set. The five-fold cross validation method was used for evaluating the performance 

of alternative BNs. They used mean and global accuracy as well as mean squared error 

(MSE), mean absolute error (MAE), Pearson correlation (R2), the absolute difference 

(AbsDiff), to see whether the model accurately predicts or not. In general, it was seen that 

the Markov blanket based model showed better results for almost all performance metrics.  

 

Le & Doctor [76] developed a survey-based BN model for predicting the health status of 

patients. They used EQ-5D and Short Form Health Survey(SF-12v2) questionnaires in 

the study to obtain the structure of the relevant BN model. They tried to predict each of 

the items in the EQ-5D survey by using items in the SF-12v2 survey. Data obtained from 

questionnaires were used to learn the structure of the BN model by using the constraint-

based method. They also learned parameters from available data. BN model was 

compared with other methods such as OLS, CLAD, MNL. Methods mentioned are the 

mapping methods in the literature. They used validation sets to evaluate the prediction 

performance of models. They also used statistical metrics such as MAE, MSE, and R2 to 

make comparison between models. According to results, the BN model showed more 

accurate prediction performance.  

 

Marvin et al. [77] created a BN to predict the effects of Nanomaterials and putting them 

in order according to their impacts. Variables in the BN, states of the variables and causal 
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relationships among variables were determined by experts and by conducting a 

comprehensive literature review. Domain experts completed a questionnaire, and their 

opinions are asked to determine the final set of variables. They defined the initial structure 

of the BN model by the information that was obtained through the collaboration of 

experts. Then, they built the final structure of BN by using the EM algorithm. They also 

learned the model parameters using the same algorithm. They validated the created model 

by using an independent set of data collected from the relevant publications.  

 

Susana et al. [78] benefited from data that was obtained through conducting a national 

survey based on working conditions in order to establish BN. In their study, the main aim 

of creating BN was to predict work-related accidents. Before creating the BN model, 

variables of them were determined by experts. The questions in the survey are classified 

under different factors including occupational accidents factor. By using these factors, 

occupational accidents which is an outcome variable was predicted. They have 

determined the factors that affect the occupational accident factor the most with this 

study. One of the constraint-based algorithms which is necessary path condition was used 

in order to obtain relevant BN. They used two-fold cross validation method to evaluate 

the prediction accuracy of the BN model. They have evaluated the performance of the 

BN model by considering the AUC result. 

 

Blodgett & Anderson [79] developed a BN model to predict customer complaint 

behaviors. The BN model was built through Bayesian Knowledge Discoverer software. 

The dataset for building the BN structure was collected by conducting a questionnaire 

about customer attitude towards the store. They applied the k-means clustering algorithm 

and classified questions in the survey under multiple factors. The BN model structure 

associated with these factors were learned from data by using the TETRAD software. 

They used CI tests to determine causal relationships between factors and create the BN 

model structure. They used the what-if analysis to test the performance of the model. 

Chakraborty et al. [80] used both expert knowledge and survey data to create a BN model 

to predict customer satisfaction. A survey was conducted to people who use public 

transport. The variables, states of variables and causal relationships for the BN model 

were determined from the survey together with domain experts. The parameters of the 

BN model were calculated by a combination of expert elicitation, and data-driven 
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approaches. Validation of the model was done based on expert opinion. The experts 

evaluated whether the results of the BN model matched with their opinions. 

 

Another BN model for the customer satisfaction model was developed by Salini & Kenett 

[81]. They used customer satisfaction surveys to create the BN model. They aimed to 

create a BN model to predict the overall customer satisfaction and to determine whether 

customers would buy a product again. The variables in the BN were determined first. 

Then states of variables are defined based on the survey. The BN model structure was 

created by integrating expert knowledge and the Greedy Thick Thinning algorithm. 

Anderson et al. [82] also focused on building BNs about customer satisfaction and 

loyalty. Their dataset was obtained from a questionnaire, which was created with the 

collaboration of firm managers, academicians, and consultants. They created different BN 

model structures, firstly by identifying causal relationships between variables with PC 

algorithm. Then, they evaluate Bayesian scores of the models they found and chose the 

BN model that has the highest score. They applied the ten-fold cross validation method 

to assess the prediction accuracy of the final BN model. 

 

Mohammadfam et al. [83] constructed a BN model for improving the safety behaviors of 

workers in workplaces. It was another illustration of questionnaire-based models. They 

tried to predict the safety behavior of employees. The data in the study were collected 

from a questionnaire filled by employees which was conducted at power plant 

constructions in Iran. They conduct factor analysis to the questionnaire data to define the 

variables in the BN model. They have used both expert elicitation and structure learning 

algorithms to create BNs. They have found out that there was no significant difference 

between the BN models that were obtained through these approaches. Therefore, they 

chose to use the BN model structure that was created by using expert knowledge. They 

learned BN parameters from data by using the EM algorithm after they determined the 

BN structure. They evaluated the accuracy of the BN model by using confusion tables. 

 

In summary, questionnaire data has been a promising resource for developing BN models 

and several techniques has been developed. However, reviewed studies did not offer a 

general approach for predicting outcomes with PROM data, and for finding the most 

informative variables in a PROM. In the next section, we propose a novel approach to 

deal with these issues. 
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4. PROM FRAMEWORK FOR BAYESIAN NETWORKS 

 

In this section, a way to prepare medical data for BN and a novel algorithm to calculate 

estimates of patient status are presented together. We will also talk about the steps of the 

method that we developed. The flowchart of the proposed method is shown in Figure 5 

in a sequential order. 

 

 

Figure 6 Flowchart of Proposed Method 

 

In the first step, available PROMs that will be used in the study are selected. Data in the 

study are obtained by conducting these PROMs. Then variables in the PROMs are 

examined. In the second step, the variables to be estimated in the PROMs need to be 

discretized if they are continuous. An overview of PROM data and the need for 

discretizing their factor scores is described in Section 4.1. The techniques to discretize 

factors scores into binary and multinomial states are shown in Sections 4.2 and 4.3. The 

third step shown in the flowchart is to build BN models using learning algorithms and 

using a predefined BN structure template. In Section 4.4, methods to learn BN models 

are briefly discussed. An algorithm to identify the most informative variables for 

prediction in the BN is described in Section 4.5. The last step in the flowchart is 

conducting a k-fold cross validation method to measure the prediction accuracy of models 

by comparing real values and estimates and it is presented in Section 4.6. 
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4.1. Overview of PROMs 

This section will give an overview of PROMs and the requirements for learning BN 

models based on PROM data. For this purpose, the foot health status questionnaire 

(FHSQ), i.e. one of the PROMs we use in the case study in Section 5, will be used as an 

example. 

 

PROMs are questionnaires filled in by the patients to measure and assess different aspects 

of their health. By using PROMs, symptoms of patients, their medical status, their life 

quality are evaluated for further decision making [17]. Earlier PROMs focused on 

evaluating the effectiveness of treatments. However, they are now generally used to 

evaluate their health status and the outcomes of the selected care. PROMs can be 

repetitively at different time stages of care to dynamically measure the patient status. 

 

PROMS are usually composed of Likert or visual scale questions. Scores can be 

calculated for different patient factors, such as severity or functionality, based on these 

questions. These scores represent the overall measurement for the associated factor of the 

particular patient. Some PROMs consist of several questions; it may be difficult for 

patients to fill them in regularly. This can be one of the limitations of PROMs [21]. 

 

FHSQ is a PROM that was developed to examine the foot health status of patients and 

how this affects their lives. It consists of 13 questions with a 5‐point Likert scale, where 

a score of 1 represents the worst status, while a score of 5 represents the best status for 

the associated questions [84]. FHSQ questions are shown in Table 7. 

 

Table 7 Foot Health Status Questionnaire 

 

None Very Mild Mild Moderate Severe 

1. What level of foot pain 

have you had during 
the past week? 

5 4 3 2 1 

 
Never Occasionally 

Fairly Many 

Times 

Very 

Often 
Always 

2. How often have you 
had foot pain? 

5 4 3 2 1 

3. How often did your 
feet ache? 

5 4 3 2 1 

4. How often did you get 
sharp pains in your 
feet? 

5 4 3 2 1 
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 Not at all Slightly Moderately Quite a bit Extremely 

5. Have your feet caused 
you to have 
difficulties in your 
work or activities? 

5 4 3 2 1 

6. Were you limited in 

the kind of work you 
could do because of 

your feet? 

5 4 3 2 1 

7. How much does your 
foot health limit you in 
walking? 

5 4 3 2 1 

8. How much does your 

foot health limit you 
from climbing stairs? 

5 4 3 2 1 

 Strongly 

Agree 
Agree Neutral  Disagree 

Strongly 

Disagree 

9. It is hard to find shoes 

that do not hurt my 
feet. 

5 4 3 2 1 

10. I have difficulty 
finding shoes that fit 
my feet. 

5 4 3 2 1 

11. I am limited in the 
number of shoes I can 
wear. 

5 4 3 2 1 

 Excellent Very Good Good Fair Poor 

12. How would you rate 

your overall foot 
health? 

5 4 3 2 1 

13. In general, what 
condition would you 
say your feet are in? 

5 4 3 2 1 

 

FHSQ questions are associated with certain factors indicating the general health status of 

the patient: 4 of these questions are related to pain, 4 questions are related to function, 3 

questions are related to footwear and 2 questions are related to general foot health (GFH) 

factor. A score is calculated for each factor based on the answers of these questions. These 

scores are in a continuous scale ranging from (0 – 100), where a total score of 100 

indicates the best foot status, while the total score of 0 indicates the worst foot status. 

 

The purpose of the BNs that we will develop in the study is to predict these factors by 

using a subset of the PROM questions. Our BNs aim to classify the patients into groups 

according to the severity of their condition. Although higher factor scores indicate good 

outcomes and lower scores indicate bad outcomes; it is not clear what should be the 

thresholds for classifying the patients based on these scores. In other words, it is not 

certain scores below which value indicates poor health. For example, people with poor 

biomedical status may have high scores due to their personality or psychosocial state. 
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Therefore, “measurement uncertainty" associated with these scores and the underlying 

health needs to be taken into account [85]. 

 

 

Figure 7 FHSQ Pain Factor Symptomatic and Asymptomatic Patient Scores 

 

Figure 7 shows a graphical illustration of this uncertainty associated with the FHSQ factor 

scores and the underlying condition. The blue density plot shows the factor score 

distribution of the people with symptomatic foot problems. The red plot shows the score 

distribution of the people with asymptomatic foot problems. Note that, these two 

distributions overlap as shown in the green area. Some symptomatic patients can report 

high scores, and similarly, some asymptomatic patients can report low scores. 

 

When learning BNs for classification, we need to discretize these factors into either binary 

normal/unhealthy states, or multinomial states like worse/bad/good. However, the 

measurement uncertainty mentioned before makes this discretization challenging. To 

perform binary discretization, a threshold (cut-off) must be determined between normal 

and symptomatic patients' scores. If discretization is done to obtain more than two states, 

the intervals of these states must be determined. To discretize these scores, we use a define 

a ‘cut-off’ point for distinguishing healthy and sick patients. We then use the minimum 

clinically important difference (MCID) parameter in a mixed-integer programming model 

for the discretization of continuous score variables in PROMs. In the following sections, 
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the outline of the method used to create the Bayes network, including the approaches to 

determine the binary and multinomial discretization, is described.  

 

4.2. Determining Minimal Clinically Important Difference 

One of the main issues of using questionnaires for decision support is interpreting the 

PROMs. Most PROM results are numerical scores that reflect patient status. However, 

clinicians may not be sure how to interpret these scores for evaluating the patient and 

comparing the outcomes before and after treatment. Natural variation and randomness in 

patient responses make this more challenging. 

 

MCID studies aim to find the smallest difference that indicates a clinically important 

change in the patient’s state [86]. In some studies, also defined MCID as the minimal 

important difference (MID). Therefore, both terms could be used. MCID is helpful for 

clinical decision support since it provides information about whether there is a significant 

improvement in patient condition. In addition, it enables clinicians to assess patients' 

conditions. 

 

In literature, there are several ways to determine the MCID of a PROM. One of them is 

an anchor-based method. It is based on comparing patient status before and after 

treatment. Conducting medical questionnaires and asking general questions to patients 

about how they feel before and after treatment is an essential part of this method [87]. 

The patient's answers are recorded as scores. Experts compare differences in scores of 

patients after treatment. As a result of treatment, the average score of patients who feel 

better and who feel the same are examined. The difference between these two average 

scores is used to determine MCID. This method includes different features that vary from 

patient to patient, therefore one patient may make progress in the healing process as a 

result of treatment, however, another patient may need more time to make progress as a 

result of the same treatment. Progress in the outcome scores could be significant in a 

statistical way, whereas this does not mean that it has to be significant in a clinical way. 

In large sample size, even changes that can be counted as small, make a statistically 

significant difference. Therefore, in the process of making decisions, clinicians determine 

if relevant treatments achieve clinically important outcomes or not [88]. 

  



 

 31 

Anchor-based method's main advantage is that there is a regular exchange of information 

between patients and doctors, patients inform clinicians for specifying clinically 

meaningful changes. However, if some patients show progress in the healing process and 

conditions of some patients the remain same, using the anchor-based method would not 

be a suitable option. Calculations in this method are not made according to patients that 

show progress in healing process vs patients whose status remains the same, on the 

contrary, they are made according to patients which show some progress and which show 

significant improvements [89]. 

 

Another method in determining MID is the Delphi method. It is based on consensus 

resulting from experts who share their ideas and brainstorm in order to determine MID. 

The council that consists of experts makes discussion about the result of a study. Experts 

examine this result separately, as a result of this examination they express their decisions 

about MID for the relevant study. Average of their feedbacks about estimates of MID is 

taken and summarized and this summary is sent back to each of them. This process 

continues until they achieve consensus. [90]. 

 

MCID values found in the literature with this method can be used to work with clinical 

questionnaires. However, we can obtain MCID value by using our data in the studies. For 

this purpose, we can use distribution-based methods (DBMs). DBMs determine MCID 

by using data based on standard deviation (SD) [91], whereas the anchor-based method 

depends on the judgment of experts. However, both methods can have similar results in 

the same study. Since DBM is based purely on calculations of statistical metrics and it is 

related to data in the study, using this method in every study may not be the most suitable 

option [92]. 

 

Norman et al. [93] suggest MCID to be determined as approximately one half of the SD 

of outcome measure. In their study, a total of 33 different studies which were conducted 

to determine MCID value were examined. The studies they examined include different 

medical questionnaires that consist of different scoring scales. In each study, the anchor-

based method was used to determine MCID value. Averages and SDs of patient scores 

before and after treatment were obtained. And they have seen that for each study MCID 

values obtained through an anchor-based method, consistently equal to approximately 
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half of the SD value of pre-treatment patient scores. In this thesis, we follow Norman et 

al.’s approach of determining MCID as half of the SD value. 

 

4.3. Using Minimal Clinically Important Difference to Discretize Continuous 

Variables 

After obtaining MCID values by applying methods in Section 4.1, we use these values to 

discretize the continuous variables. Variables in the study are obtained from the medical 

questionnaires. MCID and cut-off points could be used to determine discrete states of 

each factor in the PROMs [94] [95]. 

 

In the literature, there may not always be a cut-off point for the relevant scales. For such 

cases, the cut-off point for variables can be determined using the distributions of variables 

in the data. In order to determine cut-off point for medical scales, using distributions of 

patient data would be convenient. To do that, we can use the means of symptomatic 

patients (SPs) as a cut-off points. But we cannot take mean scores directly and determine 

it as a cut-off point. 

 

If we want to use the means and SDs that were obtained from distributions, we first 

determine MCID for relevant variables in data by using DBM. By using means and SDs 

of symptomatic and asymptomatic patients (ASPs), we determine the cut-off point where 

two distributions have equal density. We can see the procedure of obtaining cut-off points 

using means and SDs of SPs and ASPs that were obtained from data in Figure 8. 

 

In addition to this information, if the scale in hand is desired to be discretized to more 

than two states, MCID scores and SDs can be used for cut-off points obtained from 

literature and data respectively. We defined a mixed-integer programming model (MIPM) 

for determining additional states. Model parameters, objective function, and decision 

variables are defined below with constraints. 
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Figure 8 Procedure of Obtaining Cut-off Points for Variables 

 

Decision Variables: 

di: Length of interval I, continuous variable between LB and UB 

yi: Binary variable that ensures one di coincides with T 

𝑓𝑖𝑗
+: Variable used for determining the absolute value of the difference between di and dj 

𝑓𝑖𝑗
−: Variable used for determining the absolute value of the difference between di and dj 

 

Parameters: 

T: threshold for symptomatic and asymptomatic patients 

MCID: Minimal clinically important difference 

n: Number of intervals 

M: A big number  
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UB: Upper bound of continuous scale 

LB: Lower bound of continuous scale 

 

Objective function  

 

Min ∑ ∑ 𝑓𝑖𝑗
+ + 𝑓𝑖𝑗

−

𝑛

𝑗

𝑛

𝑖

  

 

Constraints: 

 

∑ 𝑑𝑖 = 𝑈𝐵

𝑛

𝑖=1

 (4.1) 

𝑑𝑖 ≥ 𝑀𝐶𝐼𝐷 ∀𝑖 ∈ {1, … , 𝑛} (4.2) 

∑ 𝑑𝑙

𝑖

𝑙=1

≥ 𝑇 − (1 −  𝑦𝑖)𝑀 ∀𝑖 ∈ {1, … , 𝑛} (4.3) 

∑𝑑𝑙

𝑖

𝑙=1

≤ 𝑇 + (1 − 𝑦𝑖)𝑀 ∀𝑖 ∈ {1, … , 𝑛} (4.4) 

∑ 𝑦𝑖 = 1

𝑛

𝑖=1

(4.5) 

𝑑𝑖 − 𝑑𝑗 = 𝑓𝑖𝑗
+ − 𝑓𝑖𝑗

−    ∀ 𝑖, 𝑗 ∈ {1, … , 𝑛} (4.6) 

𝑦𝑖 ∈ {0, 1}  ∀ 𝑖 ∈ {1, … , 𝑛} (4.7) 

 𝑓𝑖𝑗
+ ,𝑓𝑖𝑗

− ≥ 0  ∀ 𝑖, 𝑗 ∈ {1, … , 𝑛} (4.8) 

𝐿𝐵 ≤ 𝑑𝑖 ≤ 𝑈𝐵   ∀ 𝑖 ∈ {1, … , 𝑛} (4.9) 

 

Objective function aims to minimize the absolute difference between interval lengths. In 

other words, we want to get as equal intervals as possible in terms of lengths. With 

Constraint (4.1), the sum of the intervals is ensured to be equal to the upper limit.  

Constraint (4.2) provides the condition that each interval variable is greater than or equal 

to MCID. With Constraint (4.3), (4.4) and (4.5), it was ensured that one of the interval 

borders must coincide with the threshold value. With Constraint (4.6), absolute value of 

the differences between interval lengths is defined. Constraint (4.7) is binary constraint 

defined for variable 𝑦𝑖 . With Constraint (4.8), bounds of  𝑓𝑖𝑗
+, 𝑓𝑖𝑗

− variables are defined. 

With constraint (4.9), bounds of interval lengths are defined. As a result of this model, 
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we get interval lengths and we define new interval and states for relevant PROM variables 

that are based on continuous scale. 

 

4.4. Learning Bayesian Network Models 

After discretizing continuous variables, we learn the BN models by using the score-based, 

constraint-based, and hybrid algorithms described in Sections 2.6. In Section 5, we use 

the HC, Tabu Search, and MMHC algorithms to learn the BN models as some of the most 

widely used score-based and hybrid learning algorithms. However, other structure 

learning algorithms can also be applied. Alternatively, BN structures for PROMs can be 

built based on expert knowledge. 

 

4.5. Identifying Most Informative Variables for Predicting Outcomes 

In our algorithm, we will use entropy and mutual information to identify the most 

informative variables for predicting the patient outcomes in the BN. In information 

theory, the amount of uncertainty of any variable denotes entropy of that variable [96]. 

The entropy of a discrete random variable L is shown in Equation. (4.10). 

 

𝐻(𝐿) = − ∑ 𝑃(𝑙) 𝑙𝑜𝑔2 𝑃(𝑙)

∀𝑙 ∈ 𝐿

(4.10) 

 

where l represents the states of L. The entropy of a continuous variable is calculated as 

shown in Equation. (4.11). 

 

ℎ(𝑓) = − ∫ 𝑓(𝑥) 𝑙𝑛(𝑓(𝑥))𝑑𝑥     (4.11) 

 

Entropy provides a measure of uncertainty for a random variable. The entropy value of 

an event is maximum if the uncertainty of a random event is maximum, in other words, 

when outcomes of an event have equal probability. However, the entropy value is 

minimum if the event is known, in other words, if an outcome has the probability of 1 

[97]. 
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Conditional entropy is the uncertainty of one variable given knowledge of another. 

Conditional entropy of L given M, i.e. 𝐻(𝐿|𝑀)  is calculated as follows for discrete 

variables: 

 

𝐻(𝐿|𝑀) = − ∑ 𝑃(𝐿, 𝑀) 𝑙𝑜𝑔2 𝑃(𝐿|𝑀)

𝐿,𝑀

     (4.12) 

 

where 𝑃(𝐿|𝑀) defined as the conditional probability of L given M. Conditional entropy 

represents the entropy of variable L when the outcome of M is known [97]. 

 

Mutual information 𝐼(𝐿, 𝑀) of two random variables L and M represents the amount of 

information provided when the outcome of one of these variables is known. Note that, 

when further information about one of these random variables is obtained, the entropy of 

the other random variable either decreases or does not change [96]. Therefore, mutual 

information is greater than or equal to 0. Mutual information is defined as follows: 

 

𝐼(𝐿, 𝑀) = 𝐻(𝐿) − 𝐻(𝐿|𝑀) = 𝐻(𝑀) − 𝐻(𝑀|𝐿) = 𝐻(𝐿) + 𝐻(𝑀) − 𝐻(𝐿, 𝑀)     (4.13) 

 

The mutual information that is shown in Equation. (4.13) is symmetric: 𝐼(𝐿, 𝑀) =

  𝐼(𝑀, 𝐿). If the mutual information is small or near zero, that means random variable L 

and random variable M are independent or close to being independent. If the mutual 

information value is maximal, one of the random variables is almost determined by the 

other, that is, they are not independent [98]. 

 

4.5.1. Algorithm for Finding Most Informative Inputs 

In this section, we show an algorithm that provides us the most informative questions for 

predicting the outcome based on mutual information. 

 

Firstly, target nodes that are aimed to be predicted, and input nodes that will be answered 

by the patient are defined. Next, the BN is computed, and the entropy of the target nodes 

and the mutual information between target and input nodes are calculated. Input node that 

has the maximum mutual information provides the highest amount of information for 

predicting the outcome. Therefore, the node with the maximum mutual information is 

asked to the patient, the patients’ answer is instantiated in the BN, and the BN is 
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calculated. Since this node is instantiated, it is removed from the list of input nodes.  

Afterward, the stopping conditions are checked, and if they are not satisfied, these steps 

are repeated with the remaining nodes in the list of input nodes. 

 

The first stopping condition in our case is when the difference between mutual 

information becomes less than or equal to a threshold that was chosen in advance. This 

threshold value represents the case that the remaining inputs do not provide sufficient 

information to predict the outcomes. The second condition is reaching the maximum 

number of questions that are allowed to be asked. Once the stopping conditions are met, 

the posterior distribution of the target nodes is calculated and shown to the user. The 

flowchart of the algorithm is shown in Figure 9. 

 

Once the posterior distributions of the target nodes are calculated, these can be compared 

to the actual data of the target node to assess the predictive accuracy of our approach. 

Process of comparison actual values and estimates is described in detail in Section 4.6. 

 

 

Figure 9 Flowchart of Most Informative Inputs Algorithm 

 

4.6. Prediction Accuracy of Bayesian Network Model 

Cross validation is a technique to validate models by using independent data sets [99]. 

Cross validation method is based on the division of samples into construction and 
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validation sub-samples. Construction data set is used to learn models, whereas validation 

sub-sample in other words unknown test data is used to test model validity. The main aim 

to use this method is obtaining the prediction accuracy of models when using unknown 

data to get estimates. Also dividing data into validation and train sets prevents overfitting 

problem. Overfitting occurs when the model is learned and validated with the same data 

set. In such situations, the model provides biased results as it overfits to its training data  

[100]. To use the whole data for training and validation without overfitting k-fold cross 

validation method can be used. This method divides data into equal k parts. Firstly, the 

k-th part is chosen for validation, then the rest of the parts are chosen for learning models. 

For each part in the data set, operations are repeated. To obtain the final result, the 

validation results of each part are combined [101]. 

 

We used Receiver Operating Characteristic (ROC) curves to evaluate our model accuracy 

in k-fold cross validation. Since the predictions of BNs are probability values, a certain 

threshold value is needed. After determining the threshold value, it is then used to 

evaluate the discriminating power of a BN model for predicting a value. For example, 

suppose a BN is designed for predicting the presence of a disease, and its predicted 

posterior probability for this disease 0.65. Whether this probability represents the 

presence of disease or absence of disease depends on the threshold value defined for 

predictions of this BN.  

 

ROC curves are used to examine the overall performance of the BN, rather than assessing 

it for a specific threshold. ROC curves are used to test the discriminating power of 

different models at various thresholds. At various thresholds, true positive rates (TPR) 

and false positive rates (FPR) of predictions are compared in the graph. True positive rate 

is called sensitivity, and it is rate or probability that the classifier in the model correctly 

predicts positive values. Specificity also called true negative rate. It is the rate that the 

classifier in the model predicts negative values correctly [102]. In this context, FPR =

 1 −  Specificity. 

 

The area under the ROC curve (AUC) can be used to provide an overall performance 

measure based on the ROC curve. The diagonal line starting at the top right corner and 

extending to the bottom left corner of the ROC curve is called the ‘no discrimination line’ . 

The AUC value of this line is 0.5. AUC values are ranging from 0.5 to 1, where 0.5 
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indicates the worst prediction performance while 1 indicates the best prediction 

performance. AUC of the top left corner (0,1), represents the best prediction performance. 

Therefore, AUC values represent the accuracy of the model [103].



 

 40 

5. CASE STUDY & RESULTS 

 

We applied the proposed approach to four different PROMs. Before learning the BN 

models, we discretized the factor scores for each PROM based on cut-off and MCID 

values as described in Section 4. MCID values were calculated from the data as described 

in Section 4.2. If the cut-off values for a PROM were available in previous publications 

we used those values, otherwise, we calculated cut-off values as described in Section 4.3. 

  

We predict the pain, function, and GFH factors from the FHSQ questionnaire as these are 

the main factors related to the patient’s health. Landorf and Radford [95] published the 

MCID scores for each domain of FHSQ. In this study, for the pain domain of the 

questionnaire, the score of 13 was determined as MCID. Scores of 7, -2, and 9 were 

determined as MCID for the function, footwear, and GFH domains respectively. MCID 

score of -2 for footwear shows that this factor was not as sensitive as other factors. Hence, 

it was seen that footwear factors are independent from pain, GFH, and function domains. 

It couldn't detect the improvement in the patient status which was achieved from 

interventions. An anchor-based approach with a 15 point Likert scale was used to 

determine MCID for this questionnaire. Cut-off points for the symptomatic and 

asymptomatic patients for the domains of FHSQ were not found in previous studies. 

 

We applied the approach shown in Figure 8 for FHSQ domains. After applying this 

procedure, we determined the cut-off scores of 72.2 for the pain domain, of 73.3 for the 

function domain, of 55.2 as for the GFH domain respectively. Therefore, for these factors, 

scores that are below cut-off points can be interpreted as worse foot state, while higher 

scores can be interpreted as better foot state. According to results obtained from DBM, 

MCID scores determined as 11.5, 15, and 12.5 for pain, function, and GFH respectively. 

For all medical questionnaires in this study, the mean scores of SPs and ASPs obtained 

from literature and data are shown in Table 8. 
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Table 8 Mean Scores of Symptomatic and Asymptomatic Patients 

 

 

Literature Data 

Symptomatic Asymptomatic Symptomatic Asymptomatic 

FHSQ-Pain 52.6[104] 89[105] 50.1 ± 23 89.7±11.5 

FHSQ-Function 60.7[104] 99[105] 56.1 ± 30 92.3±13.8 

FHSQ-Footwear 44.4[106] 68.8[106] 52.1± 25 37.6±26.6 

FHSQ-GFH 26.5[104] 79[105] 37 ± 25 75±18.9 

FABQ-Work 26.7[107] 4.4[108] 11.2 ± 9.3 6.7 ± 7.7 

FABQ-Physical 

Activity 
14.0[107] 3.0[108] 14.2 ± 5.5 9.1 ± 6.5 

PCS 12.5[109] 8.24[110] 14.6 ± 12.0 10.8 ± 10.3 

CSI 27[111] 21.55[112] 30.4 ± 15.0 27.1 ± 13.6 

 

In order to discretize FHSQ scores for building the BN model, MIPM described in Section 

4.3 is used. We discretized FHSQ to five states. The discretized states for the pain factor 

were as follows: the interval [0 – 18.06) is the bad state, [18.06 – 36.1) is very poor (VP), 

[36.1 – 54.1) is poor, [54.1 – 72.2) is fair, and [72.2 – 100] is the good state. For function 

factor, the interval from [0 - 18.33) stated as bad, from [18.33 - 36.67) stated as VP, from 

[36.67 - 55.01) stated as poor, from [55.01 - 73.3) stated as the fair state, and from [73.3 

– 100] stated as the good state. For the GFH factor, the interval from [0 - 18.41) stated as 

bad, from [18.41 - 36.83) stated as poor, from [36.83 - 55.2) stated as fair, from [55.2 - 

77.6) stated as good state, and from [77.6 – 100] stated as the excellent state. We did not 

build a model for predicting footwear due to insensitivity of MCID of this variable [95]. 

 

In order to obtain accuracy measures of BN models, we used the 5-fold cross validation 

method. We used the most informative inputs (MII) algorithm shown in Figure 9 to 

predict the factors in each fold. We used AUC values to evaluate the performance of 

different factors and learning techniques. 

 

FHSQ data in the study consist a total of 409 observations. By using the MII algorithm, 

for each patient or observation, the most informative 2,4 and 6 questions were determined. 

Note that, at the calculation stage of the estimates, the most informative 2,4 and 6 

questions could be different for each patient in the data. The validation results were 

obtained separately for the number of inputs determined. Three different pre-defined 

algorithms including HC, Tabu as well as MMHC were used to obtain BN models. 
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The second medical questionnaire used in the study is the fear avoidance beliefs 

questionnaire (FABQ). It is a questionnaire that is used to determine patients who have 

chronic low back pain. Patients feel fear as a result of their pain and avoid doing physical 

activity. FABQ was created to measure pain and physical activity variables [113]. There 

are 16 questions and 2 factors in this medical questionnaire. A 7 point Likert scale was 

used ranging from a score of 0 to 6, where a score of 0 indicates the expression of strongly 

disagree, while a score of 6 indicates the expression of strongly agree. One of the factors 

is work and the other one is physical activity. Work factor is based on a continuous scale 

and total score of it ranging from (0 - 42), where the total score of 0 shows the best health 

status, while the score of 42 indicates strong fear avoidance belief. The physical activity 

factor is also based on a continuous scale. The total score of this factor ranging from 0-

24, where a total score of 0 indicates the best health status, while a score of 24 indicates 

strong fear avoidance belief. 

 

By using DBM, for our data, MCID score for work factor determined as 4.65, and MCID 

score for physical activity factor determined as 2.75. The cut-off point for work factor 

was found as 29 and for physical activity factor, it was found as 13 [114]. Therefore, 

scores below the cut-off point show good health status, whereas scores above the cut-off 

point show bad health status. If the scale in hand is desired to be discretized to more than 

two states, we can use MIPM in this situation as we did for FHSQ. Using additional cut-

off points obtained from MIPM, for physical activity factor, the interval from [0 - 4.33) 

stated as excellent, from [4.33 - 8.66) stated as good, from [8.66 - 13) stated as fair, from 

[13 - 18.5) stated as poor, and from [18.5 – 24] stated as bad state. For work factor, the 

interval from [0 - 9.66) stated as excellent, from [9.66 - 19.33) stated as good, from [19.33 

– 29) stated as fair, from [29 - 35.5) stated as poor, and from [35.5-42] stated as bad state. 

 

FABQ data in the study consist a total of 397 observations. By using the MII algorithm, 

for each patient or observation, the most informative 2,4 and 6 questions were determined. 

The validation results were obtained separately for the number of inputs determined.  

Three different pre-defined algorithms including HC, Tabu, and MMHC were used to 

obtain BN models.  

 

The third medical questionnaire in the study is PCS. PCS is a questionnaire for 

investigating the catastrophizing effects that cause pain in the musculo-skeletal system. 
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Their study focused on patients that have subacute pain. Patients are asked how they feel 

and what they think while they are experiencing pain. PCS composed of 13 items and it 

is based on continuous scale. A 5 point Likert scale was used ranging from score of 0 to 

4, where a score of 0 indicates the expression of not at all, while a score of 4 indicates the 

expression of all the time. The total score is ranging from (0 - 52), whereas a score of 0 

indicates the best health status, while a score of 52 indicates worst health status. 

 

In order to obtain MCID from data DBM was used. After applying DBM, MCID score 

for questionnaire determined as 6. Cut-off point was determined as 24 [115]. Therefore, 

scores below the cut-off point stated as good health status, while scores above the cut-off 

point stated as bad health status. In order to obtain different states and intervals for a 

continuous scale, MIPM was applied. Using additional cut-off points obtained from 

MIPM, for the interval from [0 – 12) stated as excellent, from [12 – 24) stated as good, 

from [24 - 33.3) stated as fair, from [33.3 - 42.6) stated as poor, and from [42.6 – 52] 

stated as bad state. 

 

PCS data in the study consist a total of 398 observations. By using the MII algorithm, for 

each patient or observation, the most informative 2,4 and 6 questions were determined. 

The validation results were obtained separately for the number of inputs determined. HC, 

Tabu, and MMHC algorithms were used to obtain relevant BN models. 

 

The last medical questionnaire in the study is the central sensitization inventory (CSI). It 

is a self-administered questionnaire and the main aim is to measure the status of patients 

who have diseases such as neck injury, migraine, and diseases resulting from the damaged 

nervous system. It consists of 25 questions. A 5 point Likert scale was used ranging from 

a score of 0 to 4, where a score of 0 indicates the expression of never, while a score of 4 

indicates the expression of always. It is based on a continuous scale ranging from (0 – 

100), where a total score of 0 indicates the best health status, while a score of 100 indicates 

the worst health status [116]. Neblett et al. [117] conducted a study and they found a cut-

off point for this questionnaire. They specified that the cut-off point for this questionnaire 

was 40.9.  

 

As a result of applying DBM, the MCID score for the questionnaire determined as 7.5 for 

this scale. In order to obtain different states and cut-off points for scale, MIPM was 
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applied. Using additional cut-off points obtained from MIPM, for the interval from [0 - 

20.45) stated as good, from [20.45 - 40.9) stated as fair, from [40.9 - 70.45) stated as 

poor, from [70.45 - 100] stated as bad state. It is not convenient to add more than four 

states as the total CSI score in the study does not have continuous values of more than 80. 

 

CSI data in the study consist a total of 396 observations. For CSI data, it has been 

considered appropriate to use the five-fold cross-validation method in the validation 

phase. By using MII algorithm, for each patient or observation, the most informative 2,4 

and 6 questions were determined. The validation results were obtained separately for the 

number of inputs determined. HC, Tabu, and MMHC algorithms were used to obtain 

relevant BN models.  

 

With the questions determined by the MII algorithm, PROM factors were estimated. In 

addition, factor estimates were made with randomly determined questions. Cross 

validation results of the two approaches were obtained for 2,4 and 6 input sample sizes, 

then the results were compared. The PROM factor estimation with random inputs was 

repeated 50 times for 2,4 and 6 input sample sizes, then the average of estimation results 

was taken. 

 

FHSQ, FABQ, CSI and PCS patient data to be used in case analysis are completely 

anonymous and taken from the Queen Mary University of London dataset. 

 

Cut-off points, MCID scores obtained from DBM and states for each variable can be seen 

in Table 9.
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Table 9 MCID, Cut-off Points and States of Each Variable 

 0.5 SD / MCID Cut-off Bad Very Poor Poor Fair Good 

FHSQ-Pain 11.50 72.2 [0-18.06) [18.06-36.1) [36.1-54.1) [54.1-72.2) [72.2-100] 

FHSQ-Function 15 73.3 [0-18.33) [18.33-36.67) [36.67-55.01) [55.01-73.3) [73.3-100] 

   Bad Poor Fair Good Excellent 

FHSQ-GFH 12.5 55.2 [0-18.41) [18.41-36.83) [36.83-55.2) [55.2-77.6) [77.6-100] 

   Excellent Good Fair Poor Bad 

FABQ-Physical Activity 2.75 13 [0-4.33) [4.33-8.66) [8.66-13) [13-18.5) [18.5-24] 

FABQ-Work 4.65 29 [0-9.66) [9.66-19.33) [19.33-29) [29-35.5) [35.5-42] 

PCS 6 24 [0-12) [12-24) [24-33.3) [33.3-42.6) [42.6-52] 

   Good Fair Poor Bad  

CSI 7.5 40.9 [0-20.45) [20.45-40.9) [40.9-70.45) [70.45-100]  
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5.1. FHSQ Results 

MII algorithm cross validation results of the pain and function domains for 2,4 and 6 input 

sample sizes are shown in Table 10, Table 11, and Table 12 respectively. Random inputs 

cross validation results of the pain and function domains for 2,4 and 6 input sample sizes 

are shown in Table 13, Table 14, and Table 15 respectively. MII algorithm results of the 

GFH factor are shown in Table 16. Since results of 2,4 and 6 input sizes were the same 

for the GFH factor they are shown in the same table. Random inputs cross validation 

results of the GFH factor for 2,4 and 6 input sample sizes are shown in Table 17, Table 

18, and Table 19 respectively. 

 

Table 10 MII Algorithm Cross Validation Results of Pain and Function Domains for 2 

Input 

 Poor Fair Good VP Bad 

Pain HC 0.903 0.908 0.976 0.975 0,989 
Function HC 0,950 0.907 0.978 0.950 0.969 

Pain Tabu 0.903 0.908 0.976 0.975 0.989 

Function Tabu 0.950 0.907 0.978 0.950 0.969 

Pain MMHC 0.753 0.845 0.962 0.885 0.935 

Function MMHC 0.937 0.908 0.975 0.925 0.961 

 

Table 11 MII Algorithm Cross Validation Results of Pain and Function Domains for 4 

Input 

 Poor Fair Good VP Bad 

Pain HC 0.894 0.911 0.984 0.979 0.985 

Function HC 0.952 0.930 0.992 0.952 0.969 

Pain Tabu 0.894 0.911 0.984 0.979 0.985 

Function Tabu 0.952 0.930 0.992 0.952 0.969 
Pain MMHC 0.758 0.847 0.962 0.882 0.928 

Function MMHC 0.936 0.908 0.975 0.928 0.961 

 

Table 12 MII Algorithm Cross Validation Results of Pain and Function Domains for 6 

Input 

 Poor Fair Good VP Bad 

Pain HC 0.895 0.909 0.984 0.979 0.985 
Function HC 0.952 0.929 0.992 0.951 0.968 

Pain Tabu 0.895 0.909 0.984 0.979 0.985 

Function Tabu 0.952 0.929 0.992 0.951 0.968 

Pain MMHC 0.758 0.848 0.962 0.879 0.928 

Function MMHC 0.937 0.909 0.975 0.925 0.961 
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Table 13 Random Inputs Cross Validation Results of Pain and Function Domains for 2 

Input 

 Poor Fair Good VP Bad 

Pain HC 0.751 0.738 0.857 0.824 0.869 

Function HC 0.834 0.757 0.871 0.846 0.856 

Pain Tabu 0.750 0.745 0.860 0.841 0.862 

Function Tabu 0.831 0.760 0.871 0.860 0.865 
Pain MMHC 0.669 0.624 0.708 0.715 0.721 

Function MMHC 0.721 0.662 0.714 0.741 0.705 

 

Table 14 Random Inputs Cross Validation Results of Pain and Function Domains for 4 

Input  

 Poor Fair Good VP Bad 

Pain HC 0.819 0.807 0.921 0.890 0.941 
Function HC 0.892 0.812 0.926 0.919 0.907 

Pain Tabu 0.821 0.802 0.922 0.894 0.931 

Function Tabu 0.891 0.816 0.927 0.916 0.916 

Pain MMHC 0.731 0.689 0.832 0.813 0.815 

Function MMHC 0.819 0.757 0.821 0.838 0.817 

 

Table 15 Random Inputs Cross Validation Results of Pain and Function Domains for 6 

Input 

 Poor Fair Good VP Bad 

Pain HC 0.835 0.823 0.949 0.909 0.954 

Function HC 0.919 0.862 0.954 0.938 0.942 

Pain Tabu 0.832 0.815 0.929 0.906 0.944 

Function Tabu 0.914 0.864 0.943 0.926 0.927 
Pain MMHC 0.738 0.741 0.876 0.833 0.844 

Function MMHC 0.855 0.805 0.882 0.885 0.877 

 

Table 16 MII Algorithm Cross Validation Results of GFH Domain for 2,4 and 6 Inputs 

 Poor Fair Excellent Good Bad 

GFH HC 0.992 0.950 1.000 1.000 0.999 

GFH Tabu 0.992 0.950 1.000 1.000 0.999 

GFH MMHC 0.992 0.950 1.000 1.000 0.999 

 

Table 17 Random Inputs Cross Validation Results of GFH Domain for 2 Input 

 Poor Fair Excellent Good Bad 

GFH HC 0.829 0.662 0.847 0.752 0.852 
GFH Tabu 0.827 0.677 0.851 0.758 0.852 

GFH MMHC 0.700 0.613 0.733 0.712 0.713 
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Table 18 Random Inputs Cross Validation Results of GFH Domain for 4 Inputs 

 Poor Fair Excellent Good Bad 

GFH HC 0.886 0.733 0.929 0.867 0.925 
GFH Tabu 0.885 0.735 0.923 0.865 0.921 

GFH MMHC 0.822 0.678 0.867 0.841 0.856 

 

Table 19 Random Inputs Cross Validation Results of GFH Domain for 6 Inputs 

 Poor Fair Excellent Good Bad 

GFH HC 0.908 0.757 0.902 0.907 0.908 

GFH Tabu 0.918 0.753 0.936 0.902 0.937 

GFH MMHC 0.902 0.741 0.902 0.904 0.916 

 

Figure 10 shows the BN models created with Tabu and HC algorithms, which includes 

both the pain and function factors. Figure 11 shows the BN model learned with the 

MMHC algorithm. For the function factor, HC and Tabu algorithms shown in Table 12 

had the highest performance for predicting the state "Good" with an average AUC of 

0.992 (see Figure 12).  

 

 

Figure 10 BN Model of Pain and Function Factors Created Through HC and Tabu 

Algorithms 
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Figure 11 BN Model of Pain and Function Factors Created Through MMHC Algorithm 

 

 

Figure 12 ROC Curve of HC and Tabu Models for Function Factor 

 

For GFH factor, BN models created with Tabu and HC algorithms were the same. The 

learned model is shown in Figure 13. The learned model for GFH factor with MMHC 

algorithm is shown in Figure 14. The ROC curves with the highest performance for inputs 

were also shown as examples. For the function, pain and GFH factors, state "Fair" with 

the 0.95 mean AUC result shown in Table 16 showed one of the highest performances, 

and the ROC curve of models which were created by HC, Tabu and MMHC algorithms 

is shown in Appendix-A. 
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Figure 13 BN Model of GFH Factor Created Through HC and Tabu Algorithms 

 

 

Figure 14 BN Model of GFH Factor Created Through MMHC Algorithm 

 

5.2. FABQ Results 

MII algorithm cross validation results of the physical activity and work domains for 2, 4 

and 6 input sample sizes, are shown in Table 20, Table 21 and Table 22 respectively. 

Since physical activity and work factors have same state names, results of them were 

given in same table. Random inputs cross validation results of the physical activity and 

work domains for 2,4 and 6 input sample sizes are shown in Table 23, Table 24, and Table 

25 respectively. 

 

The BN models created by using HC, Tabu, and MMHC algorithms are shown in Figure 

15, Figure 16 and Figure 17 respectively. The model learned by the MMHC algorithm 

was sparse; each factor was only connected to 2 questions. Therefore, adding more than 

2 inputs did not affect the prediction accuracy of the BN model created through this 

algorithm. ROC curves with the highest performance for 6 inputs were also shown as 

examples. For the physical activity factor estimated by the Tabu model, the state 
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"Excellent" with the 0.983 mean AUC result shown in Table 22 showed one of the highest 

performances. The ROC curve of the model created by the Tabu algorithm is shown in 

Appendix-B. For the work factor, Tabu and HC algorithms showed similar performance. 

State “Bad” with the 0.992 mean AUC result of the HC algorithm shown in Table 22 was 

one of the highest performances in the validation results. The ROC curve of the HC 

algorithm for this state is shown in Appendix-C. 

 

Table 20 MII Algorithm Cross Validation Results of Physical Activity and Work Factors 

for 2 Input 

 Poor Excellent Fair Good Bad 

Physical Activity HC 0.799 0.964 0.778 0.784 0.946 

Work HC 0.982 0.925 0.900 0.836 0.992 

Physical Activity Tabu 0.799 0.964 0.778 0.784 0.946 

Work Tabu 0.982 0.925 0.900 0.836 0.992 

Physical Activity 

MMHC 
0.763 0.953 0.768 0.751 0.900 

Work MMHC 0.500 0.582 0.574 0.567 0.665 

 

Table 21 MII Algorithm Cross Validation Results of Physical Activity and Work Factors 

for 4 Input 

 Poor Excellent Fair Good Bad 

Physical Activity HC 0.870 0.977 0.836 0.816 0.974 

Work HC 0.982 0.932 0.892 0.831 0.992 

Physical Activity Tabu 0.899 0.983 0.887 0.840 0.973 

Work Tabu 0.982 0.931 0.892 0.831 0.992 

Physical Activity 

MMHC 
0.763 0.953 0.768 0.751 0.900 

Work MMHC 0.500 0.582 0.574 0.567 0.665 

 

Table 22 MII Algorithm Cross Validation Results of Physical Activity and Work Factors 

for 6 Input 

 Poor Excellent Fair Good Bad 

Physical Activity HC 0.870 0.977 0.836 0.816 0.974 

Work HC 0.986 0.930 0.892 0.831 0.992 

Physical Activity Tabu 0.899 0.983 0.887 0.840 0.973 

Work Tabu 0.986 0.932 0.891 0.831 0.992 

Physical Activity 

MMHC 

0.763 0.953 0.768 0.753 0.900 

Work MMHC 0.500 0.582 0.574 0.567 0.665 
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Table 23 Random Inputs Cross Validation Results of Physical Activity and Work Factors 

for 2 Input 

 Poor Excellent Fair Good Bad 

Physical Activity HC 0.631 0.715 0.582 0.605 0.701 

Work HC 0.888 0.845 0.843 0.740 0.966 

Physical Activity Tabu 0.657 0.759 0.592 0.623 0.740 

Work Tabu 0.884 0.849 0.848 0.745 0.957 

Physical Activity 

MMHC 

0.568 0.633 0.542 0.557 0.613 

Work MMHC 0.500 0.515 0.519 0.511 0.532 

 

Table 24 Random Inputs Cross Validation Results of Physical Activity and Work Factors 

for 4 Input 

 Poor Excellent Fair Good Bad 

Physical Activity HC 0.702 0.838 0.648 0.671 0.803 

Work HC 0.910 0.897 0.880 0.787 0.990 

Physical Activity Tabu 0.728 0.876 0.672 0.700 0.848 

Work Tabu 0.909 0.896 0.883 0.785 0.960 

Physical Activity 

MMHC 

0.623 0.725 0.576 0.597 0.697 

Work MMHC 0.500 0.529 0.534 0.525 0.500 

 

Table 25 Random Inputs Cross Validation Results of Physical Activity and Work Factors 

for 6 Input 

 Poor Excellent Fair Good Bad 

Physical Activity HC 0.742 0.853 0.693 0.726 0.872 

Work HC 0.903 0.917 0.896 0.811 0.995 

Physical Activity Tabu 0.777 0.919 0.728 0.742 0.896 

Work Tabu 0.921 0.900 0.900 0.814 0.963 

Physical Activity 

MMHC 

0.657 0.801 0.618 0.631 0.757 

Work MMHC 0.500 0.532 0.549 0.535 0.599 
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Figure 15 BN Model of FABQ Created Through HC Algorithm 

 

 

Figure 16 BN Model of FABQ Created Through Tabu Algorithm 

 

Figure 17 BN Model of FABQ Created Through MMHC Algorithm 

 

5.3. PCS Results 

MII algorithm cross validation results of PCS for 2,4 and 6 input sample sizes, are shown 

in Table 26, Table 27 and Table 28 respectively. Random inputs cross validation results 
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of the PCS factor for 2,4 and 6 input sample sizes are shown in Table 29, Table 30, and 

Table 31 respectively. 

 

Table 26 MII Algorithm Cross Validation Results of PCS for 2 Input 

 Bad Excellent Good Poor Fair 

PCS HC 0.934 0.949 0.888 0.987 0.942 

PCS Tabu 0.934 0.949 0.888 0.987 0.942 

PCS MMHC 0.500 0.500 0.500 0.500 0.500 

 

Table 27 MII Algorithm Cross Validation Results of PCS for 4 Input 

 Bad Excellent Good Poor Fair 

PCS HC 0.970 0.974 0.929 0.989 0.990 

PCS Tabu 0.970 0.974 0.929 0.989 0.990 

PCS MMHC 0.500 0.500 0.500 0.500 0.500 

 

Table 28 MII Algorithm Cross Validation Results of PCS for 6 Input 

 Bad Excellent Good Poor Fair 

PCS HC 0.994 0.984 0.952 0.992 0.979 
PCS Tabu 0.994 0.984 0.952 0.992 0.979 

PCS MMHC 0.500 0.500 0.500 0.500 0.500 

 

Table 29 Random Inputs Cross Validation Results of PCS for 2 Input 

 Bad Excellent Good Poor Fair 

PCS HC 0.877 0.904 0.841 0.922 0.913 

PCS Tabu 0.879 0.906 0.844 0.914 0.909 

PCS MMHC 0.500 0.500 0.500 0.500 0.500 

 

Table 30 Random Inputs Cross Validation Results of PCS for 4 Input 

 Bad Excellent Good Poor Fair 

PCS HC 0.922 0.923 0.899 0.919 0.927 
PCS Tabu 0.942 0.935 0.898 0.938 0.929 

PCS MMHC 0.500 0.500 0.500 0.500 0.500 

 

Table 31 Random Inputs Cross Validation Results of PCS for 6 Input 

 Bad Excellent Good Poor Fair 

PCS HC 0.933 0.956 0.923 0.955 0.941 

PCS Tabu 0.953 0.966 0.923 0.944 0.951 

PCS MMHC 0.500 0.500 0.500 0.500 0.500 

 

BN models created by using HC and Tabu algorithms are same and they are shown in 

Figure 18. A valid BN model could not be created using the MMHC algorithm. ROC 
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curves with the highest performance for 6 inputs were also shown as examples. For PCS, 

since HC and Tabu algorithms have same prediction accuracy, ROC curves of any 

algorithms can be chosen for illustration. State “Bad” with the 0.994 mean AUC result of 

HC and Tabu algorithms shown in Table 28 was one of the highest performances in the 

validation results. ROC curve of HC algorithm for this state is shown in Appendix-D. 

 

 

Figure 18 BN Model of PCS Created Through HC and Tabu Algorithms 

 

5.4. CSI Results 

For 2,4 and 6 input sample sizes, MII algorithm cross validation results of PCS are shown 

in Table 32, Table 33, and Table 34 respectively. Random inputs cross validation results 

of the CSI factor for 2,4 and 6 input sample sizes are shown in Table 35, Table 36, and 

Table 37 respectively. 

 

Table 32 MII Algorithm Cross Validation Results of CSI for 2 Input 

 Poor Good Fair Bad 

CSI HC 0.904 0.894 0.780 0.955 

CSI Tabu 0.904 0.894 0.780 0.955 

CSI MMHC 0.902 0.898 0.781 0.859 

 

Table 33 MII Algorithm Cross Validation Results of CSI for 4 Input 

 Poor Good Fair Bad 

CSI HC 0.945 0.943 0.859 0.983 

CSI Tabu 0.945 0.943 0.859 0.983 

CSI MMHC 0.902 0.898 0.781 0.859 
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Table 34 MII Algorithm Cross Validation Results of CSI for 6 Input 

 Poor Good Fair Bad 

CSI HC 0.948 0.969 0.899 0.983 

CSI Tabu 0.948 0.969 0.899 0.983 

CSI MMHC 0.902 0.898 0.781 0.859 

 

Table 35 Random Inputs Cross Validation Results of CSI for 2 Input 

 Poor Good Fair Bad 

CSI HC 0.836 0.834 0.695 0.886 

CSI Tabu 0.829 0.826 0.690 0.870 

CSI MMHC 0.614 0.617 0.564 0.648 

 

Table 36 Random Inputs Cross Validation Results of CSI for 4 Input 

 Poor Good Fair Bad 

CSI HC 0.892 0.892 0.776 0.904 
CSI Tabu 0.888 0.896 0.779 0.922 

CSI MMHC 0.694 0.689 0.614 0.720 

 

Table 37 Random Inputs Cross Validation Results of CSI for 6 Input 

 Poor Good Fair Bad 

CSI HC 0.916 0.925 0.805 0.948 

CSI Tabu 0.918 0.924 0.819 0.937 
CSI MMHC 0.753 0.748 0.645 0.749 

 

BN models created by using HC and Tabu algorithms are the same as shown in Figure 

19. BN models created with the MMHC algorithm is shown in Figure 20. When we 

examine the BN model created with the MMHC algorithm, we see that the CSI factor was 

only connected to questions Q9 and Q15. Therefore, while calculating estimations of the 

CSI factor these two questions were used. For the MMHC model, increasing the input 

size hasn’t had any effect on estimations. ROC curves with the highest performance for 

6 inputs were also shown as examples. For CSI, since the HC and Tabu algorithms have 

the same prediction accuracy, the ROC curves of any algorithms could be chosen for 

illustration. State “Bad” with the 0.983 mean AUC result of HC and Tabu algorithms 

shown in Table 34, was one of the highest performances in the validation results. Other 

ROC curves related to the Tabu algorithm is shown in Appendix-E. 
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Figure 19 BN Model of CSI Created Through HC and Tabu Algorithms 

 

 

Figure 20 BN Model of CSI Created Through MMHC Algorithm 

 

5.5. Discussion 

FHSQ, FABQ, PCS, and CSI are widely used PROMs for assessing the medical status of 

patients. According to the validation results of FHSQ, even with 2 the most informative 

questions determined for each patient, overall AUC scores were more than 0.9 for pain 

and function factors. Since BN models learned by the HC and Tabu search algorithms 

were similar, similar validation results were obtained for these algorithms. If we compare 

the performance of data-driven models, we see that BN models, which were generally 

created by HC and Tabu search algorithms, outperformed the model created through the 

MMHC algorithm. 

 

According to validation results of the GFH factor that is in the FHSQ, all data-driven 

algorithms showed about the same prediction performance. Although BN models created 
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through HC and Tabu algorithms were different from the model created by using the 

MMHC algorithm, validation results were the same. It is due to the parameters of all 

models were the same. For all input sizes, validation results were the same for the GFH 

factor. Even with an input size of 2, for all models, prediction accuracies were more than 

%90. In fact, for some states of this factor, %100 prediction accuracy was obtained. 

Adding more inputs provided no additional mutual information. Due to this situation, all 

validation outcomes were the same. 

 

As the number of input size increase, the entropy in other words uncertainty decreases, 

which eventually result in increased mutual information. However, it has been seen that 

the performance of some models decreased when the number of inputs increased. 

Decreases and increases in AUC results were, however, small often occurring at the 3rd 

decimal point of the numbers. 

 

FABQ is another PROM which consists of two distinct factors. The validation results of 

this medical questionnaire were obtained for both factors. According to the validation 

results of FABQ, all algorithms except the MMHC algorithm had an overall AUC score 

of more than 0.85 for work and physical activity factors. Tabu search algorithm had a 

superior prediction performance compared to the others. This may be because this 

algorithm tried to avoid getting stuck at the local optimum point, unlike the HC algorithm 

[42]. The MMHC algorithm had a poorer prediction performance than other algorithms. 

This is not surprising as MMHC learned an overly simple BN structure for this case. 

 

One of the limitations of the MMHC algorithm is that it can avoid connecting some sets 

of variables with the target variable in the d-separation scope. This algorithm may not 

consider these variables after it discovers d-separation. In contrast, the HC and Tabu 

algorithms can continue adding variables to the parents set even if this process doesn't 

increase the score significantly [46]. Therefore, BN models obtained with MMHC are 

simpler than models obtained by HC and Tabu algorithms. In addition, the parameters 

obtained by the MMHC algorithm may not be as accurate as the parameters obtained by 

the HC and Tabu algorithms. This may result in worse prediction performance. 

 

Unlike previous PROMs, PCS had a single factor that is equal to the summation of scores 

of questions in the medical questionnaire. According to the validation results of PCS, all 



 

 59 

algorithms except the MMHC algorithm had an overall AUC score of more than 0.9. BN 

models learned by using HC and Tabu algorithms were the same. Similar to the previous 

case, MMHC had the worst performance for PCS.  

 

CSI also has a single factor that equals the summation of the scores of its individual 

questions. According to the validation results of CSI PROM, the mean AUC results of 

the HC and Tabu algorithms were more than 0.85 and the mean AUC results of the 

MMHC algorithm were more than 0.78. BN models established by using HC and Tabu 

algorithms were the same. Therefore, obtained validation results for both algorithms were 

the same. Overall, HC and Tabu had slightly better results than the MMHC algorithm. As 

the number of inputs increased, the performance of the HC and Tabu algorithms increased 

as well.  

 

For all PROMs and factors, when we examined random inputs cross validation results we 

have seen that we obtained lower estimation results compare to results obtained through 

the MII algorithm for each input sample size. In this case, we can say that the inputs 

determined with MII algorithm had a better performance in predicting PROM factors and 

patient status. 

 

In summary, the proposed approach was able to predict different PROMs accurately using 

only a few inputs determined by the mutual information-based algorithms. Between data-

driven algorithms, HC and Tabu search algorithms appeared to have similar results. The 

MMHC algorithm has generally lower estimation performance than the remaining two 

algorithms. 
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6. CONCLUSION 

 

This thesis proposed a novel approach for finding the most informative PROM questions 

for predicting patient-specific outcomes, and for predicting patient outcomes with 

missing PROM questions. PROMs are composed of questions for measuring patient 

outcomes. Filling in PROMs may require a large amount of time and cognitive-load from 

patients since PROMs may need to be filled in repetitively and some PROMs can contain 

a large number of questions. The proposed approach enables the PROMs to be filled in 

more efficiently with fewer inputs. The proposed approach is based on BNs, and it has 

been applied to four PROMs in the musculo-skeletal conditions domain, i.e. FABQ, 

FHSQ, PCS, and CSI.  

 

The proposed approach is composed of two main elements. The first element is the BN 

model representing the relations between PROM questions. We used structure learning 

algorithms including HC, Tabu search and MMHC to learn the BN from data. Structure 

learning algorithms were based on discrete variables, and we had to discretize the 

continuous PROM measures. We used an integer programming-based approach for this. 

The second element is the algorithm for determining the most informative questions. We 

used a conditional entropy based algorithm for this task.  

 

According to the results of FHSQ, when data-based models are evaluated among 

themselves, it was seen that models created with HC and Tabu algorithm generally had 

the same prediction performance. These models had a superior prediction performance 

than the model created with MMHC algorithm. It was seen that as input sizes increased, 

prediction accuracies of all models either increased and remained same. As mentioned 

earlier in previous section, the reason for the prediction performance to remain the same 

is because adding more input did not have an impact on mutual information. Results of 

FABQ showed that model created by using Tabu algorithm has slightly better prediction 

performance than HC model. However, considering the results of all PROMs, it has been 

observed that the models created with the HC and Tabu algorithms have better prediction 

performances than the models created with the MMHC algorithm. In addition, PROM 

factors and patient status were estimated with randomly determined inputs. When all 
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results were evaluated, it was seen that the estimation of PROM factors and patient status 

was more consistent with the questions determined by the MII algorithm. 

 

This study only focused on PROMs from the foot musculo-skeletal conditions domain. 

This can be considered as a limitation of this study. PROMs with different domains could 

potentially be used to make a more comprehensive evaluation of the study. Another 

limitation is that methods and models in the study were used to predict only a single snap-

shot status of the patients. In other words, the BN models incorporated observations from 

a single PROM response. In future studies, dynamic BN models could be developed so 

that changes in the patient's status can be followed easily. Another limitation is that only 

one target variable (factor) was determined in the study and the posterior distribution of 

that target variable was calculated. Computing the posterior probability of multiple target 

variables at the same time would increase the computational complexity. In future studies, 

after calculating the joint distribution of target nodes, the entropy of these nodes could be 

calculated. Then, the mutual information between target nodes and input nodes could be 

calculated to determine the most informative questions. In addition, a study can be 

conducted to show which questions are asked to which specific patients in future studies. 

By doing this, it is shown which question is the most informative question for that patient. 

This could increase the understandability of the proposed method. 

 

Moreover, the BN models in the proposed approach only incorporated a single PROM. 

In future studies, BN models containing a question pool from multiple PROMs can be 

created. Factors of specific PROMs can be estimated using questions from different 

PROMs in this question pool. Alternatively, using the factors of one PROM, the factors 

of the other PROM can be estimated. Finally, interfaces and applications can be designed 

for an easier use of the developed methods and models in this study. In this way, a wider 

use of the proposed approach can be enabled. 
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Appendix-A: ROC Curve of HC, Tabu and MMHC Models for GFH Factor 

 

 

 

Appendix-B: ROC Curve of Tabu Model for Physical Activity Factor 
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Appendix-C: ROC Curve of HC Model for Work Factor 

 

 
 

Appendix-D: ROC Curve of HC Model for PCS 
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Appendix-E: ROC Curve of Tabu Model for CSI 

 

 
  


