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Birden fazla kriteri göz önünde bulundurarak bir dizi alternatif arasından nihai bir çözüme 

ulaşmak kolay değildir. Bu nedenle literatürde birçok Çok Kriterli Karar Verme (ÇKKV) 

yöntemi önerilmiş ve uygulanmıştır. Karar sürecine bir de belirsizlik içeren veriler dahil 

edildiğinde süreç daha da zorlaşır. Bu tezde, bu gibi durumlarda karar vericilere (KV) 

alternatiflerin değerlendirmelerini sunabilmek adına üç farklı yöntem önerilmiştir. 

Önerilen üç yöntem de alternatiflerin üstünlük ilişkilerine odaklanmakta ve sık kullanılan 

üstünlük yöntemlerinden biri olan Preference Ranking Organization Method for 

Enrichment Evaluation (PROMETHEE) yönteminden faydalanmaktadır. Ancak, 

belirsizlik içeren veriler için PROMETHEE kuralları modifiye edilmekte ve bir takım 

istatistiksel ve olasılıksal analizler uygulanarak karar destek için kapsamlı çıktılar elde 

edilmektedir. Belirsizlik içeren veriler önceki gözlemlerden, uzman 

değerlendirmelerinden veya Bayes Ağları (BA) olarak bilinen olasılıksal modellerden 

elde edilebilir. Önerilen yaklaşımlardan istatistiksel test tabanlı ve skor tabanlı olanlar 

sırasıyla kısmi ve tam alternatif sıralaması sunarak KV’ye farklı seviyelerde esneklik 

sağlamaktadır. Önerilen üçüncü yöntem olan olasılıksal PROMETHEE ise alternatiflerin 
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her kriterdeki birleşik olasılık dağılımlarını kullanarak hem kısmi hem de tam sıralama 

sunmaktadır. Önerilen tüm yöntemleri test etmek için iki farklı vaka çalışması yapılmıştır. 

İlk olarak bir omuz ağrısı tedavi seçimi problemi üzerinde çalışılmıştır. Ardından, 

yöntemlerin sağlık alanı dışında kullanılabilirliğini test etmek amacıyla tedarikçi seçimi 

problemi uygulaması yapılmıştır.

Anahtar Kelimeler: Çok Kriterli Karar Verme, PROMETHEE, belirsizlik, Bayes Ağları, 

tedavi seçimi, tedarikçi seçimi
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It is not easy to decide on a final solution among a set of alternatives considering multiple 

criteria; therefore, several Multiple Criteria Decision Making (MCDM) approaches have 

been proposed and implemented in the literature. When uncertain data is involved in the 

decision process, the task gets even more difficult. In this thesis, we propose three 

different approaches to present evaluations of alternatives to decision makers (DMs) in

such situations. All approaches focus on outranking relations of alternatives, and they 

utilize the well-known method Preference Ranking Organization Method for Enrichment 

Evaluation (PROMETHEE) in developing their evaluation measures. However, 

PROMETHEE rules are modified for uncertain data, and several statistical and 

probabilistic analyses are used to reach comprehensive outputs for decision support. The 

uncertain data can be obtained from previous observations, expert evaluations or samples 

from a probabilistic model such as Bayesian Networks (BNs). Two of the proposed 

approaches are the test-based and score-based approaches; they provide different levels 

of flexibility to the DM by offering partial and complete ranking of alternatives, 

respectively. The third approach, probabilistic PROMETHEE, offers both partial and 
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complete alternative rankings using joint probability distributions of alternative 

evaluations in each criterion. Two different case studies are conducted to test the 

approaches: medical treatment selection for shoulder pain is studied to test all three 

approaches and also, a supplier selection case is studied to assess all approaches in a 

different domain. Additionally, sensitivity analyses are performed to test the sensitivity 

of alternative rankings to changes in criteria weights.

Keywords: Multiple Criteria Decision Making, PROMETHEE, uncertainty, Bayesian 

Networks, treatment selection, supplier selection
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1.  INTRODUCTION 

 

Multiple Criteria Decision Making (MCDM) is a domain of methods that model and solve 

problems where multiple criteria are simultaneously considered. A criterion is a 

performance measure that needs to be defined and measured to analyze and compare 

decision alternatives. Since real-life problems usually do not have a single objective, 

every day we must often decide considering different criteria. However, generally it is 

not possible to optimize all criteria at the same time. For example, when buying car, we 

consider some criteria like comfort level, cost, safety and color. It is very difficult to find 

a car which fits a low budget and has high comfort and safety standards at the same time. 

In such cases, MCDM methods are used to assist decision makers (DMs).  

 

If MCDM problems involve uncertainty, the situation becomes more complicated. The 

uncertainty can be caused by internal or external uncertainty. Internal uncertainty occurs 

with ambiguity due to model structure or inputs. On the other hand, external uncertainty 

is caused by lack of knowledge on solution results (Stewart, 2005).  

 

In MCDM terminology, a solution x is called efficient if it is impossible to improve a 

criterion without worsening at least another one. Inefficient solutions should not be 

considered by DMs, however three general MCDM problem types have emerged for 

assessing efficient solutions: choice, sorting and ranking (Roy, 2005). Approaches in 

choice problems aim to select the best alternative within the acceptable solutions; sorting 

approaches assign solutions into preference-ordered categories, and ranking approaches 

aim to list the solutions from the best to the worst in complete or partial rankings. In this 

thesis, outranking relations of alternatives with uncertain criteria evaluations are studied 

which are used to choose from, sort or rank alternatives. Outranking relations are 

evaluated by comparing alternative solutions in pairs for each criterion and aggregating 

those comparisons with preference measures. One of the most widely known outranking 

approaches is The Preference Ranking Organization Method for Enrichment Evaluation 

(PROMETHEE), and this thesis uses the outranking structure of PROMETHEE and 

extends it to work under uncertainty. PROMETHEE is able to provide different types of 



 

2 
 

preference functions for comparisons, handle different types of criteria and create both 

complete and partial rankings of alternatives. 

 

We propose different approaches to find alternative rankings for MCDM problems where 

criteria evaluations of solutions involve uncertain data. This data that includes uncertain 

criteria evaluations may be gathered by a data-generating model, expert evaluations or 

previous observations. We propose three methodologies to handle such cases. The first 

two methodologies use sampling from probability distributions to cope with uncertainty 

and modify PROMETHEE to work with samples; these are the test-based and score based 

outranking approaches. The test-based approach provides partial ranking whereas the 

score-based approach provides full ranking of solutions. The test-based approach enables 

the DM to examine the error rates of MCDM analysis, and the score-based approach 

provides a score calculated from the probabilities of solution rankings and a graphical 

tool to assess their uncertainty. On the other hand, the third methodology handles 

uncertainty using joint probabilities of solution pairs instead of sampling and uses 

modified PROMETHEE scores to provide partial and full rankings. We provide three 

variations of this third methodology for different types of DM preferences. We apply our 

methodologies on healthcare problems involving uncertainty regarding the outcome of 

treatment options for specific patients with known conditions. We specifically use 

healthcare examples since this thesis was conducted as a part of the project 

“Interdisciplinary Research Links for Medical AI: Management of Musculo-skeletal 

Injury” which is supported under the Turkey – Newton - Katip Çelebi Fund partnership. 

We also include some applications on the multiple criteria supplier selection problem to 

demonstrate the methodologies in a different area. 

 

In this thesis, we propose using Bayesian Networks (BN) models to represent uncertain 

data. BN models provide probability distributions of alternative solutions for each 

criterion. Using BN models with MCDM is suitable since they provide flexible 

representations of uncertainty. This thesis can also be useful in presenting a guideline for 

the use of BN and MCDM approaches together.  

 

In Section 2 of the thesis, we review the literature on handling uncertainty in MCDM and 

MCDM in healthcare. In Section 3, necessary background information on PROMETHEE, 
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preference elicitation and BNs are provided. Section 4 includes our proposed 

methodologies. In Section 5, we apply our approaches to different problems and present 

computational results. Section 6 provides conclusions and discussions. 
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2.  LITERATURE REVIEW 

 

This section of the thesis reviews the MCDM methods that have been used for problems 

with uncertainty, and MCDM approaches applied in healthcare.  

 

2.1. MCDM Approaches under Uncertainty 

There is a vast literature on MCDM methods, but since we focus on problems involving 

uncertainty, our review also focuses on such problems. For more comprehensive reviews 

of MCDM problems with uncertainty, the readers are referred to the following papers: 

Durbach and Stewart (2012) reviewed the literature on MCDM under uncertainty based 

on five uncertainty representations which are probabilities, decision weights, risk 

measures, fuzzy numbers and scenarios. Probability based uncertainty was handled using 

multi-attribute utility theory (MAUT), pairwise comparisons of distributions, belief 

functions or simulating from probability distributions. Outranking relations and 

stochastic dominance are the most common approaches which use pairwise comparisons. 

Another widely used method is Monte Carlo Simulation (MCS), it is reviewed under the 

models simulating from distributions. Additionally, decision problems with fuzzy 

numbers are generally modelled using weighted additive sums, Analytic Hierarchy 

Process (AHP), comparisons to ideal solutions and fuzzy or rough sets. Broekhuizen et 

al. (2015) reviewed approaches for Multi Criteria Decision Analysis (MCDA) under 

uncertainty in healthcare. They analyzed five uncertainty approaches: Bayesian 

framework, deterministic sensitivity analysis, probabilistic sensitivity analysis, fuzzy set 

theory and grey theory for different MCDA methods. They concluded that in most of the 

healthcare decision problems, deterministic sensitivity analysis is more advantageous due 

to its easy implementation and it is widely studied with AHP in the literature.  

 

To incorporate uncertainty in MCDM problems, MCS is one of the well-known 

approaches. Many previous papers used MCS for sampling from probability distributions. 

Baudry, Macharis and Vallee (2018)  employed MCS within Multi Actor Multiple 

Criteria Analysis (MAMCA). They applied AHP to derive criteria weights in each 

stakeholder group. Stakeholder groups were equally weighted. They performed a case 

study to select the best biofuel option. After determining probability distributions of 



 

5 
 

alternative solutions in each criterion, by using MCS, their new solution framework 

provided probabilities of each rank instead of providing a single ranking. Momani and 

Ahmed (2011) also performed a hybrid model that uses AHP and MCS together. They 

aimed to select the best material handling equipment when there is an uncertainty caused 

by human preferences. Their proposed model differs from the traditional AHP procedure 

by making pairwise comparisons with random variables. Using MCS, 1000 replications 

were generated for each pairwise comparison. Then, results were used to find alternative 

weights with AHP. They implemented the proposed model in a pharmaceutical plant. 

Betrie et al. (2013) presented a study that uses MCS and PROMETHEE to make decisions 

in the face of uncertainty. They proposed two approaches: deterministic and probabilistic 

analysis. In the deterministic case, they used basic PROMETHEE rules and AHP to 

derive criteria weights. In the probabilistic case, they generated criteria weights using 

AHP and then, they fitted a probability distribution. To handle the uncertainty that comes 

from the random variables of weights, they used MCS. Also, they made sensitivity 

analysis to see the effect of each criterion on the final ranking. To do that, they utilized 

Spearman rank correlation coefficient. Their methodology was performed on a case of 

selecting mine sites. The purpose of Levary and Wan (1998) was to deal with two types 

of uncertainty when deciding in a multiple criteria problem using AHP. The first type of 

uncertainty came from lack of knowledge to compare some criteria pairs. The other type 

of uncertainty was caused by ambiguous future events of the decision problem. To 

illustrate the proposed methodology, they used a university selection case for a Ph.D. 

graduate. They used a range by determining distributions for some pairwise comparisons 

of criteria and performed scenario analysis to handle the uncertainty that comes from 

future events. Hopfe, Augenbroe and Hensen (2013) modified the traditional AHP 

procedure to compare two building designs considering probabilistic performance values. 

They conducted building performance simulation for 200 replications. They obtained 

ranges of performance evaluations for criteria. Then, a new adapted AHP score was 

calculated to determine the best alternative. Dorini, Kapelan and Azapagic (2011) focused 

on three cases: no uncertainty exists, model or data has uncertainty and preferences have 

uncertainty. They applied compromise programming and MCS on a case study about 

comparing two sustainable electricity generation options. For the cases which contain 

uncertainty, they fitted probability distributions and performed MCS. From the results, 

they reached probabilities of an alternative being better than the other. Therefore, they 
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presented the better option found with a confidence rate. Baležentis and Streimikiene 

(2017) used additive ratio assessment, weighted aggregated sum and TOPSIS to evaluate 

effective energy planning scenarios. They had conflicting criteria under technical, 

environmental and economic concepts. After solving the problem with three approaches, 

they made sensitivity analysis for rankings using different criteria weights using MCS. 

 

The other widely used approach for handling uncertainty in MCDM problems is fuzzy 

theory. Montazar, Gheidari and Snyder (2013) proposed a hybrid approach that uses both 

fuzzy triangular numbers and AHP. They aimed to make performance assessments of 

irrigation alternatives with uncertain parameters. Twenty-one sub criteria were used to 

evaluate four alternatives under environmental, technical, social and economical 

concepts. To generate weights of criteria, fuzzy AHP was used. Benetto, Dujet and 

Rousseaux (2008) proposed a fuzzy multiple criteria approach to modify an existing multi 

criteria method called NAIADE with the aim of improving life cycle assessments. They 

evaluated alternatives by fuzzy pairwise comparisons with uncertain evaluations. Kilic, 

Zaim and Delen (2014) performed a three-phase decision-making method to select an 

appropriate ERP system for Turkish Airlines. Because the criteria priorities varied 

according to the people in the process, they applied fuzzy theory and AHP. Then, they 

employed TOPSIS to rank the alternatives. Montazer, Saremi and Ramezani (2009) 

focused on two important steps of decision making: performance evaluations of 

alternatives and alternative rankings. They presented a fuzzy evaluation approach to 

assess alternative performances and to rank them, they integrated fuzzy theory to 

ELECTRE III to construct outranking relations in an uncertain environment. They 

implemented their approach to a supplier selection problem in oil industry. Pitchipoo, 

Venkumar and Rajakarunakaran (2013) introduced an integrated model of fuzzy AHP 

and grey relational analysis (GRA) for a selection problem of suppliers. Uncertainty about 

criteria weights was modeled with fuzzy set theory and the alternatives were ranked with 

the help of GRA. Additionally, they conducted sensitivity analysis regarding grey 

equation coefficients. They obtained that ranking of supplier alternatives stay stable by 

changing the coefficients. Therefore, they claimed that they reached a robust solution. 

Kuang, Kilgour and Hipel (2012) used grey theory to deal with uncertainty on criteria 

weights and different DMs. PROMETHEE II was used to produce a ranking of alternative 
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source water protection strategies. They made the analysis with six criteria and eight 

alternatives. 

 

Another group of approaches to assess alternatives under multiple criteria when 

uncertainty exists is the stohactic dominance concept. Zhang, Fan and Liu (2010) and 

Liu, Fan and Zhang (2011) used the stochastic dominance concept in developing 

methodologies to rank alternatives with uncertain criteria outcomes. They created 

dominance matrices based on stochastic dominance degrees, and then they used these 

matrices with PROMETHEE to find the rank order of alternatives. A similar study was 

performed by Rietveld and Ouwersloot (1992) to rank location alternatives of nuclear 

plants. Their methodology is appropriate for both ordinal and mixed data to conduct 

stochastic dominance rules. 

 

Some other approaches considering uncertainty in MCDM problems involve Hyde, Maier 

and Colby (2005) who introduced a distance-based approach to handle the uncertainty in 

criteria weights. Their method presents a new approach to sensitivity analysis to 

overcome the limitations of existing sensitivity analysis techniques for weights. 

D’Avignon and Vincke (1988) presented a distributive multiple criteria approach for 

alternatives that have probabilistic evaluations on each criterion. They made ranking 

decisions based on distributive strengths and weaknesses of alternatives. Durbach (2014) 

aimed to extend the distributive approach of D’Avignon and Vincke (1988) by simulating 

scenarios.  

 

In our proposed approaches, we use PROMETHEE, therefore we also provide a focused 

review of handling uncertainty in outranking methods. Early work in this area focuses on 

modeling the uncertainty and variation between multiple experts. Mareschal (1986) 

proposed a methodology using PROMETHEE I and II with the average ranking of 

different experts to reach the final decision in a project selection problem. Different 

statistical and operational research techniques have also been used to model uncertainty 

in different elements of PROMETHEE. Another study was conducted by Beynon and 

Wells (2008) using PROMETHEE II and an evolutionary algorithm to analyze the 

minimum amount of change required in criteria values to improve the preference rank of 

alternatives. Yuen and Ting (2012) used a fuzzy approach with PROMETHEE II to cope 
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with uncertainty in decision alternatives. They applied their approach on a textbook 

selection case. Cavalcante and De Almeida (2007) focused on expected values of criteria 

by using a Bayesian approach, and applied PROMETHEE III on those values to decide 

about maintenance planning alternatives. 

 

MCS has been a widely used approach to include uncertainty in PROMETHEE 

calculations too. Hyde, Maier and Colby (2003) fitted probability distributions to model 

criteria weights. PROMETHEE II scores were used to rank the alternatives. They used 

MCS to run the models and reported the probability of alternatives occupying different 

ranks. They performed a case study to select between six renewable energy alternatives. 

Doumpos and Zopounidis (2010) made sensitivity analysis of PROMETHEE II 

parameters and criteria preferences using MCS. Gervásio and Simões Da Silva (2012) 

fitted probability distributions to criteria and used MCS and PROMETHEE II to calculate 

the probabilities of alternatives holding each possible rank. However, they did not 

propose a measure to aggregate these probabilities and to obtain a final decision.  

 

2.2. MCDM Approaches in Healthcare 

Since we mainly apply our proposed approaches to healthcare problems, we also review 

papers using MCDM approaches in decision making problems in medical area. Many 

researchers studied the problem of selecting the best alternatives. Li et al. (2018) proposed 

a methodology based on heterogeneous MCGDM in order to decide on the best alternative 

when the information of doctor and patients do not match. Özkan (2013) investigated the 

status of clinical waste management and selected the most appropriate out of five disposal 

methods with the use of ANP and ELECTRE. Kulak, Goren, and Supciller (2015) 

developed RFAD method, a new MCDM approach which includes risk factors in the 

decision process and they used it for selection of medical imaging devices. 

 

Some researchers studied prioritization of different subjects in healthcare. Zhang et al. 

(2018) developed an intuitionistic multiplicative ORESTE method to assign order of 

patients for hospitalization based on complex and related factors. Nobre, Trotta and 

Gomes (1999) evaluated alternatives based on criteria using TODIM (Tomada de Decisao 

Interativa Multicriteo). Their aim was to support decision process for patients when their 
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behavior is uncertain. Taghipour, Banjevic, and Jardine (2011) studied on the 

prioritization of maintenance of medical equipment. They applied AHP to develop a 

maintenance strategy based on some criteria such as function, age, risk, task criticality, 

maintenance requirements and hazard warning. 

 

Another research was made on decision analysis in oncology. Adunlin et al. (2015) 

determined harm-benefit balance of cancer treatments. They used ELECTRE for decision 

making based on evidences under complex situations. 

 

Some papers were based on analysis and comparison of different MCDM approaches. 

Sałabun and Piegat (2017) compared COMET, TOPSIS and AHP based on the 

evaluations of mortality of patients with acute coronary syndrome. They concluded that 

COMET method gives more accurate solutions in opposition to TOPSIS and AHP. 

Additionally, Dolan and Veazie (2018) investigated whether increase of multi criteria 

decision support is able to provide more efficient decisions for the community and it leads 

to a decrease in the ease of use. It is found that increase of multi criteria decision support 

does not cause a decrease in ease of use, MCDM based systems can be developed for 

clinical treatments. 

 

Souissi et al. (2017) used ELECTRE and MR-Sort to prescribe antibiotics according to 

other medical conditions of patients such as allergy and kidney diseases. In conclusion, 

they categorized antibiotics into 3 groups based on recommendation rates and developed 

a system for doctors to be efficient in prescribing. Dong et al. (2014) created clusters of 

alternatives for pulsation data and used TOPSIS to select the proper ones within them. 

They concluded that studying pulsations in 13 clusters is the most suitable one. Rahimi, 

Gandy, and Mogharreban (2007) developed a web based medical diagnosis system that 

is able to provide information-based updates, short response time and ease of use.  

 

The purpose of some researches was to analyze the performances of treatments or 

services. Kuo, Wu, and Hsu (2012) aimed to improve the service of elderly outpatients. 

With TOPSIS and fuzzy clustering theory, they ranked failure risks in Healthcare Failure 

Mode Effects Analysis (HFMEA). Lupo (2016) presented an AHP based study to procure 

reliable estimation of service quality. Their proposed method was applied to the service 
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quality of Sicilian hospitals and causes of patient dissatisfaction were found. Another 

MCDM model was developed by Ghosh (2008) to rank the factors that affect the surgical 

performance of the hospital by Fuzzy Composition Programming (FCP). Nilashi et al. 

(2016) used Fuzzy ANP in order to find the most important factors among technology, 

environment, human and organization for the hospital information system adoption of 

hospitals in Malaysia. Also,  La Scalia et al. (2011) investigated the probability of success 

of transplantation of pancreas islet. Applying fuzzy TOPSIS, three samples are evaluated 

considering four factor groups: donor, pancreas, islent and recipient.  

 

Diaby and Goeree (2014) reviewed the use of MCDA methods in medical decision 

making. They categorized methods into five groups: elementary (Maximin, Hurwicz), 

value-based (multi-attribute value theory (MAVT), MAUT, AHP), goal programming, 

reference methods and outranking methods (ELECTRE versions, PROMETHEE). 

Additionally, they implemented some of the methods with hypothetical cases. 

 

In this thesis, we introduce three different approaches to provide decision support for 

multiple criteria problems with uncertain data. In the literature, there are several 

applications where uncertainty is handled in MCDM problems; however, our approaches 

differ from them. Our approaches can work with uncertain data generated by different 

sources such as past observations, samples from probabilistic models or judgements of 

multiple experts. Posterior probabilities derived by a BN model can be used for alternative 

evaluations in criteria. Thanks to this approach, we also offer general approaches for the 

use of MCDM and BN posteriors. With our test-based approach, we consider error rates 

caused by the uncertainty and present partial ranking of alternatives. This approach is 

advantageous for situations where the DM desires some level of flexibility. With our 

score-based approach, using probabilities of alternatives occupying for each rank, we 

present a final solution for both risk-averse and risk-seeking DMs. Our third approach 

uses probabilities directly instead of creating samples from them. Thus, it provides a novel 

modified probabilistic approach to the classical PROMETHEE. Furthermore, in medical 

area, our approaches propose patient-specific decision support using BN model 

posteriors. 
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3.  BACKGROUND INFORMATION 

 

We propose MCDM approaches based on outranking relations of alternative solutions in 

the face of uncertain criteria values. Our approaches use PROMETHEE scores as 

underlying performance evaluations, but first we need to determine weights of criteria to 

express DM preferences and also mechanisms to make PROMETHEE work with 

uncertain criteria outputs. Before explaining our approaches, in this section we give 

background information on MCDM, outranking relations and rules of PROMETHEE, 

weight elicitation techniques used to determine and express the importance of criteria, 

and BNs that provide probability distributions for criteria values. 

 

3.1. PROMETHEE 

The aim of MCDM is to consider multiple criteria simultaneously in assessing and 

deciding about alternative solutions. MCDM methods eliminate inefficient solutions from 

consideration and focus on studying efficient solutions. In MCDM terminology, a 

solution x is called efficient if there is no other solution y that is better than or equal to x 

in all criteria, and strictly better than x in at least one criterion. Within the general scope 

of MCDM, outranking methods compare alternative solutions in pairs and reach final 

performance measures that are used to determine partial or full ranking or sorting of 

solutions. 

 

PROMETHEE is an outranking approach proposed by Brans, Vincke and Mareschal 

(1986), and it is one of the most widely-used outranking methods. Basically, it makes 

pairwise comparisons of solutions in terms of each criterion in the decision problem. 

Based on different preference functions, it assigns a preference value between 0 and 1 to 

each solution pair in comparison. Using these preference values and criteria weights, an 

aggregated measure is calculated to determine preferability degree of solutions. Let us 

assume that  and  are two solution alternatives to be evaluated under m maximization 

type (without loss of generality) criteria and their evaluations are  

and . To determine the preference strength of  over , first of 

all, the magnitude of difference between evaluations of  and  is calculated for each 

criterion j by . After that, depending on the magnitude of this difference, 
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a preference value is determined using one of the preference functions given in Figure 

3.1. The function type is selected by the DM for each criterion. For simplicity, difference 

between evaluations is represented by  since every criterion has a similar procedure. 

Some preference functions have threshold values q and p. The indifference threshold q 

represents the minimum required difference for the DM to express any level of 

preference, and the preference threshold p represents the minimum required difference 

for the DM to express strict preference. These thresholds are specific to each criterion and 

DM. 

 

 

Figure 3.1. Preference functions 

 
The preference value of  over  on criterion j is represented by  and  denotes 

the weight of criterion j. The weights in PROMETHEE correspond to the importance 
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levels of the criteria for the DM. To find overall preference value of  over  regarding 

all criteria, aggregated preference index of  over  is calculated using (1).  

 

 

 

Criteria weights used in PROMETHEE must be pre-specified, weight elicitation 

techniques for this task that we review are provided in Section 3.2. Also, weights should 

sum up to 1. Therefore,  values are between 0 and 1. Values closer to 0 represent weak 

global preference of  over  and values closer to 1 represent strong global preference 

of  over .  

 

After all pairwise comparisons are completed, PROMETHEE calculates overall 

preference indices for all solutions. Positive flow and negative flow of  are denoted by 

 and  respectively. Positive flow implies how strongly  outranks all other 

solutions and it is calculated as in (2). On the other hand, negative flow of  implies how 

strongly other solutions outrank  and it is calculated using (3). A solution with higher 

positive flow and lower negative flow is considered to be preferable. 

 

 

 

 

There are a few versions of PROMETHEE but two of them dominated the literature: 

PROMETHEE I and II. They work with the positive and negative flows that we defined. 

PROMETHEE I evaluates solutions considering positive and negative flows 

simultaneously.  
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In PROMETHEE I, is preferred to  if one of the following conditions hold:  

(i) and  

(ii) and  

(iii) and  

Solutions and  are incomparable if one of the following conditions hold:  

(i) and  

(ii) and  

Lastly, there is an indifference relation between and  if and .  

 

As a result of PROMETHEE I, it may not be possible to achieve full ranking of solutions 

since there can be incomparability or indifference between some pairs of solutions. 

 

On the other hand, PROMETHEE II works with a final score as calculated in (4) and it is 

called the net flow of solution . It is used to achieve a full ranking of solutions. 

 

 

 

Solutions are ranked in decreasing order of their net flows. Therefore, PROMETHEE II 

allows a strict rank list, however it is possible to lose some information that comes from 

positive and negative flows by calculating (4). The following steps summarize the 

PROMETHEE approach. 

 

1. For each criterion j, difference between evaluations of  and  is calculated by 

. 

2. For each criterion j, DM selects a preference function from Figure 3.1 and the related 

parameters, if any. 

3. For each alternative pair ( , ) in each criterion j, a preference value  is 

calculated. 

4. For each alternative pair ( , ), aggregated preference index  is calculated using 

(1). 

5. For each , positive and negative flows are calculated using (2) and (3). 

6. For each , net flow is calculated using (4). 
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7. Obtain an outranking relation of alternatives: 

7.1. To obtain partial ranking of alternatives, PROMETHEE I rules given above are 

used. 

7.2. To obtain complete ranking of alternatives, list all alternatives in decreasing order 

of net flows. 

 

PROMETHEE is a flexible and powerful methodology to compare and rank solutions. It 

can work with continuous and discrete measurements of criteria, as well as ordinal and 

binary. The DM can express preferences through different preference functions and can 

fine-tune those preferences with customized indifference and preference thresholds. 

Moreover, these thresholds are not abstract values like the concordance and discordance 

thresholds used by the other popular outranking method, ELECTRE. In PROMETHEE, 

the DM can realistically be expected to express the minimum difference in the values of 

a criterion so that there will be any significant difference, or absolute superiority. Due to 

these advantages, we work with PROMETHEE in our proposed approaches.   

 

3.2. Weight Elicitation Techniques 

Since PROMETHEE, like many other MCDM methods, does not have a weight 

derivation step in its procedure, other techniques should be used to elicit weights before 

executing PROMETHEE. Therefore, in this section, we will review some of these 

techniques used in the literature. Methods are categorized as the ones based on criteria 

comparisons and based on alternative comparisons. 

 

3.2.1.  Methods Based on Comparison of Criteria 
3.2.1.1. Direct Evaluation Methods 
Direct evaluation methods are the most widely known weight elicitation methods because 

they are the oldest ones. Detailed explanations and examples are provided in Pomerol and 

Barba-Romero (2000). We explain three main methods in this category. 

 

Simple Ranking

Simple ranking is the easiest way of deriving criteria weights. The DM is just asked to 

rank criteria considering his/her preferences for the problem. Then, scores are assigned 
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to criteria in accordance with the ranking. For example, the criterion which is the least 

important takes score 1, the next one takes score 2 and so on. The criteria with equal 

importance take the average of scores like 3.5 instead of 3 and 4. After that, all criterion 

scores are divided by the sum of scores and criteria weights are obtained. 

 

The method is advantageous due to its simplicity and low requirements for calculations, 

however it does not allow the criteria to have all possible values between 0 and 1 and its 

effectiveness is not proven. 

 

Simple Cardinal Evaluation

Simple cardinal evaluation is another simple way of weight elicitation. The difference 

between this and the previous method is that DM is asked to assign scores to the 

importance of criteria on given scales like 0-5 or 0-100. Scoring is done by considering 

that the most important one should take the highest score. After that, each criterion score 

is divided by the sum of scores to elicit weights. For example, let us assume that we have 

three criteria with scores 5, 3 and 2. Then, their weights will be 0.5, 0.3 and 0.2 since the 

sum of scores is 10. 

 

This method asks DM for more information than simple ranking, but the results heavily 

depend on the scale used and the DMs tend to change their answers with repetitions. 

 

The Method of Successive Comparisons

The first version of this approach goes a long way back and other versions were proposed 

within years (Pomerol and Barba-Romero, 2000). This method requires more information 

from the DM, but it gives more consistent results than the simple cardinal evaluation 

method. Basically, the procedure can be applied in the following steps.  

 

Firstly, criteria are ranked by DM and they are assigned a score using a scale as in the 

previous cardinal evaluation method. After that, starting from the first one, criteria are 

compared with their consecutive ones. For example, the first criterion is compared with 

the second criterion then, the first criterion is compared with the second plus third 

criterion, and so on. These successive comparisons are made for each criterion. In the 

next step, the consistency between the comparisons and the scores are checked. 
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Inconsistent scores based on comparisons are revised. Then scores are normalized, and 

weights are obtained. 

 

3.2.1.2. Ranking-based Methods 
Ranking based methods are another group of procedures for deriving weights. Criteria 

rankings provided by DM are used to calculate weights; but the procedures are somewhat 

more sophisticated than simple ranking. The most common formulas are the rank sum 

(RS), rank reciprocal (RR) and rank order centroid (ROC). 

 

RS approach assumes equal distance between weights of consecutive ranks while RR and 

ROC approaches increase the difference between consecutive weights as the rank 

positions get higher. Formulas are given in (5), (6) and (7) where j=1,2,…,N and  is the 

rank of criterion j. 

 

 

 

 

 

Among these formulas, ROC has the best performance with respect to choice accuracy. 

For more detailed discussions, Sureeyatanapas (2016), Roszkowska (2013) and Ahn 

(2011) can be reviewed. 
 

3.2.1.3. ELICIT 
Diaby, Sanogo and Moussa (2016) proposed ELICIT as a new approach for weight 

elicitation for multiple DMs and applied it to a healthcare problem. ELICIT has two 

fundamental steps. In the first step, each DM assigns a rank to each criterion based on 

their individual preferences. To aggregate these rankings, a statistical approach is used. 

Firstly, for each ranking provided by m different DMs, (8) is used to calculate 

standardized ranks of n criteria and a new standardized matrix  is constructed 
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regarding standardized values.  and  represent the standardized and provided ranks 

of each criterion. Besides,  and  are mean and standard deviation of the rankings of 

each DM. 

 

 

 
In the next step, correlation matrix is created by (9). 

 

 

 
Using the correlation matrix, eigen value, corresponding eigen vector and normalized 

eigen vector (  are calculated, then they are used to find criteria scores as in (10). 

 

 

 

Criteria weights are listed in decreasing order of scores. To elicit criteria weights from 

that order, MCS is used. 1000 iterations are simulated under two conditions; the pre-

defined order of weights should hold and summation of all criteria weights should be 

equal to 1. As a result of that simulation, criteria weights are determined. 

 

3.2.1.4. Stepwise Weight Assessment Ratio Analysis (SWARA) 
The method SWARA is proposed by Keršuliene, Zavadskas and Turskis (2010) to derive 

weights considering DM’s opinions about significance ratio of criteria. First, the DM is 

asked to provide a ranking of criteria regarding the available information so that the first 

is the most important one for the case. Then, each criterion j is compared with the criterion 

j+1 by the DM  to find how much criterion j is relatively more important than criterion 

j+1 and this relative importance value for each j is defined as . After each relative 

importance between criteria is found, a coefficient value  for each criterion j is 

determined using (11). Weights of each criterion is found using (12) and normalized using 

(13).  
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3.2.1.5. The Analytic Hierarchy Process (AHP) 
The AHP is an MCDM approach proposed by Saaty (1990). It is widely used for both 

weight elicitation and alternative ranking in multiple criteria decision problems. Since we 

use PROMETHEE to rank alternatives, we focus on the criteria weighting procedure of 

AHP. Generally, the process is based on pairwise comparisons according to an 

importance scale. Therefore, it makes it possible to express qualitative judgements as 

numeric values. 

 

In the first step, alternatives and criteria of the problem are defined hierarchically. Thus, 

the aim of the problem, criteria which affect the solution and solution alternatives are 

shown clearly for the comparison process. 

 

At the second step, all criteria are compared in a pairwise manner. The DM determines 

which criterion in the pair is more important and the numeric equivalent of that 

importance using the scale in Table 3.1.  

 

Table 3.1. Importance scale for criteria comparisons in AHP 

1 Equally preferred 
3 Moderately preferred 
5 Strongly preferred 
7 Very strongly preferred 
9 Extremely preferred 

2,4,6,8 Intermediate values 
 

In the presence of m criteria, let the DM compare criteria j and l and choose j as the more 

important one. If the score of this importance is denoted by hjl, then hlj directly becomes 
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1/hjl. Using this rule, all comparisons are completed and for all criteria pairs a normalized 

comparison score is calculated using (14). 

 

 

 
To derive criteria weights, normalized comparison scores are averaged using (15). 

 

 

 

With these steps, criteria weights which sum up to 1 are obtained and a consistency test 

is conducted using the steps below. Since several pairwise comparisons are performed in 

AHP, it is important that the DM makes these comparisons consistently with each other. 

For example, if the first criterion is 2 points more important than the second criterion and 

the second criterion is 3 points more important than the third criterion, then the first 

criterion should be around 6 points more important than the third criterion. The critical 

threshold for consistency is accepted as 0.10. If consistency ratio is higher than this 

threshold, then the DM should review the importance levels assigned and repeat the 

process. Steps of calculating the consistency ratio are given in the following steps: 

 

1. For the comparison matrix consisting of hjl and hlj values, multiply each value in 

each column with the weight of the corresponding criterion, then sum these 

vectors to obtain a weighted sum vector. 

2. Divide each value in the weighted sum vector by the weight of the corresponding 

criterion. 

3. Take the average of values found in the previous step and define it as . 

4. Calculate the consistency index (CI) using (16), where m is the number of criteria 

compared. 
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5. Calculate the consistency ratio (CR) using (17). RI is the consistency index of a 

randomly generated pairwise comparison matrix, it is based on the number of 

criteria compared and given in Table 3.2. 
 

 

 
Table 3.2. RI values for different number of criteria 

m 3 4 5 6 7 8 
RI 0.58 0.90 1.12 1.24 1.32 1.41 

 

3.2.2.Methods Based on Comparison of Alternatives 
3.2.2.1. The UTA Methods 
The UTA (Utility Additive) Method was presented by Jacquet-Lagreze and Siskos (1982) 

to evaluate additive utility functions of alternatives considering multiple criteria. It 

requires the DM to rank some alternatives subjectively to obtain preference information. 

Then, it uses linear programming to obtain utility function parameters that obey the 

preferences of the DM, which in turn are used to provide rankings of all alternatives. UTA 

is not basically proposed to elicit weights, but it provides some estimations of weights as 

a by-product. There are some versions of the UTA method in the literature such as 

UTASTAR and UTADIS. UTASTAR was proposed by Siskos and Yannacopoulos 

(1985) to enhance the UTA method to improve its performance. Another method 

developed using UTA is the UTADIS method which is introduced by Jacquet-Lagreze, 

(1995). Differently from the UTA, UTADIS requires the DM to rank the alternatives in 

groups. So, the best alternatives are assigned to the first group. 

 

3.2.2.2. A Mathematical Modelling-based Method 
The method proposed by Tuncer Şakar and Yet (2018) is based on the alternative ranking 

of the DM in terms of his/her preferences. It does not require the ranking of all alternatives 

at the same time therefore, it is easy to use by the DM.  

 

It is assumed that the alternatives are evaluated by a weighted utility function that is 

defined as in (18). 



 

22 
 

 

 
where  denotes the evaluation of alternative j in criterion i and  denotes the weight 

of criterion i. Each criterion weight should be nonnegative, and all should sum up to 1. 

 

At the first step of the proposed method, k random alternatives from the decision problem 

are presented to the DM and the DM is asked to rank them based on his/her preferences. 

Let the evaluation vector of alternative j on all criteria be represented by . If the resulting 

alternative ranking of DM is , utility function values should also be 

ranked with the same order, i.e.,  . However, there may be infinitely 

many criteria weights to satisfy these orders. To reach final answers, the authors proposed 

to find upper and lower bounds for each criterion weight. After determining the bounds, 

middlemost values are normalized to derive criteria weights. Upper bounds are found by 

solving the model given in (19). 

 

 

 

 

 

 . 

.              (19) 

 . 

 

 

 

 
By replacing the objective function with (20), lower bounds are calculated. Then, by 

taking the average of the lower and upper bounds for each criterion, average weights 

(  are obtained and normalized as in (21) to derive final criteria weights. 
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Alternatives are required to be ordered by the DM in clusters of k, but all rankings 

provided by DM are added to the same mathematical model to find final criteria weights. 

 

3.2.2.3. SWING Method 
SWING method proposed by Winterfeldt and Edwards (1986) is a another widely used 

weight elicitation approach. The method starts with generating n hypothetical alternatives 

for a problem with n criteria. Within these alternatives, each of them has the best value in 

one criterion and worst values in the other n-1 criteria. The DM selects one of the n 

alternatives as the best one based on his/her preferences, then the criterion that has the 

best value in the selected alternative is set as the criterion with the highest preferability. 

In the next step, DM selects one of the remaining n-1 alternatives, then the criterion with 

the best value on that alternative is determined as the second important criterion, and the 

procedure continues until the overall criteria ranking is derived. 

 

After the criteria ranking is obtained, DM is asked to determine the value of each 

alternative relative to other alternatives to calculate weights. To do that, utility values of 

each alternative and utility of the nadir vector (vector with the worst values in all criteria) 

are compared. Afterwards, criteria weights are obtained by rating the differences between 

utility values of alternatives and the nadir vector.  

 

3.3. Bayesian Networks 

BNs are probabilistic graphical models that represent joint probability distributions of 

variables. A BN model consists of a graphical structure and a probability table for each 

node in the graph. Its graphical structure is directed and acyclic, it includes nodes and 

arcs to represent variables and their relations, respectively. Since BNs show us which 

variables are independent, it eliminates the unnecessary conflicts from the model. BNs 

model the probability distributions, causal relationships and independencies graphically. 

Besides, they have powerful algorithms for probability calculations (Lauritzen and 

Spiegelhalter, 1988). 
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Using conditional probabilities, efficient algorithms of BNs can calculate posterior 

probabilities when an evidence is defined for some variables in the model. Also, it is 

possible to make probabilistic inferences with missing values. For more comprehensive 

information, Fenton and Neil (2012) may be reviewed. 

 

To understand a BN model better, let us assume that smoking and age are two factors that 

affect the probability of having cancer. Smoking and age variables are called parent nodes 

while cancer variable is called child node because of its dependency on smoking and age. 

All relations between variables and their probability tables are shown in Figure 3.2. 

Probability tables on nodes are called node probability tables (NPT) and NPT of cancer 

variable is represented as conditional probability distributions of smoking and age 

variables. 

 

BNs represent the joint probability distribution of its variables based on the conditional 

independencies encoded in the graphical structure and the conditional probability 

distributions encoded in NPTs. Propagation algorithms (Lauritzen and Spiegelhalter, 

1988) can be used to compute the posterior distribution of its nodes when any subset of 

the nodes are instantiated. In the example case given in Figure 3.2, the probability of 

having cancer is 0.27 when none of the other nodes are instantiated. However, when an 

evidence is entered to the model, the posterior probabilities can be calculated. For 

example, if it is known that the patient is old then the model makes the probability of 

being cancer higher.  
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Figure 3.2. BN Model of the cancer example 

 
Additionally, child nodes can be instantiated, and the probability distributions of parent 

nodes can be updated. For instance, if the patient has cancer, the probability of smoking 

increases from 0.4 to 0.7 or if the patient is young and has cancer, the probability of 

smoking is calculated as 0.95. BN models are effective tools to model joint probability 

distributions and make probabilistic inferences. 

 

However, BNs are limited to calculation of posterior probabilities in decision support. 

Thus, to represent preferences of DMs in an MCDM problem, it needs another tool. In 

this thesis, we use BN models to gather probability distributions since we deal with 

uncertain alternative solutions on criteria. 
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4. PROPOSED METHODOLOGIES 

 

Since preference functions, threshold values and criteria weights are DM specific, and 

there is uncertainty involved, it is not possible to assess the alternatives in a 

straightforward way. Thus, we need systematic and comprehensive approaches to 

compare alternatives and make decisions. In this thesis, we propose three different 

approaches to rank multiple criteria alternatives with uncertain evaluations. Our first and 

second approaches are the test-based and the score-based approach. The differences 

between them are the outranking information they use, the flexibility level they offer to 

the DM about the final evaluations of alternatives and their way of presenting results. The 

test-based approach uses PROMETHEE I rules to rank alternatives. It considers 

statistically significant positive and negative flow superiorities to perform a partial 

ranking. This approach enables the DM to define the error rate of their MCDM analysis 

by setting the significance level and power of the statistical test. On the other hand, the 

score-based approach uses PROMETHEE II to create a complete ranking of alternatives. 

It calculates the probabilities of alternatives for occupying different ranks. Based on these 

probabilities, this approach calculates an overall score to rank alternatives. It also enables 

the DM to assess the uncertainty in their ranking. Our third approach, a probabilistic 

version of PROMETHEE, works with joint probability distributions of alternative pairs. 

While the test-based and score-based approaches use sampling to deal with uncertain 

criteria values, the third approach uses probabilities to rank alternatives. In this section, 

we give explanations for all approaches. 

 

In all approaches, importance of criteria is represented through weights. Different weight 

elicitation techniques were reviewed in Section 3.2. We mainly use AHP and ROC 

weighting to derive criteria weights in our approaches. In addition, we make additional 

computational studies for sensitivity analysis of weights. Although we propose the use of 

BNs as the source of uncertainty representation, our approaches can work with probability 

distributions generated by any means. In fact, since the BN of the shoulder case in the 

project does not have enough actual data to provide reliable distributions yet, we use 

expert knowledge to produce the probability distributions at this stage. 
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4.1. Test-Based Outranking Approach under Uncertainty 

The test-based outranking approach uses statistical tests and confidence intervals to 

evaluate the differences between the means of both positive and negative flows of 

alternatives. For each pair of alternatives, firstly positive and negative means of 

alternatives and confidence intervals are calculated. To understand whether there is a 

significant difference between alternatives, statistical tests with significance level  are 

conducted.  

 

Because we have uncertainty about criteria evaluations, we generate scenarios from 

probability distributions for criteria values. Let us call each of these scenarios a sample 

and let  and  be the positive and negative flow of solution  in sample s, 

respectively. Our test-based approach includes the steps given below: 

 

1. For each sample s, apply PROMETHEE outranking steps 1-5 to calculate  and 

 values for all i 

2. Check the mean of positive flows  and negative flows  for all i  

2.1. If the mean of positive flows  and negative flows  are the same for all 

i, conclude that there is indifference relationship between all solutions 

2.2. Else if there is any significant difference between  or  

2.2.1. For all solution pairs ai and ak, use , ,  and  samples 

to test the following null-hypotheses H0 with significance level α 

H0
 Test1:  

H0
Test2:  

2.2.2. Conclude that  

There is an indifference relationship between ai and ak if:  

Fail to reject H0
 Test1 and H0

 Test2  

Solution ai is preferred to ak if one of the following conditions hold: 

Reject H0
 Test1 and H0

 Test2,   and   

Reject H0
 Test1 and fail to reject H0

 Test2,  

Fail to reject H0
 Test1 and reject H0

 Test2,   

Solutions ai and ak are incomparable if one of the following conditions hold:  
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Reject H0
 Test1 and H0

 Test2,   and  

Reject H0
 Test1 and H0

 Test2,   and  

3. Combine all relationships in Step 2 to construct the outranking diagram of all 

solutions  

 

In Step 1, traditional PROMETHEE formulas (1) – (3) are performed for each sample and 

 and  values for all i are calculated. After that, to reach an overall ranking of 

alternatives we apply statistical tests. In Step 2, mean of positive flows and negative 

flows of all i are checked to understand whether the alternatives are significantly 

different or not. To do that, we use one-way Analysis of Variance (ANOVA) test. 

ANOVA test is applied for both positive and negative flow values separately. If ANOVA 

results say that mean of positive flows  and negative flows  are the same for all i,

in Step 2.1 we conclude that alternatives are not significantly different and they all have 

indifference relationship. However, if ANOVA results show that positive  or negative 

 flow means have significant difference for at least one alternative, then we continue 

with Step 2.2 and make tests to identify alternative pairs which have significant 

difference. Therefore, in Step 2.2.1, we conduct two-sided Tukey’s test for both positive 

and negative flows for all solution pairs ai and ak using , ,  and . Conducting 

multiple pairwise tests, such as paired t test, between the positive and negative flows of 

solutions is prone to false discoveries due to family-wise error rate. Tukey’s test corrects 

for these errors when making pairwise comparison of the means. The tests are performed 

based on the following null hypotheses H0
 Test1 and H0

 Test2 with significance level . Test 

1 includes positive flows of alternatives in pairs while Test 2 includes negative flows. 

 

H0
 Test1:  

H0
Test2:  

 

After the Tukey’s test is completed for both H0
 Test1 and H0

 Test2, conclusions are made 

based on the rules in Step 2.2.2. These rules are derived from the basic PROMETHEE 

rules, we updated them for the results of the Tukey’s test. Finally, in Step 3 all 

relationships are aggregated, and ranking of alternatives are constructed.  



 

29 
 

As in traditional PROMETHEE, the test-based outranking approach generally gives 

partial ranking of alternatives since some alternatives have indifference relationship or 

they may be incomparable. This outcome may be preferable in some decision-making 

problems where DMs prefer a degree of flexibility in their final evaluation. For example, 

DMs may need a general assessment of alternative solutions, but they may not desire to 

force strict superiorities between the solutions. This property comes from the 

PROMETHEE I that considers positive and negative flows simultaneously. The classical 

PROMETHEE I, however, does not have a mechanism to define significant difference 

values between positive or negative flows of pairs of solutions when there are multiple 

evaluations with uncertainty. Our approach provides a guideline to make conclusions 

from data by taking the uncertainty and error rate into account by using statistical tests in 

PROMETHEE I.  

 

The sample size may not be large enough to detect small differences between positive 

and negative flows in desired α levels in some cases. Conducting an automated analysis 

based on p-values may misguide the DM in assessing whether the difference was not 

present, or the sample size was too small to detect it. Therefore, a fully automated analysis 

is not recommended, and the DM should evaluate the confidence intervals of flow 

differences to assess whether large differences are included in the interval and their width.  

 

4.2. Score-Based Approach under Uncertainty 

Our second approach ranks alternatives based on the information about the probability of 

alternatives occupying each rank. Using these probabilities, an overall score is calculated 

in order to rank all alternatives. Additionally, this approach presents a graphical tool to 

evaluate performances of different solutions. The score-based approach uses 

PROMETHEE II rules to provide more exact results with complete ranking of 

alternatives. Thus, it works with net flows of alternatives. As in the first approach, to cope 

with the uncertainty in criteria values of alternatives, we utilize sampling approach for 

the probability distribution of criteria values. We define  as the net flow of solution ai 

in sample s. Based on  values for all i in a given s, let ris be the rank of solution ai in 

sample s.  

 



 

30 
 

 Steps of the proposed score-based approach follow: 

1. For each sample s, apply PROMETHEE outranking steps 1-6 to calculate  for 

all i. 

2. For all s, list solutions in decreasing order of   and determine ris for all i 

accordingly. 

3. Choose a suitable method for defining rank weights wt. 

4. Apply formulas (22) – (25) to compute  and  for all i. 

5. Draw a graphical summary of the ranking based on , and calculate the overall 

ranking of solutions by listing all solutions in decreasing order of . 

 

For each alternative i in each sample s, classical PROMETHEE formulas (1)-(4) are 

calculated to find  values in Step 1. Next, in Step 2, all i are listed in decreasing order 

of  values for each s. Thus, ris for all i are determined. In Step 3, we need to define 

weights to express the importance of ranks for the DM. The overall ranking scores are 

calculated with these rank weights to consider the risk behavior and preferences of the 

DM while providing the ranking of alternatives. If DM is unable or unwilling to determine 

weights directly, then one of the ranking-based weight elicitation methods discussed in 

Section 3.2.1 can be used. In our second approach, we prefer to use RS, RR or ROC 

weights using (5), (6) and (7). If certain ranks are considered to be not important, the DM 

may not consider them when defining rank weights and assign them 0 values. This should 

be done in accordance with the rule that weights should be non-increasing and sum to 1. 

With Step 4, we compute all calculations to find overall ranking scores of alternatives. 

Now, let S be the set of all samples, and  be the subset of S where ai occupies the tth 

rank as defined in (22). 

 

 

 

To find the probability of ai having the tth rank, , we divide the cardinality of  by the 

cardinality of S as in (23).  

 

 



 

31 
 

 values only provide probabilities of all ranks for all alternatives, but we need an 

assessment tool to provide a complete ranking. For this purpose, we present a graphical 

tool and a score to aid the DM in ranking solutions. Our graphical tool includes 

cumulative distribution functions (CDFs) of all solutions for all possible ranks. Let ri be 

the rank of solution ai considering all ; let the CDF of ri,  to be defined as in 

(24). 

 

 

Creating a graph of these CDFs of all solutions gives us a summary of ranks of different 

solutions and the associated uncertainty. From the graph we can interpret some results 

like which solutions are better overall or which ones have higher probabilities to be in the 

top ranks. 

 

In addition, we provide a final measure to rank solutions, ranking score  which is 

calculated as in (25) and used to provide a complete ranking of n alternatives. wt 

represents the weight of the tth rank. This weighted score is flexible to decide based on 

the risk behavior and rank preferences of the DM. 

 

 

 

To explain our approach in detail, let us construct an example with 4 solutions (a1, a2, a3, 

a4) and assume that we have 100 samples for criteria values of solutions. For this example, 

the number of criteria is not important since Table 4.1 includes the frequency of the rank 

occurrences and the related probabilities that are obtained with applying PROMETHEE 

II steps on each sample. For instance, a1 has the first rank in 20 samples, the second rank 

in 10 samples, the third rank in 30 samples and the fourth rank in 40 samples. The columns 

on the right show the probabilities of occurrence of these ranks. For example, the 

probability of a1 having the first rank is 0.2, the second rank is 0.1, the third rank is 0.3 

and fourth rank is 0.4. 
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Table 4.1. Sample results of the toy example 

Solution     
a1 20 10 30 40 0.2 0.1 0.3 0.4 
a2 10 20 40 30 0.1 0.2 0.4 0.3 
a3 40 20 20 20 0.4 0.2 0.2 0.2 
a4 30 50 10 10 0.3 0.5 0.1 0.1 

 

 
Figure 4.1. Cumulative probability plots of the example problem 

 
Using (24), CDFs for the ranks of each solution are calculated and Figure 4.1 is 

constructed to show the graphs of those CDFs. In Table 4.1, we see that a3 has the highest 

probability and a2 has the lowest probability of having the first rank. Also, we can say 

that although a3 has higher probability than a4 for the first rank, a4 may be considered as 

the better alternative for some DMs since it has higher probability for being the best or 

second-best solution. Thus, considering all ranks can be appropriate for the DMs who 

wants to evaluate all possible ranks. On the other hand, a3 can be a better alternative than 

a4 for the risk-seeking DMs since they can assign a relatively higher weight to the best 

rank.  

 

Table 4.2 shows the weights ( ) of each rank t calculated by different ranking 

approaches and weighted scores ( ) of alternative solutions using those weights. RS 

approach assumes equal distance between weights of different ranks; however, RR and 

ROC approaches may be more suitable weighting approaches for DMs who want to give 

considerably more importance to higher ranks. In this example, they nearly assign two 
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times more weight to the first rank than the second one. In Table 4.2, the numbers in 

parentheses show the ranks of solutions. We also include a case where the DM uses RR 

weights for just the top two ranks. Using RS, a4 has the first rank, a3 has the second rank 

and a1 and a2 have the lowest ranks since they have equal weighted scores. With scores 

calculated by ROC, and RR for just the first 2 ranks, a4 has the first rank, a3 has the second 

rank, a1 has the third rank and a2 has the fourth. In the ranking by RR, however, the best 

alternative is a3 which is followed by a4 since RR puts more emphasis on the probability 

for the first rank relative to the weight of the second rank. 

 

Table 4.2. Solution scores and rank weights of toy example 

  Rank Weight Approach 
  RS ROC RR RR 

First 2 Ranks

wt

w1 0.40 0.52 0.48 0.66 
w2 0.30 0.27 0.24 0.33 
w3 0.20 0.15 0.16 0 
w4 0.10 0.06 0.12 0 

0.21 (3) 0.20 (3) 0.22 (3) 0.17 (3) 
0.21 (3) 0.18 (4) 0.20 (4) 0.13 (4) 
0.28 (2) 0.30 (2) 0.30 (1) 0.33 (2) 
0.30 (1) 0.31 (1) 0.29 (2) 0.37 (1) 

 

If the DM is risk-seeking and gives importance to just the top ranks, then all weighting 

methods considered can be used for only the top ranks and 0 weights can be assigned to 

other ranks as shown in the example. In general, if the DM is only interested in n ranks 

that corresponds to taking a more risk-seeking attitude than the case of considering all 

ranks, this would require changing N with n in (5) – (7), and assigning 0 weights to wn+1,

…, wN.

The graphical tool given in Figure 4.1 is useful to observe differences between the 

performance of solutions. It shows that, for example, even though a3 has a higher 

probability of having the first rank, a4 has better overall probabilities when lower ranks 

are also considered. While the weighted score summarizes this in a single measure, the 

graph enables the DM to assess the differences in specific ranks graphically. 
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4.2.1.Analyzing the confidence of the score-based approach 
Using the test-based approach proposed in Section 4.1, the confidence of the score-based 

approach can be assessed. Therefore, we can provide decision support with a confidence 

level to the DM. Recall that  is the net flow of solution ai in sample s. We can make 

tests to see whether the net flows of solutions are significantly different based on the 

ranking produced by the score-based approach. Let ri
score be the rank of solution ai  

provided by the score-based approach. Steps of the confidence assessment are as follows. 

 

1. Test the presence of difference between the means of net flows  of all i with 

ANOVA 

2. If there is any significant difference 

2.1. For every solution pair ai and ak where the ri
score ≤ rk

score 

2.1.1. Use  and samples to test the null-hypothesis H0:  with the 

significance level α using Tukey’s Test. 

3. Prepare a summary table with the p-values of the pairwise comparisons according 

to the ranking provided by the score-based approach. 

 

This confidence assessment gives us a summary about the significant differences of 

solutions in the order of the ranking provided by the score-based approach. This 

assessment is advantageous since we cannot measure the insignificant difference between 

solutions when we work with net flow values of a sample in classical PROMETHEE II. 

Due to criteria weights, preference functions and threshold values, net flow values of a 

sample are very case specific. Thus, it is not straightforward to determine a cut-off value 

in net flows to determine classes of solutions that are significantly different from each 

other. However, by conducting statistical tests that we mentioned, we can test for 

significant differences between solutions. Therefore, the DM can be certain about the 

accuracy of the ranking with significance level . We illustrate this analysis in 

computational experiments. 

 

4.3. Probabilistic PROMETHEE 

We also provide a third method of alternative assessment in addition to the previous test- 

based and score-based approaches. This third method uses joint probabilities instead of 
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sampling approaches to provide rankings based on PROMETHEE methodology. We refer 

to this approach as the probabilistic PROMETHEE, and it works with joint probability 

distributions of alternatives in each criterion. It proceeds by taking the sum of 

probabilities where alternative i has better criterion values than alternative k for each 

alternative pair (i,k) and each criterion. Then, it calculates a weighted score for each 

alternative pair by using the importance weights of criteria to aggregate all scores. Finally, 

using the mechanisms of PROMETHEE, it provides negative and positive flows to 

perform both partial and complete alternative ranking as in the classical PROMETHEE 

approaches. Instead of the preference functions of PROMETHEE, this approach uses the 

probabilities of alternatives being better than the others. 

 

Additionally, two different versions of this basic approach are proposed considering that 

the DM can be interested in giving different preferences to different magnitudes of 

difference in criteria values. The basic version of this approach gives equal importance to 

all differences in criterion values. However, the second version defines a threshold value 

to consider differences of alternatives as significant in accordance with the DM’s 

preferences. For example, for an ordinal valued criterion, if the threshold value is 2 and 

alternative i is better than alternative k by 1 level in that criterion with a given probability, 

then the method will ignore that probability. Finally, the third version specifically gives 

different importance to each level of difference in criteria values. For instance, alternative 

i can be better than alternative k by 2 levels and alternative l can be better than alternative 

k by 1 level. In such a situation, the DM may prefer to treat alternatives i and l differently. 

Therefore, the third version of the probabilistic PROMETHEE approach defines a 

weighted probabilistic measure to rank alternatives. 

 

Steps of the first version that we develop for ordinal-valued criteria are defined as follows: 

1. Obtain joint probability  distributions of all alternative pairs (i,k) in each criterion j  

2. In each criterion j, use joint probability distributions to calculate dominance score  

of  on  as follows: 

2.1. For each criterion j where higher levels are preferable 

Sum the joint probabilities where  has higher levels than  

2.2. For each criterion j where lower levels are preferable: 

Sum the joint probabilities where  has lower levels than  
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3. Calculate weighted dominance scores  of alternative pairs (i,k) regarding all 

criteria using (26) and create an outranking matrix with all dominance scores 

 

 

 

4. Find negative, positive and net outranking values of each alternative i using (27), (28) 

and (29) 

 

 

 
 

 
 

 

5. Obtain a partial or complete alternative ranking 

5.1. To obtain a partial ranking, compare negative  and positive  outranking 

values and conclude that 

Alternatives ai and ak are indifferent if:  

 and   

Alternative ai is preferred to ak if one of the following conditions hold: 

 and   

 and  

 and   

Alternatives ai and ak are incomparable if one of the following conditions hold:  

  and  

  and   

5.2. To obtain a complete ranking, list alternatives in decreasing order of  values 

 

Let us use an example to explain the probabilistic PROMETHEE approach fully. Let a1, 

a2 and a3 be three solution alternatives evaluated with two ordinal criteria and assume that 

the first criterion has three levels and the second one has four levels. Also, assume that 

higher levels of both criteria are preferable for the DM. For this example, weights of 
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criterion 1 and 2 are taken as 0.4 and 0.6, respectively. Table 4.3, Table 4.4 and Table 4.5 

report some of the joint probability distributions of alternative pairs. 

 

Table 4.3. Joint probability distribution of alternatives 1 and 2 in the first criterion 

  a2 
  Low Medium High 

a1 
Low 0.07 0.04 0.09 

Medium 0.13 0.08 0.18 
High 0.14 0.08 0.20 

 
Table 4.4. Joint probability distribution of alternatives 1 and 2 in the second criterion 

  a2 

 
 Very Low Low Medium High 

a1 

Very Low 0.04 0.03 0.08 0.07 
Low 0.05 0.03 0.09 0.08 

Medium 0.02 0.01 0.04 0.04 
High 0.08 0.05 0.14 0.14 

 
Table 4.5. Joint probability distribution of alternatives 2 and 3 in the second criterion 

  a3 

 
 Very Low Low Medium High 

a2 

Very Low 0.02 0.06 0.03 0.09 
Low 0.01 0.03 0.02 0.05 

Medium 0.04 0.10 0.05 0.16 
High 0.04 0.10 0.05 0.15 

 

In Step 2, using joint probability distributions, dominance scores  are calculated. In 

our example, some  scores using Table 4.3, Table 4.4 and Table 4.5 are calculated 

below as examples. 

 

 
 

 
 

 
 

 
 
In Step 3, the weighted dominance scores are found by weighing the  scores by criteria 

weights. For instance, the weighted dominance score  of a2 over a1 is found as below 
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and the dominance matrix regarding weighted dominance scores of each alternative pair 

is provided in Table 4.6. 

 

 

 
Table 4.6. Dominance matrix 

 a1 a2 a3 
a1 0.00 0.35 0.34 
a2 0.36 0.00 0.35 
a3 0.34 0.37 0.00 

 

Positive, negative and net outranking values of each alternative are calculated in Step 4 

and reported in Table 4.7. According to these results, in both partial and complete 

rankings a3 outranks a1 and a2. In partial ranking, a1 and a2 are found as incomparable, 

and in the complete ranking they are both placed on the second rank since their net 

outranking values are equal. 

 

Table 4.7. Probabilistic positive, negative and net outranking values of alternatives 

    
a1 0.69 0.70 -0.01 
a2 0.71 0.72 -0.01 
a3 0.71 0.68 0.02 

 

4.3.1.The Second Version of Probabilistic PROMETHEE: Defining Threshold 
Values 

In this version of the probabilistic PROMETHEE, a threshold value  is defined for each 

desired criterion j according to the preferences of the DM. While dominance scores  

are calculated, probabilities where alternatives have a difference of at least  levels are 

included. This second version is similar to the basic version except for Step 2. 

 

Let us explain this version using the same example. Assume that the threshold value is 2 

for both criteria. Thus, the joint probabilities where alternatives have at least 2 level 

differences on both criteria are considered. From Table 4.3, dominance score of a1 over 

a2  on the first criterion,  ,is found as 0.14 since just the probability where a1 is on the 
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high and a2 is on the low level of the first criterion is considered. Similarly, other 

dominance scores are updated below. 

 
 

 
 

 
 

Again, the probabilities where a2 has medium or high values when a3 has very low values 

and the probabilities where a2 has high values when a3 has low values on criterion 2 are 

considered. Domination scores of each alternative pair are calculated similarly. All other 

steps are same with the first version. Table 4.8 shows the dominance scores of each 

alternative and Table 4.9 shows the outranking values of alternatives. In both partial and 

complete ranking, a2 is the best alternative and followed by a3 and a1, respectively. 

 

Table 4.8. Dominance matrix calculated by the second version of probabilistic 

PROMETHEE 
 a1 a2 a3 
a1 0.00 0.15 0.17 
a2 0.17 0.00 0.17 
a3 0.18 0.15 0.00 

 
Table 4.9. Positive, negative and net outranking values of alternatives of the second 

version of probabilistic PROMETHEE 

    
a1 0.31 0.35 -0.04 
a2 0.35 0.30 0.05 
a3 0.33 0.34 -0.01 

 
4.3.2.The Third Version of Probabilistic PROMETHEE: Defining Weighted 

Probabilistic Scores 
In this version, the aim is to differentiate between each level of difference in criteria. The 

motivation is that, it may not be fair to evaluate alternative i, which is 3 levels better than 

alternative j, in the same way as alternative l, which is better than alternative j by 2 levels. 

Thus, we propose a weighted probabilistic score  instead of dominance score  

using (30). Let sj be the number of levels of criterion j and  is the sum of joint 

probabilities of alternatives i and k in criterion j where the criterion level difference 



 

40 
 

between i and k is d. After  scores are calculated, weighted dominance scores  

are obtained using (31). The remaining steps of the process are similar to the previous 

versions. 

 

 

 

 

In the same example, based on the probabilities in Table 4.3, weighted probabilistic score 

 of a1 over a2  in criterion 1 is calculated as below. Since criterion 1 has 3 levels 

(s1=3), criterion level differences (d) can be 1 or 2. 

 

 
 

Similarly, since criterion 2 has 4 levels (s2=4), the following formula gives the weighted 

probabilistic score  of a2 over a3 in criterion 2. 

 

 

 

Then, the same steps with the previous versions are applied with those new weighted 

scores in order to construct the dominance matrix and hence, the final ranking. Table 4.10 

and Table 4.11 show the results. Both partial and complete rankings give the same 

ranking: a1 is the best alternative and a3 is the worst alternative. 

 

Table 4.10. Dominance matrix calculated by the third version of probabilistic 

PROMETHEE  
 a1 a2 a3 
a1 0.00 0.12 0.13 
a2 0.12 0.00 0.13 
a3 0.12 0.12 0.00 
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Table 4.11. Positive, negative and net outranking values of alternatives of the third 

version of probabilistic PROMETHEE  

    
a1 0.25 0.24 0.01 
a2 0.25 0.25 0.00 
a3 0.24 0.25 -0.01 

 

In the basic version, a3 dominates the other two alternatives since all differences in criteria 

values have equal importance. However, in the second version of the approach, when at 

least 2 level difference is considered for criteria levels of alternatives, a2 achieves the first 

rank, thus we conclude that a2 has higher probabilities than a3 with at least 2 level 

difference. This version can be applied where the DM wants to ignore insignificant 

differences completely. Lastly, in the third version, a1 outranks both a2 and a3 since all 

differences are weighted in accordance with the magnitude of the differences. When we 

ignore the differences, which are less than 2, a2 outranks a1 but when we include lower 

differences with lower weights as in the third version, a1 outranks a2. Thus, we can 

conclude that, if a DM who gives importance to any level of difference between 

alternatives wants to highlight the alternatives which have higher probabilities for higher 

differences, then the third version will be useful for decision support.  
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5. COMPUTATIONAL STUDIES 

 

To illustrate our test-based, score-based and probabilistic PROMETHEE approaches, we 

use two different cases. One of them is a treatment selection case for a patient who is 

suffering from shoulder pain. This case is used to assess the success of our approaches in 

a medical problem. Since we have conducted this thesis as a part of a TUBITAK project, 

we utilize the expertise of physiotherapists in the project to create the shoulder pain case. 

The proposed approaches are agnostic to how probability distributions of criteria are 

generated, hence they can work with probabilities generated by domain experts or 

quantitative modelling approaches such as BNs. The first case study uses probability 

distributions elicited from expert physiotherapists. The second case study is conducted to 

test our approaches in an area apart from healthcare. It uses a BN model to compute the 

posterior probability of criteria. We use the problem proposed by Kaya and Yet (2019) to 

present another approach to a supplier selection problem. For this case, probability 

distributions are obtained from a BN model generated by Kaya and Yet (2019).  

 

For both treatment selection for shoulder pain and supplier selection cases, test-based, 

score-based and probabilistic PROMETHEE approaches are tested. 

 

5.1. Treatment Selection Case for Shoulder Pain  

To test our approaches on a medical decision-making problem, we use a shoulder pain 

case created by physiotherapists. A 32-year-old male is suffering from a recurrent 

shoulder problem. He is a painter and decorator, but he is struggling to continue his job, 

so he is worried about having a rest. According to his condition, eight treatment 

alternatives are considered, these are NSAIDs (non-steroidal anti-inflammatory drugs), 

using web-based advice sheets, physio rehab, injection, injection with physio rehab, 

waiting and seeing, surgery, and physio rehab with surgery. These treatments are 

evaluated with eight criteria: discomfort caused by treatment, improvement in functional 

ability, improvement in pain, psychosocial improvement, recovery time, side effects, time 

spent for treatment and waiting time to receive treatment. Also, there is another criterion 

that can be considered in a similar problem called quality adjusted life year (QALY). It 

is included in medical problems recently, but we cannot use that criteria in our case since 
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it is not possible to generate probability distributions for QALY with experts. Since the 

treatment results cannot be known before the treatments are applied, we work with 

probabilistic values on criteria. In the case of using a BN model for this case, the only 

requirement to obtain probability distributions would be to enter patient-based data such 

as age, gender, test and evaluation results and medical history to the BN model. Then, the 

BN model would calculate the probability distributions of alternatives in each criterion. 

In our application, we derive probability distributions of alternatives in each criterion 

based on the expert information given by physiotherapists. Table 5.1 shows probability 

distributions of treatments in each criterion. Levels of waiting time, time spent and 

recovery time criteria are derived from the time intervals provided by the experts. Levels 

of the remaining criteria are supplied by the experts according to their usual clinical 

practice. We represent levels of all criteria with linguistic terms for simplicity. All criteria 

have different number of levels that can come from N–None, VL–Very Low, L–Low, L-

M – Low-Medium, M–Medium, H–High, VH–Very High. The levels with asterisk 

symbols represent the best level of each criterion. Preference functions and corresponding 

threshold values are reported in Table 5.3. The thresholds represent the required level of 

difference for strict preference in the criteria with Type III preference function. For 

instance, since the threshold value of side effects criterion is two, at least a two level 

difference is required for strict preference for this criterion such as N vs. M, L vs. H, or 

N vs. H. Any level of difference on criteria with Type I function is accepted to cause strict 

preference. We determined preference functions and threshold values with the experts 

considering sensible levels of differences in criteria that would induce partial and strict 

preference. These functions can be easily updated for different clinicians and patient 

types. To follow treatment names easily, abbreviations in Table 5.2 are used in the rest of 

the thesis.  
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Table 5.1. Probability distributions of each treatment on each criterion 
 Improvement in 

Functional Ability Improvement in Pain Discomfort Psychosocial 
Improvement 

Treatment 
Alternatives H* M L H* M L L* M H H* M L 

NSAIDs 0.399 0.577 0.024 0.226 0.601 0.173 0.630 0.370 0.000 0.000 0.370 0.630 
Web Advice 

Sheet 0.028 0.598 0.374 0.352 0.567 0.081 1.000 0.000 0.000 0.005 0.315 0.680 

Physio Rehab  0.630 0.370 0.000 0.450 0.532 0.018 0.326 0.636 0.038 0.622 0.358 0.021 

Injection  0.000 0.447 0.553 0.794 0.205 0.001 0.226 0.601 0.173 0.149 0.594 0.256 
Injection and 
Physio Rehab  0.696 0.301 0.003 0.826 0.173 0.001 0.326 0.636 0.038 0.757 0.241 0.002 

Wait and See  0.092 0.553 0.355 0.004 0.744 0.252 0.748 0.252 0.000 0.001 0.193 0.806 
Surgery and 

Physio Rehab  0.702 0.298 0.000 0.001 0.205 0.794 0.000 0.204 0.796 0.334 0.618 0.048 

Surgery 0.000 0.447 0.553 0.002 0.280 0.718 0.002 0.260 0.738 0.091 0.647 0.262 
 Recovery Time Waiting Time  

Treatment 
Alternatives VL* L L-M M H VH VL* L L-M M H VH 

NSAIDs 0.289 0.698 0.013 0.000 0.000 0.000 0.041 0.432 0.472 0.054 0.001 0.000 
Web Advice 

Sheet 0.187 0.784 0.029 0.000 0.000 0.000 0.907 0.093 0.000 0.000 0.000 0.000 

Physio Rehab  0.668 0.331 0.001 0.000 0.000 0.000 0.000 0.003 0.224 0.682 0.091 0.000 

Injection  0.001 0.328 0.662 0.010 0.000 0.000 0.000 0.011 0.391 0.565 0.033 0.000 
Injection and 
Physio Rehab  0.607 0.392 0.001 0.000 0.000 0.000 0.000 0.000 0.004 0.290 0.644 0.062 

Wait and See  0.189 0.647 0.161 0.002 0.000 0.000 0.334 0.618 0.048 0.000 0.000 0.000 
Surgery and 

Physio Rehab  0.000 0.000 0.000 0.289 0.698 0.013 0.000 0.000 0.000 0.000 0.140 0.860 

Surgery 0.000 0.000 0.002 0.629 0.369 0.000 0.000 0.000 0.000 0.000 0.223 0.777 
 Side Effects  Time Spent   

Treatment 
Alternatives N* L M H VL* L L-M M H VH   

NSAIDs 0.019 0.172 0.453 0.356 0.001 0.389 0.603 0.006 0.000 0.000   

Web Advice 
Sheet 0.830 0.170 0.000 0.000 0.607 0.392 0.001 0.000 0.000 0.000   

Physio Rehab  0.380 0.606 0.014 0.000 0.000 0.001 0.369 0.623 0.007 0.000   

Injection  0.123 0.655 0.218 0.004 0.289 0.698 0.013 0.000 0.000 0.000   

Injection and 
Physio Rehab  0.308 0.670 0.022 0.000 0.000 0.000 0.067 0.653 0.276 0.004   

Wait and See  0.840 0.158 0.001 0.000 0.028 0.539 0.422 0.012 0.000 0.000   

Surgery and 
Physio Rehab  0.000 0.003 0.285 0.712 0.000 0.000 0.000 0.048 0.618 0.334   

Surgery 0.000 0.001 0.170 0.830 0.000 0.000 0.000 0.001 0.392 0.607   

 

Table 5.2. Treatment representations 
Treatment Alternatives Representations 

NSAIDs T1 
Web Advice Sheet T2 

Physio Rehab T3 
Injection T4 

Injection with Physio Rehab T5 
Wait and See T6 

Surgery with Physio Rehab T7 
Surgery T8 
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Table 5.3. Preference functions and thresholds of criteria for treatment selection 

Criteria Discomfort Func. 
Ability 

Imp. 
in 

Pain 

Psychosocial 
Imp. 

Recovery 
Time 

Side 
Effects 

Time 
Spent 

Waiting 
Time 

 
Preference 
Function  I I I III III III III I  

Threshold 
Value - - - p=2 p=3 p=2 p=3 - 

 

Since this treatment selection problem has patient-based solutions, criteria have different 

weights for different patients. Also, it is repeated several times in a day for different 

patients, so an easy weight elicitation method is more appropriate than a method that 

requires several pairwise comparisons like AHP. Therefore, we used ROC approach to 

derive weights in this case and they are confirmed by the domain experts. Criteria weights 

are reported in Table 5.4. 100 samples are generated from probabilities given in Table 

5.1. The following sections report the results of the test-based, score-based and 

probabilistic PROMETHEE approaches for the shoulder pain case. 

 

Table 5.4. Criteria weights derived by ROC for treatment selection 

Criteria Discomfort 
Functional 

Ability 
Imp. in 

Pain 
Psychosoci

Imp. 
Recovery 

Time 
Side 

Effects 
Time 
Spent 

Waiting 
Time 

Weights 0.111 0.340 0.152 0.079 0.033 0.215 0.016 0.054 

 

Results of our approaches can be used by both clinicians and patients. If the criteria 

ranking is determined by the collaboration of the clinician and the patient, approaches are 

expected to provide more satisfactory results due to the advantages of shared decision 

making.  

 

5.1.1.Results of the Test-based Outranking Approach for Shoulder Pain 

Following the steps given in Section 4.1,  and  values are calculated and ANOVA 

test is conducted to find out if means of positive flows  and negative flows  are 

significantly different or not for at least one treatment. Table 5.5 reports the results of 

ANOVA tests for both positive and negative flows of treatments. Since the p-values are 

less than the significance level α=0.05, we reject both null hypotheses below. 
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H0
+: = = = = = = =  

H0
-: = = = = = = =  

 

Thus, we can say that at least one treatment exists whose mean positive flow and mean 

negative flow are significantly different from those of other treatments. 

 

Table 5.5. ANOVA results for means of positive and negative flows for treatment 

selection 

 Source Df Sum Sq. Mean Sq. F Value P Value 
Positive flows Treatments 7 663.6 94.8 232.5 <2e-16 
 Residuals 792 323.0 0.4   
Negative flows Treatments 7 954.1 136.3 305.7 <2e-16 
 Residuals 792 353.2 0.5   

 
In order to identify which treatment pairs are significantly different, we continue with 

post-hoc analysis. Tukey’s Test with %95 confidence level is conducted for the following 

null hypotheses for all treatment pairs. 

 

H0
 Test1:  

H0
Test2:  

 

The results for positive and negative flows are reported in Table 5.6 and Table 5.7, 

respectively. Tables show the mean difference between treatment pairs and corresponding 

confidence intervals. The differences are calculated with the treatment in the row minus 

the treatment in the column and the asterisk symbol represents that the corresponding p-

value is less than 0.05. Analyzing confidence intervals, treatment pairs which are not 

significantly different can be observed, for example T2-T1 cell in Table 5.6 shows that 

although mean positive flow of Treatment 2 is higher than that of Treatment 1 by 0.14, it 

is not a significant difference since the confidence interval includes 0 and thus, p-value is 

greater than 0.05. So, we fail to reject the null hypothesis that H0
 Test1: .  Also, 

we can see that mean positive flow of Treatment 3 is significantly higher than that of 

Treatment 1 in T3-T1 cell in Table 5.6. The same cell in Table 5.7 shows that the mean 

negative flow of Treatment 3 is significantly lower than that of Treatment 1 this time, 

thus we conclude that Treatment 3 outranks Treatment 1.  
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Table 5.6. Tukey's Test results for positive flows of treatments 
  T1 T2 T3 T4 T5 T6 T7 T8 

T1 - 
 

      

T2 (-0.14;0.41) 
0.14 -       

T3 (0.66;1.21) 
0.94* 

(0.53;1.08) 
0.80* -      

T4 (-0.66;-0.11)    
-0.39* 

(-0.80;-0.25)    
-0.52* 

(-1.60;-1.05)  
-1.32* -     

T5 (0.83;1.38) 
1.10* 

(0.69;1.24) 
0.97* 

(-0.11;0.44) 
0.17 

(1.22;1.77) 
1.49* -    

T6 (-0.67;-0.12)    
-0.39* 

(-0.80;-0.25)    
-0.53* 

(-1.61;-1.06)  
-1.33* 

(-0.28;0.27)     
-0.01 

(-1.77;-1.22)  
-1.50* -   

T7 (-1.03;-0.48)    
-0.76* 

(-1.17;-0.62)    
-0.90* 

(-1.97;-1.42)  
-1.70* 

(-0.65;-0.10)   
-0.37* 

(-2.14;-1.59)  
-1.86* 

(-0.64;-0.09)  
-0.37* -  

T8 (-2.24;-1.69)    
-1.96* 

(-2.37;-1.83)    
-2.10* 

(-3.18;-2.63)  
-2.90* 

(-1.85;-1.30)   
-1.58* 

(-3.34;-2.79) 
 -3.07* 

(-1.85;-1.30)   
-1.57* 

(-1.48;-0.93) 
 -1.20* - 

 

Table 5.7. Tukey's Test results for negative flows of treatments 
  T1 T2 T3 T4 T5 T6 T7 T8 

T1 - 
 

      

T2 (-0.25;0.33)  
0.04 -       

T3 (-1.07;-0.49)  
-0.78* 

(-1.11;-0.53)  
-0.82* -      

T4 (0.30;0.87)   
0.59* 

(0.26;0.83) 
0.55* 

(1.08;1.65) 
1.37* -     

T5 (-1.12;-0.55)    
-0.84* 

(-1.16;-0.59)  
-0.87* 

(-0.34;0.23)   
-0.05 

(-1.71;-1.13) 
 -1.42* -    

T6 (0.19;0.76)   
0.47* 

(0.15;0.72)   
0.44* 

(0.97;1.54) 
1.26* 

(-0.40;0.18)  
  -0.11 

(1.02;1.60) 
1.31* -   

T7 (1.15;1.73)   
1.44* 

(1.11;1.69) 
1.40* 

(1.93;2.51) 
2.22* 

(0.57;1.14) 
0.85* 

(1.99;2.56) 
2.27* 

(0.68;1.25) 
0.97* -  

T8 (2.40;2.97)   
2.69* 

(2.36;2.94)   
2.65* 

(3.18;3.76) 
3.47* 

(1.81;2.39) 
2.10* 

(3.23;3.81) 
3.52* 

(1.93;2.50)  
2.21* 

(0.96;1.53) 
1.25* - 

 

According to the test-based approach, the outranking relations of treatments are shown in 

Figure 5.1. According to the results, the best treatment alternatives for this patient are 

Treatment 3 and 5 (Physio Rehab and Injection with Physio Rehab) and the worst one is 
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Treatment 8 (Surgery). There is indifference between some treatment pairs: Treatment 3 

and 5, Treatment 1 and 2, and Treatment 4 and 6. Physiotherapists may select Treatment 

5 or 3 as the best treatment based on the preference of the patient. Treatment 1 or 2 are 

placed on the second-best rank. They are followed by Treatment 4 and 6.  

 

 
Figure 5.1. Outranking relation of treatments with the test-based approach 

 
5.1.2.Results of the Score-based Outranking Approach for Shoulder Pain 
To apply the score-based approach to the shoulder pain case, the steps mentioned in 

Section 4.2 are followed. After  values are calculated for each treatment and sample s,

treatment rankings are generated in the descending order of  values for each s. To 

prioritize ranks, three weighting methods are applied: RS, ROC and RR. The detailed 

explanations of these methods are discussed in Section 3.2.1.2. Table 5.8 shows the rank 

weights required to calculate weighted scores  of treatments. The last three columns 

include the weights that are derived considering only the first three ranks. 

 

Table 5.8. Rank weights for RS, ROC and RR approaches for treatments 

Rank (t) Wt(RS) Wt(ROC) Wt(RR) 
Wt(RS) 
first 3 ranks 

Wt(ROC) 
first 3 ranks 

Wt(RR) 
first 3 ranks 

1 0.222 0.340 0.368 0.500 0.611 0.545 
2 0.194 0.215 0.184 0.333 0.278 0.273 
3 0.167 0.152 0.123 0.167 0.111 0.182 
4 0.139 0.111 0.092 0.000 0.000 0.000 
5 0.111 0.079 0.074 0.000 0.000 0.000 
6 0.083 0.054 0.061 0.000 0.000 0.000 
7 0.056 0.033 0.053 0.000 0.000 0.000 
8 0.028 0.016 0.046 0.000 0.000 0.000 

 
Then, probabilities of each treatment occupying each rank are calculated and reported in 

Table 5.9. Also, the graphical summary of treatment rankings with cumulative 

distribution  is shown in Figure 5.2. 
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Table 5.9. Probabilities of treatments for occupying each rank 

Rank T1 T2 T3 T4 T5 T6 T7 T8 
1 0.110 0.040 0.380 0.020 0.440 0.010 0.000 0.000 
2 0.100 0.140 0.320 0.040 0.360 0.040 0.000 0.000 
3 0.140 0.330 0.140 0.160 0.110 0.120 0.000 0.000 
4 0.270 0.210 0.100 0.150 0.060 0.190 0.020 0.000 
5 0.190 0.180 0.040 0.170 0.020 0.270 0.110 0.020 
6 0.110 0.030 0.020 0.300 0.010 0.200 0.320 0.010 
7 0.080 0.070 0.000 0.140 0.000 0.160 0.490 0.060 
8 0.000 0.000 0.000 0.020 0.000 0.010 0.060 0.910 

 

  
Figure 5.2. Cumulative probability plots of treatments 

 
The complete treatment ranking obtained using ROC weights for ranks is illustrated in 

Figure 5.3. Treatment 5 (Injection with Physio Rehab) is the best alternative, followed by 

Treatment 3 (Physio Rehab). In Table 5.9, it is seen that these two treatments have the 

highest probabilities to occupy the first rank. However, although Treatment 1 has higher 

probability than Treatment 2 for the first rank, Treatment 2 outranks Treatment 1 in 

overall since Treatment 2 achieves higher probabilities for second and third ranks. 

Analyzing Figure 5.2, it is seen that Treatment 4 and 6 are close to each other. Until the 

fourth rank, Treatment 4 has higher probabilities, then Treatment 6 closes this difference 
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and performs better in lower ranks. However, since the first ranks have higher weights, 

Treatment 4 outranks Treatment 6. The best and worst alternatives are the same with the 

result of the test-based approach. The treatments with indifference relationship in the test-

based approach such as Treatments 5 and 3, Treatments 2 and 1, and Treatments 4 and 6 

are now fully ranked in the score-based approach.  

 

 
Figure 5.3. Outranking relations of treatments in the score-based approach using ROC 

weights 

 
Weighted scores and rankings of treatments according to the three rank weighting 

approaches are reported in Table 5.10 and Table 5.11. In Table 5.10, it is assumed that 

the DM considers all possible ranks, but in Table 5.11, it is assumed that the DM considers 

only the first three ranks. 

 

Table 5.10. θi scores and final rankings of treatments when all ranks are considered 

Rank Treatment  (RS) Treatment  (ROC) Treatment  (RR) 
1 T5 0.1975 T5 0.2523 T5 0.2492 
2 T3 0.1900 T3 0.2344 T3 0.2292 
3 T2 0.1467 T2 0.1354 T1 0.1258 
4 T1 0.1394 T1 0.1337 T2 0.1190 
5 T6 0.1122 T4 0.0911 T4 0.0873 
6 T4 0.1119 T6 0.0891 T6 0.0842 
7 T7 0.0706 T7 0.0457 T7 0.0581 
8 T8 0.0317 T8 0.0184 T8 0.0471 

 

If the DM is risk-averse and wants to consider the performances of treatments in all ranks, 

then results in Table 5.10 can be used. For all weighting approaches, Treatments 5 

(Injection with Physio Rehab) and 3 (Physio Rehab) are the two best treatments and they 

are followed by Treatments 2 and 1. In the rankings of both RS and ROC approaches, 

Treatment 2 outranks Treatment 1. However, in the ranking of RR, Treatment 1 outranks 

Treatment 2 since the weight of the first rank is much higher than the weight of second 

rank in RR and Treatment 1 has higher probability for the first rank. On the other hand, 

in both ROC and RR approaches this time, Treatment 4 outranks Treatment 6, but in RS 

approach, Treatment 6 outranks Treatment 4. The reason is that RS assumes equal 
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distances between all consecutive weights while ROC and RR approaches assume larger 

differences between first ranks. Treatment 4 has higher probabilities than Treatment 6 for 

the first ranks so, Treatment 4 outranks Treatment 6 using RR and ROC approaches but 

cannot outrank using RS. Additionally, the worst alternatives, Treatments 7 and 8 are the 

same for all weighting approaches. 

 

Table 5.11. θi scores and final rankings of treatments when the first three ranks are 

considered 

Rank Treatment  (RS) Treatment  (ROC) Treatment  (RR) 
1 T5 0.3583 T5 0.3811 T5 0.3582 
2 T3 0.3200 T3 0.3367 T3 0.3200 
3 T2 0.1217 T1 0.1106 T2 0.1200 
4 T1 0.1117 T2 0.1000 T1 0.1127 
5 T4 0.0500 T4 0.0411 T4 0.0509 
6 T6 0.0383 T6 0.0306 T6 0.0382 
7 T7 0.0000 T7 0.0000 T7 0.0000 
8 T8 0.0000 T8 0.0000 T8 0.0000 

 

On the other hand, for a risk-seeking DM, Table 5.11 can be used since it calculates the 

weighted scores of treatments considering just the first three ranks. Again, for all 

weighting approaches, Treatment 5 and 3 are the best options. They are followed by 

Treatments 2 and 1 in RS and RR approaches while Treatment 1 outranks Treatment 2 in 

ROC approach.  When we analyze Figure 5.2, we see that Treatment 1 has higher 

probability for the first rank but Treatment 2 closes the difference and outranks Treatment 

1 when they come to the third rank since Treatment 2 has higher probabilities for the 

second and the third ranks. In ROC approach, Treatment 1 outranks Treatment 2 with a 

small difference since weight of the first rank is much higher than the second and the third 

ranks. Meanwhile, in RS and RR approaches, the reverse is obtained since the differences 

between first three ranks are much lower than ROC. Finally, the last four treatments are 

the same for all weighting approaches. 

 

As discussed in Section 4.2.1, to test the confidence of the treatment ranking provided by 

the score-based approach in Figure 5.3, ANOVA test and Tukey’s Test are conducted. 

ANOVA results in Table 5.12 shows that at least one treatment in the ranking is 

significantly different from other treatments. To test the significance of difference 

between consecutive treatments in the ranking list, results in Table 5.13 are analyzed. 
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Table 5.12. ANOVA results for means of net flows for treatment selection 

Source Df Sum Sq. Mean Sq. F Value P Value 
Treatments 7 3185 455 331.2 <2e-16 
Residuals 792 1088 1.4   

 

Table 5.13. Tukey's Test results for net flows of treatment pairs  

  T1 T2 T3 T4 T5 T6 T7 T8 

T1 - 
 

      

T2 (-0.41;0.60)   
0.10 -       

T3 (1.22;2.22) 
1.72* 

(1.12;2.13) 
1.62* -      

T4 (-1.48;-0.47)   
-0.97* 

(-1.57;-0.57) 
 -1.07* 

(-3.20;-2.19) 
 -2.69* -     

T5 (1.44;2.44) 
1.94* 

(1.34;2.35) 
1.84* 

(-0.28;0.72) 
0.22 

(2.41;3.42) 
2.91* -    

T6 (-1.37;-0.36)   
-0.87* 

(-1.47;-0.46)   
-0.97* 

(-3.09;-2.08)  
-2.59* 

(-0.40;0.61) 
0.10 

(-3.31;-2.30) 
 -2.81* -   

T7 (-2.70;-1.70)   
-2.20* 

(-2.80;-1.79) 
 -2.30* 

(-4.42;-3.41)  
-3.92* 

(-1.73;-0.72) 
 -1.23* 

(-4.64;-3.63) 
 -4.14* 

(-1.83;-0.83) 
 -1.33* -  

T8 (-5.15;-4.15)   
-4.65* 

(-5.25;-4.24)   
-4.75* 

(-6.87;-5.87) 
 -6.37* 

(-4.18;-3.17) 
 -3.68* 

(-7.09;-6.09) 
 -6.59* 

(-4.29;-3.28)   
-3.78* 

(-2.96;-1.95) 
 -2.45* - 

 

Tukey’s Test results in Table 5.13 show that some consecutive treatment alternatives in 

the ranking provided in Figure 5.3 are not significantly different such as Treatments 1 and 

2, Treatments 3 and 5, and Treatments 4 and 6. With the score-based approach, a complete 

ranking is provided for the DM. But if the DM does not necessarily require a complete 

ranking, some insignificant outranking relations may be eliminated using the confidence 

test.  

 

5.1.2.1. Sensitivity Analysis on Criteria Weights for Shoulder Pain 
Because the output of our approaches, as in many MCDM methods, depends on the 

weights of criteria, we also make sensitivity analysis to see how our results are affected 

with changes in weights and whether they are robust to small changes. For the score-

based approach, we conduct sensitivity analysis to determine allowable ranges for criteria 

weights for the results to remain stable. We use the weight stability intervals procedure 

by Mareschal (1988) for this task by modifying it to be applicable with uncertain criteria 
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evaluations. The weight stability intervals procedure is developed to find intervals for 

criteria weights so that the given ranks of solutions according to additive utility functions 

do not change, and it can be applied with PROMETHEE II scores. It uses the differences 

in criteria values between successive solutions in the rank list to find these intervals. The 

intervals represent the changes that can be made to a single criterion while the others are 

kept constant (but normalized to ensure the summation of weights is still one). Interested 

readers can consult Mareschal (1988) for the details of the procedure. We can only make 

use of it for the score-based approach since our other approaches do not use scores 

compatible with this analysis. In the next case study of supplier selection, we make further 

sensitivity analysis for all of our approaches by changing the AHP weights with ROC 

weights and comparing the results. 

 

The weight stability intervals procedure can only work with certain criteria evaluations 

in a single sample, so we need to enhance it to work under uncertainty in the score-based 

approach. Using the procedure in Mareschal (1988), we construct the interval of each 

criterion weight in each sample. Each sample produces its separate ranking of solutions, 

so we arrive at 100 intervals for each criterion weight. Now these intervals need to be 

aggregated into an overall interval for each criterion, but this is not straightforward. 

Taking the tightest interval among all samples is not suitable as some intervals can be 

very narrow, and some can even consist of only the original weight. As a result, we 

propose to form the overall intervals of the weights with the values that appear in at least 

a given percentage of all samples. Since all the intervals in the samples are formed around 

the original weights, these original weights appear in 100% of the intervals. As we move 

away from the original weights, the percentage of samples that contain the value in 

consideration gets smaller. In line with the logic of confidence intervals, we use 95% as 

the cut-off value.  Taking ROC weights given in Table 5.4 as the original weights, Table 

5.14 reports the resulting aggregated intervals we obtain. We argue that, as long as the 

weights are changed within these intervals, we can be 95% confident that the ranking list 

of PROMETHEE II will not change. This in turn will ensure that the scores of the score-

based approach will not change. The results in Table 5.14 suggest the weights of 

functional ability and improvement in pain should be set carefully since they have 

relatively narrow ranges. On the other hand, the ranking list is not so sensitive to changes 

in the weights of other criteria, so uncertainties in those areas can be tolerated better. 
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Table 5.14. Weights stability intervals for ROC weights 
Criteria ROC Weight Weight Stability Interval 

Discomfort 0.111 [0.096 – 0.236] 

Functional Ability 0.340 [0.301 – 0.375] 

Improvement in Pain 0.152 [0.129 – 0.272] 

Psychosocial Improvement 0.079 [0.000 – 0.240] 

Recovery Time 0.033 [0.000 – 0.394] 

Side Effects 0.215 [0.000 – 0.228] 

Time Spent 0.016 [0.000 – 0.292] 

Waiting Time 0.054 [0.000 – 0.188] 

 
5.1.3.Results of Probabilistic PROMETHEE Approach for Shoulder Pain 
Using the rules explained in Section 4.3, we perform three experiments regarding three 

versions of the approach. The first version of the approach provides the outranking values 

in Table 5.15. These relations result in the same ranking of treatments for both 

PROMETHEE I and II rules; there are no indifference relations between treatment pairs 

when we consider positive and negative flows simultaneously. The resulting ranking is 

shown in Figure 5.4. 

 

Table 5.15. Outranking values by the first version of probabilistic PROMETHEE 

      
T1 NSAIDs 2.468 2.360 0.108 
T2 Web Advice Sheet 2.964 1.904 1.060 
T3 Physio Rehab 3.594 1.242 2.352 
T4 Injection 2.204 2.824 -0.620 
T5 Injection with Physio 3.816 1.164 2.652 
T6 Wait and See 2.625 2.227 0.398 
T7 Surgery with Physio 1.844 3.491 -1.647 
T8 Surgery 0.517 4.820 -4.303 

 

  
Figure 5.4. Ranking of treatments by the first version of probabilistic PROMETHEE 

 
Treatment 5 is the best option for the patient, followed by Treatment 3 and 2, whereas the 

worst one is again Treatment 8.  
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In the second version of the problem, we determine the threshold value as 2 for side 

effects, recovery time and time spent for treatment. It means that in these criteria, at least 

2 level difference between treatments is considered. Otherwise, the joint probability of 

these treatment pairs is assumed as 0. Table 5.16 lists the positive, negative and net flows 

of each treatment and Figure 5.5 illustrates the complete ranking of treatments which is 

again the same for PROMETHEE I and II rules. Treatments 5, 3 and 2 are the best three 

alternatives for the second version too, and the positions of the worst treatments, 

Treatments 4, 7 and 8, are similar to the first version as well. The only difference of the 

second version from the first version of the probabilistic PROMETHEE is the relation 

between Treatments 1 and 6. This time, Treatment 1 outranks Treatment 6. Therefore, we 

conclude that Treatment 6 is better than Treatment 1 with small differences in the first 

version of the approach, since when a threshold value of 2 is defined in the second 

version, Treatment 1 provides better results than Treatment 6. 

 

Table 5.16. Outranking values by the second version of probabilistic PROMETHEE  
     
T1 NSAIDs 2.220 1.933 0.287 
T2 Web Advice Sheet 2.455 1.793 0.662 
T3 Physio Rehab 3.199 0.923 2.276 
T4 Injection 1.889 2.314 -0.425 
T5 Injection with Physio 3.443 0.802 2.641 
T6 Wait and See 2.118 2.101 0.017 
T7 Surgery with Physio 1.760 3.165 -1.405 
T8 Surgery 0.461 4.514 -4.053 

 

  
Figure 5.5. Ranking of treatments by the second version of probabilistic PROMETHEE  

 
Table 5.17 provides outranking values of each treatment alternative performed by the 

third version of the probabilistic PROMETHEE, and these values are used to create partial 

and complete rankings as shown in Figure 5.6 and Figure 5.7, respectively. 
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Table 5.17. Outranking values by the third version of probabilistic PROMETHEE  
     
T1 NSAIDs 0.862 0.778 0.084 
T2 Web Advice Sheet 0.996 0.762 0.234 
T3 Physio Rehab 1.344 0.324 1.020 
T4 Injection 0.739 0.999 -0.260 
T5 Injection with Physio 1.493 0.279 1.214 
T6 Wait and See 0.847 0.876 -0.029 
T7 Surgery with Physio 0.769 1.293 -0.524 
T8 Surgery 0.163 1.903 -1.740 

 

 
Figure 5.6. Partial ranking of treatments by the third version of probabilistic 

PROMETHEE 

 

 
Figure 5.7. Complete ranking of treatments by the third version of probabilistic 

PROMETHEE  

 
It is seen that the rankings in Figure 5.6 and Figure 5.7 do not conflict but the partial 

ranking shown in Figure 5.6  differs by the incomparability relation of Treatments 7 and 

4. All other outranking relations are mutual for both partial and complete ranking. 

Treatments 5, 3, and 2 are still the best alternatives as in previous approaches. Treatment 

8 is still the worst alternative. When a complete ranking is required by the DM, Figure 

5.7 can be used. On the other hand, based on the preferences of the DM or the patient, 

Treatment 7 can be considered instead of Treatment 4 using Figure 5.6.  

 

If we compare the third version of the approach with other versions, we can report that 

the best three treatments and the worst treatment are the same. Also, when higher weights 

are defined for higher level differences on criteria, complete ranking gives the same result 

with the second version of the approach. For instance, in the results of both versions, 

Treatment 5 performs better than Treatment 3 and Treatment 1 has better results than 

Treatment 6 with higher level differences. Thus, it can be deduced that outranking 
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relations in the second version of the approach are already caused by high differences in 

criteria.  

 

Our results are validated by the physiotherapists in the project. The resulting rankings are 

compatible with their experiences and expectations. They also expressed that our methods 

offer the advantages of summarizing the performance of alternatives in different criteria 

and considering preferences about different criteria explicitly. 

 

5.2. Supplier Selection Case 

Since supplier selection is a widely studied MCDM problem in the literature (see Chai, 

Liu and Ngai, 2013; Govindan et al., 2015; Zimmer, Fröhling and Schultmann, 2016 for 

reviews of decision analysis and MCDM models in supplier selection) we prefer to apply 

our approaches in this area too. Besides, this case has an available BN. The BN model of 

Kaya and Yet (2019) evaluates suppliers based on seven criteria: product quality, cost, 

delivery performance, quality system certifications, flexibility, cooperation, and 

reputation. Cost and quality system certifications criteria can be observed before working 

with suppliers; thus, they have deterministic values on these criteria. On the other hand, 

the other five criteria cannot be known with certainty beforehand, so suppliers have 

probabilistic values on these five criteria and the BN can estimate the related probabilities 

based on past data and evidence. All criteria have five ordinal states: VL-very low, L- 

low, M – medium, H – high and VH – very high. We use the BN model to generate data 

for ten different suppliers. Table 5.18 shows the probability distributions of each criterion 

for each supplier. 
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Preference functions of criteria, threshold values and criteria weights are determined with 

the domain expert in supplier selection in Kaya and Yet (2019). Table 5.19 shows the 

functions and threshold values. Since the threshold value of flexibility criteria is two, at least 

a two level difference is required for strict preference for this criterion such as VL vs. M, L 

vs. H, M vs. VH, VL vs. H, L vs. VH, or VL vs. VH. For the quality system certificates 

criterion, only two or higher level differences are accepted for strict preference. For Type I 

preference functions, any level of difference is enough for strict preference between two 

solutions. 

 

Table 5.19. Preference functions and thresholds of criteria 

Criteria 
Product 
Quality 

Cost 
Delivery 

Perf. 
Quality 

Syst. Cert. 
Flexibility Cooperation Reputation 

Preference 
Function Type 

I I III II III III I 

Threshold Value - - p=3 q=1 p=2 p=2 - 
 

In this case, criteria weights are determined once, so we have the opportunity to use a more 

detailed approach for weight elicitation. Criteria weights are determined using AHP based 

on the comparisons of the domain expert. The resulting weights are given in Table 5.20. The 

consistency of comparisons is found as 0.051. In Section 5.2.4, we also check the results 

with ROC weights. 

 
Table 5.20. Criteria weights by AHP 

Criteria 
Product 
Quality 

Cost 
Delivery 

Perf. 
Quality 

Syst. Cert. 
Flexibility Cooperation Reputation 

Weights 0.356 0.231 0.230 0.075 0.032 0.042 0.034 
 

100 random samples are generated from the BN model. The samples represent the data 

available for criteria evaluations of suppliers. The following sections present the results of 

the test-based, score-based and probabilistic PROMETHEE approaches. 

 

5.2.1.Results of the Test-based Outranking Approach for Supplier Selection 
Results in Table 5.21 show that there is at least one supplier whose positive and negative 

flows are both significantly different from other suppliers since the null hypotheses H0: = 
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= = = = = = = =  and H0: = = = = = = = 

= =   are rejected because p-values are less than the significance level α= 0.05.  

 

Table 5.21. ANOVA results for the means of positive and negative flows of suppliers 

 Source Df Sum Sq. Mean Sq. F Value P Value 
Positive flows Suppliers 9 461.1 51.24 88.18 <2e-16 
 Residuals 990 575.3 0.58   
Negative flows Suppliers 9 340.9 37.87 81.51 <2e-16 
 Residuals 990 460.0 0.46   

 

In the next step, to identify specifically which supplier pairs are significantly different, 

Tukey’s test with %95 confidence level is conducted for the following null hypotheses for 

all supplier pairs (i,k). 

 

H0
 Test1:  

H0
Test2:  

 

Table 5.22 and Table 5.23 show the results of the test for positive and negative flows of 

pairs, respectively. As in the shoulder pain case, the tables report the mean difference 

between pairs and the corresponding confidence intervals, also asterisk symbols represent 

that the p-value is less than 0.05. We can see null hypothesis of which supplier pair is 

rejected. For example, S2 – S1 cell of Table 5.22 reports that mean positive flow of S2 is 

significantly higher than the mean positive flow of S1. Also, the same cell in Table 5.23 

shows that the mean negative flow of S2 is significantly lower than the mean negative flow 

of S1. Thus, we conclude that S2 outranks S1. Analyzing the results of all supplier pairs in 

Table 5.22 and Table 5.23 using the same approach discussed in the previous case study, a 

relation diagram is constructed as in Figure 5.8. 
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According to the results in Figure 5.8, Supplier 2 and Supplier 6 are the best alternatives 

since they are not outranked by any supplier. They are followed by Supplier 3 and 8. 

Suppliers 1, 4, 5 and 9 are the next group of alternatives. They are followed by Supplier 

7 and then the worst alternative, Supplier 10. 

 

 
Figure 5.8. Outranking relation of suppliers for test-based outranking approach 

 
5.2.2.Results of the Score-based Outranking Approach for Supplier Selection 

After  values are calculated for each alternative i and sample s, supplier rankings are 

generated in the descending order of  values for each s. Table 5.24 reports the rank 

weights derived by RS, ROC and RR approaches. The last three columns show the 

weights when just first three ranks are considered by the DM. 

    

Table 5.24. Rank weights derived by RS, ROC and RR for supplier selection 

Rank (t) Wt(RS) Wt(ROC) Wt(RR) 
Wt(RS) 
first 3 ranks 

Wt(ROC) 
first 3 ranks 

Wt(RR) 
first 3 ranks 

1 0.182 0.293 0.341 0.500 0.611 0.545 
2 0.164 0.193 0.171 0.333 0.278 0.273 
3 0.145 0.143 0.114 0.167 0.111 0.182 
4 0.127 0.110 0.085 0.000 0.000 0.000 
5 0.109 0.085 0.068 0.000 0.000 0.000 
6 0.091 0.065 0.057 0.000 0.000 0.000 
7 0.073 0.048 0.049 0.000 0.000 0.000 
8 0.055 0.034 0.043 0.000 0.000 0.000 
9 0.036 0.021 0.038 0.000 0.000 0.000 
10 0.018 0.010 0.034 0.000 0.000 0.000 
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In the next step,  and  for each supplier i are calculated. Table 5.25 reports the 

rank probabilities of suppliers and Figure 5.9 shows a graphical summary of supplier 

rankings based on cumulative distributions . 

 

Table 5.25. Probabilities of the suppliers occupying each rank 

Rank S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 
1 0.000 0.400 0.060 0.020 0.030 0.480 0.000 0.010 0.000 0.000 
2 0.050 0.230 0.230 0.060 0.060 0.200 0.000 0.150 0.020 0.000 
3 0.070 0.080 0.170 0.090 0.110 0.030 0.040 0.320 0.090 0.000 
4 0.090 0.020 0.120 0.120 0.040 0.040 0.050 0.350 0.170 0.000 
5 0.090 0.050 0.170 0.190 0.010 0.070 0.150 0.080 0.180 0.010 
6 0.300 0.080 0.120 0.110 0.050 0.040 0.070 0.080 0.110 0.040 
7 0.170 0.040 0.070 0.080 0.250 0.030 0.130 0.000 0.080 0.150 
8 0.130 0.050 0.040 0.070 0.250 0.090 0.120 0.010 0.060 0.180 
9 0.060 0.030 0.010 0.060 0.130 0.020 0.260 0.000 0.070 0.360 
10 0.040 0.020 0.010 0.200 0.070 0.000 0.180 0.000 0.220 0.260 

 

 
Figure 5.9. Cumulative probability plots of suppliers 

 

Figure 5.10 shows the outranking relation of suppliers based on weighted scores  when 

rank weights are derived by ROC approach. It is seen that Supplier 6 is the best 

alternative, followed by Supplier 2, and they are the suppliers which have the highest 

probabilities for the first rank. However, although Supplier 8 has the sixth highest 
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probability for the first rank, it achieves the third rank in overall since its probabilities on 

the third and fourth ranks are much higher than the others. Also, when Suppliers 4 and 5 

are compared, we can observe that Supplier 5 has higher probabilities in higher ranks, but 

Supplier 4 has better probabilities in the remaining ranks. Thus, in overall Supplier 4 

outranks Supplier 5. In Figure 5.9, it is seen that the curve of Supplier 4 started to climb 

above the curve of Supplier 5 after the third rank. 

 

 
Figure 5.10. Outranking diagram of suppliers with ROC weights of ranks 

 
Weighted scores  calculated by RS, ROC and RR rank weighting approaches, and 

corresponding supplier rankings are reported in Table 5.26 and Table 5.27. They show 

the results for DMs who consider all ranks and who consider just the first three ranks, 

respectively. 

 

Table 5.26. θi scores and final rankings of suppliers when all ranks are considered 

Rank Supplier  (RS) Supplier  (ROC) Supplier  (RR) 
1 S6 0.149 S6 0.201 S6 0.218 
2 S2 0.144 S2 0.189 S2 0.201 
3 S8 0.134 S8 0.128 S3 0.114 
4 S3 0.126 S3 0.127 S8 0.106 
5 S1 0.089 S4 0.076 S4 0.073 
6 S4 0.088 S1 0.071 S5 0.070 
7 S9 0.083 S5 0.068 S1 0.065 
8 S5 0.080 S9 0.067 S9 0.063 
9 S7 0.064 S7 0.046 S7 0.051 
10 S10 0.043 S10 0.027 S10 0.040 

 

For a risk-averse DM who prefers to consider the supplier performances in all ranks, 

results in Table 5.26 can be used. We can see that Suppliers 6 and 2 are the best two 

alternatives for all weighting approaches. They are followed by Suppliers 8 and 3, 

however their positions are reversed in RS/ROC and RR. Since there are larger 

differences between RR weights of the first ranks, Supplier 3, which has higher 

probabilities on the first and second ranks than Supplier 8, is placed in the third overall 

rank with RR weighting approach. 
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Table 5.27. θi scores and final rankings of suppliers when the first three ranks are 

considered 

Rank Supplier Supplier Supplier 
1 S6 0.312 S6 0.352 S6 0.322
2 S2 0.290 S2 0.317 S2 0.295
3 S3 0.135 S3 0.119 S3 0.126
4 S8 0.108 S8 0.083 S8 0.105
5 S5 0.053 S5 0.047 S5 0.053
6 S4 0.045 S4 0.039 S4 0.044
7 S1 0.028 S1 0.022 S1 0.026
8 S9 0.022 S9 0.016 S9 0.022
9 S7 0.007 S7 0.004 S7 0.007
10 S10 0.000 S10 0.000 S10 0.000

 

On the other hand, for risk-seeking DMs, results of Table 5.27 are more useful to consult 

since they include rankings when only the first three ranks are considered. For DMs who 

want to decide based on the performances just for the first three ranks, again Suppliers 6 

and 2 are the best choices. Now, for all ranking procedures Supplier 3 is better than 

Supplier 8 since the performances on lower ranks are ignored. In Table 5.26, when all 

ranks are important, Supplier 5 is worse than Supplier 1 and 4, but now since the lower 

ranks are ignored, Supplier 5 is placed on the fifth rank. Additionally, all weighting 

procedures result in the same ranking list; therefore, we may say that with lower number 

of ranks, weighting approaches tend to provide similar results. 

 

We also test for the confidence of the supplier ranking obtained by the score-based 

approach. Firstly, ANOVA results are gathered and reported in Table 5.28 and they show 

that at least one supplier exists with a net flow mean which is significantly different from 

other suppliers. 

 

Table 5.28. ANOVA results for the means of net flows of suppliers 

Source Df Sum Sq. Mean Sq. F Value P Value 
Suppliers 9 1366 151.75 88.65 <2e-16 
Residuals 990 1695 1.71   

 

Then, to test the consecutive supplier pairs in the ranking given in Figure 5.10, Tukey’s 

Test is performed. Table 5.29 summarizes the results. 
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According to Table 5.28, we can make some conclusions. For example, Supplier 2 is 

ranked higher than Supplier 1 and the results in the table confirm this since the mean 

difference of Supplier 2 is higher than Supplier 1 by 2.18. Also, the mean differences 

between Supplier 6, which is the best alternative in Figure 5.10, and other suppliers are 

positive. However, when we look at the confidence intervals, we can see that some of the 

consecutive pairs in the ranking are not significantly different from each other such as S1 

and S4, S1 and S5, S2 and S6, S3 and S8, and S7 and S9. The best two suppliers, Suppliers 

6 and 2 can be considered as similar. Therefore, we can say that these additional analyses 

are useful to ensure alternatives are robustly discriminated when the score-based 

approach is performed. 

 

5.2.3.Results of Probabilistic PROMETHEE Approach for Supplier Selection 
We implement the three versions of the probabilistic PROMETHEE approach for supplier 

selection case. Table 5.30 gives outranking values calculated by the first version. The 

partial ranking by PROMETHEE I rules has some incomparability relationships between 

suppliers as shown in Figure 5.11.  

 

Table 5.30. Outranking values by the first version of probabilistic PROMETHEE for 

Supplier Selection 

       
S1 2.463 3.109 -0.646 
S2 4.150 1.961 2.189 
S3 3.338 2.399 0.939 
S4 2.987 2.563 0.424 
S5 3.051 3.034 0.017 
S6 3.806 2.208 1.597 
S7 2.496 3.861 -1.364 
S8 4.111 2.538 1.573 
S9 2.043 3.232 -1.188 
S10 1.521 5.063 -3.542 

  

 
Figure 5.11. Partial ranking of suppliers by the first version of probabilistic 

PROMETHEE 
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The best alternative is Supplier 2, followed by Suppliers 6 and 8, whereas the worst 

alternative is Supplier 10. Since there is not any dominance relation between Suppliers 8 

and 6, and Suppliers 8 and 3, we conclude that they are incomparable. Thus, the DM can 

select Supplier 6 or 3 instead of Supplier 8 according to his/her preferences. Suppliers 4 

and 5 have also incomparability relationship whereas Supplier 7 is incomparable with 

Suppliers 1 and 9.  

 

 
Figure 5.12. Complete ranking of suppliers by the first version of probabilistic 

PROMETHEE 

 
Figure 5.12 shows the complete ranking of suppliers for the first version. Generally, the 

best and the worst alternatives are the same, but this time, we have strict ranking for the 

incomparable suppliers of the partial ranking. Suppliers 2, 6 and 8 are the best three 

suppliers, whereas Supplier 10 is again the worst one.  

 

For the second version of the problem, threshold value for quality system certifications, 

flexibility, cooperation and reputation is determined as 2. In Table 5.31, outranking values 

of the second approach are reported, and Figure 5.13 and Figure 5.14 show the partial and 

complete ranking of suppliers obtained by the second version of our probabilistic 

PROMETHEE approach, respectively. 

 

Table 5.31. Outranking values by the second version of probabilistic PROMETHEE for 

Supplier Selection 

       
S1 2.266 2.597 -0.331 
S2 3.593 1.847 1.746 
S3 2.932 2.123 0.809 
S4 2.525 2.187 0.338 
S5 2.720 2.517 0.203 
S6 3.702 1.781 1.922 
S7 2.265 3.566 -1.301 
S8 3.524 2.414 1.111 
S9 1.753 2.878 -1.125 
S10 1.254 4.624 -3.370 
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Figure 5.13. Partial ranking of suppliers by the second version of probabilistic 

PROMETHEE 

 

 
Figure 5.14. Complete ranking of suppliers by the second version of probabilistic 

PROMETHEE 

 
For both partial and complete rankings, Supplier 6 is the best alternative, followed by 

Supplier 2, and the worst one is again Supplier 10. Incomparability relationships between 

Suppliers 8 and 3, 8 and 4, 4 and 5, and 7 and 9 in the partial ranking are solved in the 

complete ranking for the DMs who prefer strict ranking. When we compare the results of 

the second approach with the first approach, we conclude that Supplier 2 is better than 

Supplier 6 with small differences in the first version of the approach, since in the second 

version, Supplier 6 dominates Supplier 2 when we define a threshold value of 2 for some 

criteria. Also, we deduce that Supplier 6 dominates Supplier 8 with at least 2 level 

differences in the defined criteria since Suppliers 6 and 8 are incomparable in the partial 

ranking of the first approach, whereas Supplier 6 dominates Supplier 8 in the second 

version of the approach. 

 

Table 5.32 reports the outranking values of suppliers by the third version of the approach. 

Figure 5.15 and Figure 5.16 illustrate the partial and complete ranking of suppliers, 

respectively.  
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Table 5.32. Outranking values by the third version of probabilistic PROMETHEE for 

Supplier Selection 

       
S1 0.286 0.390 -0.103 
S2 0.533 0.255 0.278 
S3 0.433 0.292 0.141 
S4 0.374 0.314 0.060 
S5 0.381 0.371 0.010 
S6 0.496 0.302 0.194 
S7 0.311 0.640 -0.329 
S8 0.675 0.301 0.375 
S9 0.244 0.406 -0.162 
S10 0.220 0.683 -0.463 

 

 
Figure 5.15. Partial ranking of suppliers by the third version of probabilistic 

PROMETHEE 

 

 
Figure 5.16. Complete ranking of suppliers by the third version of probabilistic 

PROMETHEE 

 
This time, Suppliers 2 and 8 are the best alternatives and they are incomparable with each 

other in the partial ranking. Also, Supplier 8 has an incomparability relationship with 

Supplier 3, whereas supplier pairs 3 and 6, 5 and 4, 1 and 7 and, 7 and 9 are found as 

incomparable since they cannot dominate each other based on the positive and negative 

outranking values. However, the complete ranking presents a strict ranking for these 

incomparable suppliers. For both partial and complete rankings, the best and worst 

suppliers are the same. If we compare the results of the third approach with the previous 

ones, we conclude that Supplier 8 performs better than Suppliers 2 and 6 with high 

differences, since the third approach gives more importance to higher levels of 

differences. 
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5.2.4.Sensitivity Analysis on Criteria Weights for Supplier Selection 
In this case study, the original weights of criteria are derived by AHP. First, we study 

whether relatively small changes in weights result in big differences in results. Rather 

than changing the AHP weights randomly, we apply ROC weighting with the same 

supplier selection expert. Table 5.33 presents the resulting ROC weights. The most 

evident difference is in the weight of cost, which is now quite lower. There are differences 

in the weights of other criteria as well. 

 

Table 5.33.Weight of criteria by ROC for Supplier Selection 

Criteria Product 
Quality Cost Delivery 

Perf. 
Quality Syst.

Cert. Flexibility Cooperation Reputation 

Weights 0.370 0.156 0.228 0.109 0.073 0.044 0.020 
 

Figure 5.17 illustrates the outranking relations for the test-based approach calculated with 

the new weights. S2 and S6 are still the best suppliers that cannot outrank each other, and 

S10 is still the worst supplier. S3, which cannot outrank S8 with AHP weights, now 

outranks it with ROC weights, and it cannot be outranked with S2. There are some other 

differences, but the general picture is not substantially different from Figure 5.8, and there 

are no reversals in outranking relations. 

 

 
Figure 5.17. Test-based outranking relation of suppliers with ROC weights 

 
The new ranking results of the score-based approach when all ranks are considered are 

given in Table 5.34. To test the similarity of the rankings with AHP and ROC weights, 

we use Kendall rank correlation coefficient (Kendall’s Tau). Kendall’s Tau is a measure 

to assess the linear correlation between two ranks. It returns a value between -1 and 1. 

Values closer to -1 imply that rankings have negative correlation and values closer to 1 

show that rankings have positive correlation, thus, they are similar. A value of 0 means 
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that your rankings are not correlated.  Kendall’s Tau between the old and new rankings 

of RS, ROC and RR are 0.822, 0.778 and 0.822, respectively. We can conclude that the 

rankings stay reasonably similar when the weights are changed. 

 

Table 5.34. θi measures and final rankings by ROC when all ranks are considered 

Rank Supplier  (RS) Supplier  (ROC) Supplier  (RR) 

1 S6 0.143 S2 0.185 S2 0.196 

2 S3 0.142 S6 0.184 S6 0.194 

3 S2 0.142 S3 0.161 S3 0.153 

4 S8 0.109 S4 0.093 S4 0.085 

5 S4 0.101 S8 0.089 S8 0.074 

6 S1 0.095 S1 0.079 S1 0.073 

7 S9 0.087 S9 0.072 S9 0.067 

8 S7 0.076 S7 0.058 S5 0.062 

9 S5 0.069 S5 0.057 S7 0.058 

10 S10 0.038 S10 0.023 S10 0.039 

 

When only the first three ranks are considered, the ranking of the suppliers for all 

weighing methods is S2–S6–S3–S4–S1–S5–S8–S9–S7–S10. Kendall’s Tau between this 

ranking and the ranking obtained with AHP weights in Table 5.27 is 0.733.  

 

We also obtain results of the probabilistic PROMETHEE approach with the new ROC 

weights. Figure 5.18 illustrates the new partial ranking of suppliers by the first version of 

the probabilistic PROMETHEE. When we compare it with the ranking in Figure 5.11, we 

conclude that the ranking has not substantially changed. Supplier 2 is still the best and 

Suppler 10 is still the worst alternative. With the new weights, Supplier 3 outranks 

Supplier 6. Also, supplier 4 outranks Supplier 5, whereas they are incomparable in Figure 

5.11.  

 

On the other hand, the new complete ranking for the first version is found as S2–S3–S6–

S8–S4–S1–S5–S9–S7–S10, and Kendall’s Tau between this ranking and the ranking in 

Figure 5.12 is 0.867. Thus, we conclude that the complete rankings of the first version by 

AHP and ROC weights are reasonably similar. 
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Figure 5.18. Partial ranking of suppliers by the first version of the probabilistic 

PROMETHEE with ROC weights 

 
Figure 5.19 shows the new partial ranking of the second version of the approach. This 

time, Suppliers 2 and 6, and 5 and 7 are incomparable, whereas Supplier 6 outranks 

Supplier 2 and Supplier 5 outranks Supplier 7 in the partial ranking shown in Figure 5.13. 

Again, there are some differences for suppliers with incomparability relationships, but 

the ranking stays reasonable similar. To assess the similarity of two partial ranking, 

Kendall’s Tau is used in some cases by assigning same ranks for indifferent alternatives. 

However, in our case it is not possible to follow that approach since our partial ranking 

includes incomparable relations. We cannot assign same ranks to incomparable 

alternatives because it leads to wrong conclusions. For example, in the ranking in Figure 

5.19, S6 is incomparable with both S2 and S3 but, S2 outranks S3. In that situation, we 

cannot assign same rank for those three suppliers. 

 

The complete ranking of the second version calculated with ROC weights is S2–S6–S3–

S4–S8–S1–S5–S9–S7–S10. This ranking and the ranking in Figure 5.14 are similar since 

the Kendall’s Tau between them is found as 0.822. 

 

 
Figure 5.19.Partial ranking of suppliers by the second version of the probabilistic 

PROMETHEE with ROC weights 

 
In Figure 5.20, the new partial ranking of the third version is illustrated. It has small 

differences from the ranking in Figure 5.15. Suppliers 2 and 8 are still the best alternatives 

that cannot outrank each other. This time, Suppliers 10 and 7 are incomparable and they 
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are the worst suppliers. The other difference is between Suppliers 4 and 5. In the ranking 

by AHP weights they are incomparable, but with ROC weights Supplier 4 outranks 

Supplier 5.  

 

S2–S8–S3–S6–S4–S1–S5–S9–S7–S10 is the new complete ranking obtained using ROC 

weights. Generally, the new ranking is similar to the one in Figure 5.16. As in the previous 

version, the first and the second suppliers and, the third and the fourth suppliers change 

places with each other. Kendall’s Tau between these two rankings is 0.867. 

 

 
Figure 5.20. Partial ranking of suppliers by the third version of the probabilistic 

PROMETHEE with ROC weights 

 
As in the shoulder pain case, we also conduct weight stability interval analysis for the 

supplier selection with the score-based approach. We follow the same approach using the 

rules introduced by Mareschal (1988). Table 5.35 shows the weight intervals of each 

criterion which will not change the supplier rankings and the scores of score-based 

approach. Since product quality, cost and delivery performance criteria have relatively 

narrow ranges, their weights should be determined carefully. However, the ranking is not 

so sensitive to the weights of other criteria. Thus, uncertainties in these criteria can be 

tolerated better. 
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Table 5.35. Weight stability intervals for AHP weights 

Criteria AHP Weight Weight Stability Interval 
Product Quality 0.356 [0.337 – 0.360] 

Cost 0.231 [0.216 – 0.264] 
Delivery Performance 0.230 [0.215 – 0.279] 

Quality System Certificates 0.075 [0.015 – 0.162] 
Flexibility 0.032 [0.000 – 0.392] 

Cooperation 0.042 [0.000 – 0.303] 
Reputation 0.034 [0.000 – 0.216] 
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6. CONCLUSIONS 

 

In this thesis, we proposed test-based, score-based and probabilistic PROMETHEE 

approaches for MCDM under uncertainty. The proposed approaches use uncertain data 

in criteria evaluations which may be elicited from previous observations, samples from 

probabilistic models or judgements of experts. The approaches provide different levels of 

precision and flexibility to evaluate solutions. Our test-based approach modifies 

PROMETHEE I to work with uncertain data and it assesses error rates in outranking 

scores. It is useful for DMs who want to rank alternative solutions according to their 

performance without forcing a strict ranking. Our score-based approach is based on 

PROMETHEE II, and it uses probabilities of solutions to occupy each possible rank. DMs 

can observe a summary of performances of solutions with cumulative distributions. Also, 

it provides weighted scores to rank solutions completely for both risk-seeking and risk-

averse DMs. Our third approach, the probabilistic PROMETHEE uses joint probabilities 

instead of sampling from distributions. It focuses on probabilities where an alternative 

has better criterion values than the other one. It has different versions that provide the 

DM the opportunity to differentiate between different levels of differences in criteria 

values. Our approaches present systematic ways to work with probabilistic criteria, elicit 

the preferences of the DM regarding the importance of criteria and obtain overall 

assessments of solutions in an uncertain environment.  

 

We tested our approaches using two different case studies: a treatment selection problem 

for shoulder pain and a supplier selection problem. For the case of shoulder pain, we used 

probability distributions of treatment alternatives in each criterion produced from the 

information obtained from physiotherapists. But we suggest using posteriors of a BN 

model to have more accurate results. For the case of supplier selection, we used posterior 

probabilities of a BN model developed for that case by domain experts. Using posterior 

probabilities generated by a BN model in our approaches is advantageous since specific 

case-based results are obtained. Our studies illustrate how BN outputs can be processed 

by MCDM methods to provide decision support. In addition, we conducted sensitivity 

analysis on the weights of criteria; this analysis can be used to determine which criteria 

need the most careful evaluation. 
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In future studies, different types of DM behaviour, which would result in different 

preference functions and parameters, can be explored. Indirect elicitation approaches for 

weights can be implemented. Applications with patients can be conducted to test the 

approaches in actual medical problems. 
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