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Birden fazla kriteri g6z 6ntinde bulundurarak bir dizi alternatif arasindan nihai bir ¢6ziime
ulagsmak kolay degildir. Bu nedenle literatiirde bir¢ok Cok Kriterli Karar Verme (CKKYV)
yontemi 6nerilmis ve uygulanmistir. Karar siirecine bir de belirsizlik igeren veriler dahil
edildiginde siire¢ daha da zorlasir. Bu tezde, bu gibi durumlarda karar vericilere (KV)
alternatiflerin degerlendirmelerini sunabilmek adina ti¢ farkli yontem Onerilmistir.
Onerilen ii¢c yontem de alternatiflerin iistiinliik iliskilerine odaklanmakta ve sik kullanilan
tistiinliilk yontemlerinden biri olan Preference Ranking Organization Method for
Enrichment Evaluation (PROMETHEE) yonteminden faydalanmaktadir. Ancak,
belirsizlik i¢eren veriler icin PROMETHEE kurallar1 modifiye edilmekte ve bir takim
istatistiksel ve olasiliksal analizler uygulanarak karar destek i¢in kapsamli ¢iktilar elde
edilmektedir.  Belirsizlik  iceren  veriler  oOnceki  gozlemlerden,  uzman
degerlendirmelerinden veya Bayes Aglar1 (BA) olarak bilinen olasiliksal modellerden
elde edilebilir. Onerilen yaklagimlardan istatistiksel test tabanli ve skor tabanli olanlar
sirastyla kismi ve tam alternatif siralamasi1 sunarak KV’ye farkli seviyelerde esneklik

saglamaktadir. Onerilen iiciincii yontem olan olasiliksal PROMETHEE ise alternatiflerin



her kriterdeki birlesik olasilik dagilimlarin1 kullanarak hem kismi hem de tam siralama
sunmaktadir. Onerilen tiim yontemleri test etmek icin iki farkli vaka calismasi yapilmistir.
[k olarak bir omuz agris1 tedavi segimi problemi iizerinde ¢alisilmistir. Ardindan,
yontemlerin saglik alani disinda kullanilabilirligini test etmek amaciyla tedarikei se¢imi

problemi uygulamasi yapilmaistir.

Anahtar Kelimeler: Cok Kriterli Karar Verme, PROMETHEE, belirsizlik, Bayes Aglari,

tedavi se¢imi, tedarik¢i se¢imi
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ABSTRACT

MULTIPLE CRITERIA APPROACHES FOR MEDICAL DECISION
SUPPORT MODELS

Melodi CEBESOY

Master of Science, Department of Industrial Engineering
Supervisor: Asst. Prof. Dr. Ceren TUNCER SAKAR
Co- Supervisor: Asst. Prof. Dr. Barbaros YET
August 2020, 86 pages

It is not easy to decide on a final solution among a set of alternatives considering multiple
criteria; therefore, several Multiple Criteria Decision Making (MCDM) approaches have
been proposed and implemented in the literature. When uncertain data is involved in the
decision process, the task gets even more difficult. In this thesis, we propose three
different approaches to present evaluations of alternatives to decision makers (DMs) in
such situations. All approaches focus on outranking relations of alternatives, and they
utilize the well-known method Preference Ranking Organization Method for Enrichment
Evaluation (PROMETHEE) in developing their evaluation measures. However,
PROMETHEE rules are modified for uncertain data, and several statistical and
probabilistic analyses are used to reach comprehensive outputs for decision support. The
uncertain data can be obtained from previous observations, expert evaluations or samples
from a probabilistic model such as Bayesian Networks (BNs). Two of the proposed
approaches are the test-based and score-based approaches; they provide different levels
of flexibility to the DM by offering partial and complete ranking of alternatives,
respectively. The third approach, probabilistic PROMETHEE, offers both partial and

il



complete alternative rankings using joint probability distributions of alternative
evaluations in each criterion. Two different case studies are conducted to test the
approaches: medical treatment selection for shoulder pain is studied to test all three
approaches and also, a supplier selection case is studied to assess all approaches in a
different domain. Additionally, sensitivity analyses are performed to test the sensitivity

of alternative rankings to changes in criteria weights.

Keywords: Multiple Criteria Decision Making, PROMETHEE, uncertainty, Bayesian

Networks, treatment selection, supplier selection
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1. INTRODUCTION

Multiple Criteria Decision Making (MCDM) is a domain of methods that model and solve
problems where multiple criteria are simultaneously considered. A criterion is a
performance measure that needs to be defined and measured to analyze and compare
decision alternatives. Since real-life problems usually do not have a single objective,
every day we must often decide considering different criteria. However, generally it is
not possible to optimize all criteria at the same time. For example, when buying car, we
consider some criteria like comfort level, cost, safety and color. It is very difficult to find
a car which fits a low budget and has high comfort and safety standards at the same time.

In such cases, MCDM methods are used to assist decision makers (DMs).

If MCDM problems involve uncertainty, the situation becomes more complicated. The
uncertainty can be caused by internal or external uncertainty. Internal uncertainty occurs
with ambiguity due to model structure or inputs. On the other hand, external uncertainty

is caused by lack of knowledge on solution results (Stewart, 2005).

In MCDM terminology, a solution x is called efficient if it is impossible to improve a
criterion without worsening at least another one. Inefficient solutions should not be
considered by DMs, however three general MCDM problem types have emerged for
assessing efficient solutions: choice, sorting and ranking (Roy, 2005). Approaches in
choice problems aim to select the best alternative within the acceptable solutions; sorting
approaches assign solutions into preference-ordered categories, and ranking approaches
aim to list the solutions from the best to the worst in complete or partial rankings. In this
thesis, outranking relations of alternatives with uncertain criteria evaluations are studied
which are used to choose from, sort or rank alternatives. Outranking relations are
evaluated by comparing alternative solutions in pairs for each criterion and aggregating
those comparisons with preference measures. One of the most widely known outranking
approaches is The Preference Ranking Organization Method for Enrichment Evaluation
(PROMETHEE), and this thesis uses the outranking structure of PROMETHEE and
extends it to work under uncertainty. PROMETHEE is able to provide different types of



preference functions for comparisons, handle different types of criteria and create both

complete and partial rankings of alternatives.

We propose different approaches to find alternative rankings for MCDM problems where
criteria evaluations of solutions involve uncertain data. This data that includes uncertain
criteria evaluations may be gathered by a data-generating model, expert evaluations or
previous observations. We propose three methodologies to handle such cases. The first
two methodologies use sampling from probability distributions to cope with uncertainty
and modify PROMETHEE to work with samples; these are the test-based and score based
outranking approaches. The test-based approach provides partial ranking whereas the
score-based approach provides full ranking of solutions. The test-based approach enables
the DM to examine the error rates of MCDM analysis, and the score-based approach
provides a score calculated from the probabilities of solution rankings and a graphical
tool to assess their uncertainty. On the other hand, the third methodology handles
uncertainty using joint probabilities of solution pairs instead of sampling and uses
modified PROMETHEE scores to provide partial and full rankings. We provide three
variations of this third methodology for different types of DM preferences. We apply our
methodologies on healthcare problems involving uncertainty regarding the outcome of
treatment options for specific patients with known conditions. We specifically use
healthcare examples since this thesis was conducted as a part of the project
“Interdisciplinary Research Links for Medical Al: Management of Musculo-skeletal
Injury” which is supported under the Turkey — Newton - Katip Celebi Fund partnership.
We also include some applications on the multiple criteria supplier selection problem to

demonstrate the methodologies in a different area.

In this thesis, we propose using Bayesian Networks (BN) models to represent uncertain
data. BN models provide probability distributions of alternative solutions for each
criterion. Using BN models with MCDM 1is suitable since they provide flexible
representations of uncertainty. This thesis can also be useful in presenting a guideline for

the use of BN and MCDM approaches together.

In Section 2 of the thesis, we review the literature on handling uncertainty in MCDM and

MCDM in healthcare. In Section 3, necessary background information on PROMETHEE,



preference elicitation and BNs are provided. Section 4 includes our proposed
methodologies. In Section 5, we apply our approaches to different problems and present

computational results. Section 6 provides conclusions and discussions.



2. LITERATURE REVIEW

This section of the thesis reviews the MCDM methods that have been used for problems
with uncertainty, and MCDM approaches applied in healthcare.

2.1. MCDM Approaches under Uncertainty

There is a vast literature on MCDM methods, but since we focus on problems involving
uncertainty, our review also focuses on such problems. For more comprehensive reviews
of MCDM problems with uncertainty, the readers are referred to the following papers:
Durbach and Stewart (2012) reviewed the literature on MCDM under uncertainty based
on five uncertainty representations which are probabilities, decision weights, risk
measures, fuzzy numbers and scenarios. Probability based uncertainty was handled using
multi-attribute utility theory (MAUT), pairwise comparisons of distributions, belief
functions or simulating from probability distributions. Outranking relations and
stochastic dominance are the most common approaches which use pairwise comparisons.
Another widely used method is Monte Carlo Simulation (MCS)), it is reviewed under the
models simulating from distributions. Additionally, decision problems with fuzzy
numbers are generally modelled using weighted additive sums, Analytic Hierarchy
Process (AHP), comparisons to ideal solutions and fuzzy or rough sets. Broekhuizen et
al. (2015) reviewed approaches for Multi Criteria Decision Analysis (MCDA) under
uncertainty in healthcare. They analyzed five uncertainty approaches: Bayesian
framework, deterministic sensitivity analysis, probabilistic sensitivity analysis, fuzzy set
theory and grey theory for different MCDA methods. They concluded that in most of the
healthcare decision problems, deterministic sensitivity analysis is more advantageous due

to its easy implementation and it is widely studied with AHP in the literature.

To incorporate uncertainty in MCDM problems, MCS is one of the well-known
approaches. Many previous papers used MCS for sampling from probability distributions.
Baudry, Macharis and Vallee (2018) employed MCS within Multi Actor Multiple
Criteria Analysis (MAMCA). They applied AHP to derive criteria weights in each
stakeholder group. Stakeholder groups were equally weighted. They performed a case
study to select the best biofuel option. After determining probability distributions of



alternative solutions in each criterion, by using MCS, their new solution framework
provided probabilities of each rank instead of providing a single ranking. Momani and
Ahmed (2011) also performed a hybrid model that uses AHP and MCS together. They
aimed to select the best material handling equipment when there is an uncertainty caused
by human preferences. Their proposed model differs from the traditional AHP procedure
by making pairwise comparisons with random variables. Using MCS, 1000 replications
were generated for each pairwise comparison. Then, results were used to find alternative
weights with AHP. They implemented the proposed model in a pharmaceutical plant.
Betrie et al. (2013) presented a study that uses MCS and PROMETHEE to make decisions
in the face of uncertainty. They proposed two approaches: deterministic and probabilistic
analysis. In the deterministic case, they used basic PROMETHEE rules and AHP to
derive criteria weights. In the probabilistic case, they generated criteria weights using
AHP and then, they fitted a probability distribution. To handle the uncertainty that comes
from the random variables of weights, they used MCS. Also, they made sensitivity
analysis to see the effect of each criterion on the final ranking. To do that, they utilized
Spearman rank correlation coefficient. Their methodology was performed on a case of
selecting mine sites. The purpose of Levary and Wan (1998) was to deal with two types
of uncertainty when deciding in a multiple criteria problem using AHP. The first type of
uncertainty came from lack of knowledge to compare some criteria pairs. The other type
of uncertainty was caused by ambiguous future events of the decision problem. To
illustrate the proposed methodology, they used a university selection case for a Ph.D.
graduate. They used a range by determining distributions for some pairwise comparisons
of criteria and performed scenario analysis to handle the uncertainty that comes from
future events. Hopfe, Augenbroe and Hensen (2013) modified the traditional AHP
procedure to compare two building designs considering probabilistic performance values.
They conducted building performance simulation for 200 replications. They obtained
ranges of performance evaluations for criteria. Then, a new adapted AHP score was
calculated to determine the best alternative. Dorini, Kapelan and Azapagic (2011) focused
on three cases: no uncertainty exists, model or data has uncertainty and preferences have
uncertainty. They applied compromise programming and MCS on a case study about
comparing two sustainable electricity generation options. For the cases which contain
uncertainty, they fitted probability distributions and performed MCS. From the results,
they reached probabilities of an alternative being better than the other. Therefore, they



presented the better option found with a confidence rate. Balezentis and Streimikiene
(2017) used additive ratio assessment, weighted aggregated sum and TOPSIS to evaluate
effective energy planning scenarios. They had conflicting criteria under technical,
environmental and economic concepts. After solving the problem with three approaches,

they made sensitivity analysis for rankings using different criteria weights using MCS.

The other widely used approach for handling uncertainty in MCDM problems is fuzzy
theory. Montazar, Gheidari and Snyder (2013) proposed a hybrid approach that uses both
fuzzy triangular numbers and AHP. They aimed to make performance assessments of
irrigation alternatives with uncertain parameters. Twenty-one sub criteria were used to
evaluate four alternatives under environmental, technical, social and economical
concepts. To generate weights of criteria, fuzzy AHP was used. Benetto, Dujet and
Rousseaux (2008) proposed a fuzzy multiple criteria approach to modify an existing multi
criteria method called NAIADE with the aim of improving life cycle assessments. They
evaluated alternatives by fuzzy pairwise comparisons with uncertain evaluations. Kilic,
Zaim and Delen (2014) performed a three-phase decision-making method to select an
appropriate ERP system for Turkish Airlines. Because the criteria priorities varied
according to the people in the process, they applied fuzzy theory and AHP. Then, they
employed TOPSIS to rank the alternatives. Montazer, Saremi and Ramezani (2009)
focused on two important steps of decision making: performance evaluations of
alternatives and alternative rankings. They presented a fuzzy evaluation approach to
assess alternative performances and to rank them, they integrated fuzzy theory to
ELECTRE III to construct outranking relations in an uncertain environment. They
implemented their approach to a supplier selection problem in oil industry. Pitchipoo,
Venkumar and Rajakarunakaran (2013) introduced an integrated model of fuzzy AHP
and grey relational analysis (GRA) for a selection problem of suppliers. Uncertainty about
criteria weights was modeled with fuzzy set theory and the alternatives were ranked with
the help of GRA. Additionally, they conducted sensitivity analysis regarding grey
equation coefficients. They obtained that ranking of supplier alternatives stay stable by
changing the coefficients. Therefore, they claimed that they reached a robust solution.
Kuang, Kilgour and Hipel (2012) used grey theory to deal with uncertainty on criteria
weights and different DMs. PROMETHEE Il was used to produce a ranking of alternative



source water protection strategies. They made the analysis with six criteria and eight

alternatives.

Another group of approaches to assess alternatives under multiple criteria when
uncertainty exists is the stohactic dominance concept. Zhang, Fan and Liu (2010) and
Liu, Fan and Zhang (2011) used the stochastic dominance concept in developing
methodologies to rank alternatives with uncertain criteria outcomes. They created
dominance matrices based on stochastic dominance degrees, and then they used these
matrices with PROMETHEE to find the rank order of alternatives. A similar study was
performed by Rietveld and Ouwersloot (1992) to rank location alternatives of nuclear
plants. Their methodology is appropriate for both ordinal and mixed data to conduct

stochastic dominance rules.

Some other approaches considering uncertainty in MCDM problems involve Hyde, Maier
and Colby (2005) who introduced a distance-based approach to handle the uncertainty in
criteria weights. Their method presents a new approach to sensitivity analysis to
overcome the limitations of existing sensitivity analysis techniques for weights.
D’Avignon and Vincke (1988) presented a distributive multiple criteria approach for
alternatives that have probabilistic evaluations on each criterion. They made ranking
decisions based on distributive strengths and weaknesses of alternatives. Durbach (2014)
aimed to extend the distributive approach of D’ Avignon and Vincke (1988) by simulating

scenarios.

In our proposed approaches, we use PROMETHEE, therefore we also provide a focused
review of handling uncertainty in outranking methods. Early work in this area focuses on
modeling the uncertainty and variation between multiple experts. Mareschal (1986)
proposed a methodology using PROMETHEE 1 and II with the average ranking of
different experts to reach the final decision in a project selection problem. Different
statistical and operational research techniques have also been used to model uncertainty
in different elements of PROMETHEE. Another study was conducted by Beynon and
Wells (2008) using PROMETHEE II and an evolutionary algorithm to analyze the
minimum amount of change required in criteria values to improve the preference rank of

alternatives. Yuen and Ting (2012) used a fuzzy approach with PROMETHEE II to cope



with uncertainty in decision alternatives. They applied their approach on a textbook
selection case. Cavalcante and De Almeida (2007) focused on expected values of criteria
by using a Bayesian approach, and applied PROMETHEE III on those values to decide

about maintenance planning alternatives.

MCS has been a widely used approach to include uncertainty in PROMETHEE
calculations too. Hyde, Maier and Colby (2003) fitted probability distributions to model
criteria weights. PROMETHEE II scores were used to rank the alternatives. They used
MCS to run the models and reported the probability of alternatives occupying different
ranks. They performed a case study to select between six renewable energy alternatives.
Doumpos and Zopounidis (2010) made sensitivity analysis of PROMETHEE II
parameters and criteria preferences using MCS. Gervasio and Simdes Da Silva (2012)
fitted probability distributions to criteria and used MCS and PROMETHEE II to calculate
the probabilities of alternatives holding each possible rank. However, they did not

propose a measure to aggregate these probabilities and to obtain a final decision.

2.2. MCDM Approaches in Healthcare

Since we mainly apply our proposed approaches to healthcare problems, we also review
papers using MCDM approaches in decision making problems in medical area. Many
researchers studied the problem of selecting the best alternatives. Li et al. (2018) proposed
a methodology based on heterogeneous MCGDM in order to decide on the best alternative
when the information of doctor and patients do not match. Ozkan (2013) investigated the
status of clinical waste management and selected the most appropriate out of five disposal
methods with the use of ANP and ELECTRE. Kulak, Goren, and Supciller (2015)
developed RFAD method, a new MCDM approach which includes risk factors in the

decision process and they used it for selection of medical imaging devices.

Some researchers studied prioritization of different subjects in healthcare. Zhang et al.
(2018) developed an intuitionistic multiplicative ORESTE method to assign order of
patients for hospitalization based on complex and related factors. Nobre, Trotta and
Gomes (1999) evaluated alternatives based on criteria using TODIM (Tomada de Decisao

Interativa Multicriteo). Their aim was to support decision process for patients when their



behavior is uncertain. Taghipour, Banjevic, and Jardine (2011) studied on the
prioritization of maintenance of medical equipment. They applied AHP to develop a
maintenance strategy based on some criteria such as function, age, risk, task criticality,

maintenance requirements and hazard warning.

Another research was made on decision analysis in oncology. Adunlin et al. (2015)
determined harm-benefit balance of cancer treatments. They used ELECTRE for decision

making based on evidences under complex situations.

Some papers were based on analysis and comparison of different MCDM approaches.
Satabun and Piegat (2017) compared COMET, TOPSIS and AHP based on the
evaluations of mortality of patients with acute coronary syndrome. They concluded that
COMET method gives more accurate solutions in opposition to TOPSIS and AHP.
Additionally, Dolan and Veazie (2018) investigated whether increase of multi criteria
decision support is able to provide more efficient decisions for the community and it leads
to a decrease in the ease of use. It is found that increase of multi criteria decision support
does not cause a decrease in ease of use, MCDM based systems can be developed for

clinical treatments.

Souissi et al. (2017) used ELECTRE and MR-Sort to prescribe antibiotics according to
other medical conditions of patients such as allergy and kidney diseases. In conclusion,
they categorized antibiotics into 3 groups based on recommendation rates and developed
a system for doctors to be efficient in prescribing. Dong et al. (2014) created clusters of
alternatives for pulsation data and used TOPSIS to select the proper ones within them.
They concluded that studying pulsations in 13 clusters is the most suitable one. Rahimi,
Gandy, and Mogharreban (2007) developed a web based medical diagnosis system that

is able to provide information-based updates, short response time and ease of use.

The purpose of some researches was to analyze the performances of treatments or
services. Kuo, Wu, and Hsu (2012) aimed to improve the service of elderly outpatients.
With TOPSIS and fuzzy clustering theory, they ranked failure risks in Healthcare Failure
Mode Effects Analysis (HFMEA). Lupo (2016) presented an AHP based study to procure

reliable estimation of service quality. Their proposed method was applied to the service



quality of Sicilian hospitals and causes of patient dissatisfaction were found. Another
MCDM model was developed by Ghosh (2008) to rank the factors that affect the surgical
performance of the hospital by Fuzzy Composition Programming (FCP). Nilashi et al.
(2016) used Fuzzy ANP in order to find the most important factors among technology,
environment, human and organization for the hospital information system adoption of
hospitals in Malaysia. Also, La Scalia et al. (2011) investigated the probability of success
of transplantation of pancreas islet. Applying fuzzy TOPSIS, three samples are evaluated

considering four factor groups: donor, pancreas, islent and recipient.

Diaby and Goeree (2014) reviewed the use of MCDA methods in medical decision
making. They categorized methods into five groups: elementary (Maximin, Hurwicz),
value-based (multi-attribute value theory (MAVT), MAUT, AHP), goal programming,
reference methods and outranking methods (ELECTRE versions, PROMETHEE).
Additionally, they implemented some of the methods with hypothetical cases.

In this thesis, we introduce three different approaches to provide decision support for
multiple criteria problems with uncertain data. In the literature, there are several
applications where uncertainty is handled in MCDM problems; however, our approaches
differ from them. Our approaches can work with uncertain data generated by different
sources such as past observations, samples from probabilistic models or judgements of
multiple experts. Posterior probabilities derived by a BN model can be used for alternative
evaluations in criteria. Thanks to this approach, we also offer general approaches for the
use of MCDM and BN posteriors. With our test-based approach, we consider error rates
caused by the uncertainty and present partial ranking of alternatives. This approach is
advantageous for situations where the DM desires some level of flexibility. With our
score-based approach, using probabilities of alternatives occupying for each rank, we
present a final solution for both risk-averse and risk-seeking DMs. Our third approach
uses probabilities directly instead of creating samples from them. Thus, it provides a novel
modified probabilistic approach to the classical PROMETHEE. Furthermore, in medical
area, our approaches propose patient-specific decision support using BN model

posteriors.
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3. BACKGROUND INFORMATION

We propose MCDM approaches based on outranking relations of alternative solutions in
the face of uncertain criteria values. Our approaches use PROMETHEE scores as
underlying performance evaluations, but first we need to determine weights of criteria to
express DM preferences and also mechanisms to make PROMETHEE work with
uncertain criteria outputs. Before explaining our approaches, in this section we give
background information on MCDM, outranking relations and rules of PROMETHEE,
weight elicitation techniques used to determine and express the importance of criteria,

and BNs that provide probability distributions for criteria values.

3.1. PROMETHEE

The aim of MCDM is to consider multiple criteria simultaneously in assessing and
deciding about alternative solutions. MCDM methods eliminate inefficient solutions from
consideration and focus on studying efficient solutions. In MCDM terminology, a
solution x is called efficient if there is no other solution y that is better than or equal to x
in all criteria, and strictly better than x in at least one criterion. Within the general scope
of MCDM, outranking methods compare alternative solutions in pairs and reach final
performance measures that are used to determine partial or full ranking or sorting of

solutions.

PROMETHEE is an outranking approach proposed by Brans, Vincke and Mareschal
(1986), and it is one of the most widely-used outranking methods. Basically, it makes
pairwise comparisons of solutions in terms of each criterion in the decision problem.
Based on different preference functions, it assigns a preference value between 0 and 1 to
each solution pair in comparison. Using these preference values and criteria weights, an
aggregated measure is calculated to determine preferability degree of solutions. Let us
assume that a; and a; are two solution alternatives to be evaluated under m maximization
type (without loss of generality) criteria and their evaluations are a; = (a;1, @2, -, Qim)
and a;, = (axq1, Axz, -, Am)- To determine the preference strength of a; over ay, first of
all, the magnitude of difference between evaluations of a; and ay, is calculated for each

criterion j by d;; = a;; — ayj. After that, depending on the magnitude of this difference,
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a preference value is determined using one of the preference functions given in Figure
3.1. The function type is selected by the DM for each criterion. For simplicity, difference
between evaluations is represented by d;;, since every criterion has a similar procedure.
Some preference functions have threshold values ¢ and p. The indifference threshold ¢
represents the minimum required difference for the DM to express any level of
preference, and the preference threshold p represents the minimum required difference
for the DM to express strict preference. These thresholds are specific to each criterion and

DM.

Type I: Usual criterion Type II: Quasi criterion (U-shape)
Pidy) P(dy)
A _(0,d =0 _(0di=q
1 Pw) ={; 4% S o 11— Pw ={] 3" S
0 >
5 d
0 A q k
Type III: Criterion with linear preference Type IV: Level criterion
(V-shape)
Fisk) 0, dyp=0 Pldu) 0, dx=gq
1 di . _ 1
P(dy) = 7-°<diksl’ P(dg) = qu<dik5P
1, dgp>p L, dy>p
0,5
0 >
P dic o q [ diy
Type V: Criterion with linear preference and Type VI: Gaussian criterion

indifference area

P(da) P(dy)
1 0, dy<q 0 ,dg<0
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1; dy. >p
039 > . ’ w

Figure 3.1. Preference functions

The preference value of a; over a; on criterionj is represented by P; (di K j) and w; denotes

the weight of criterion j. The weights in PROMETHEE correspond to the importance
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levels of the criteria for the DM. To find overall preference value of a; over a; regarding

all criteria, aggregated preference index of a; over a;, is calculated using (1).

m
Cikk = Z P;(dix;)w; (1D
=

Criteria weights used in PROMETHEE must be pre-specified, weight elicitation
techniques for this task that we review are provided in Section 3.2. Also, weights should
sum up to 1. Therefore, c;;, values are between 0 and 1. Values closer to 0 represent weak
global preference of a; over a; and values closer to 1 represent strong global preference

of a; over a.

After all pairwise comparisons are completed, PROMETHEE calculates overall
preference indices for all solutions. Positive flow and negative flow of a; are denoted by
@7 and @; respectively. Positive flow implies how strongly a; outranks all other
solutions and it is calculated as in (2). On the other hand, negative flow of a; implies how
strongly other solutions outrank a; and it is calculated using (3). A solution with higher

positive flow and lower negative flow is considered to be preferable.

o = Z Cik (2)
o7 = 3)

There are a few versions of PROMETHEE but two of them dominated the literature:
PROMETHEE I and II. They work with the positive and negative flows that we defined.
PROMETHEE 1 evaluates solutions considering positive and negative flows

simultaneously.
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In PROMETHEE 1, q; is preferred to a;, if one of the following conditions hold:
) o >egandg; <@
(i) o =9¢rande; <oy
(i) @i > @y and @i = @i

Solutions a; and a;, are incomparable if one of the following conditions hold:
0 o >grande; > oy
(i) @ <oyandg; <@

Lastly, there is an indifference relation between a; and a; if @] = @} and ] = ¢}

As a result of PROMETHEE I, it may not be possible to achieve full ranking of solutions

since there can be incomparability or indifference between some pairs of solutions.

On the other hand, PROMETHEE II works with a final score as calculated in (4) and it is

called the net flow of solution a;. It is used to achieve a full ranking of solutions.

i = @f — @ (4)

Solutions are ranked in decreasing order of their net flows. Therefore, PROMETHEE II
allows a strict rank list, however it is possible to lose some information that comes from

positive and negative flows by calculating (4). The following steps summarize the

PROMETHEE approach.

1. For each criterion j, difference between evaluations of a; and a is calculated by
dixj = a;j — ay;.

2. For each criterion j, DM selects a preference function from Figure 3.1 and the related
parameters, if any.

3. For each alternative pair (a;,a;) in each criterion j, a preference value Pj(dik j) is
calculated.

4. For each alternative pair (a;,ay), aggregated preference index c;;, is calculated using

(D.
5. For each a;, positive and negative flows are calculated using (2) and (3).

6. For each a;, net flow is calculated using (4).
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7. Obtain an outranking relation of alternatives:
7.1. To obtain partial ranking of alternatives, PROMETHEE I rules given above are
used.
7.2. To obtain complete ranking of alternatives, list all alternatives in decreasing order

of net flows.

PROMETHEE is a flexible and powerful methodology to compare and rank solutions. It
can work with continuous and discrete measurements of criteria, as well as ordinal and
binary. The DM can express preferences through different preference functions and can
fine-tune those preferences with customized indifference and preference thresholds.
Moreover, these thresholds are not abstract values like the concordance and discordance
thresholds used by the other popular outranking method, ELECTRE. In PROMETHEE,
the DM can realistically be expected to express the minimum difference in the values of
a criterion so that there will be any significant difference, or absolute superiority. Due to

these advantages, we work with PROMETHEE in our proposed approaches.

3.2. Weight Elicitation Techniques

Since PROMETHEE, like many other MCDM methods, does not have a weight
derivation step in its procedure, other techniques should be used to elicit weights before
executing PROMETHEE. Therefore, in this section, we will review some of these
techniques used in the literature. Methods are categorized as the ones based on criteria

comparisons and based on alternative comparisons.

3.2.1. Methods Based on Comparison of Criteria

3.2.1.1. Direct Evaluation Methods

Direct evaluation methods are the most widely known weight elicitation methods because
they are the oldest ones. Detailed explanations and examples are provided in Pomerol and

Barba-Romero (2000). We explain three main methods in this category.
Simple Ranking

Simple ranking is the easiest way of deriving criteria weights. The DM is just asked to

rank criteria considering his/her preferences for the problem. Then, scores are assigned
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to criteria in accordance with the ranking. For example, the criterion which is the least
important takes score 1, the next one takes score 2 and so on. The criteria with equal
importance take the average of scores like 3.5 instead of 3 and 4. After that, all criterion

scores are divided by the sum of scores and criteria weights are obtained.

The method is advantageous due to its simplicity and low requirements for calculations,
however it does not allow the criteria to have all possible values between 0 and 1 and its

effectiveness is not proven.

Simple Cardinal Evaluation

Simple cardinal evaluation is another simple way of weight elicitation. The difference
between this and the previous method is that DM is asked to assign scores to the
importance of criteria on given scales like 0-5 or 0-100. Scoring is done by considering
that the most important one should take the highest score. After that, each criterion score
is divided by the sum of scores to elicit weights. For example, let us assume that we have
three criteria with scores 5, 3 and 2. Then, their weights will be 0.5, 0.3 and 0.2 since the

sum of scores is 10.

This method asks DM for more information than simple ranking, but the results heavily

depend on the scale used and the DMs tend to change their answers with repetitions.

The Method of Successive Comparisons

The first version of this approach goes a long way back and other versions were proposed
within years (Pomerol and Barba-Romero, 2000). This method requires more information
from the DM, but it gives more consistent results than the simple cardinal evaluation

method. Basically, the procedure can be applied in the following steps.

Firstly, criteria are ranked by DM and they are assigned a score using a scale as in the
previous cardinal evaluation method. After that, starting from the first one, criteria are
compared with their consecutive ones. For example, the first criterion is compared with
the second criterion then, the first criterion is compared with the second plus third
criterion, and so on. These successive comparisons are made for each criterion. In the

next step, the consistency between the comparisons and the scores are checked.

16



Inconsistent scores based on comparisons are revised. Then scores are normalized, and

weights are obtained.

3.2.1.2. Ranking-based Methods

Ranking based methods are another group of procedures for deriving weights. Criteria
rankings provided by DM are used to calculate weights; but the procedures are somewhat
more sophisticated than simple ranking. The most common formulas are the rank sum

(RS), rank reciprocal (RR) and rank order centroid (ROC).

RS approach assumes equal distance between weights of consecutive ranks while RR and
ROC approaches increase the difference between consecutive weights as the rank
positions get higher. Formulas are given in (5), (6) and (7) where j=1,2,...,N and 1j is the

rank of criterion ;.

N—-r+1
w;j(RS) = Iy TR——— (5)
__
W0 =S am ©
N
11
w;(ROC) = NZE ()
k=j

Among these formulas, ROC has the best performance with respect to choice accuracy.
For more detailed discussions, Sureeyatanapas (2016), Roszkowska (2013) and Ahn

(2011) can be reviewed.

3.2.1.3. ELICIT

Diaby, Sanogo and Moussa (2016) proposed ELICIT as a new approach for weight
elicitation for multiple DMs and applied it to a healthcare problem. ELICIT has two
fundamental steps. In the first step, each DM assigns a rank to each criterion based on
their individual preferences. To aggregate these rankings, a statistical approach is used.
Firstly, for each ranking provided by m different DMs, (8) is used to calculate

standardized ranks of » criteria and a new standardized matrix (S,,,,) iS constructed
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regarding standardized values. R and R, represent the standardized and provided ranks

of each criterion. Besides, ¢ and o are mean and standard deviation of the rankings of

each DM.

Rs = )

In the next step, correlation matrix is created by (9).

_SxST
T on

CM

)

Using the correlation matrix, eigen value, corresponding eigen vector and normalized

eigen vector (Unor-m) are calculated, then they are used to find criteria scores as in (10).

Score = STty orm (10)

Criteria weights are listed in decreasing order of scores. To elicit criteria weights from
that order, MCS is used. 1000 iterations are simulated under two conditions; the pre-
defined order of weights should hold and summation of all criteria weights should be

equal to 1. As a result of that simulation, criteria weights are determined.

3.2.1.4. Stepwise Weight Assessment Ratio Analysis (SWARA)

The method SWARA is proposed by KerSuliene, Zavadskas and Turskis (2010) to derive
weights considering DM’s opinions about significance ratio of criteria. First, the DM is
asked to provide a ranking of criteria regarding the available information so that the first
is the most important one for the case. Then, each criterion j is compared with the criterion
j+1 by the DM to find how much criterion j is relatively more important than criterion
J+1 and this relative importance value for each j is defined as s;. After each relative

importance between criteria is found, a coefficient value (k;) for each criterion j is

determined using (11). Weights of each criterion is found using (12) and normalized using

(13).
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i T s+ 1, ifj>1
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wp =8 s (12)
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whnorm — Wi (13)
j > w;

3.2.1.5. The Analytic Hierarchy Process (AHP)

The AHP is an MCDM approach proposed by Saaty (1990). It is widely used for both
weight elicitation and alternative ranking in multiple criteria decision problems. Since we
use PROMETHEE to rank alternatives, we focus on the criteria weighting procedure of
AHP. Generally, the process is based on pairwise comparisons according to an
importance scale. Therefore, it makes it possible to express qualitative judgements as

numeric values.

In the first step, alternatives and criteria of the problem are defined hierarchically. Thus,
the aim of the problem, criteria which affect the solution and solution alternatives are

shown clearly for the comparison process.
At the second step, all criteria are compared in a pairwise manner. The DM determines
which criterion in the pair is more important and the numeric equivalent of that

importance using the scale in Table 3.1.

Table 3.1. Importance scale for criteria comparisons in AHP

1 Equally preferred

3 Moderately preferred

5 Strongly preferred

7 Very strongly preferred

9 Extremely preferred
2,4,6,8 | Intermediate values

In the presence of m criteria, let the DM compare criteria j and / and choose j as the more

important one. If the score of this importance is denoted by /4, then /4 directly becomes
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1/hj. Using this rule, all comparisons are completed and for all criteria pairs a normalized

comparison score is calculated using (14).

_ h;
hjp = < (14)
Zn:l hnl

To derive criteria weights, normalized comparison scores are averaged using (15).

m_1 E
w; = S (15)
m

With these steps, criteria weights which sum up to 1 are obtained and a consistency test
is conducted using the steps below. Since several pairwise comparisons are performed in
AHP, it is important that the DM makes these comparisons consistently with each other.
For example, if the first criterion is 2 points more important than the second criterion and
the second criterion is 3 points more important than the third criterion, then the first
criterion should be around 6 points more important than the third criterion. The critical
threshold for consistency is accepted as 0.10. If consistency ratio is higher than this
threshold, then the DM should review the importance levels assigned and repeat the

process. Steps of calculating the consistency ratio are given in the following steps:

1. For the comparison matrix consisting of 4;; and 4y values, multiply each value in
each column with the weight of the corresponding criterion, then sum these
vectors to obtain a weighted sum vector.

2. Divide each value in the weighted sum vector by the weight of the corresponding
criterion.

3. Take the average of values found in the previous step and define it as A.

4. Calculate the consistency index (CI) using (16), where m is the number of criteria

compared.

cl=—— (16)
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5. Calculate the consistency ratio (CR) using (17). RI is the consistency index of a

randomly generated pairwise comparison matrix, it is based on the number of

criteria compared and given in Table 3.2.

Cl

CR =—
RI

(17)
Table 3.2. RI values for different number of criteria

m 3 4 5 6 7 8
RI 058 090 1.12 124 1.32 1.4l

3.2.2.Methods Based on Comparison of Alternatives

3.2.2.1. The UTA Methods

The UTA (Utility Additive) Method was presented by Jacquet-Lagreze and Siskos (1982)
to evaluate additive utility functions of alternatives considering multiple criteria. It
requires the DM to rank some alternatives subjectively to obtain preference information.
Then, it uses linear programming to obtain utility function parameters that obey the
preferences of the DM, which in turn are used to provide rankings of all alternatives. UTA
is not basically proposed to elicit weights, but it provides some estimations of weights as
a by-product. There are some versions of the UTA method in the literature such as
UTASTAR and UTADIS. UTASTAR was proposed by Siskos and Yannacopoulos
(1985) to enhance the UTA method to improve its performance. Another method
developed using UTA is the UTADIS method which is introduced by Jacquet-Lagreze,
(1995). Differently from the UTA, UTADIS requires the DM to rank the alternatives in

groups. So, the best alternatives are assigned to the first group.

3.2.2.2. A Mathematical Modelling-based Method
The method proposed by Tuncer Sakar and Yet (2018) is based on the alternative ranking
of the DM in terms of his/her preferences. It does not require the ranking of all alternatives

at the same time therefore, it is easy to use by the DM.

It is assumed that the alternatives are evaluated by a weighted utility function that is

defined as in (18).
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n
Uj = Z Wl'xij (18)
i=1

where x;; denotes the evaluation of alternative ;j in criterion i and w; denotes the weight

of criterion i. Each criterion weight should be nonnegative, and all should sum up to 1.

At the first step of the proposed method, k£ random alternatives from the decision problem
are presented to the DM and the DM is asked to rank them based on his/her preferences.
Let the evaluation vector of alternative j on all criteria be represented by x;. If the resulting
alternative ranking of DM is xj, = x,_; = -+ = x4, utility function values should also be
ranked with the same order, i.e., vy = v,_; = --- = v;. However, there may be infinitely
many criteria weights to satisfy these orders. To reach final answers, the authors proposed
to find upper and lower bounds for each criterion weight. After determining the bounds,
middlemost values are normalized to derive criteria weights. Upper bounds are found by

solving the model given in (19).

max UB; = w;

n
zwixij :Uj, ]: 1,k
i=1

v SV,

U, Svg

(19)

Vk—1 < Vg

n
Wl'=1

i=1

w; =20, i=1,..,n

By replacing the objective function with (20), lower bounds are calculated. Then, by
taking the average of the lower and upper bounds for each criterion, average weights

(AW;) are obtained and normalized as in (21) to derive final criteria weights.
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min LB; = w; (20)
AW,

o (21)
K AW,

wW; =
Alternatives are required to be ordered by the DM in clusters of k, but all rankings

provided by DM are added to the same mathematical model to find final criteria weights.

3.2.2.3. SWING Method

SWING method proposed by Winterfeldt and Edwards (1986) is a another widely used
weight elicitation approach. The method starts with generating » hypothetical alternatives
for a problem with # criteria. Within these alternatives, each of them has the best value in
one criterion and worst values in the other n-/ criteria. The DM selects one of the »
alternatives as the best one based on his/her preferences, then the criterion that has the
best value in the selected alternative is set as the criterion with the highest preferability.
In the next step, DM selects one of the remaining #n-/ alternatives, then the criterion with
the best value on that alternative is determined as the second important criterion, and the

procedure continues until the overall criteria ranking is derived.

After the criteria ranking is obtained, DM is asked to determine the value of each
alternative relative to other alternatives to calculate weights. To do that, utility values of
each alternative and utility of the nadir vector (vector with the worst values in all criteria)
are compared. Afterwards, criteria weights are obtained by rating the differences between

utility values of alternatives and the nadir vector.

3.3. Bayesian Networks

BNs are probabilistic graphical models that represent joint probability distributions of
variables. A BN model consists of a graphical structure and a probability table for each
node in the graph. Its graphical structure is directed and acyclic, it includes nodes and
arcs to represent variables and their relations, respectively. Since BNs show us which
variables are independent, it eliminates the unnecessary conflicts from the model. BNs
model the probability distributions, causal relationships and independencies graphically.
Besides, they have powerful algorithms for probability calculations (Lauritzen and

Spiegelhalter, 1988).
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Using conditional probabilities, efficient algorithms of BNs can calculate posterior
probabilities when an evidence is defined for some variables in the model. Also, it is
possible to make probabilistic inferences with missing values. For more comprehensive

information, Fenton and Neil (2012) may be reviewed.

To understand a BN model better, let us assume that smoking and age are two factors that
affect the probability of having cancer. Smoking and age variables are called parent nodes
while cancer variable is called child node because of its dependency on smoking and age.
All relations between variables and their probability tables are shown in Figure 3.2.
Probability tables on nodes are called node probability tables (NPT) and NPT of cancer
variable is represented as conditional probability distributions of smoking and age

variables.

BNs represent the joint probability distribution of its variables based on the conditional
independencies encoded in the graphical structure and the conditional probability
distributions encoded in NPTs. Propagation algorithms (Lauritzen and Spiegelhalter,
1988) can be used to compute the posterior distribution of its nodes when any subset of
the nodes are instantiated. In the example case given in Figure 3.2, the probability of
having cancer is 0.27 when none of the other nodes are instantiated. However, when an
evidence is entered to the model, the posterior probabilities can be calculated. For
example, if it is known that the patient is old then the model makes the probability of

being cancer higher.
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Old | 0.2
Middle
Yes 0.4 Age 0.5
No | 0.6 Young| 0.3
Age Old Old Middle Age [Middle Age| Young Young
Smoking Yes No Yes No Yes No
True 0.9 0.4 0.4 0.1 0.3 0.01
False 0.1 0.6 0.6 0.9 0.7 0.99

Figure 3.2. BN Model of the cancer example

Additionally, child nodes can be instantiated, and the probability distributions of parent
nodes can be updated. For instance, if the patient has cancer, the probability of smoking
increases from 0.4 to 0.7 or if the patient is young and has cancer, the probability of

smoking is calculated as 0.95. BN models are effective tools to model joint probability

distributions and make probabilistic inferences.

However, BNs are limited to calculation of posterior probabilities in decision support.
Thus, to represent preferences of DMs in an MCDM problem, it needs another tool. In

this thesis, we use BN models to gather probability distributions since we deal with

uncertain alternative solutions on criteria.
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4. PROPOSED METHODOLOGIES

Since preference functions, threshold values and criteria weights are DM specific, and
there is uncertainty involved, it is not possible to assess the alternatives in a
straightforward way. Thus, we need systematic and comprehensive approaches to
compare alternatives and make decisions. In this thesis, we propose three different
approaches to rank multiple criteria alternatives with uncertain evaluations. Our first and
second approaches are the test-based and the score-based approach. The differences
between them are the outranking information they use, the flexibility level they offer to
the DM about the final evaluations of alternatives and their way of presenting results. The
test-based approach uses PROMETHEE 1 rules to rank alternatives. It considers
statistically significant positive and negative flow superiorities to perform a partial
ranking. This approach enables the DM to define the error rate of their MCDM analysis
by setting the significance level and power of the statistical test. On the other hand, the
score-based approach uses PROMETHEE 1I to create a complete ranking of alternatives.
It calculates the probabilities of alternatives for occupying different ranks. Based on these
probabilities, this approach calculates an overall score to rank alternatives. It also enables
the DM to assess the uncertainty in their ranking. Our third approach, a probabilistic
version of PROMETHEE, works with joint probability distributions of alternative pairs.
While the test-based and score-based approaches use sampling to deal with uncertain
criteria values, the third approach uses probabilities to rank alternatives. In this section,

we give explanations for all approaches.

In all approaches, importance of criteria is represented through weights. Different weight
elicitation techniques were reviewed in Section 3.2. We mainly use AHP and ROC
weighting to derive criteria weights in our approaches. In addition, we make additional
computational studies for sensitivity analysis of weights. Although we propose the use of
BN as the source of uncertainty representation, our approaches can work with probability
distributions generated by any means. In fact, since the BN of the shoulder case in the
project does not have enough actual data to provide reliable distributions yet, we use

expert knowledge to produce the probability distributions at this stage.
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4.1. Test-Based Outranking Approach under Uncertainty

The test-based outranking approach uses statistical tests and confidence intervals to
evaluate the differences between the means of both positive and negative flows of
alternatives. For each pair of alternatives, firstly positive and negative means of
alternatives and confidence intervals are calculated. To understand whether there is a
significant difference between alternatives, statistical tests with significance level a are

conducted.

Because we have uncertainty about criteria evaluations, we generate scenarios from
probability distributions for criteria values. Let us call each of these scenarios a sample
and let ¢, and @;j; be the positive and negative flow of solution a; in sample s,

respectively. Our test-based approach includes the steps given below:

1. For each sample s, apply PROMETHEE outranking steps 1-5 to calculate ¢7; and

@, values for all i
2. Check the mean of positive flows (,o_l+ and negative flows ¢@; for all i

2.1. If the mean of positive flows (p_:r and negative flows @; are the same for all

i, conclude that there is indifference relationship between all solutions

2.2. Else if there is any significant difference between (p_;’ or p;
2.2.1. For all solution pairs a; and ax, use @, @i, @i and @i, samples
to test the following null-hypotheses Ho with significance level a
Ho™: o = o,
Hy"™% o] = o5
2.2.2. Conclude that
There is an indifference relationship between a; and ax if:
Fail to reject Hy "' and H, T

Solution a; is preferred to ay if one of the following conditions hold:
Reject Hy ™ and Hy ™2, o+ > oF and o < @},

Reject Hy " and fail to reject Hy T2, (,o_l+ > of

Testl Test2

. Pi <Pk

Solutions a; and ax are incomparable if one of the following conditions hold:

Fail to reject Ho and reject Ho
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Reject Hy ™ and Hy ™2, @ > @F and @; > ¢}

Reject Hy ™ and Hy ™2, oF < of and 9, < @
3. Combine all relationships in Step 2 to construct the outranking diagram of all

solutions

In Step 1, traditional PROMETHEE formulas (1) — (3) are performed for each sample and

@i and @;j; values for all i are calculated. After that, to reach an overall ranking of

alternatives we apply statistical tests. In Step 2, mean of positive flows go_l?“and negative

flows @; of all i are checked to understand whether the alternatives are significantly
different or not. To do that, we use one-way Analysis of Variance (ANOVA) test.
ANOVA test is applied for both positive and negative flow values separately. [f ANOVA

results say that mean of positive flows q)_;“ and negative flows ¢; are the same for all i,

in Step 2.1 we conclude that alternatives are not significantly different and they all have

indifference relationship. However, if ANOVA results show that positive (p_;r or negative

@; flow means have significant difference for at least one alternative, then we continue
with Step 2.2 and make tests to identify alternative pairs which have significant
difference. Therefore, in Step 2.2.1, we conduct two-sided Tukey’s test for both positive
and negative flows for all solution pairs a; and ax using @, @i, @7 and @j,. Conducting
multiple pairwise tests, such as paired t test, between the positive and negative flows of
solutions is prone to false discoveries due to family-wise error rate. Tukey’s test corrects
for these errors when making pairwise comparison of the means. The tests are performed
based on the following null hypotheses Hy ™! and Hy T2 with significance level a. Test

1 includes positive flows of alternatives in pairs while Test 2 includes negative flows.

HOTestl. (p+ — (pl-:

° 4
HOTeStZ: (pl— — (p’:
After the Tukey’s test is completed for both H, ™! and H, ™, conclusions are made
based on the rules in Step 2.2.2. These rules are derived from the basic PROMETHEE
rules, we updated them for the results of the Tukey’s test. Finally, in Step 3 all

relationships are aggregated, and ranking of alternatives are constructed.
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As in traditional PROMETHEE, the test-based outranking approach generally gives
partial ranking of alternatives since some alternatives have indifference relationship or
they may be incomparable. This outcome may be preferable in some decision-making
problems where DMs prefer a degree of flexibility in their final evaluation. For example,
DMs may need a general assessment of alternative solutions, but they may not desire to
force strict superiorities between the solutions. This property comes from the
PROMETHEE I that considers positive and negative flows simultaneously. The classical
PROMETHEE I, however, does not have a mechanism to define significant difference
values between positive or negative flows of pairs of solutions when there are multiple
evaluations with uncertainty. Our approach provides a guideline to make conclusions
from data by taking the uncertainty and error rate into account by using statistical tests in

PROMETHEE L

The sample size may not be large enough to detect small differences between positive
and negative flows in desired o levels in some cases. Conducting an automated analysis
based on p-values may misguide the DM in assessing whether the difference was not
present, or the sample size was too small to detect it. Therefore, a fully automated analysis
is not recommended, and the DM should evaluate the confidence intervals of flow

differences to assess whether large differences are included in the interval and their width.

4.2. Score-Based Approach under Uncertainty

Our second approach ranks alternatives based on the information about the probability of
alternatives occupying each rank. Using these probabilities, an overall score is calculated
in order to rank all alternatives. Additionally, this approach presents a graphical tool to
evaluate performances of different solutions. The score-based approach uses
PROMETHEE 1II rules to provide more exact results with complete ranking of
alternatives. Thus, it works with net flows of alternatives. As in the first approach, to cope
with the uncertainty in criteria values of alternatives, we utilize sampling approach for
the probability distribution of criteria values. We define ¢, as the net flow of solution a;
in sample s. Based on ¢;¢ values for all i in a given s, let 7;; be the rank of solution a; in

sample s.
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Steps of the proposed score-based approach follow:
1. For each sample s, apply PROMETHEE outranking steps 1-6 to calculate ¢;; for
all i.
2. For all s, list solutions in decreasing order of ¢;; and determine r; for all i
accordingly.
3. Choose a suitable method for defining rank weights w.
4. Apply formulas (22) — (25) to compute F, (x) and 6; for all .

5. Draw a graphical summary of the ranking based on F;.,(x), and calculate the overall

ranking of solutions by listing all solutions in decreasing order of 6;.

For each alternative i in each sample s, classical PROMETHEE formulas (1)-(4) are
calculated to find ;¢ values in Step 1. Next, in Step 2, all i are listed in decreasing order
of ¢;s values for each s. Thus, r; for all i are determined. In Step 3, we need to define
weights to express the importance of ranks for the DM. The overall ranking scores are
calculated with these rank weights to consider the risk behavior and preferences of the
DM while providing the ranking of alternatives. If DM is unable or unwilling to determine
weights directly, then one of the ranking-based weight elicitation methods discussed in
Section 3.2.1 can be used. In our second approach, we prefer to use RS, RR or ROC
weights using (5), (6) and (7). If certain ranks are considered to be not important, the DM
may not consider them when defining rank weights and assign them 0 values. This should
be done in accordance with the rule that weights should be non-increasing and sum to 1.
With Step 4, we compute all calculations to find overall ranking scores of alternatives.
Now, let S be the set of all samples, and S;; be the subset of S where a; occupies the /1

rank as defined in (22).

Sig ={s €Slrs =t} (22)

To find the probability of a; having the #" rank, p;,, we divide the cardinality of S;; by the
cardinality of S as in (23).

ISl

i = 23
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pi: values only provide probabilities of all ranks for all alternatives, but we need an
assessment tool to provide a complete ranking. For this purpose, we present a graphical
tool and a score to aid the DM in ranking solutions. Our graphical tool includes
cumulative distribution functions (CDFs) of all solutions for all possible ranks. Let r; be

the rank of solution a; considering all s € S; let the CDF of i, ., (x) to be defined as in
(24).

F()=POi <0 =) pe (24)

Creating a graph of these CDFs of all solutions gives us a summary of ranks of different
solutions and the associated uncertainty. From the graph we can interpret some results
like which solutions are better overall or which ones have higher probabilities to be in the

top ranks.

In addition, we provide a final measure to rank solutions, ranking score 6; which is
calculated as in (25) and used to provide a complete ranking of » alternatives. w;
represents the weight of the /" rank. This weighted score is flexible to decide based on

the risk behavior and rank preferences of the DM.

n
0= ) wii (25)
t=1

To explain our approach in detail, let us construct an example with 4 solutions (a;, a2, a3,
ay) and assume that we have 100 samples for criteria values of solutions. For this example,
the number of criteria is not important since Table 4.1 includes the frequency of the rank
occurrences and the related probabilities that are obtained with applying PROMETHEE
IT steps on each sample. For instance, a; has the first rank in 20 samples, the second rank
in 10 samples, the third rank in 30 samples and the fourth rank in 40 samples. The columns
on the right show the probabilities of occurrence of these ranks. For example, the
probability of a; having the first rank is 0.2, the second rank is 0.1, the third rank is 0.3
and fourth rank is 0.4.
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Table 4.1. Sample results of the toy example

Solution | [S;1]  [Siz| Szl |Sul | pi Piz Piz P
aj 20 10 30 40 0.2 0.1 0.3 04
a: 10 20 40 30 0.1 0.2 04 0.3
as 40 20 20 20 0.4 0.2 0.2 0.2
ay 30 50 10 10 0.3 0.5 0.1 0.1

1,1
1
0,9
0,8
0,7
= 06 ——a
& 05 S
0,4 a3
0,3 .
0,2
0,1
0
1 2 3 4

Possible ranks (x)

Figure 4.1. Cumulative probability plots of the example problem

Using (24), CDFs for the ranks of each solution are calculated and Figure 4.1 is
constructed to show the graphs of those CDFs. In Table 4.1, we see that a3 has the highest
probability and a: has the lowest probability of having the first rank. Also, we can say
that although a3 has higher probability than a4 for the first rank, as may be considered as
the better alternative for some DMs since it has higher probability for being the best or
second-best solution. Thus, considering all ranks can be appropriate for the DMs who
wants to evaluate all possible ranks. On the other hand, a3 can be a better alternative than
ay for the risk-seeking DMs since they can assign a relatively higher weight to the best
rank.

Table 4.2 shows the weights (w;) of each rank ¢ calculated by different ranking
approaches and weighted scores (6;) of alternative solutions using those weights. RS
approach assumes equal distance between weights of different ranks; however, RR and
ROC approaches may be more suitable weighting approaches for DMs who want to give

considerably more importance to higher ranks. In this example, they nearly assign two
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times more weight to the first rank than the second one. In Table 4.2, the numbers in
parentheses show the ranks of solutions. We also include a case where the DM uses RR
weights for just the top two ranks. Using RS, a,has the first rank, a; has the second rank
and a; and a> have the lowest ranks since they have equal weighted scores. With scores
calculated by ROC, and RR for just the first 2 ranks, a4 has the first rank, as has the second
rank, a; has the third rank and a> has the fourth. In the ranking by RR, however, the best
alternative is a; which is followed by a4 since RR puts more emphasis on the probability

for the first rank relative to the weight of the second rank.

Table 4.2. Solution scores and rank weights of toy example

Rank Weight Approach
RS ROC RR RR
First 2 Ranks
wr | 0.40 0.52 0.48 0.66
w, W2 0.30 0.27 0.24 0.33
ws | 0.20 0.15 0.16 0
wy | 0.10 0.06 0.12 0
6,]0213) 0203) 022(3) 0.17(3)
0. 6, 1021(3) 0.18(4) 0204) 0.13(4)
Y6;1028(2) 030(2) 030(1) 033
6,1030(1) 031(1) 029(2) 037()

If the DM is risk-seeking and gives importance to just the top ranks, then all weighting
methods considered can be used for only the top ranks and 0 weights can be assigned to
other ranks as shown in the example. In general, if the DM is only interested in » ranks
that corresponds to taking a more risk-seeking attitude than the case of considering all
ranks, this would require changing N with » in (5) — (7), and assigning 0 weights to w7,

ceey WAL

The graphical tool given in Figure 4.1 is useful to observe differences between the
performance of solutions. It shows that, for example, even though a; has a higher
probability of having the first rank, a4 has better overall probabilities when lower ranks
are also considered. While the weighted score summarizes this in a single measure, the

graph enables the DM to assess the differences in specific ranks graphically.
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4.2.1. Analyzing the confidence of the score-based approach

Using the test-based approach proposed in Section 4.1, the confidence of the score-based
approach can be assessed. Therefore, we can provide decision support with a confidence
level to the DM. Recall that ¢;, is the net flow of solution a; in sample s. We can make
tests to see whether the net flows of solutions are significantly different based on the
ranking produced by the score-based approach. Let "¢ be the rank of solution a;

provided by the score-based approach. Steps of the confidence assessment are as follows.

1. Test the presence of difference between the means of net flows ¢, of all i with
ANOVA
2. If there is any significant difference
2.1. For every solution pair a; and ax where the "¢ < r*™
2.1.1. Use ¢;5 and @ samples to test the null-hypothesis Ho: ¢; > ¢, with the
significance level a using Tukey’s Test.

3. Prepare a summary table with the p-values of the pairwise comparisons according

to the ranking provided by the score-based approach.

This confidence assessment gives us a summary about the significant differences of
solutions in the order of the ranking provided by the score-based approach. This
assessment is advantageous since we cannot measure the insignificant difference between
solutions when we work with net flow values of a sample in classical PROMETHEE II.
Due to criteria weights, preference functions and threshold values, net flow values of a
sample are very case specific. Thus, it is not straightforward to determine a cut-off value
in net flows to determine classes of solutions that are significantly different from each
other. However, by conducting statistical tests that we mentioned, we can test for
significant differences between solutions. Therefore, the DM can be certain about the
accuracy of the ranking with significance level a. We illustrate this analysis in

computational experiments.

4.3. Probabilistic PROMETHEE

We also provide a third method of alternative assessment in addition to the previous test-

based and score-based approaches. This third method uses joint probabilities instead of
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sampling approaches to provide rankings based on PROMETHEE methodology. We refer
to this approach as the probabilistic PROMETHEE, and it works with joint probability
distributions of alternatives in each criterion. It proceeds by taking the sum of
probabilities where alternative i has better criterion values than alternative & for each
alternative pair (i,k) and each criterion. Then, it calculates a weighted score for each
alternative pair by using the importance weights of criteria to aggregate all scores. Finally,
using the mechanisms of PROMETHEE, it provides negative and positive flows to
perform both partial and complete alternative ranking as in the classical PROMETHEE
approaches. Instead of the preference functions of PROMETHEE, this approach uses the

probabilities of alternatives being better than the others.

Additionally, two different versions of this basic approach are proposed considering that
the DM can be interested in giving different preferences to different magnitudes of
difference in criteria values. The basic version of this approach gives equal importance to
all differences in criterion values. However, the second version defines a threshold value
to consider differences of alternatives as significant in accordance with the DM’s
preferences. For example, for an ordinal valued criterion, if the threshold value is 2 and
alternative i is better than alternative £ by 1 level in that criterion with a given probability,
then the method will ignore that probability. Finally, the third version specifically gives
different importance to each level of difference in criteria values. For instance, alternative
i can be better than alternative k by 2 levels and alternative / can be better than alternative
kby 1 level. In such a situation, the DM may prefer to treat alternatives i and / differently.
Therefore, the third version of the probabilistic PROMETHEE approach defines a

weighted probabilistic measure to rank alternatives.

Steps of the first version that we develop for ordinal-valued criteria are defined as follows:
1. Obtain joint probability ]le distributions of all alternative pairs (7,k) in each criterion j

2. In each criterion j, use joint probability distributions to calculate dominance score PL{C
of a; on ay, as follows:
2.1. For each criterion j where higher levels are preferable
Sum the joint probabilities where a; has higher levels than a,
2.2. For each criterion j where lower levels are preferable:

Sum the joint probabilities where a; has lower levels than a,
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3. Calculate weighted dominance scores M;, of alternative pairs (i,k) regarding all

criteria using (26) and create an outranking matrix with all dominance scores

n
My, = Z w;P] (26)
=1

4. Find negative, positive and net outranking values of each alternative i using (27), (28)

and (29)

o =) My @7)
k
07 = ) My (28)
k
— ot -
=@ — ¢ (29)

5. Obtain a partial or complete alternative ranking
5.1. To obtain a partial ranking, compare negative ¢; and positive ¢; outranking

values and conclude that
Alternatives a; and ay are indifferent if:
of = ¢ and @i = @)
Alternative a; is preferred to ax if one of the following conditions hold:
@ > @i and @7 < @
of > ¢y and @i = @i
oi = ¢ and 97 < @)
Alternatives a; and ay are incomparable if one of the following conditions hold:
oi > ¢ and @i > @i
¢ <oi andg; <@

5.2. To obtain a complete ranking, list alternatives in decreasing order of ¢; values

Let us use an example to explain the probabilistic PROMETHEE approach fully. Let ay,
a2 and a3 be three solution alternatives evaluated with two ordinal criteria and assume that
the first criterion has three levels and the second one has four levels. Also, assume that

higher levels of both criteria are preferable for the DM. For this example, weights of
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criterion 1 and 2 are taken as 0.4 and 0.6, respectively. Table 4.3, Table 4.4 and Table 4.5

report some of the joint probability distributions of alternative pairs.

Table 4.3. Joint probability distribution of alternatives 1 and 2 in the first criterion

az
Low Medium High
Low 0.07 0.04 0.09
a; | Medium | 0.13 0.08 0.18
High | 0.14 0.08 0.20

Table 4.4. Joint probability distribution of alternatives 1 and 2 in the second criterion

a2

Very Low Low Medium High
Very Low 0.04 0.03 0.08 0.07

Low 0.05 003 009  0.08
“'1 Medium 0.02 001 004 004
High 0.08 005 014 014

Table 4.5. Joint probability distribution of alternatives 2 and 3 in the second criterion

as
Very Low Low Medium High
Very Low 0.02 0.06 0.03 0.09

. Low 0.01 003  0.02  0.05
2| Medium 0.04 0.10 005 0.16
High 0.04 0.10 0.05 0.15

In Step 2, using joint probability distributions, dominance scores (Pl{() are calculated. In

our example, some Plfc scores using Table 4.3, Table 4.4 and Table 4.5 are calculated

below as examples.

Pl = 0.13 +0.14 + 0.08 = 0.35

Py, = 0.04 +0.09 + 0.18 = 0.31
PZ = 0.03 +0.08 + 0.07 + 0.09 + 0.08 + 0.04 = 0.39

P4 = 0.01 +0.04 + 0.10 + 0.04 + 0.10 + 0.05 = 0.34

In Step 3, the weighted dominance scores are found by weighing the Pl{c scores by criteria

weights. For instance, the weighted dominance score M, of a> over a; is found as below
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and the dominance matrix regarding weighted dominance scores of each alternative pair

is provided in Table 4.6.

M,y = (P3, *wq) + (P4 *w,) = 0.31% 0.4+ 0.39 % 0.6 = 0.36

Table 4.6. Dominance matrix

ap az as
ar | 0.00 035 034
az| 036 0.00 0.35
a3 | 034 0.37 0.00

Positive, negative and net outranking values of each alternative are calculated in Step 4
and reported in Table 4.7. According to these results, in both partial and complete
rankings a3 outranks a; and a>. In partial ranking, a; and a; are found as incomparable,
and in the complete ranking they are both placed on the second rank since their net

outranking values are equal.

Table 4.7. Probabilistic positive, negative and net outranking values of alternatives

ot 9 @
ar] 0.69 0.70 -0.01
az| 071 0.72 -0.01

a3 | 0.71 0.68 0.02

4.3.1. The Second Version of Probabilistic PROMETHEE: Defining Threshold
Values

In this version of the probabilistic PROMETHEE, a threshold value t/ is defined for each
desired criterion j according to the preferences of the DM. While dominance scores szc

are calculated, probabilities where alternatives have a difference of at least t/ levels are

included. This second version is similar to the basic version except for Step 2.

Let us explain this version using the same example. Assume that the threshold value is 2
for both criteria. Thus, the joint probabilities where alternatives have at least 2 level
differences on both criteria are considered. From Table 4.3, dominance score of a; over

a> on the first criterion, P, ,is found as 0.14 since just the probability where a; is on the
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high and a> is on the low level of the first criterion is considered. Similarly, other

dominance scores are updated below.

P}, = 0.09
P2 = 0.08 + 0.07 + 0.08 = 0.23
PZ = 0.04+ 0.04 +0.10 = 0.18

Again, the probabilities where a2 has medium or high values when a; has very low values
and the probabilities where a> has high values when a3 has low values on criterion 2 are
considered. Domination scores of each alternative pair are calculated similarly. All other
steps are same with the first version. Table 4.8 shows the dominance scores of each
alternative and Table 4.9 shows the outranking values of alternatives. In both partial and

complete ranking, a> is the best alternative and followed by a3 and a;, respectively.

Table 4.8. Dominance matrix calculated by the second version of probabilistic

PROMETHEE

o a az as
a; | 0.00 0.15 0.17
a;|0.17 0.00 0.17
a3 | 0.18 0.15 0.00

Table 4.9. Positive, negative and net outranking values of alternatives of the second

version of probabilistic PROMETHEE
ot 9~ @
a; | 0.31 035 -0.04

a;| 035 030 0.05
a3 | 033 034 -0.01

4.3.2. The Third Version of Probabilistic PROMETHEE: Defining Weighted
Probabilistic Scores

In this version, the aim is to differentiate between each level of difference in criteria. The
motivation is that, it may not be fair to evaluate alternative i, which is 3 levels better than

alternative j, in the same way as alternative /, which is better than alternative j by 2 levels.

Thus, we propose a weighted probabilistic score WPL{( instead of dominance score Pl{c

using (30). Let s; be the number of levels of criterion j and ]i];f is the sum of joint

probabilities of alternatives i and k& in criterion j where the criterion level difference
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between i and k is d. After WPL{( scores are calculated, weighted dominance scores M

are obtained using (31). The remaining steps of the process are similar to the previous

versions.
WA
WPy = =515~ (30)
d=1 d
n
M, = Z WP, w; (31)
j=1

In the same example, based on the probabilities in Table 4.3, weighted probabilistic score
WP}, of a; over a> in criterion 1 is calculated as below. Since criterion 1 has 3 levels

(s7=3), criterion level differences (d) can be 1 or 2.

wpl ~(0.134+0.08) *14+0.14%2 _ 0.49 016
1z = 142 142

Similarly, since criterion 2 has 4 levels (s2=4), the following formula gives the weighted

probabilistic score WPZ; of a> over a3 in criterion 2.

, _(0.0140.10+0.05) * 1+ (0.04 + 0.10) * 2+ 0.04 3 0.56
3 1+2+3 14243

Then, the same steps with the previous versions are applied with those new weighted
scores in order to construct the dominance matrix and hence, the final ranking. Table 4.10
and Table 4.11 show the results. Both partial and complete rankings give the same

ranking: a; is the best alternative and a; is the worst alternative.

Table 4.10. Dominance matrix calculated by the third version of probabilistic

PROMETHEE

ai az as
a; |1 0.00 0.12 0.13

az|0.12 0.00 0.13
a3 0.12 0.12 0.00
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Table 4.11. Positive, negative and net outranking values of alternatives of the third

version of probabilistic PROMETHEE
@ @ @
a; [ 025 024 0.01

a; | 025 025 0.00
a3 | 0.24 0.25 -0.01

+

In the basic version, a3 dominates the other two alternatives since all differences in criteria
values have equal importance. However, in the second version of the approach, when at
least 2 level difference is considered for criteria levels of alternatives, a2 achieves the first
rank, thus we conclude that a> has higher probabilities than a3 with at least 2 level
difference. This version can be applied where the DM wants to ignore insignificant
differences completely. Lastly, in the third version, a; outranks both a> and as since all
differences are weighted in accordance with the magnitude of the differences. When we
ignore the differences, which are less than 2, a> outranks a; but when we include lower
differences with lower weights as in the third version, a; outranks a>. Thus, we can
conclude that, if a DM who gives importance to any level of difference between
alternatives wants to highlight the alternatives which have higher probabilities for higher

differences, then the third version will be useful for decision support.
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S. COMPUTATIONAL STUDIES

To illustrate our test-based, score-based and probabilistic PROMETHEE approaches, we
use two different cases. One of them is a treatment selection case for a patient who is
suffering from shoulder pain. This case is used to assess the success of our approaches in
a medical problem. Since we have conducted this thesis as a part of a TUBITAK project,
we utilize the expertise of physiotherapists in the project to create the shoulder pain case.
The proposed approaches are agnostic to how probability distributions of criteria are
generated, hence they can work with probabilities generated by domain experts or
quantitative modelling approaches such as BNs. The first case study uses probability
distributions elicited from expert physiotherapists. The second case study is conducted to
test our approaches in an area apart from healthcare. It uses a BN model to compute the
posterior probability of criteria. We use the problem proposed by Kaya and Yet (2019) to
present another approach to a supplier selection problem. For this case, probability

distributions are obtained from a BN model generated by Kaya and Yet (2019).

For both treatment selection for shoulder pain and supplier selection cases, test-based,

score-based and probabilistic PROMETHEE approaches are tested.

5.1. Treatment Selection Case for Shoulder Pain

To test our approaches on a medical decision-making problem, we use a shoulder pain
case created by physiotherapists. A 32-year-old male is suffering from a recurrent
shoulder problem. He is a painter and decorator, but he is struggling to continue his job,
so he is worried about having a rest. According to his condition, eight treatment
alternatives are considered, these are NSAIDs (non-steroidal anti-inflammatory drugs),
using web-based advice sheets, physio rehab, injection, injection with physio rehab,
waiting and seeing, surgery, and physio rehab with surgery. These treatments are
evaluated with eight criteria: discomfort caused by treatment, improvement in functional
ability, improvement in pain, psychosocial improvement, recovery time, side effects, time
spent for treatment and waiting time to receive treatment. Also, there is another criterion
that can be considered in a similar problem called quality adjusted life year (QALY). It

is included in medical problems recently, but we cannot use that criteria in our case since
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it is not possible to generate probability distributions for QALY with experts. Since the
treatment results cannot be known before the treatments are applied, we work with
probabilistic values on criteria. In the case of using a BN model for this case, the only
requirement to obtain probability distributions would be to enter patient-based data such
as age, gender, test and evaluation results and medical history to the BN model. Then, the
BN model would calculate the probability distributions of alternatives in each criterion.
In our application, we derive probability distributions of alternatives in each criterion
based on the expert information given by physiotherapists. Table 5.1 shows probability
distributions of treatments in each criterion. Levels of waiting time, time spent and
recovery time criteria are derived from the time intervals provided by the experts. Levels
of the remaining criteria are supplied by the experts according to their usual clinical
practice. We represent levels of all criteria with linguistic terms for simplicity. All criteria
have different number of levels that can come from N-None, VL-Very Low, L-Low, L-
M - Low-Medium, M—Medium, H-High, VH—Very High. The levels with asterisk
symbols represent the best level of each criterion. Preference functions and corresponding
threshold values are reported in Table 5.3. The thresholds represent the required level of
difference for strict preference in the criteria with Type III preference function. For
instance, since the threshold value of side effects criterion is two, at least a two level
difference is required for strict preference for this criterion such as N vs. M, L vs. H, or
N vs. H. Any level of difference on criteria with Type I function is accepted to cause strict
preference. We determined preference functions and threshold values with the experts
considering sensible levels of differences in criteria that would induce partial and strict
preference. These functions can be easily updated for different clinicians and patient
types. To follow treatment names easily, abbreviations in Table 5.2 are used in the rest of

the thesis.
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Table 5.1. Probability distributions of each treatment on each criterion

Improvement in . . . Psychosocial
Functional Ability Improvement in Pain Discomfort Tmprovement
Treatment
Alternatives H* M L H* M L L* M H H* M L
NSAIDs 0399 0577  0.024 | 0226 0601  0.173 | 0.630 0370 0000 | 0.000 0370  0.630
WepAdvice 0028 0598 0374 | 0352 0567 0081 | 1.000  0.000 0000 | 0.005 0315  0.680
PhysioRehab  0.630  0.370  0.000 | 0450  0.532  0.018 | 0326  0.636 0038 | 0.622 0358  0.021
Injection 0.000 0447 0553 | 0794 0205 0001 | 0226  0.601  0.173 | 0.149  0.594  0.256
pectionand 0696 0301 0003 | 0826  0.73 0001 | 0326 0636 0038 | 0757 0241  0.002
ysio Rehab
WaitandSee  0.092 0553 0355 | 0.004 0744 0252 | 0748 0252  0.000 | 0.001  0.193  0.806
l,sll“‘%“y and 0.702  0.298  0.000 | 0.001 0205  0.794 | 0.000 0204 0796 | 0334 0618  0.048
ysio Rehab
Surgery 0.000 0447 0553 | 0002 0280 0718 | 0.002 0260 0738 | 0.091  0.647  0.262
Recovery Time Waiting Time
reatment VL* L L-M M H VH VL* L L-M M H VH
ernatives
NSAIDs 0289  0.698 0013 0000 0000 0000 | 0041 0432 0472  0.054  0.001  0.000
WebAdviee 0187 0784 0029 0000 0000 0000 | 0907 0093 0000 0000  0.000  0.000
PhysioRehab  0.668 0331  0.001  0.000  0.000  0.000 | 0.000 0003 0224 068  0.091  0.000
Injection 0.001 0328  0.662 0010 0000 0000 | 0000 0011 0391 0565 0033  0.000
pectionand 0607 0392 0.001 0000 0000 0000 | 0.000 0000 0004 0290  0.644  0.062
ysio Rehab
WaitandSee  0.189  0.647  0.16]  0.002  0.000  0.000 | 0334 0618 0048  0.000  0.000  0.000
Pslfrg,“y and 0.000  0.000  0.00 0289  0.698  0.013 | 0.000  0.000  0.000  0.00  0.140  0.860
ysio Rehab
Surgery 0.000  0.000  0.002 0629 0369  0.000 | 0.000  0.000 0000 0000 0223  0.777
Side Effects Time Spent
Treatment
reaument N L M H VL* L LM M H VH
NSAIDs 0019  0.172 0453 0356 | 0001 038  0.603 0006 0000  0.000
WepAdvice 0830 0170 0.000 0000 | 0.607 0392 0001  0.000 0000  0.000
PhysioRehab  0.380  0.606  0.014  0.000 | 0.000 0001 0369  0.623  0.007  0.000
Injection 0.123  0.655 0218 0004 | 0289  0.698 0013 0000  0.000  0.000
pjectionand 0308 0.670  0.022 0000 | 0.000 0000 0067 0653 0276  0.004
ysio Rehab
WaitandSee  0.840  0.158  0.001  0.000 | 0028 0539 0422 0012  0.000  0.000
Psh“rg."y and 0.000  0.003 0285  0.712 | 0.000  0.000  0.000 0048  0.618  0.334
ysio Rehab
Surgery 0.000  0.001  0.170  0.830 | 0.000  0.000 0000 0001 0392  0.607
Table 5.2. Treatment representations
Treatment Alternatives Representations
NSAIDs T1
Web Advice Sheet T2
Physio Rehab T3
Injection T4
Injection with Physio Rehab T5
Wait and See T6
Surgery with Physio Rehab T7
Surgery T8
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Table 5.3. Preference functions and thresholds of criteria for treatment selection

Imp. . . . o
Criteria Discomfort Func in Psychosocial Recpvery Side Time ngtmg
Ability Pain Imp. Time Effects Spent Time
Preference I I I 11 11 il il I
Function
Threshold _ _ _ _
Value ) ) i p=2 p=3 p=2 p=3 i

Since this treatment selection problem has patient-based solutions, criteria have different
weights for different patients. Also, it is repeated several times in a day for different
patients, so an easy weight elicitation method is more appropriate than a method that
requires several pairwise comparisons like AHP. Therefore, we used ROC approach to
derive weights in this case and they are confirmed by the domain experts. Criteria weights
are reported in Table 5.4. 100 samples are generated from probabilities given in Table
5.1. The following sections report the results of the test-based, score-based and

probabilistic PROMETHEE approaches for the shoulder pain case.

Table 5.4. Criteria weights derived by ROC for treatment selection

. ) Functional Imp.in  Psychosoc Recovery Side Time  Waiting
Criteria | Discomfort . ) . .
Ability Pain Imp. Time Effects Spent Time
Weights ‘ 0.111 0.340 0.152 0.079 0.033 0.215 0.016 0.054

Results of our approaches can be used by both clinicians and patients. If the criteria
ranking is determined by the collaboration of the clinician and the patient, approaches are
expected to provide more satisfactory results due to the advantages of shared decision

making.

5.1.1.Results of the Test-based Outranking Approach for Shoulder Pain
Following the steps given in Section 4.1, ;. and @;; values are calculated and ANOVA

test is conducted to find out if means of positive flows (p_;" and negative flows ¢; are
significantly different or not for at least one treatment. Table 5.5 reports the results of
ANOVA tests for both positive and negative flows of treatments. Since the p-values are

less than the significance level a=0.05, we reject both null hypotheses below.
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Ho+:(p1 (,02 4’3 ®i= ‘Ps 906 7= ‘Ps

Hy: =0, =03= 0= P5=Pg = 97= Qg

Thus, we can say that at least one treatment exists whose mean positive flow and mean

negative flow are significantly different from those of other treatments.

Table 5.5. ANOVA results for means of positive and negative flows for treatment

selection
Source Df SumSq. MeanSq. FValue P Value
Positive flows | Treatments | 7 663.6 94.8 232.5 <2e’'¢
Residuals | 792 323.0 0.4
Negative flows | Treatments | 7 954.1 136.3 305.7 <2e’'¢
Residuals | 792 353.2 0.5

In order to identify which treatment pairs are significantly different, we continue with
post-hoc analysis. Tukey’s Test with %95 confidence level is conducted for the following

null hypotheses for all treatment pairs.

Testl. ,,+ — ,,+
Hy P = Pr
Test2. ,,— — ,,—
Ho ™" @y = @y

The results for positive and negative flows are reported in Table 5.6 and Table 5.7,
respectively. Tables show the mean difference between treatment pairs and corresponding
confidence intervals. The differences are calculated with the treatment in the row minus
the treatment in the column and the asterisk symbol represents that the corresponding p-
value is less than 0.05. Analyzing confidence intervals, treatment pairs which are not
significantly different can be observed, for example T2-T1 cell in Table 5.6 shows that
although mean positive flow of Treatment 2 is higher than that of Treatment 1 by 0.14, it
is not a significant difference since the confidence interval includes 0 and thus, p-value is
greater than 0.05. So, we fail to reject the null hypothesis that Hy ™! o = ¢3. Also,
we can see that mean positive flow of Treatment 3 is significantly higher than that of
Treatment 1 in T3-T1 cell in Table 5.6. The same cell in Table 5.7 shows that the mean

negative flow of Treatment 3 is significantly lower than that of Treatment 1 this time,

thus we conclude that Treatment 3 outranks Treatment 1.
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Table 5.6. Tukey's Test results for positive flows of treatments

Tl T 3 T4 TS 6 7 T8
Tl -
(-0.14,0.41)
2 0.14 i
13 (066121)  (0.53;1.08)
0.94* 0.80*
Tty (066:0.11)  (-0.80;-025)  (-1.60;-1.05) )
-0.39* -0.52% -1.32%
s (083138)  (0.69:124)  (0.11:044)  (122;1.77) )
1.10% 0.97* 0.17 1.49%
16 (067:0.12)  (080:025)  (-1.61:-1.06)  (-028027)  (-1.77:-1.22) )
-0.39* -0.53* -1.33% -0.01 -1.50%
Ty (103:048)  (L17:0.62)  (197:142)  (-0.65-0.10)  (2.14-1.59)  (-0.64:-0.09)
-0.76* -0.90* -1.70% -0.37* -1.86* -0.37*

Tg  (224-169)  (237-183)  (318:2.63)  (-185-130)  (334279)  (-1.85-130)  (-148:-093)
-1.96* -2.10% -2.90% -1.58* -3.07* -1.57* -1.20%
Table 5.7. Tukey's Test results for negative flows of treatments

Tl T2 3 T4 TS T6 7 T8
Tl -
(-0.25:0.33)
2 0.04 -
3 (1.07:049)  (-111:0.53)
-0.78* -0.82* )
ma  (030:087) (0.26:0.83)  (1.08;1.65)
0.59* 0.55* 1.37* )
15 (112055 (116:059)  (034023)  (-1.71:-1.13) )
-0.84* -0.87* -0.05 -1.42%
16 (0.19:0.76) (0.150.72)  (0.97;1.54)  (-040,0.18)  (1.02;1.60)
0.47% 0.44* 1.26% -0.11 131 ;
o (L15173) (L11:1.69)  (1.93;251)  (0.57;1.14)  (1.99;2.56)  (0.68;1.25)
1.44% 1.40% 2.22% 0.85* 2.27* 0.97*
g (2:40:297) (2362.94)  (3.183.76)  (1.81;239)  (3.23:3.81)  (1.93;250)  (0.96;1.53)
2.69* 2.65* 3.47% 2.10% 3.52% 221% 1.25% ;

According to the test-based approach, the outranking relations of treatments are shown in
Figure 5.1. According to the results, the best treatment alternatives for this patient are

Treatment 3 and 5 (Physio Rehab and Injection with Physio Rehab) and the worst one is
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Treatment 8 (Surgery). There is indifference between some treatment pairs: Treatment 3
and 5, Treatment 1 and 2, and Treatment 4 and 6. Physiotherapists may select Treatment
5 or 3 as the best treatment based on the preference of the patient. Treatment 1 or 2 are

placed on the second-best rank. They are followed by Treatment 4 and 6.

Figure 5.1. Outranking relation of treatments with the test-based approach

5.1.2.Results of the Score-based Outranking Approach for Shoulder Pain

To apply the score-based approach to the shoulder pain case, the steps mentioned in
Section 4.2 are followed. After ¢;¢ values are calculated for each treatment and sample s,
treatment rankings are generated in the descending order of ¢;; values for each s. To
prioritize ranks, three weighting methods are applied: RS, ROC and RR. The detailed
explanations of these methods are discussed in Section 3.2.1.2. Table 5.8 shows the rank
weights required to calculate weighted scores 6; of treatments. The last three columns

include the weights that are derived considering only the first three ranks.

Table 5.8. Rank weights for RS, ROC and RR approaches for treatments

W(RS) W(ROC)  W(RR)

Rank (t) W«(RS) W(ROC) Wi«(RR)  first 3 ranks first 3 ranks first 3 ranks
1 0.222 0.340 0.368 0.500 0.611 0.545
2 0.194 0.215 0.184 0.333 0.278 0.273
3 0.167 0.152 0.123 0.167 0.111 0.182
4 0.139 0.111 0.092 0.000 0.000 0.000
5 0.111 0.079 0.074 0.000 0.000 0.000
6 0.083 0.054 0.061 0.000 0.000 0.000
7 0.056 0.033 0.053 0.000 0.000 0.000
8 0.028 0.016 0.046 0.000 0.000 0.000

Then, probabilities of each treatment occupying each rank are calculated and reported in
Table 5.9. Also, the graphical summary of treatment rankings with cumulative

distribution F., (x) is shown in Figure 5.2.
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Table 5.9. Probabilities of treatments for occupying each rank

Rank T1 T2 T3 T4 T5 Té6 T7 T8
1 0.110 0.040 0.380 0.020 0.440 0.010 0.000 0.000
2 0.100 0.140 0.320 0.040 0.360 0.040 0.000 0.000
3 0.140 0.330 0.140 0.160 0.110 0.120 0.000 0.000
4 0.270 0.210 0.100 0.150 0.060 0.190 0.020 0.000
5 0.190 0.180 0.040 0.170 0.020 0.270 0.110 0.020
6 0.110 0.030 0.020 0.300 0.010 0.200 0.320 0.010
7 0.080 0.070 0.000 0.140 0.000 0.160 0.490 0.060
8 0.000 0.000 0.000 0.020 0.000 0.010 0.060 0.910
1,1
1
0,9 ——T1
0,8 ——T2
0,7 T3
" 06 T4
et
0,5
R —}—T5
0,4
—T6
0,3
—_T7
0,2
—— T8
0,1
0
0 3 4 5 6 7

Possible Ranks (x)

Figure 5.2. Cumulative probability plots of treatments

The complete treatment ranking obtained using ROC weights for ranks is illustrated in

Figure 5.3. Treatment 5 (Injection with Physio Rehab) is the best alternative, followed by

Treatment 3 (Physio Rehab). In Table 5.9, it is seen that these two treatments have the

highest probabilities to occupy the first rank. However, although Treatment 1 has higher

probability than Treatment 2 for the first rank, Treatment 2 outranks Treatment 1 in

overall since Treatment 2 achieves higher probabilities for second and third ranks.

Analyzing Figure 5.2, it is seen that Treatment 4 and 6 are close to each other. Until the

fourth rank, Treatment 4 has higher probabilities, then Treatment 6 closes this difference
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and performs better in lower ranks. However, since the first ranks have higher weights,
Treatment 4 outranks Treatment 6. The best and worst alternatives are the same with the
result of the test-based approach. The treatments with indifference relationship in the test-
based approach such as Treatments 5 and 3, Treatments 2 and 1, and Treatments 4 and 6

are now fully ranked in the score-based approach.

OpOnOnORORORORO

Figure 5.3. Outranking relations of treatments in the score-based approach using ROC

weights

Weighted scores and rankings of treatments according to the three rank weighting
approaches are reported in Table 5.10 and Table 5.11. In Table 5.10, it is assumed that
the DM considers all possible ranks, but in Table 5.11, it is assumed that the DM considers

only the first three ranks.

Table 5.10. 0; scores and final rankings of treatments when all ranks are considered

Rank | Treatment 0; (RS) | Treatment 6; (ROC) | Treatment 0; (RR)
1 T5 0.1975 T5 0.2523 T5 0.2492
2 T3 0.1900 T3 0.2344 T3 0.2292
3 T2 0.1467 T2 0.1354 T1 0.1258
4 T1 0.1394 T1 0.1337 T2 0.1190
5 T6 0.1122 T4 0.0911 T4 0.0873
6 T4 0.1119 T6 0.0891 T6 0.0842
7 T7 0.0706 T7 0.0457 T7 0.0581
8 T8 0.0317 T8 0.0184 T8 0.0471

If the DM is risk-averse and wants to consider the performances of treatments in all ranks,
then results in Table 5.10 can be used. For all weighting approaches, Treatments 5
(Injection with Physio Rehab) and 3 (Physio Rehab) are the two best treatments and they
are followed by Treatments 2 and 1. In the rankings of both RS and ROC approaches,
Treatment 2 outranks Treatment 1. However, in the ranking of RR, Treatment 1 outranks
Treatment 2 since the weight of the first rank is much higher than the weight of second
rank in RR and Treatment 1 has higher probability for the first rank. On the other hand,
in both ROC and RR approaches this time, Treatment 4 outranks Treatment 6, but in RS

approach, Treatment 6 outranks Treatment 4. The reason is that RS assumes equal
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distances between all consecutive weights while ROC and RR approaches assume larger
differences between first ranks. Treatment 4 has higher probabilities than Treatment 6 for
the first ranks so, Treatment 4 outranks Treatment 6 using RR and ROC approaches but
cannot outrank using RS. Additionally, the worst alternatives, Treatments 7 and 8 are the

same for all weighting approaches.

Table 5.11. 6; scores and final rankings of treatments when the first three ranks are

considered
Rank | Treatment 0; (RS) | Treatment 0; (ROC) | Treatment 0; (RR)
1 T5 0.3583 T5 0.3811 T5 0.3582
2 T3 0.3200 T3 0.3367 T3 0.3200
3 T2 0.1217 T1 0.1106 T2 0.1200
4 Tl 0.1117 T2 0.1000 T1 0.1127
5 T4 0.0500 T4 0.0411 T4 0.0509
6 T6 0.0383 T6 0.0306 T6 0.0382
7 T7 0.0000 T7 0.0000 T7 0.0000
8 T8 0.0000 T8 0.0000 T8 0.0000

On the other hand, for a risk-seeking DM, Table 5.11 can be used since it calculates the
weighted scores of treatments considering just the first three ranks. Again, for all
weighting approaches, Treatment 5 and 3 are the best options. They are followed by
Treatments 2 and 1 in RS and RR approaches while Treatment 1 outranks Treatment 2 in
ROC approach. When we analyze Figure 5.2, we see that Treatment 1 has higher
probability for the first rank but Treatment 2 closes the difference and outranks Treatment
1 when they come to the third rank since Treatment 2 has higher probabilities for the
second and the third ranks. In ROC approach, Treatment 1 outranks Treatment 2 with a
small difference since weight of the first rank is much higher than the second and the third
ranks. Meanwhile, in RS and RR approaches, the reverse is obtained since the differences
between first three ranks are much lower than ROC. Finally, the last four treatments are

the same for all weighting approaches.

As discussed in Section 4.2.1, to test the confidence of the treatment ranking provided by
the score-based approach in Figure 5.3, ANOVA test and Tukey’s Test are conducted.
ANOVA results in Table 5.12 shows that at least one treatment in the ranking is
significantly different from other treatments. To test the significance of difference

between consecutive treatments in the ranking list, results in Table 5.13 are analyzed.
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Table 5.12. ANOVA results for means of net flows for treatment selection

Source | Df Sum Sq. Mean Sq. F Value P Value
Treatments 7 3185 455 331.2 <2e-16
Residuals 792 1088 1.4

Table 5.13. Tukey's Test results for net flows of treatment pairs

Tl T2 T3 T4 TS T6 T7 T8
T1
(-0.41;0.60)
T2 0.10
1.22;2.22 1.12;2.13
T3
1.72% 1.62%
g (148:047)  (15T-0.57)  (:3.20:-2.19)
20.97* 1.O7* 2.69%
s (1442.44) (134:235)  (-0.28,0.72)  (2.41;3.42)
1.94% 1.84% 0.22 291%
16 (C137:0.36)  (-147::046)  (:3.09::2.08)  (-0.40:0.61)  (-3.313-2.30)
0.87* 20.97* 2.59% 0.10 2.81*
17 (270:170)  (280:-179) (442341 (173:0.72)  (4.64:-3.63)  (-1.83:-0.83)
2.20% 2.30% 3.92% 1.23% -4.14% 1.33*
g (SISAIS)  (525424)  (687-587)  (4I8:3.17)  (-7.09:6.09)  (-4.29:328)  (-2.96:-195)

-4.65% -4.75% -6.37* -3.68% -6.59% -3.78% -2.45%

Tukey’s Test results in Table 5.13 show that some consecutive treatment alternatives in
the ranking provided in Figure 5.3 are not significantly different such as Treatments 1 and
2, Treatments 3 and 5, and Treatments 4 and 6. With the score-based approach, a complete
ranking is provided for the DM. But if the DM does not necessarily require a complete
ranking, some insignificant outranking relations may be eliminated using the confidence

test.

5.1.2.1. Sensitivity Analysis on Criteria Weights for Shoulder Pain

Because the output of our approaches, as in many MCDM methods, depends on the
weights of criteria, we also make sensitivity analysis to see how our results are affected
with changes in weights and whether they are robust to small changes. For the score-
based approach, we conduct sensitivity analysis to determine allowable ranges for criteria
weights for the results to remain stable. We use the weight stability intervals procedure

by Mareschal (1988) for this task by modifying it to be applicable with uncertain criteria
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evaluations. The weight stability intervals procedure is developed to find intervals for
criteria weights so that the given ranks of solutions according to additive utility functions
do not change, and it can be applied with PROMETHEE II scores. It uses the differences
in criteria values between successive solutions in the rank list to find these intervals. The
intervals represent the changes that can be made to a single criterion while the others are
kept constant (but normalized to ensure the summation of weights is still one). Interested
readers can consult Mareschal (1988) for the details of the procedure. We can only make
use of it for the score-based approach since our other approaches do not use scores
compatible with this analysis. In the next case study of supplier selection, we make further
sensitivity analysis for all of our approaches by changing the AHP weights with ROC

weights and comparing the results.

The weight stability intervals procedure can only work with certain criteria evaluations
in a single sample, so we need to enhance it to work under uncertainty in the score-based
approach. Using the procedure in Mareschal (1988), we construct the interval of each
criterion weight in each sample. Each sample produces its separate ranking of solutions,
so we arrive at 100 intervals for each criterion weight. Now these intervals need to be
aggregated into an overall interval for each criterion, but this is not straightforward.
Taking the tightest interval among all samples is not suitable as some intervals can be
very narrow, and some can even consist of only the original weight. As a result, we
propose to form the overall intervals of the weights with the values that appear in at least
a given percentage of all samples. Since all the intervals in the samples are formed around
the original weights, these original weights appear in 100% of the intervals. As we move
away from the original weights, the percentage of samples that contain the value in
consideration gets smaller. In line with the logic of confidence intervals, we use 95% as
the cut-off value. Taking ROC weights given in Table 5.4 as the original weights, Table
5.14 reports the resulting aggregated intervals we obtain. We argue that, as long as the
weights are changed within these intervals, we can be 95% confident that the ranking list
of PROMETHEE II will not change. This in turn will ensure that the scores of the score-
based approach will not change. The results in Table 5.14 suggest the weights of
functional ability and improvement in pain should be set carefully since they have
relatively narrow ranges. On the other hand, the ranking list is not so sensitive to changes

in the weights of other criteria, so uncertainties in those areas can be tolerated better.
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Table 5.14. Weights stability intervals for ROC weights

Criteria ROC Weight Weight Stability Interval
Discomfort 0.111 [0.096 — 0.236]
Functional Ability 0.340 [0.301 —0.375]
Improvement in Pain 0.152 [0.129 — 0.272]
Psychosocial Improvement 0.079 [0.000 — 0.240]
Recovery Time 0.033 [0.000 — 0.394]
Side Effects 0.215 [0.000 — 0.228]
Time Spent 0.016 [0.000 —0.292]
Waiting Time 0.054 [0.000 —0.188]

5.1.3.Results of Probabilistic PROMETHEE Approach for Shoulder Pain

Using the rules explained in Section 4.3, we perform three experiments regarding three
versions of the approach. The first version of the approach provides the outranking values
in Table 5.15. These relations result in the same ranking of treatments for both
PROMETHEE I and II rules; there are no indifference relations between treatment pairs
when we consider positive and negative flows simultaneously. The resulting ranking is

shown in Figure 5.4.

Table 5.15. Outranking values by the first version of probabilistic PROMETHEE

+

@ @ U
T1 NSAIDs 2.468 | 2.360 | 0.108
T2 Web Advice Sheet 2.964 | 1.904 | 1.060
T3 Physio Rehab 3.594 | 1.242 | 2.352
T4 Injection 2.204 | 2.824 | -0.620
TS Injection with Physio 3.816 | 1.164 | 2.652
T6 Wait and See 2.625 | 2.227 | 0.398
T7 Surgery with Physio 1.844 | 3.491 | -1.647
T8 Surgery 0.517 | 4.820 | -4.303

OpOnOnORORORORO

Figure 5.4. Ranking of treatments by the first version of probabilistic PROMETHEE

Treatment 5 is the best option for the patient, followed by Treatment 3 and 2, whereas the

worst one is again Treatment 8.
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In the second version of the problem, we determine the threshold value as 2 for side
effects, recovery time and time spent for treatment. It means that in these criteria, at least
2 level difference between treatments is considered. Otherwise, the joint probability of
these treatment pairs is assumed as 0. Table 5.16 lists the positive, negative and net flows
of each treatment and Figure 5.5 illustrates the complete ranking of treatments which is
again the same for PROMETHEE I and II rules. Treatments 5, 3 and 2 are the best three
alternatives for the second version too, and the positions of the worst treatments,
Treatments 4, 7 and 8, are similar to the first version as well. The only difference of the
second version from the first version of the probabilistic PROMETHEE is the relation
between Treatments 1 and 6. This time, Treatment 1 outranks Treatment 6. Therefore, we
conclude that Treatment 6 is better than Treatment 1 with small differences in the first
version of the approach, since when a threshold value of 2 is defined in the second

version, Treatment 1 provides better results than Treatment 6.

Table 5.16. Outranking values by the second version of probabilistic PROMETHEE

+

U p_ @
T1 NSAIDs 2.220 | 1.933 | 0.287
T2 | Web Advice Sheet | 2.455| 1.793 | 0.662
T3 Physio Rehab 3.199 1 0.923 | 2.276
T4 Injection 1.889 1 2.314 | -0.425
T5 | Injection with Physio | 3.443 | 0.802 | 2.641
T6 Wait and See 2.118 | 2.101 | 0.017
T7 | Surgery with Physio | 1.760 | 3.165 | -1.405
T8 Surgery 0.461 | 4.514 | -4.053

OROnOnORORORORO

Figure 5.5. Ranking of treatments by the second version of probabilistic PROMETHEE

Table 5.17 provides outranking values of each treatment alternative performed by the
third version of the probabilistic PROMETHEE, and these values are used to create partial

and complete rankings as shown in Figure 5.6 and Figure 5.7, respectively.
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Table 5.17. Outranking values by the third version of probabilistic PROMETHEE

+

@ p_ @
T1 NSAIDs 0.862 | 0.778 0.084
T2 | Web Advice Sheet 0.996 | 0.762 0.234
T3 Physio Rehab 1.344 | 0.324 1.020
T4 Injection 0.739 | 0.999 -0.260
TS5 | Injection with Physio | 1.493 | 0.279 1.214
T6 Wait and See 0.847 | 0.876 -0.029
T7 | Surgery with Physio | 0.769 [ 1.293 -0.524
T8 Surgery 0.163 | 1.903 -1.740

Figure 5.6. Partial ranking of treatments by the third version of probabilistic

PROMETHEE

OO0 OLOROROR0O

Figure 5.7. Complete ranking of treatments by the third version of probabilistic

PROMETHEE

It is seen that the rankings in Figure 5.6 and Figure 5.7 do not conflict but the partial
ranking shown in Figure 5.6 differs by the incomparability relation of Treatments 7 and
4. All other outranking relations are mutual for both partial and complete ranking.
Treatments 5, 3, and 2 are still the best alternatives as in previous approaches. Treatment
8 is still the worst alternative. When a complete ranking is required by the DM, Figure
5.7 can be used. On the other hand, based on the preferences of the DM or the patient,

Treatment 7 can be considered instead of Treatment 4 using Figure 5.6.

If we compare the third version of the approach with other versions, we can report that
the best three treatments and the worst treatment are the same. Also, when higher weights
are defined for higher level differences on criteria, complete ranking gives the same result
with the second version of the approach. For instance, in the results of both versions,
Treatment 5 performs better than Treatment 3 and Treatment 1 has better results than

Treatment 6 with higher level differences. Thus, it can be deduced that outranking
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relations in the second version of the approach are already caused by high differences in

criteria.

Our results are validated by the physiotherapists in the project. The resulting rankings are
compatible with their experiences and expectations. They also expressed that our methods
offer the advantages of summarizing the performance of alternatives in different criteria

and considering preferences about different criteria explicitly.

5.2. Supplier Selection Case

Since supplier selection is a widely studied MCDM problem in the literature (see Chai,
Liu and Ngai, 2013; Govindan et al., 2015; Zimmer, Frohling and Schultmann, 2016 for
reviews of decision analysis and MCDM models in supplier selection) we prefer to apply
our approaches in this area too. Besides, this case has an available BN. The BN model of
Kaya and Yet (2019) evaluates suppliers based on seven criteria: product quality, cost,
delivery performance, quality system certifications, flexibility, cooperation, and
reputation. Cost and quality system certifications criteria can be observed before working
with suppliers; thus, they have deterministic values on these criteria. On the other hand,
the other five criteria cannot be known with certainty beforehand, so suppliers have
probabilistic values on these five criteria and the BN can estimate the related probabilities
based on past data and evidence. All criteria have five ordinal states: VL-very low, L-
low, M — medium, H — high and VH — very high. We use the BN model to generate data
for ten different suppliers. Table 5.18 shows the probability distributions of each criterion

for each supplier.
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Preference functions of criteria, threshold values and criteria weights are determined with
the domain expert in supplier selection in Kaya and Yet (2019). Table 5.19 shows the
functions and threshold values. Since the threshold value of flexibility criteria is two, at least
a two level difference is required for strict preference for this criterion such as VL vs. M, L
vs. H, M vs. VH, VL vs. H, L vs. VH, or VL vs. VH. For the quality system certificates
criterion, only two or higher level differences are accepted for strict preference. For Type |

preference functions, any level of difference is enough for strict preference between two

solutions.
Table 5.19. Preference functions and thresholds of criteria
Product Deli lit
Criteria © 1,10 0s cvery Quality Flexibility Cooperation Reputation
Quality Perf. Syst. Cert.
Preference
. I I 111 11 111 111 I
Function Type
Threshold Value - - p=3 q=1 p=2 p=2 -

In this case, criteria weights are determined once, so we have the opportunity to use a more
detailed approach for weight elicitation. Criteria weights are determined using AHP based
on the comparisons of the domain expert. The resulting weights are given in Table 5.20. The
consistency of comparisons is found as 0.051. In Section 5.2.4, we also check the results

with ROC weights.

Table 5.20. Criteria weights by AHP

Product Deli lit
Criteria er(l)a lllltcy 0s ;:r/;ry S)?ST.aCleyrt. Flexibility Cooperation Reputation
Weights 0.356 0.231  0.230 0.075 0.032 0.042 0.034

100 random samples are generated from the BN model. The samples represent the data
available for criteria evaluations of suppliers. The following sections present the results of

the test-based, score-based and probabilistic PROMETHEE approaches.

5.2.1.Results of the Test-based Outranking Approach for Supplier Selection

Results in Table 5.21 show that there is at least one supplier whose positive and negative

flows are both significantly different from other suppliers since the null hypotheses Ho: az
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‘Pz ‘P3 ‘P4 905 ‘Ps ‘P7 ‘Ps (P9 ‘P10 and Ho: @1 = @;= ¢p3= @, = ‘Ps =5 = Q7=

®g = @g = @1, are rejected because p-values are less than the significance level a= 0.05.

Table 5.21. ANOVA results for the means of positive and negative flows of suppliers

Source Df SumSq. MeanSq. F Value P Value
Positive flows | Suppliers | 9 461.1 51.24 88.18 ¢!t
Residuals | 990 575.3 0.58
Negative flows | Suppliers | 9 340.9 37.87 81.51 el
Residuals | 990 460.0 0.46

In the next step, to identify specifically which supplier pairs are significantly different,
Tukey’s test with %95 confidence level is conducted for the following null hypotheses for

all supplier pairs (i,k).

Testl. .+ _ ,,+
Ho ™" @) = g
Test2. — — ,,—
Ho™ ™" @ = @y

Table 5.22 and Table 5.23 show the results of the test for positive and negative flows of
pairs, respectively. As in the shoulder pain case, the tables report the mean difference
between pairs and the corresponding confidence intervals, also asterisk symbols represent
that the p-value is less than 0.05. We can see null hypothesis of which supplier pair is
rejected. For example, S2 — S1 cell of Table 5.22 reports that mean positive flow of S2 is
significantly higher than the mean positive flow of S1. Also, the same cell in Table 5.23
shows that the mean negative flow of S2 is significantly lower than the mean negative flow
of S1. Thus, we conclude that S2 outranks S1. Analyzing the results of all supplier pairs in
Table 5.22 and Table 5.23 using the same approach discussed in the previous case study, a

relation diagram is constructed as in Figure 5.8.
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According to the results in Figure 5.8, Supplier 2 and Supplier 6 are the best alternatives
since they are not outranked by any supplier. They are followed by Supplier 3 and 8.
Suppliers 1, 4, 5 and 9 are the next group of alternatives. They are followed by Supplier

7 and then the worst alternative, Supplier 10.

Figure 5.8. Outranking relation of suppliers for test-based outranking approach

5.2.2.Results of the Score-based Outranking Approach for Supplier Selection

After ;¢ values are calculated for each alternative i and sample s, supplier rankings are
generated in the descending order of ¢;¢ values for each s. Table 5.24 reports the rank
weights derived by RS, ROC and RR approaches. The last three columns show the
weights when just first three ranks are considered by the DM.

Table 5.24. Rank weights derived by RS, ROC and RR for supplier selection

W(RS) W(ROC) W(RR)

Rank (t) Wt(RS) Wt(ROC) Wt(RR) first 3 ranks first 3 ranks first 3 ranks
1 0.182 0.293 0.341 0.500 0.611 0.545
2 0.164 0.193 0.171 0.333 0.278 0.273
3 0.145 0.143 0.114 0.167 0.111 0.182
4 0.127 0.110 0.085 0.000 0.000 0.000
5 0.109 0.085 0.068 0.000 0.000 0.000
6 0.091 0.065 0.057 0.000 0.000 0.000
7 0.073 0.048 0.049 0.000 0.000 0.000
8 0.055 0.034 0.043 0.000 0.000 0.000
9 0.036 0.021 0.038 0.000 0.000 0.000
10 0.018 0.010 0.034 0.000 0.000 0.000
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In the next step, F,(x) and 6; for each supplier i are calculated. Table 5.25 reports the

rank probabilities of suppliers and Figure 5.9 shows a graphical summary of supplier

rankings based on cumulative distributions F., (x).

Table 5.25. Probabilities of the suppliers occupying each rank

Rank S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
0.000 0.400 0.060 0.020 0.030 0.480 0.000 0.010 0.000 0.000
0.050 0.230 0.230 0.060 0.060 0.200 0.000 0.150 0.020 0.000
0.070  0.080 0.170 0.090 0.110 0.030 0.040 0320 0.090 0.000
0.090 0.020 0.120 0.120 0.040 0.040 0.050 0350 0.170 0.000
0.090 0.050 0.170 0.190 0.010 0.070 0.150 0.080 0.180 0.010
0.300 0.080 0.120 0.110 0.050 0.040 0.070 0.080 0.110 0.040
0.170  0.040 0.070 0.080 0.250 0.030 0.130 0.000 0.080 0.150
0.130 0.050 0.040 0.070 0.250 0.090 0.120 0.010 0.060 0.180
0.060 0.030 0.010 0.060 0.130 0.020 0.260 0.000 0.070 0.360
0.040 0.020 0.010 0.200 0.070 0.000 0.180 0.000 0.220 0.260
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Figure 5.9. Cumulative probability plots of suppliers

Figure 5.10 shows the outranking relation of suppliers based on weighted scores 8; when
rank weights are derived by ROC approach. It is seen that Supplier 6 is the best
alternative, followed by Supplier 2, and they are the suppliers which have the highest
probabilities for the first rank. However, although Supplier 8 has the sixth highest
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probability for the first rank, it achieves the third rank in overall since its probabilities on
the third and fourth ranks are much higher than the others. Also, when Suppliers 4 and 5
are compared, we can observe that Supplier 5 has higher probabilities in higher ranks, but
Supplier 4 has better probabilities in the remaining ranks. Thus, in overall Supplier 4
outranks Supplier 5. In Figure 5.9, it is seen that the curve of Supplier 4 started to climb
above the curve of Supplier 5 after the third rank.

Figure 5.10. Outranking diagram of suppliers with ROC weights of ranks

Weighted scores 6; calculated by RS, ROC and RR rank weighting approaches, and
corresponding supplier rankings are reported in Table 5.26 and Table 5.27. They show
the results for DMs who consider all ranks and who consider just the first three ranks,

respectively.

Table 5.26. 0; scores and final rankings of suppliers when all ranks are considered

Rank | Supplier 6; (RS) | Supplier 6; (ROC) | Supplier 6; (RR)
1 S6 0.149 S6 0.201 S6 0.218
2 S2 0.144 S2 0.189 S2 0.201
3 S8 0.134 S8 0.128 S3 0.114
4 S3 0.126 S3 0.127 S8 0.106
5 S1 0.089 S4 0.076 S4 0.073
6 S4 0.088 S1 0.071 S5 0.070
7 S9 0.083 S5 0.068 S1 0.065
8 S5 0.080 S9 0.067 S9 0.063
9 S7 0.064 S7 0.046 S7 0.051
10 S10 0.043 S10 0.027 S10 0.040

For a risk-averse DM who prefers to consider the supplier performances in all ranks,
results in Table 5.26 can be used. We can see that Suppliers 6 and 2 are the best two
alternatives for all weighting approaches. They are followed by Suppliers 8 and 3,
however their positions are reversed in RS/ROC and RR. Since there are larger
differences between RR weights of the first ranks, Supplier 3, which has higher
probabilities on the first and second ranks than Supplier 8, is placed in the third overall

rank with RR weighting approach.
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Table 5.27. 6; scores and final rankings of suppliers when the first three ranks are

considered
Rank | Supplier 0; (RS) | Supplier 0; (ROC) | Supplier 0; (RR)
1 S6 0.312 S6 0.352 S6 0.322
2 S2 0.290 S2 0.317 S2 0.295
3 S3 0.135 S3 0.119 S3 0.126
4 S8 0.108 S8 0.083 S8 0.105
5 S5 0.053 S5 0.047 S5 0.053
6 S4 0.045 S4 0.039 S4 0.044
7 S1 0.028 S1 0.022 S1 0.026
8 S9 0.022 S9 0.016 S9 0.022
9 S7 0.007 S7 0.004 S7 0.007
10 S10 0.000 S10 0.000 S10 0.000

On the other hand, for risk-seeking DMs, results of Table 5.27 are more useful to consult
since they include rankings when only the first three ranks are considered. For DMs who
want to decide based on the performances just for the first three ranks, again Suppliers 6
and 2 are the best choices. Now, for all ranking procedures Supplier 3 is better than
Supplier 8 since the performances on lower ranks are ignored. In Table 5.26, when all
ranks are important, Supplier 5 is worse than Supplier 1 and 4, but now since the lower
ranks are ignored, Supplier 5 is placed on the fifth rank. Additionally, all weighting
procedures result in the same ranking list; therefore, we may say that with lower number

of ranks, weighting approaches tend to provide similar results.

We also test for the confidence of the supplier ranking obtained by the score-based
approach. Firstly, ANOVA results are gathered and reported in Table 5.28 and they show
that at least one supplier exists with a net flow mean which is significantly different from

other suppliers.

Table 5.28. ANOVA results for the means of net flows of suppliers

Source ‘ Df SumSq. MeanSq. F Value P Value
Suppliers 9 1366 151.75 88.65 <2e-16
Residuals | 990 1695 1.71

Then, to test the consecutive supplier pairs in the ranking given in Figure 5.10, Tukey’s

Test is performed. Table 5.29 summarizes the results.
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According to Table 5.28, we can make some conclusions. For example, Supplier 2 is
ranked higher than Supplier 1 and the results in the table confirm this since the mean
difference of Supplier 2 is higher than Supplier 1 by 2.18. Also, the mean differences
between Supplier 6, which is the best alternative in Figure 5.10, and other suppliers are
positive. However, when we look at the confidence intervals, we can see that some of the
consecutive pairs in the ranking are not significantly different from each other such as S1
and S4, S1 and S5, S2 and S6, S3 and S8, and S7 and S9. The best two suppliers, Suppliers
6 and 2 can be considered as similar. Therefore, we can say that these additional analyses
are useful to ensure alternatives are robustly discriminated when the score-based

approach is performed.

5.2.3.Results of Probabilistic PROMETHEE Approach for Supplier Selection

We implement the three versions of the probabilistic PROMETHEE approach for supplier
selection case. Table 5.30 gives outranking values calculated by the first version. The
partial ranking by PROMETHEE I rules has some incomparability relationships between

suppliers as shown in Figure 5.11.

Table 5.30. Outranking values by the first version of probabilistic PROMETHEE for

Supplier Selection

ot Q- @
S1 [ 2.463 [ 3.109 | -0.646
S2 | 4.150 | 1.961 | 2.189
S3 | 3.338 | 2.399 | 0.939
S4 | 2.987 | 2.563 | 0.424
S5 | 3.051 | 3.034 | 0.017
S6 | 3.806 | 2.208 | 1.597
S7 | 2.496 | 3.861 | -1.364
S8 | 4.111 | 2.538 | 1.573
SO | 2.043 | 3.232 | -1.188
S10 | 1.521 | 5.063 | -3.542

Figure 5.11. Partial ranking of suppliers by the first version of probabilistic
PROMETHEE
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The best alternative is Supplier 2, followed by Suppliers 6 and 8, whereas the worst
alternative is Supplier 10. Since there is not any dominance relation between Suppliers 8
and 6, and Suppliers 8 and 3, we conclude that they are incomparable. Thus, the DM can
select Supplier 6 or 3 instead of Supplier 8 according to his/her preferences. Suppliers 4
and 5 have also incomparability relationship whereas Supplier 7 is incomparable with

Suppliers 1 and 9.

(A A A A DA

Figure 5.12. Complete ranking of suppliers by the first version of probabilistic
PROMETHEE

Figure 5.12 shows the complete ranking of suppliers for the first version. Generally, the
best and the worst alternatives are the same, but this time, we have strict ranking for the
incomparable suppliers of the partial ranking. Suppliers 2, 6 and 8 are the best three

suppliers, whereas Supplier 10 is again the worst one.

For the second version of the problem, threshold value for quality system certifications,
flexibility, cooperation and reputation is determined as 2. In Table 5.31, outranking values
of the second approach are reported, and Figure 5.13 and Figure 5.14 show the partial and
complete ranking of suppliers obtained by the second version of our probabilistic

PROMETHEE approach, respectively.

Table 5.31. Outranking values by the second version of probabilistic PROMETHEE for

Supplier Selection

@* @ @
S1 [ 2266 [2.597 [ -0.331
S2 | 3.593 | 1.847 | 1.746
S3 | 2932|2123 | 0.809
S4 | 2.525 | 2.187 | 0.338
S5 | 2.720 | 2.517 | 0.203
S6 |3.702 | 1.781 | 1.922
S7 | 2.265 | 3.566 | -1.301
S8 | 3.524 | 2.414 | 1.111
S9 | 1.753 | 2.878 | -1.125
S10 | 1.254 | 4.624 | -3.370
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Figure 5.13. Partial ranking of suppliers by the second version of probabilistic

PROMETHEE

0200002 ORORORORO

Figure 5.14. Complete ranking of suppliers by the second version of probabilistic

PROMETHEE

For both partial and complete rankings, Supplier 6 is the best alternative, followed by
Supplier 2, and the worst one is again Supplier 10. Incomparability relationships between
Suppliers 8 and 3, 8 and 4, 4 and 5, and 7 and 9 in the partial ranking are solved in the
complete ranking for the DMs who prefer strict ranking. When we compare the results of
the second approach with the first approach, we conclude that Supplier 2 is better than
Supplier 6 with small differences in the first version of the approach, since in the second
version, Supplier 6 dominates Supplier 2 when we define a threshold value of 2 for some
criteria. Also, we deduce that Supplier 6 dominates Supplier 8 with at least 2 level
differences in the defined criteria since Suppliers 6 and 8 are incomparable in the partial
ranking of the first approach, whereas Supplier 6 dominates Supplier 8 in the second

version of the approach.
Table 5.32 reports the outranking values of suppliers by the third version of the approach.

Figure 5.15 and Figure 5.16 illustrate the partial and complete ranking of suppliers,

respectively.
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Table 5.32. Outranking values by the third version of probabilistic PROMETHEE for

Supplier Selection

@t @ @
S1 | 0286 | 0.390 | -0.103
s2 | 0533 | 0255 | 0278
s3 | 0433 | 0292 | 0.141
s4 | 0374 | 0314 | 0.060
s5 | 0381 | 0371 | 0.010
S6 | 0.496 | 0302 | 0.194
s7 | 0311 | 0.640 | -0.329
S8 | 0.675 | 0301 | 0375
s9 | 0.244 | 0.406 | -0.162
S10 | 0.220 | 0.683 | -0.463

Figure 5.15. Partial ranking of suppliers by the third version of probabilistic
PROMETHEE

(A A DA ADA )

Figure 5.16. Complete ranking of suppliers by the third version of probabilistic
PROMETHEE

This time, Suppliers 2 and 8 are the best alternatives and they are incomparable with each
other in the partial ranking. Also, Supplier 8 has an incomparability relationship with
Supplier 3, whereas supplier pairs 3 and 6, 5 and 4, 1 and 7 and, 7 and 9 are found as
incomparable since they cannot dominate each other based on the positive and negative
outranking values. However, the complete ranking presents a strict ranking for these
incomparable suppliers. For both partial and complete rankings, the best and worst
suppliers are the same. If we compare the results of the third approach with the previous
ones, we conclude that Supplier 8 performs better than Suppliers 2 and 6 with high
differences, since the third approach gives more importance to higher levels of

differences.
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5.2.4.Sensitivity Analysis on Criteria Weights for Supplier Selection

In this case study, the original weights of criteria are derived by AHP. First, we study
whether relatively small changes in weights result in big differences in results. Rather
than changing the AHP weights randomly, we apply ROC weighting with the same
supplier selection expert. Table 5.33 presents the resulting ROC weights. The most
evident difference is in the weight of cost, which is now quite lower. There are differences

in the weights of other criteria as well.

Table 5.33.Weight of criteria by ROC for Supplier Selection

.. . | Product Delivery Quality Syst. e . .
Criteria Quality Cost Perf Cert. Flexibility Cooperation  Reputation
Weights ‘ 0370  0.156  0.228 0.109 0.073 0.044 0.020

Figure 5.17 illustrates the outranking relations for the test-based approach calculated with
the new weights. S2 and S6 are still the best suppliers that cannot outrank each other, and
S10 is still the worst supplier. S3, which cannot outrank S8 with AHP weights, now
outranks it with ROC weights, and it cannot be outranked with S2. There are some other
differences, but the general picture is not substantially different from Figure 5.8, and there

are no reversals in outranking relations.

Figure 5.17. Test-based outranking relation of suppliers with ROC weights

The new ranking results of the score-based approach when all ranks are considered are
given in Table 5.34. To test the similarity of the rankings with AHP and ROC weights,
we use Kendall rank correlation coefficient (Kendall’s Tau). Kendall’s Tau is a measure
to assess the linear correlation between two ranks. It returns a value between -1 and 1.
Values closer to -1 imply that rankings have negative correlation and values closer to 1

show that rankings have positive correlation, thus, they are similar. A value of 0 means
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that your rankings are not correlated. Kendall’s Tau between the old and new rankings
of RS, ROC and RR are 0.822, 0.778 and 0.822, respectively. We can conclude that the

rankings stay reasonably similar when the weights are changed.

Table 5.34. 6; measures and final rankings by ROC when all ranks are considered

Rank | Supplier 0; (RS) | Supplier 6; (ROC) | Supplier 0; (RR)
1 S6 0.143 S2 0.185 S2 0.196
2 S3 0.142 S6 0.184 S6 0.194
3 S2 0.142 S3 0.161 S3 0.153
4 S8 0.109 S4 0.093 S4 0.085
5 S4 0.101 S8 0.089 S8 0.074
6 S 0.095 S1 0.079 Sl 0.073
7 S9 0.087 S9 0.072 S9 0.067
8 S7 0.076 S7 0.058 S5 0.062
9 S5 0.069 S5 0.057 S7 0.058
10 S10 0.038 S10 0.023 S10 0.039

When only the first three ranks are considered, the ranking of the suppliers for all
weighing methods is S2—S6-S3-S4-S1-S5-S8-S9-S7-S10. Kendall’s Tau between this
ranking and the ranking obtained with AHP weights in Table 5.27 is 0.733.

We also obtain results of the probabilistic PROMETHEE approach with the new ROC
weights. Figure 5.18 illustrates the new partial ranking of suppliers by the first version of
the probabilistic PROMETHEE. When we compare it with the ranking in Figure 5.11, we
conclude that the ranking has not substantially changed. Supplier 2 is still the best and
Suppler 10 is still the worst alternative. With the new weights, Supplier 3 outranks
Supplier 6. Also, supplier 4 outranks Supplier 5, whereas they are incomparable in Figure

5.11.

On the other hand, the new complete ranking for the first version is found as S2—S3—-S6—
S8—-S4-S1-S5-S9-S7-S10, and Kendall’s Tau between this ranking and the ranking in
Figure 5.12 is 0.867. Thus, we conclude that the complete rankings of the first version by
AHP and ROC weights are reasonably similar.
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Figure 5.18. Partial ranking of suppliers by the first version of the probabilistic
PROMETHEE with ROC weights

Figure 5.19 shows the new partial ranking of the second version of the approach. This
time, Suppliers 2 and 6, and 5 and 7 are incomparable, whereas Supplier 6 outranks
Supplier 2 and Supplier 5 outranks Supplier 7 in the partial ranking shown in Figure 5.13.
Again, there are some differences for suppliers with incomparability relationships, but
the ranking stays reasonable similar. To assess the similarity of two partial ranking,
Kendall’s Tau is used in some cases by assigning same ranks for indifferent alternatives.
However, in our case it is not possible to follow that approach since our partial ranking
includes incomparable relations. We cannot assign same ranks to incomparable
alternatives because it leads to wrong conclusions. For example, in the ranking in Figure
5.19, S6 is incomparable with both S2 and S3 but, S2 outranks S3. In that situation, we

cannot assign same rank for those three suppliers.

The complete ranking of the second version calculated with ROC weights is S2—S6—-S3—
S4-S8-S1-S5-S9-S7-S10. This ranking and the ranking in Figure 5.14 are similar since
the Kendall’s Tau between them is found as 0.822.

Figure 5.19.Partial ranking of suppliers by the second version of the probabilistic

PROMETHEE with ROC weights

In Figure 5.20, the new partial ranking of the third version is illustrated. It has small
differences from the ranking in Figure 5.15. Suppliers 2 and 8 are still the best alternatives

that cannot outrank each other. This time, Suppliers 10 and 7 are incomparable and they
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are the worst suppliers. The other difference is between Suppliers 4 and 5. In the ranking
by AHP weights they are incomparable, but with ROC weights Supplier 4 outranks
Supplier 5.

S2-S8-S3-S6—-S4-S1-S5-S9-S7-S10 is the new complete ranking obtained using ROC
weights. Generally, the new ranking is similar to the one in Figure 5.16. As in the previous
version, the first and the second suppliers and, the third and the fourth suppliers change

places with each other. Kendall’s Tau between these two rankings is 0.867.

Figure 5.20. Partial ranking of suppliers by the third version of the probabilistic
PROMETHEE with ROC weights

As in the shoulder pain case, we also conduct weight stability interval analysis for the
supplier selection with the score-based approach. We follow the same approach using the
rules introduced by Mareschal (1988). Table 5.35 shows the weight intervals of each
criterion which will not change the supplier rankings and the scores of score-based
approach. Since product quality, cost and delivery performance criteria have relatively
narrow ranges, their weights should be determined carefully. However, the ranking is not
so sensitive to the weights of other criteria. Thus, uncertainties in these criteria can be

tolerated better.

75



Table 5.35. Weight stability intervals for AHP weights

Criteria AHP Weight  Weight Stability Interval
Product Quality 0.356 [0.337 - 0.360]
Cost 0.231 [0.216 — 0.264]
Delivery Performance 0.230 [0.215-0.279]
Quality System Certificates 0.075 [0.015—0.162]
Flexibility 0.032 [0.000 — 0.392]
Cooperation 0.042 [0.000 —0.303]
Reputation 0.034 [0.000 —0.216]
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6. CONCLUSIONS

In this thesis, we proposed test-based, score-based and probabilistic PROMETHEE
approaches for MCDM under uncertainty. The proposed approaches use uncertain data
in criteria evaluations which may be elicited from previous observations, samples from
probabilistic models or judgements of experts. The approaches provide different levels of
precision and flexibility to evaluate solutions. Our test-based approach modifies
PROMETHEE I to work with uncertain data and it assesses error rates in outranking
scores. It is useful for DMs who want to rank alternative solutions according to their
performance without forcing a strict ranking. Our score-based approach is based on
PROMETHEE 11, and it uses probabilities of solutions to occupy each possible rank. DMs
can observe a summary of performances of solutions with cumulative distributions. Also,
it provides weighted scores to rank solutions completely for both risk-seeking and risk-
averse DMs. Our third approach, the probabilistic PROMETHEE uses joint probabilities
instead of sampling from distributions. It focuses on probabilities where an alternative
has better criterion values than the other one. It has different versions that provide the
DM the opportunity to differentiate between different levels of differences in criteria
values. Our approaches present systematic ways to work with probabilistic criteria, elicit
the preferences of the DM regarding the importance of criteria and obtain overall

assessments of solutions in an uncertain environment.

We tested our approaches using two different case studies: a treatment selection problem
for shoulder pain and a supplier selection problem. For the case of shoulder pain, we used
probability distributions of treatment alternatives in each criterion produced from the
information obtained from physiotherapists. But we suggest using posteriors of a BN
model to have more accurate results. For the case of supplier selection, we used posterior
probabilities of a BN model developed for that case by domain experts. Using posterior
probabilities generated by a BN model in our approaches is advantageous since specific
case-based results are obtained. Our studies illustrate how BN outputs can be processed
by MCDM methods to provide decision support. In addition, we conducted sensitivity
analysis on the weights of criteria; this analysis can be used to determine which criteria

need the most careful evaluation.
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In future studies, different types of DM behaviour, which would result in different
preference functions and parameters, can be explored. Indirect elicitation approaches for
weights can be implemented. Applications with patients can be conducted to test the

approaches in actual medical problems.
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