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Object tracking is a very popular area in image processing. Its popularity comes 

from the variety of its application areas. It is used for security and surveillance, 

autonomous vehicles, human-machine interaction, traffic control and so on. Due 

to its application areas, an object tracking algorithm is usually expected to be fast. 

On the other hand, an object tracking algorithm should be accurate and robust 

and this usually increase the amount of calculations to be done. The nature of 

the many image processing applications are suitable for parallel programming. 

Since, GPUs consist of large number cores, they are widely used in image 

processing and object tracking applications. In this thesis, we analyze an object 

tracking algorithm for its suitability of parallelism. We detected the time-

consuming parts of the algorithm by using profiling tool. Each part of the algorithm 

is handled separately and implemented on GPU. Additionally, we have worked 

on the chances of optimization by using GPU capabilities. We compared our 

methods with the original parts of CPU based approach by testing them on five 

datasets. 
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Nesne izleme, görüntü işlemede çok popüler bir alandır. Popülerliği, uygulama 

alanlarının çeşitliliğinden kaynaklanmaktadır. Güvenlik ve gözetim sistemleri, 

otonom araçlar, insan-makine etkileşimi, trafik kontrolü gibi alanlarda 

kullanılmaktadır. Uygulama alanları nedeniyle, bir nesne takibi algoritmasının 

hızlı olması beklenmektedir. Öte yandan, bir nesne izleme algoritması doğru ve 

güvenilir olmalıdır ve bu durum genellikle yapılacak hesaplama miktarını artırır. 

Birçok görüntü işleme uygulamasının doğası parallel programlamaya uygundur. 

GPU'lar çok sayıda çekirdek içerdiği için görüntü işleme ve nesne izleme 

uygulamalarında yaygın olarak kullanılırlar. Bu tezde, bir nesne izleme 

algoritmasını paralelliğe uygunluğu açısından analiz edilmiştir. Bir profilleme 

aracı kullanarak algoritmanın zaman alan kısımları belirlenmiştir. Algoritmanın 

belirlenen her bir parçası ayrı ayrı ele alınarak GPU’da gerçeklenmiştir. Ayrıca, 

GPU yeteneklerini kullanarak optimizasyon şansı üzerinde çalışılmıştır. 

Yöntemlerimizi beş veri kümesi üzerinde test ederek orijinal CPU tabanlı 

yaklaşımın ilgili parçaları ile karşılaştırdık. 
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1. INTRODUCTION 

1.1. Overview 

The world among us is full of objects. We can group these objects into two 

categories with respect to their motion status; stationary and moving objects. 

 
Every day, from the time we wake up and to the time we go to sleep, we are 

taking images from the world with our eyes and processing it with our brain. The 

outputs of this process includes detection, classification and tracking of the 

objects we see. We are doing this process every day in our lives. As a result, 

object detection, classification and object tracking became the center of interest 

in computer vision.  

 
While the object detection and classification is focused on extracting information 

about the objects in the images, object tracking is focused on finding the position 

of the interested objects in every image sequence. In a broader manner, object 

detection is the process of understanding what objects are in the image; object 

tracking is the process of finding the same objects we saw in the previous image. 

Object tracking aims to predict the position and the trajectory of an object, whose 

only initial state is given, in an image sequence. 

 
Object tracking has many practical applications such as security and surveillance, 

autonomous vehicles, human-machine interaction, traffic control. 

 
This is such an important and well-famous are in the computer vision so that, 

there are competitions held for introducing new tracker algorithms. One of the 

famous competitions is VOT Challenge [1] which is held every year. People from 

all around the world are developing their own tracker algorithms and challenging 

each other to have the best tracker algorithm. The criterias used in benchmarking 

and performance evaluation of the tracker algorithms are accuracy and 

robustness [1]. The primary measure in VOT is the expected average overlap 

(EAO) – a principled combination of accuracy and robustness. Speed of the 

algorithms is not a main concern of the challenge. Because, the speed varies on 

hardware and implementation setup. There is a sub-challenge in VOT that 

evaluates the tracker algorithm only on their speed but it is not taken into account 
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for overall score. But, in many applications, a tracker is expected to have fast 

execution while still having high accuracy and robustness. 

 

1.2. Motivation 

The purpose of this study is to accelerate an accurate and robust tracker 

algorithm to succeed a higher speed while maintaining its reliability on tracking. 

Main key feature on doing this will be the use of GPU. 

 
In this manner, a tracker algorithm named Efficient Convolution Operators for 

Tracking (ECO) [2], which is one of the best trackers in VOT Challenge 2017 [1], 

is selected. The main reason of selecting ECO is its reliable performance. It is a 

very important aspect in reliability required application areas such as, defense 

industry and autonomous vehicles. These areas also need applications to 

perform in adequate speed. 

 
In recent years, the use of GPGPUs have become popular in areas like computer 

vision [3] and big data problems [4]. GPGPUs use the advantage of having many 

processor units. They are slower in clock speed when compared to common 

CPUs but can handle and execute instructions on many threads simultaneously. 

Nowadays, while a general CPU usually has 8 or 16 cores, a brand new NVidia 

GPU has more than 3000 cores. Even the GPU cores are usually slower than 

CPU cores, the computational power of GPUs are much greater due to the 

enormous number of cores. 

 
Object detection and tracking algorithms are good candidate to be implemented 

on GPUs because they usually have parallelizable nature which can be divided 

into many threads. 

 
Our main contributions in this thesis: 

 We obtain a benchmark result of an object tracking algorithm on a 

database it has not been tested before. 

 A deeper analysis on the object tracking algorithm is done by profiling its 

structure. This analysis is used for deciding on which parts of the algorithm 
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can be migrated to GPU for a faster execution. Eventually, GPU 

implementations of these parts are done. 

 We improve the performance of our implementations with memory and 

kernel management tools of CUDA. 

 

1.3. Organization of the Thesis 

This thesis is structured as follows: 

 
Chapter 2 provides a background information about the object tracking algorithms 

and GPUs.  

 
In Chapter 3, the structure of the selected object tracking algorithm is explained. 

 
Chapter 4 provides benchmark results, analysis of the algorithm with a profiler 

and investigates the methods which are eligible for GPU parallelization.  

 
In Chapter 5, we discuss GPU parallelization steps and how the implementation 

carried out.  

 
In Chapter 6, the evaluation results of the GPU implementation is presented and 

discussed.  

 
Finally, Chapter 7 provides a conclusion by describing the lessons learned and 

brief summary about the work done. 

 

 



 

 4 

2. BACKGROUND  

2.1. Preliminaries 

Correlation is a statistical measure of the relationship between two variables. It is 

commonly used in statistics, economics and signal processing applications. The 

correlation between two variables is measured with the correlation coefficient. It 

can take values between -1 and 1. The very simple way of calculating the 

correlation coefficient of 𝑥 and 𝑦 is:  

𝑟𝑥𝑦 =  
∑(𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)

√∑(𝑥𝑖 − 𝑥̅)2(𝑦𝑖 − 𝑦̅)2
 

𝑟𝑥𝑦:the correlation coefficient which gives the linear relationship between 𝑥 and 𝑦 

𝑥̅:the mean of the values of 𝑥 

𝑦̅:the mean of the values of 𝑦 

If 𝑟𝑥𝑦 is close to zero, it means that there is no correlation between 𝑥 and 𝑦. 

If 𝑟𝑥𝑦  is 1, there is a perfect positive correlation. So, the values of 𝑥  and 𝑦 

increases or decreases at the same time with time same rate. 

If 𝑟𝑥𝑦 is -1, there is a perfect negative correlation. It means that while 𝑥 increases, 

𝑦 decreases with time same rate or vice versa.  

 
From this point of view, a correlation filter is a type of a filter constructed using 

the correlation of the input and the desired output. In object detection, the idea is 

to filter the input with this correlation filter so that, the output only includes the 

charecteristics of the object in focus.  

 

The convolution of the signal 𝑓1(𝑡) with another signal 𝑓2(𝑡) is: 

𝑓1(𝑡) ∗ 𝑓2(𝑡) =  ∫ 𝑓1(𝜏)𝑓1(𝑡 − 𝜏)𝑑𝜏

∞

−∞

 

The Fourier Transform is excessively used in signal processing. It allows you to 

look into the frequency components of a signal.  

 
The Fourier Transform (𝐹) of a signal 𝑓 is given by a complex integral: 

(2.1) 
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ℱ{𝑓(𝑡)} = 𝐹(𝜔) = ∫ 𝑓(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡

∞

−∞

 

where 𝜔 is the angular frequency, 𝑗 is the complex variable and 𝑒−𝑗𝜔𝑡 = cos 𝜔𝑡 −

𝑗 sin 𝜔𝑡 gives the frequency components.  

 
Performing the Fourier Transform on the both sides of the Equation 2.1, the 

convolution equation becomes:  

ℱ{𝑓1(𝑡) ∗ 𝑓2(𝑡)} =  ℱ{𝑓1(𝑡)}  ∙  ℱ{𝑓2(𝑡)} 

This equation is named as the Convolution Theorem. It states that the Fourier 

Transform of a convolution of two signals is the pointwise multiplication of their 

Fourier transforms.  

 
The correlation of two signals can be expressed as:  

𝑓1(𝑡) ⊗ 𝑓2(𝑡) =  ∫ 𝑓1(𝜏)𝑓1(𝑡 + 𝜏)𝑑𝜏
∞

−∞

 

In the Fourier domain, the Equation 2.2 becomes:  

ℱ{𝑓1(𝑡) ⊗ 𝑓2(𝑡)} =  ℱ{𝑓1(𝑡)}  ∙  ℱ∗{𝑓2(𝑡)} 

In ℱ∗{𝑓2(𝑡)}, * denotes that it is the complex conjugate of ℱ{𝑓2(𝑡)}.  

 

2.2. DCF (Discriminative Correlation Filters) 

The number of object tracking algorithms which uses Correlation Filters has 

increased over these years [5-9]. They have shown remarkable performance on 

benchmarks and many state-of-the-art algorithms uses correlation filters.  

 
The first use of Discriminative Correlation Filters in object detection goes back to 

the early 80’s [10]. But became very popular with the recent works, starting with 

MOSSE tracker published by Bolme et al. in 2010 [5].  

 
DCFs are usually trained online with the early samples from the image 

sequences. The increasing number samples cost high computational time and 

some of them may become unnecessary if the images contains very same 

(2.2) 
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characteristics. So, the filter output is not changed and only causing loss of 

precious time. On the other hand, low number of samples causes performance 

issues. Today, the aim of the tracking algorithms, using DCFs, is to maximize the 

benefits gained from the training of the filters.  

 
In filter based trackers, the first image is usually used for training the filter. So, 

the location of the target is given to the filter. After the filter is initialized with the 

first image, object tracking and training of the filter is carried out together. The 

resulting filter is applied to the image on the next image sequences. The location 

of the highest correlation achieved is new location of the target in the image. In 

every frame, the filter updated with the new correlation result.  

 
We can categorize the tracking methods into two groups according to the size of 

the video input and way of handling the detection failures. DCF based methods 

can be labeled as long-term trackers. Long-term tracking methods usually include 

online learning of the appearance of the object and they are expected to recover 

when the object disappeared or cannot be detected in the image. But, short-term 

tracking is focused only the precision of the detection and once the target is lost 

they don’t aim to recover and continue tracking. Short-term trackers are usually 

focused on working well for up to 1000 frames. On the other hand, long-term 

trackers are expected to be successful for more than 1000 frames and to recover 

if the object is lost in some of the frames. From this point of view, we can say that 

short-term trackers can be well fitted for surveillance purposes, while the-long 

term trackers are good if we want to follow the object constantly.  

 
The computation of correlation matrices is easier and faster in Fourier domain 

rather than in time domain. Because, the calculation of the correlations consists 

of both summations and multiplications which make it harder to process. On the 

other hand, the calculation in Fourier domain includes only multiplications and 

eventually, it will be faster and straightforward.  

 
As it is mentioned earlier, MOSSE [5] is the first tracker in which discriminative 

correlation filter is used successfully. The speed and robustness of the algorithm 

was so good that made it one of the state-of-the-art tracking algorithm at that 
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time. After that, many tracking algorithms merged from MOSSE and 

discriminative correlation filters.  

 
MOSSE tracker uses DCF to predict the location of the object in each image 

sequence and it updates the filter in every frame. The correlation filter in MOSSE 

is obtained by minimizing the sum of squeared errors. Denoting the images by 

𝑓1 … 𝑓𝑡 and the filter output by 𝑔1 … 𝑔𝑡, the filter function can be represented by: 

𝜀 =  ∑‖ℎ𝑡 ∗  𝑓𝑘 −  𝑔𝑘‖2

𝑡

𝑘=1

 

The desired correlation filter (ℎ𝑡 ) at time 𝑡 is obtained by minimization of the 

Equation 2.3.  

 
According to the Convolution Theorem, the correlation between 𝑓 and ℎ is the 

point-wise multiplication of them in the Fourier domain:  

𝐺 = 𝐹 ∙ 𝐻∗ 

where 𝐹 denotes Fast Fourier Transform (FFT) of the images 𝑓 and 𝐻 denotes 

the FFT of the correlation filter ℎ. 𝐺 is the desired and the training output of the 

filter. So, the minimization problem of the MOSSE tracker algorithm can be 

expressed in Fourier domain as follows: 

 
𝑚𝑖𝑛
𝐻∗

∑|𝐹𝑘 ∙ 𝐻∗ −  𝐺𝑘|2

𝑘

 

 

2.3. GPU Basics 

The main use of GPUs has been to create and manipulate images for display 

purposes. The history of GPUs goes back to 1990’s. They weren’t fully 

programmable and the intended use of the early GPU hardware was only for 

graphics. The trend in GPU architecture is drawn toward a CPU-like 

programmable design. The first General Purpose GPU (GPGPU), named Fermi 

GPU, was released in early 2010 [11]. The illustration of Fermi architecture and 

its Streaming Microprocessor (SM) is given in Figure 1 [12].  

 

(2.3) 
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Figure 1 The illustration of Fermi architecture and its SM [12] 

 

Fermi GPU brought new features such as: unified address space, concurrent, 

dual warp schedulers, and kernel execution [12]. It had a total of 512 cores 

located in 16 SMs. Today, the number of cores in GPUs exceeds 3000 with high 

bandwidth and larger memories.  

 
GPUs use the Single-Instruction, Multiple-Thread (SIMT) execution model, 

introduced by NVIDIA in 2006, where multiple threads execute concurrently using 

a single instruction. Each SM can execute multiple SIMT groups. For example, a 

Fermi GPU which has 512 cores, can execute four 128-threaded SIMT groups 

simultaneously.  

 
NVIDIA introduced a parallel programming model called CUDA which is used to 

execute programs written with different programming languages on NVIDIA 

GPUs.  
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Within a CUDA program, a kernel is called to be executed in a thread block. Each 

thread has its own ID, registers, program counter for executing an instance of the 

kernel. A thread block includes concurrently executing threads and a shared 

memory. A grid is a group of thread blocks that runs the same kernel and 

connected to a global memory. The hierarchy of the execution and the memory 

model is given in Figure 2 [13]. 

 

Figure 2 Memory hierarchy on a NVIDIA GPU [13] 
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3. RELATED WORK 

In this chapter, some of the state-of-the-art DCF-based tracking algorithms will 

be presented. 

 
After the Convolutional Neural Networks (CNNs) showed great results in the 

ImageNet competition [14] in 2012, they became popular instrument to be used 

in object detection and tracking. With the support of CNNs, DCF-based object 

tracking methods have shown extraordinary results on tracking benchmarks.  

 
The feature maps of early DCF approaches were limited to a single-resolution. 

This means that all of the feature channels should have the same spatial 

resolution. However, this limits the use of multiple convolutional layers of varying 

spatial resolutions. Over the years, multi-channel feature maps are started to be 

used in DCF framework and the DCF based methods started to provide better 

results.  

 

3.1. Adaptive Spatially-regularized Correlation Filters (ASRCF) [15] 

 
ASRCF focuses on two major problems in CF-based methods [15]. First, the 

sampling process is prone to suffer from training with a poor samples from the 

image at boundaries of the target. The repetition of the training process with these 

poorly maintained feature causes the tracker failing eventutally. The main cause 

is the use of pre-defined and fixed spatial constraints on filter coefficients. 

Second, the constant extraction of the features on every sample for scale 

estimation and localization purposes results in too much computational burden 

and eventually the speed of the tracker degrades. 

 
The objective function in ASRCF is given as follows:  

𝐸(𝐇, 𝐰) =  
1

2
‖𝐲 − ∑ 𝐱𝑘 ∗ (𝐏𝐓 𝐡𝑘)

𝐾

𝑘=1

‖

2

2

+
𝜆1

2
∑‖𝐰 ⨀ 𝐡𝑘 ‖2

2

𝐾

𝑘=1

+
𝜆2

2
‖𝐰 − 𝐰𝑟 ‖2

2 

 

(3.1) 
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where x and h are the vectorized image and the filter respectively. K is the number 

of feature channels and y is the ground-truth response. H is the filter response 

and w is the weight of the filter channels.  

 
As in a general CF, the tracking takes process with the filters learning from the 

minimization of this objective function in Equation 3.1.  

 
The location of the target is determined with the localization function:  

𝐫 =  ∑ 𝐱𝒌 ⨀ 𝐠𝑘

𝐾

𝑘=1

 

The localization is done based on the maximizing the response of the filter on the 

image sequences. 

The tracking framework of location and scale CF models of ASRCF is given 

Figure 3 [15]. 

 

Figure 3 The tracking framework of location and scale CF models in ASRCF [15]. 
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3.2. A Robust Parallel Object Tracking Method for Illumination Variations 

(MRAT) [16] 

 
Liu, Shuai, et. al. [16] proposed a method (MRAT) performs detection on multiple 

regions with the use of an alternate template based on parallel computing.  

 
The CF-based trackers starts searching the object from the last known location 

in the previous frame. The search area is usually kept small in order to achieve 

better speed. But this can result in loss of the target. MRAT enlarges the search 

area to improve the tracking robustness and deals with the speed degradation 

with the help of parallel computing.  

 
The tracking process is prone to fail with large illumination changes. There are 

several methods to handle light changes. One approach is to gather as much 

information as possible from the frames like Histogram equalization [17]. The 

other approach focuses on light invariant features like edge features [18, 19]. 

Another method focuses on creating a prediction model to generate possible 

images of targets in different lighting conditions [20]. 

 
MRAT splits the image into 9 sub-regions. One of the region includes the search 

area of the correlation filter. The confidence score is calculated in the search area 

of each frame in order to locate the target. Under intense illumination changes, 

the confidence scores will be lower eventually and it is likely to lose the track of 

the target. In order to lower the effects of the illumination changes, MRAT also 

carries out detection on the other 8 regions when the original confidence score is 

lower then a threshold value. If the confidence score of a region is higher than 

the threshold value, it is selected as the new position of the target and the model 

is updated with the new position.  

 
MRAT algorithm perform the detection on other 8 sub-regions with the parallel 

computing support. The illustiration of the MRAT algorithm is given in Figure 4 

[16]. 
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Figure 4 The comparison of (b) the MRAT algorithm with (a) the base algorithm [16] 

 

3.3. Parallel Tracking and Verifying (PTAV) [21] 

 
Heng Fan and Haibin Ling proposed a novel Parallel Tracking and Verifying [21] 

framework for achieve the accuracy and speed burden in an object tracking 

algorithm. 

 
Increasing the accuracy of an algorithm usually results in speed degradation. In 

their work, the tracking task split into two parallel components working on two 

separate threads. One of the components is a base tracker T and the other 

component is a verifier V.  

 
A tracking algorithm usually works fine for easy and slowly changing scenes. But 

tracker usually struggles to cope with dramatic changes in object appearance. 

These cases usually need much more computational process and analysis not to 

lose the target. In their approach, they named these cases as the verification. 

They are needed on some occasions and not on every frame. A simple tracker 

locates the target on every frame and the verification process is carried out for 

the detection of the tracking failure and correction of the result. The PTAV 

framework is illustrated in Figure 5 [21].  
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Figure 5 Illustration of the PTAV framework. The tracking and verifying processes are 
carried on asynchronously in two parallel threads [21]. 

 

PTAV framework includes a tracking solution by combining a correlation filter-

based algorithm (Staple [22]) and a deep learning-based tracker (Siamese 

network [23]). The Staple (Sum of Template and Pixel-wise Learners) combines 

two complementary factors and learns a model. The model is based on a 

correlation filter which uses HOG features and a colour histogram. Two branched 

CNNs are used in the Siamese network. The VGGNet [24] architecture is used 

for CNNs. 

 
PTAV frameworks combines the speed of a tracking algorithm with the 

robustness of a detection algorithm. Since the detection is not likely to happen in 

real-time, it is not carried out on every frame. While the tracker T is working on 

every frame, a verification request is sent to verifier V on every 10 frames. The 

result of the verification process is sent back to T and if a failure occurs tracker T 

continues with the information received from verifier V. 

 

3.4. Efficient Convolution Operators for Tracking (ECO) [2] 

 
Danelljan et al. proposed a method for learning a convolutional operator. Their 

learning formulation generates a continuous confidence map by use of 

convolution filters. Figure 6 provides a visualization of their continuous 

convolution operator which integrates multi-resolution deep feature maps [8]. (a) 

in Figure 6 is showing the feature map which includes the RGB input image 
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together with the convolutional layers of a pretrained deep network. The next 

column (b) is the visualization of the learned convolution filters. The convolution 

output of the each layer is given in the third column (c) and their combination into 

the final confidence function (d) provides the position of the object.  

 
C-COT improved the mean overlap score of the state-of-the-art tracker from 

77,3% to 82,4% on OTB-2015 [25], Temple-Color [26] and VOT2015 [27] 

datasets. It has been ranked as the best tracker in VOT2016 Challenge [28].  

 

Each training sample 𝑥𝑗  has feature channels 𝑥𝑗
1, … , 𝑥𝑗

𝐷 . The sample count of 

each feature channel is denoted as 𝑁𝑑 thus, the sample space can be expressed 

as 𝕏 =  ℝ𝑁1 × … × ℝ𝑁𝐷 [8]. 

 

Figure 6 The visualization of learning framework of C-COT [8] 

 

In order to transfer each feature map 𝑑  to the continuous spatial domain 𝑡 ∈

[0, 𝑇), an interpolation operator 𝐽𝑑 ∶ ℝ𝑁𝑑  →  𝐿2(𝑇) is introduced [8]: 

𝐽𝑑{𝑥𝑑}(𝑡) =  ∑ 𝑥𝑑[𝑛]𝑏𝑑 (𝑡 −
𝑇

𝑁𝑑
𝑛)

𝑁𝑑−1

𝑛=0

 

The 𝐿2(𝑇) space is considered to have complex functions periodic with 𝑇 > 0. 
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The aim is to predict confidence scores for each layer 𝑆𝑓{𝑥}(𝑡) with trained the 

convolution filters 𝑓 = (𝑓1 … 𝑓𝐷): 

𝑆𝑓{𝑥}(𝑡) = 𝑓 ∗ 𝐽{𝑥} = ∑ 𝑓𝑑 ∗

𝐷

𝑑=1

𝐽𝑑{𝑥𝑑} 

In ECO, the filter 𝑓 in the formulation (3.2) is replaced with an alternative filter 

which reduces the number of model parameters and avoids over-fitting problem. 

The problem in C-COT was that many of the learned filters don’t have enough 

energy to provide diversity as it can be seen in Figure 7 [2]. This causes that an 

important portion of the computatinal power is spent on these unnecessary filters. 

ECO has introduced a new convolutional operator that removes the filters that 

don’t have much energy form the related convolutional layers. 

 

Figure 7 The visualization of all 512 learned filters in the last convolutional layer of C-
COT [2] 

The reduction is done by modifying the convolution operator given in (3.2). The 

obtained factorized convolution operator becomes:  

𝑆𝑃𝑓{𝑥}(𝑡) = 𝑃𝑓 ∗ 𝐽{𝑥} = ∑ 𝑝𝑑,𝑐

𝑐,𝑑

𝑓𝑐 ∗ 𝐽𝑑{𝑥𝑑} = 𝑓 ∗ 𝑃T𝐽{𝑥} 

𝑃 is a coefficient matrix for each of the filters of each feature layer. It is a 𝐷 × 𝐶 

matrix where 𝐷 is the number of feature channels and the 𝐶 is the number of 

filters that have the sufficient energy. The resulting matrix multiplication is 

visualized in  

Figure 8 [2]. 

 
 

 

 

(3.2) 

(3.3) 
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Figure 8 Visualization of the remaining filters after eliminating the ones with negligible 

energy [2][ 

 

In Equation (3.3), 𝐽{𝑥}  is multiplied by the matrix 𝑃T  which results in a 𝐶 -

dimensional vector. This feature map is convolved with the desired filter 𝑓.  

 
After the interpolation carried out, the filter is trained by minimizing the following 

expression: 

𝐸(𝑓) = ∑ 𝛼𝑗‖𝑆𝑓{𝑥𝑗} − 𝑦𝑗‖
2

+ ∑‖𝜔𝑓𝑑‖2

𝐷

𝑑=1

𝑚

𝑗=1

 

Here 𝛼 is the weight of the each sample and 𝜔 is the penalty function. 

𝐸(𝑓, 𝑃) = ‖𝑧̂𝑇𝑃𝑓 − 𝑦̂‖
2

+ ∑‖𝜔̂ ∗ 𝑓𝑐‖
2

+ 𝜆‖𝑃‖𝐹
2

𝐶

𝑐=1
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4. ANALYSIS OF THE ECO TRACKING ALGORITHM 

We have discussed some of the state-of-the-art DCF-based tracking algorithms 

in Section 3. In this section, we will be analyzing, profiling and splitting an DCF-

based algorithm into sub-parts for the investigation of parallelizable features. For 

this purposes, we chose to conduct the investigation on the ECO tracking 

algorithm. Since, DCF-based methods are based on the training of the filter, these 

analysis can be similarly applied to the algorithms other than ECO. 

 

4.1. Datasets 

The experiments is carried out on five datasets: VOT2017 [1], VOT2019 [29], 

OTB-100 [30], TLP [31] and UAV123 [32].  

 
VOT2017 dataset has 60 image sequences and all of them has 30 fps rate over 

different resolutions. The total number of frames is 21.345. Since the ECO tracker 

is introduced in VOT2017 challenge, it is tested on VOT2017 dataset for better 

comparison on the benchmark result of the 2017 challenge [1].  

 
VOT2019 Challenge [29] was held recently in late October 2019, the benchmark 

results and the dataset has been made available. Even though some of the image 

sequences are common with VOT2017 dataset, it will be beneficial to run the 

experiment also on VOT2019. The 2019 dataset has the same number of image 

sequences and frame rates as 2017 database. But the total frame count is now 

19.760 

 
OTB-100 [30] dataset has 100 image sequences with the total of 59083 frames. 

The images have varying resolutions and the total size is 2,61 GB.  

 
TLP [31] is a long video dataset which is more suitable for Long-Term Object 

tracking. It consists of 50 HD videos over 676.431 frames. It is also modified for 

Short-Term Object Tracking as it has first 600 frames from each of the image 

sequences. The modified version is named as tinyTLP. In the experiments, 

tinyTLP is used.  
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UAV123 dataset is released by Image and Video Understanding Lab. at King 

Abdullah University of Science and Technology [32]. It consists of sequences 

captured from UAVs and has 123 sequences with more than 110.000 frames. 

 
Each frame in all of the datasets are annotated by a rectangular bounding box. 

 

4.2. Setup 

The experiments were run on two setups which have the following specifications 

as given in the Table 1.  

 

Table 1 Hardware and software configuration of the experimental setups 

 Setup-1 Setup-2 

CPU Intel Core i7-7500U (4 cores) Intel Xeon Silver 4114 (40 cores) 

Memory (RAM) 16 GB 126 GB 

GPU NVIDIA GeForce GT940MX 

(384 cores) 

NVIDIA GeForce GTX 1080 Ti 

(3584 cores) 

Memory (GPU) 2 GB 12 GB 

Operating System Ubuntu 16.04 Ubuntu 18.04 

CUDA Version 8.0 10.0 

OpenCV Version 3.4.4 3.4.4 

 

4.3. Tracking Performance 

The performance analysis will be done using Intersection over Union (IoU) 

scores. IoU is calculated as dividing the intersection area of the ground-truth 

bounding box and the resulting bounding box generated from the tracker by the 

total area covered by the composition of these bounding boxes as visualized in 

Figure 9.  

 
The formulation of IoU can be expressed as follows: 

𝐼𝑜𝑈 =  
𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑣𝑒𝑟 𝑂𝑣𝑒𝑟𝑙𝑎𝑝

𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑣𝑒𝑟 𝑈𝑛𝑖𝑜𝑛
 

 

(4.1) 
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Figure 9 The visualization of how Intersection over Union is calculated 

 
Precision and Success curves are another popular performance measurement 

criteria’s. Success curve is plotted over an overlap threshold. Precision Plot is 

used to measure what percentage of the center error is within the center error 

threshold. The center error threshold is the maximum acceptable distance in 

pixels with the center of bounding box and the center of the ground-truth. The 

popular threshold used in object tracking benchmarks is 20. The threshold value 

of 20 is redundant of the object and the image size.  

 

4.4. Benchmark Results 

IoU scores are calculated for every frame. The ground-truth and the estimated 

bounding boxes also drawn on the current frame for display purposes which can 

be seen in Figure 10.  

 
The Success Plot is given in Figure 11. The IoU values which is larger than the 

overlap threshold means that the target is successfully tracked in that frame. The 

Succes Rate starts to fall down dramatically as the overlap threshold is increased 

beyond 0,5. This is also a popular threshold level for IoU. 

 
The precision score is computed by a center error threshold between 5 and 50 

pixels. The resulting Precision Plot is given in Figure 12.  
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Figure 10 Ground-truth and prediction bounding boxes 

 
 

 

Figure 11 The Success Plot of ECO Tracker via using IoU 
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When examining these results, it is necessary to consider the characteristics of 

the data sets. The source of motion in image sequences can occur in two ways: 

one is the movement of the target and the other is the movement of the image 

recorder. The OTB100 data set usually contains image sequences where the 

image recorder is stabilized and the source of the motion is the target. Although 

both sources are active in the image sequences in the TLP and UAV123 datasets, 

the motion of the image recorder is less severe. However, in the VOT-2017 and 

VOT-2019 datasets, the intensity of both the target's and the image recorder's 

movements is generally very high.  

 

 

Figure 12 The Precision Plot of ECO Tracker 

 
If we first examine the Success Plot in Figure 11, we see that the algorithm's 

performance is inversely proportional to the motion intensity of the target and the 

image recorder. In the Precision Plot in Figure 12, it is seen that the algorithm's 

performance in the TLP dataset approximates its performance in the VOT 

datasets. Since the resolution of the image frames in the TLP dataset is higher 

than in other datasets and the target sizes are generally large, the center error 

thresholds remain small. This led to the downward movement of the precision 

graph.  
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4.5. Analysis using MATLAB Profiler 

MATLAB Implementation on Single-core CPU 
 
The ECO tracking algorithm was originally implemented using MATLAB with GPU 

support. Thus, we conduct an analysis on the MATLAB implementation with 

MATLAB profiler. 

 
The MATLAB implementation is profiled over one image sequence which 

contains 742 frames. The total time is 183.26 seconds. 

 

 

Figure 13 MATLAB Profiler output for data processing on CPU 

 

The methods covering the most of the execution time are investigated and the 

ones which are eligible for parallelization are determined. 

 
MTIMESX [33]: The most time spend in the mtimesx function. MTIMESX is a fast 

general purpose matrix and scalar multiply routine [33] and it is used for the 

element-wise multiplication of matrices. It has 6 calling functions. The 

measurements on the functions that use MTIMESX are given in Table 2.  

 
The methods except lhs_operation have negligible execution time. On every call 

to lhs_operation, multiplication of around 10.000.000 complex numbers is 

carried on. This is a naturally parallel problem. The matrix sizes in the other 

calling functions are very small and they have negligible compute-time.  
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Table 2 Caller functions of MTIMESX 

Caller name Calls Time Spent Time/Call 

project_sample 1486 0,881 0,0005929 

train_joint 20 0,009 0,0004500 

lhs_operation_joint 1280 0,201 0,0001570 

optimize_scores 34827 0,498 0,0000143 

train_filter 246 0,216 0,0008780 

lhs_operation 2952 32,211 0,0109116 

 

find_gram_vector routine, two matrices with around 4.000.000 elements are 

multiplied and this provides a good chance of parallelization. In 

average_feature_region and integralVecImage are the other bottleneck 

functions which includes matrix multiplications and summations in their basis. 

 
MATLAB Implementation with GPU Support 
 
MATLAB has Parallel Computing Toolbox that includes many of the standart 

MATLAB built-in function to be executed in GPU. This minimizes the need of a 

new kernel implementation. MATLAB lets you declare GPU arrays by using the 

type gpuArray. It is also possible to transfer an array A from CPU memory to 

GPU memory via A_gpu = gpuArray(A).  On the other hand, a GPU array B 

can be transfered to CPU memory using gather function.  

 
With the support of its built-in functions and easy memory allocation on GPU, a 

MATLAB code which is written for running on CPU can be also run on GPU by 

only migrating the variables from CPU memory to GPU memory. No change or 

minor changes may be needed for the methods themself.  

 

Overcoming the Bottlenecks 

bsxfun is a MATLAB function that is used for applying element-wise operation 

to two arrays. bsxfun(fun,A,B) applies the element-wise binary operation 

specified by the function handle fun to arrays A and B. fun is replaced by 
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@times for the multiplication operation. For GPU arrays, mtimesx function is 

replaced by bsxfun.  

 
The GPU counterparts of these methods have provided a better performance as 

expected. The execution times are given in Table 3. 

 

Table 3 Execution time of the bottleneck functions on CPU and GPU 

Description CPU Time GPU Time 

lhs_operation 32,211 10,622 

find_gram_vector 17,447 2,493 

average_feature_region 9,981 2,892 

integralVecImage 8,832 4,589 

Total 68,471 20,596 

 

With the GPU usage, the average profile time is decreased to 134,72 seconds 

from 183,26 seconds providing a 26,49% speed-up. The average profile times 

are obtained over 100 runs.  

 
Further speed-up can be achieved changing the structure of the arrays. In the 

original implementation, the input arrays to the previously mentioned processes 

are 2D, 3D or sometimes 4D arrays. The vectorization of these array can provide 

better performance on calculations. Addition to the original approach, we 

changed the allocation of the arrays so that they are aligned in a vector array.  

 
For example, the element-wise multiplication of two 4D arrays with the size of 

50x30x125x63, took more time than two 1-D vector array with the same amount 

of elements. The average times spent for the multiplication are given in the 

following Table 4. The vectorization of the input array shortened the execution 

time by 21,76%. 
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Table 4 Speed-up accomplished by using vectorized data 

Array dimensions CPU Time GPU Time 

4-D arrays 0,012951 0,000043362 

1-D arrays 0,013005 0,000033928 

 

Effects on Accuracy 

 
We also investigated the differences between the results obtained from MATLAB 

implementations with CPU and GPU.  

 
If it is not handled explicitly, it is likely to come across slight differences between 

the multiplications and summations of the floating points carried out in CPU and 

GPU because of the rounding modes and order of the accessing elements [34].  

 
The maximum difference between the CPU and GPU calculations is measured 

as 0,2% which affects the tracking accuracy by a maximum of 0,4%. 

 

4.6. Analysis using a Profiler 

As previously described in Section 3.4, the algorithm includes a large amount of 

matrix products and convolution processes. An analysis was carried out to 

understand how much processing power these processes require and affect the 

speed of operation.  

 
Valgrind [35] tool was selected for analysis. The Valgrind tool is a very successful 

tool in memory management, fault finding and processor profiling. The algorithm 

was run on the 3.734 image sequence with the Valgrind analysis tool. The 

visualization of the analysis outputs is given in Figure 14 and Figure 15.  

 
The algorithm proceeds predominantly in two independent branches as can be 

seen in Figure 15. One of them is the part about the training of the filter and the 

other is the part where the feature maps of the image sequences are drawn. 

Approximately 74,15% of the time spent in the filter training section covers matrix 

multiplications and convolution. It is observed that approximately 30,28% of the 

entire running time of the algorithm consists of extracting HOG and ColorNames 
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property maps. FFT and matrix manipulations are frequently used during these 

operations. As it is known, these processes can be good candidates for GPU 

parallelization.  

 

 

Figure 14 Indication of how often the methods are called and how much processing time 
they use 

 

 

Figure 15 Call graph showing dependency of algorithm components on each other 
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5. IMPLEMENTATION ON GPU 

As mentioned in the previous section, the ECO tracking algorithm excessively 

includes element-wise multiplication and division of the complex matrices. The 

initialization and the training of the filter, the extraction of the feature from the 

images, the convolution of the filter and the features, the computation of the 

energy include matrix multiplications and all using the same method whose 

algorithm is given in Table 5.  

 
Table 5 Pseudo-code of element-wise multiplication of two k x n matrices 

1: procedure complexDotMultiplication(A, B) 

2: 𝑘 = 𝐴. 𝑟𝑜𝑤𝑠 

3: 𝑛 = 𝐴. 𝑐𝑜𝑙𝑠 

4: let C be a new k x n matrix 
5: for i = 1 : k 

6: for j = 1 : n 

7: 𝐶𝑖𝑗 = 𝐴𝑖𝑗 ∙ 𝐵𝑖𝑗 

8: end for 

9: end for 

10: return C 

11: end procedure 

 

The ECO algorithm also includes the element-wise division of the matrices as 

given in Table 6.  

 
Table 6 Pseudo-code of element-wise division of two k x n matrices 

1: procedure complexDotDivision(A, B) 

2: 𝑘 = 𝐴. 𝑟𝑜𝑤𝑠 

3: 𝑛 = 𝐴. 𝑐𝑜𝑙𝑠 

4: let C be a new k x n matrix 

5: for i = 1 : k 

6: for j = 1 : n 

7: 𝐶𝑖𝑗 = 𝐴𝑖𝑗/𝐵𝑖𝑗 

8: end for 

9: end for 

10: return C 

11: end procedure 

 

These methods are used for the multiplication and the division of the matrices 

whose sizes are changing between 50x50 and 200x200. At first glance, these 

sizes are very small to use a GPU for the multiplication. But a deeper look into 
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the ECO algorithm revealed that this method continuously called for each frame 

and these small matrices are parts of a much larger matrix. The total number of 

elements of the larger matrices are changing between 200.000 and 2.000.000 

depending on the image size. The multiplication of these matrices are very good 

candidates to be parallelized with the use of a GPU.  

 
The number of calls to the original methods and the GPU counterpart developed 

for this work are given in Table 7.  

 

Table 7 The number of calls to the methods 

Procedure # of calls (in CPU) # of calls (in GPU) 

Multiplication 417.439.222 8.653.021 

Division 9.425.588 725.045 

 

5.1. Sequential Approach 

Firstly, a sequential approach is followed for the parallelization of the methods. 

So, the elements of the matrices are copied to the GPU and they are evenly 

distributed over the threads. The pseode-code for the sequential approach is 

given in Table 8 and Table 9.  

 
Table 8 Pseudo-code of the element-wise multiplication kernel on GPU 

𝑘 = 𝐴. 𝑟𝑜𝑤𝑠, 𝑛 = 𝐴. 𝑐𝑜𝑙𝑠, N = k * n 

let C be a new (k x n) length array 

1: procedure complexDotMultiplicationGPU(A, B, N) 

2: idx = blockIdx.x * blockDim.x + threadIdx.x 
3: if idx < N 

4: 𝐶𝑖𝑑𝑥 = 𝐴𝑖𝑑𝑥 ∙ 𝐵𝑖𝑑𝑥 

5: end if 

6: end procedure 

 

Table 9 Pseudo-code of the element-wise division kernel on GPU 

𝑘 = 𝐴. 𝑟𝑜𝑤𝑠, n= 𝐴. 𝑐𝑜𝑙𝑠, N = k * n 

let C be a new (k x n) length array 

1: procedure complexDotDivisionGPU(A, B, N) 

2: idx = blockIdx.x * blockDim.x + threadIdx.x 
3: if idx < N 

4: 𝐶𝑖𝑑𝑥 = 𝐴𝑖𝑑𝑥/𝐵𝑖𝑑𝑥 

5: end if 

6: end procedure 
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In the sequential approach, the related kernel is called after the matrices are 

copied to the device memory as whole. The distribution of the matrix elements 

and the calculation process is visualised for the multiplication in the Figure 16 

below.  

 

 

Figure 16 The illustration of the distribution of the matrix elements over threads 

 

The organization of the threads is based on one-dimensional blocks and one-

dimensional grids. This approach only uses the advantage of large number of 

cores on GPU to shorten the computation time. But this might not be the only 

advantage of using a GPU. Further improvements can be achieved by using the 

asynchronous memory transfers instead of the synchronous transfers.  

 

5.2. Using cudaMemcpyAsync with Pinned Host Memory 

Up to this point, the advantage of multi-threaded parallelism is used in order to 

achieve faster execution time. But, this is not the only way of shortening the 

computation time. Concurrency is the ability to run a number of tasks at the same 

time. Overlapping two actions is the most common optimization in asynchronous 

programming.  

 

In CUDA, the kernels are asynchronous by default. cudaMemcpyAsync can be 

used in order to overlap two memory transfers in different directions. 

cudaMemcpyAsync is also asychronous with the kernels. So, it is possible to run 
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a CUDA kernel, cudaMemcpyAsync and do some other operations on the CPU 

and on the other GPU streams at the same time.  

 

cudaMemcpyAsync requires Pinned (Page-locked) Host Memory allocation. The 

host memory allocation with malloc is pageable by default and it is managed by 

the operating system. While transfering data on the pageable host memory to 

GPU memory, the CUDA driver first copies the data to a temporarily allocated 

pinned memory, and then the transfer to device memory is carried out after that, 

as illustrated in Figure 17.  

 

 

Figure 17 Pageable Data Transfer to GPU 

The creation of another copy of the data can be very time consuming especially 

with large data and this will cause slower memory transfer between the host and 

the device. The CUDA Runtime API provides functions to allocate the data 

directly using the pinned host memory, as illustrated in Figure 18.  
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Figure 18 Using pinned host memory for the allocation and transfer 

 
The use of the pinned host memory provides lower latency and increased 

bandwidth for both synchronous and asynchronous memory transfers. The 

excessive use of pinned memory will degrade host performance, since the 

available amount of pageable memory to the host decreases. The list of the 

memory management functions used in this work and their descriptions are listed 

in Table 10 [13].  

 

Table 10 The memory management functions used for asynchronous memory transfers  

 

CUDA provides concurrency by the execution of asynchronous commands in 

streams. CUDA devices have a default stream, usually referred as stream 0 or 

NULL stream, which is synchrous with all streams and its operations cannot 

overlap other streams. If it is not explicitly specified, all operations run on the 

default stream. Figure 19 shows that how the NULL stream handles the 

Function Description 

cudaMallocHost(void** ptr, size_t size) Allocates pinned memory on the host 

cudaFreeHost(void* ptr) Frees pinned host memory 
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operations in a simple multiplication program running on GPU. Kernel is only 

launched after the completion of the transfer of matrix A and B to the GPU 

memory and the resulting matrix C can be copied to CPU after the kernel 

completes its execution.  

 

 

Figure 19 The operations on the NULL stream 

 
CUDA streams let us to overlap these actions in order to achieve concurrency. In 

order to create and handle the streams, the following stream management 

functions in Table 11 are used provided in CUDA Runtime API [13]. 

cudaStream_t is used to declare streams as a variable.  

 

Table 11 The utilized stream management functions 

Function Description 

cudaStreamCreate(cudaStream_t *stream) Create an asynchronous stream 

cudaStreamDestroy(cudaStream_t stream) 
Destroys and cleans up an 

asynchronous stream 

cudaStreamSynchronize(cudaStream_t stream) 
Waits for stream tasks to 

complete 

 

In this method, the matrix multiplication and division workload is distributed over 

the streams to maintain a 3-way concurrency which is illustrated in Figure 20. 

 

Figure 20 The amount of concurrency 
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5.3. Zero-Copy Memory 

Normally, the host and device cannot directly access each other’s variable. Zero-

copy memory is one exception to this behaviour. Zero-copy memory is can be 

accessed by both the CPU and GPU.  

 
The host memory allocation must be pinned and it is mapped into the GPU 

address space. cudaHostAlloc(void** ptr, size_t size, unsigned 

int flags) is used for allocation but with cudaHostAllocMapped flag [13]. 

cudaMallocHost is given cudaHostAllocDefault as flag, it emulates 

cudaMallocHost function which is used for pinned memory allocation for 

asynchronous memory transfers. The host memory can be accessed via 

cudaHostGetDevicePointer which passes back a device pointer ptr. This 

pointer can be directly passed to the kernel without any memory copy operation. 

But the memory accesses must be synchronized. Both the host and device 

should not access or modify the same memory space at the same. This will result 

in unpredictable behaviour.  

 
If the device memory is insufficient, it can be used to laverage from the host 

memory. Since the host memory is accessed over PCI-Express, the latency is 

much worse than global memory.  

 
The excessive use of pinned memory will degrade host performance in both 

asynchronous data transfer and zero-copy memory.  

 

5.4. Using cudaMallocManaged with Unified Memory 

Eventhough GPUs have very fast memories, the transfer speed of the data to the 

GPU is always be a limitation to get the best out of GPU performance. In GPU 

applications, it is desired that the data to be as close to the GPU as possible.  

 
The explicit memory copies are the traditional way of transfering data from the 

CPU to the GPU or vice versa. Alltough this approach usually provides the best 

GPU performance, it needs to give much attention to the handling of the data 

access to get the most out of it.  
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In 2011, with CUDA 4.0, a special addressing type called Unified Virtual 

Addressing (UVA) is introduced. Before UVA is introduced, the pointers refering 

to the host and device memory have to be managed individually like it is 

described previously. With UVA, the pinned host memory has identical pointers 

for the host and device. As a result, it can be passed directly to a kernel. With 

UVA, it is not necessary to assign a device pointer to the pinned memory space 

like it is done with cudaHostGetDevicePointer for the zero-copy. The rest 

of the procedure is identical with the zero-copy memory.  

 
A new support called Unified Memory was introduced with CUDA 6.0, in order to 

make the memory management even easier. A managed memory pool can be 

created with Unified Memory which is reachable from both the host and device 

with the same pointer. The data is automatically migrated to which processor 

needs access to the data. As a result, it improves performance and locality. On 

the other hand, UAV does not migrate data automatically like Unified Memory. 

UM lets the host and device to share a single virtual address space, as shown in 

Figure 21.  

 

 

Figure 21 Single memory space with UM 

Unified Memory provides a single pointer for the data like zero-copy memory. But 

zero-copy memory is located in host memory thus, the data can be accessed only 

over the PCIe bus which is prone to high-latency.  
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The functions provided by CUDA Runtime API [13] in order to allocate and free 

managed memory is given in the Table 12.  

 

Table 12 The functions used for managed memory with Unified Memory 

 

But, Unified Memory is handled differently in our setups, due to the architectural 

differences. The Setup-1 has a GPU based on Maxwell architecture. In Maxwell 

architecture, all managed memory used by the CPU for writing has to be 

synchronized with the device before a kernel launch. So, the size of the Unified 

Memory is limited to physical memory in GPU.  

 
The Setup-2 has GTX 1080Ti GPU which is based on Pascal architecture. With 

the Pascal GPUs, NVIDIA introduced a hardware support to extend Unified 

Memory management [36]. In Maxwell architecture, the migration of the data from 

CPU to GPU is normally handled by CUDA runtime. With this hardware support, 

Pascal GPUs gained 49-bit virtual addressing ability which is large enough to 

cover the virtual address space of the device and the host. Thus, the UM is no 

longer limited to device memory size, the full memory size of the system becomes 

accessible.  

 
Another feature comes with the hardware support is page faulting. This means 

that CUDA driver will not need synchronize the managed memory before any 

kernel launch. If the managed memory space accessed by any processor is not 

available yet, we will have a page fault. This page fault will trigger an automatic 

migration of the data, as a result, the need of a data synchronization is removed.  

 
The parallel programming usually starts with serial coding for CPU and ends up 

with porting the CPU code to the GPU. We start with the allocation on GPU, 

adding a copy feature to the code and replacing the multiplication function. In 

Function Description 

cudaMallocManaged(void** ptr, size_t 

size, unsigned int flags=0) 

Allocates memory that will be 

automatically managed by the 

Unified Memory system 

cudaFree(void* ptr) Frees managed memory 
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order to use the pinned memory, the allocation of the data is needed to be 

changed. The use of zero-copy removed the extra data allocation and the copy 

requirement. But we still needed a copy for transferring the results to the CPU. 

Lastly, the Unified Memory let us to remove the transfer requirement for the 

results. The last code was very similar to the CPU code. An example for the 

transformation of the code from base CPU code to the GPU code with Unified 

Memory is given in Figure 22.  

 

 

Figure 22 CPU to GPU code transformation with Unified Memory 

 

6. RESULTS 

In this section, the results obtained from the original CPU based method and the 

implemented GPU based methods will be discussed. Before providing the results, 

it is needed to be explained how the measurements are made.  

 
The time spent in CPU methods are measured with the help of OpenCV libraries. 

OpenCV has a cv::TickMeter class to measure the passing time. This class 

has public member functions start(), stop() in order to start and stop the 

timer as expected. The passed time between these two functions can be gathered 

with getTimeSec() member function.  

 
CUDA Runtime API provides event management functions in order to measure 

the timings in GPU. The functions that are used in this work given in Table 13. 

cudaEvent_t is used for the declaration of events.  
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In order to examine memory transfers, kernel execution and streams for 

optimization, NVIDIA Visual Profiler [37] is used. It can detect performance 

bottlenecks and provide suggestions for improvements.  

 

Table 13 The event management functions used for measurements 

Function Description 

cudaEventCreate(cudaEvent_t* event) Creates an event object 

cudaEventRecord(cudaEvent_t event, 

cudaStream_t stream = 0) 
Records an event 

cudaEventSynchronize(cudaEvent_t event) Waits for an event to complete 

cudaEventElapsedTime(float* ms, 

cudaEvent_t start, cudaEvent_t end) 

Computes the elapsed time between 

events 

cudaEventDestroy(cudaEvent_t event) Destroys an event object 

 

The maximum difference between the CPU and GPU calculations is measured 

as 0,2% which affects the tracking accuracy by a maximum of 0,3%. The average 

calculation error is 0,04% and having negligible effect on the overall accuracy. 

 

6.1. Results obtained with Setup-1 

As stated in the Section 4.2, the Setup-1 has Intel Core i7-7500U CPU @2.7GHz, 

16GB of RAM and NVIDIA GeForce 940MX with 384 cuda cores and 2GB 

memory. The operating system is Ubuntu 16.04 with CUDA 8.0 and OpenCV 

3.4.4 installed. The algorithm has run on five datasets and they include 243.299 

frames in total. The total time spent on the multiplication and the division 

processes is given in Table 14. According to these measurements, the 

calculations in GPU are two times faster than the original CPU based methods.  

 

Table 14 The total time spent in CPU and GPU kernels, and achieved speedup on Setup-

1 

CPU Kernel (in sec) GPU Kernel (in sec) Speed-up 

10005,87 1633,01 ~6,13x 
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The time consumed in memory transfers and kernels are analized using NVIDIA 

Profiling Tool. The profiler output for a single call to the multiplication method with 

around 2.000.000 elements for each matrix is given in Figure 23.  

 
The sequential approach is eligible to use both pageable host memory and 

pinned host memory with the synchronous memory transfers. The sequential 

approach with the pinned host memory is 6,64% faster than with the pageable 

host memory. The use of asynchronous CUDA memory transfers and streams 

for 3-way concurrency provided a 5,11%  improvement over the synchronous 

approach with the pinned host memory. Using the streams, the time spent in 

kernel is overlapped with the memory transfers and has no effect on the total 

processing time as can be seen in Figure 23(c). Since 940Mx has one copy 

engine, the host to device and the device to host data transfers can not overlap.  

 

 

Figure 23 The execution time of only one method on Setup-1. (a) the sequential 
approach with the pageable host memory, (b) the sequential approach with the pinned 
host memory, (c) the asynchronous approach with 3 streams, (d) with no-memcpy data 
pointers. 
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On the other hand, this is not the ideal gain from the 3-way concurrency since it 

is possible to provide up to 3x speed-up. This is because the complexity of the 

calculations in kernels is not high enough to fully overlap with the time spent on 

the asynchronous memory transfers. 

The profiler output in Figure 23(d) shows that there is no time spent in copying 

the data to the GPU but the time spent in kernel is increased dramatically due to 

the lack of bandwidth. Eventhough the kernel execution time increased, the total 

process is sped up by 21,75% with respect to the synchronous memory transfer 

with pinned host memory.  

 
In GPU applications, the memory transfers have been a greater problem for 

achieving better performance results. This is why we have used five different 

method in order to retrieve data on GPU. The primitive sequential approach with 

pageable memory is selected as base method for comparison. The speed-ups 

obtained on Setup-1 are summarized in Table 15.  

 

Table 15 The measured running times and achieved speed-ups over the pageable 
memory on Setup-1 with respect to the serial approach 

 Pageable 

Memory 

Pinned Memory 

cudaMemcpy 

Pinned Memory 

cudaMemcpyAsync 

Zero-copy 

memory 

Managed 

memory 

Time(sec) 25648,33 23945,48 22721,52 19825,56 27570,44 

Speed-up 1x ~1,07x ~1,13x ~1,29x ~0,93x 

 

6.2. Results obtained with Setup-2 

The Setup-2 is a workstation which is built for applications like big data 

processing, image processing, data mining, etc. It has 40 Intel Xeon Silver 4114 

cores, 128 GB of RAM and two NVIDIA GTX1080Ti GPUs based on the NVIDIA 

Pascal architecture. Each of the GPUs has 3584 CUDA cores, memory speed 

up-to 11Gbps with 352-bit memory interface width and the memory bandwidth 

484 GB/sec referred to spec-sheet. The maximum clock rate is 1620 MHz and 

memory clock rate 5505 MHz which are 36% and 175% more than 940MX of 

Setup-1 respectively. The operating system is Ubuntu 18.04 with CUDA 10.0 and 

OpenCV 3.4.4 installed.  
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Running the ECO algorithm on Setup-2 provided the kernel execution times as 

given in Table 16. As expected, sharing the workload between the threads led to 

95,76% faster execution time over the CPU execution. 

Table 16 The total time spent in CPU and GPU kernels, achieved speedup on Setup-2 

CPU Kernel (in sec) GPU Kernel (in sec) speedup 

5999,41 254,23 ~23,60x 

 

Using the pinned host memory for the sequential approach instead of the 

pageable host memory provided 71,12% faster execution time. The 

asynchronous memory transfers with 3 streams were 76,30% faster than the 

base GPU method. The zero-copy memory usage also improved the execution 

time by 58,85% but not better than the other methods using pinned memory for 

explicit memory transfers. Finally, the use of the managed memory was only 

14,72% faster than the base method with pageable memory. The achieved 

speed-ups over the base GPU approach are summarized in Table 17.  

 

Table 17 The achieved speed-ups on Setup-2 with respect to the serial approach with 
pageable memory transfers 

 Pageable 

Memory 

Pinned 

Memory 

cudaMemcpy 

Pinned Memory 

cudaMemcpyAsync 

Zero-copy 

memory 

Managed 

memory 

Time(sec) 13932,69 4023,37 3302,08 5733,84 11881,83 

Speed-up 1x ~3,46x ~4,22x ~2,43x ~1,17 

 

At this point, we need to focus on the managed memory usage. At the first steps 

of the implementation with managed memory, the performance on GTX 1080Ti 

was much worse than the pageable memory. As described in Section 5.4, when 

a kernel try to access the memory, a page fault occurs and it triggers the migration 

of the data to GPU as demanded. But this causes migration time to interfere with 

the kernel execution and stalls it. CUDA provides a management function for 

prefetch the data on GPU side. In order to prefetch the data after the CPU 

initializes it, cudaMemPrefetchAsync is used before the kernel launch. The 

comparison of the cases with the profiler can be seen in Figure 24. Prefetching 

the data shortened the execution time by around 64.22%. 
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Figure 24 Profiler output for unified memory (a) without using cudaMemPrefetchAsync, 
(b) with prefetching memory before kernel launch 

 

In order to better see the performance of the methods, the profiler output is given 

in Figure 25.  

 

 

Figure 25 The execution time of only one method on Setup-2. (a) the sequential 
approach with the pageable host memory, (b) the sequential approach with the pinned 
host memory, (c) the asynchronous approach with 3 streams, (d) with no-memcpy data 
pointers, (e) using managed memory 
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As we can see in Figure 25(c), the input data to the stream kernels and results 

back to CPU are copied at the same time. GTX 1080Ti has two separate copy 

engines for the transfer data from host to device and from device to host. 
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7. CONCLUSION 

We have obtained the benchmark results of ECO tracking algorithm on five 

datasets which have different characteristics. We have analyzed the algorithm 

and investigated its suitability for GPU parallelism with the help of a profiling tool.  

 
After we have decided on candidate methods, we implemented GPU code for 

them starting from very naïve approach. The code implementation is done with 

NVIDIA’s CUDA platform. CUDA provides C/C++ extension and APIs for 

programming and managing GPUs.  

 
We managed to speedup its execution time with respect to the original 

implementation. After the first approach, we worked on the optimization of our 

implementation. We first started with the memory management. Page-locked 

(pinned) memory, zero-copy memory and Unified Memory are popularly used for 

increase GPU performance. We investigated their use and applied them to our 

implementation.  

 
Later, we focused on another popular GPU parallelism concept called streams. 

We have introduced further improvements on the performance of the algorithm. 

We managed to achieve a 76,30% performance increase in execution time with 

respect to the original implementation.  

 
We saw that the speed is not only related to the processing power of a processor. 

Since, we are always dealing with data, it is also important that how you reach it 

and affects the performance directly. Our work showed that traditional explicit 

memory copies may still provide better for performance but the gap is smaller 

than it used to be. The explicit memory transfers are subject to the programmers 

control and must be carefully handled. With the use of Unified Memory, one can 

transform a CPU code to GPU code faster. If you C/C++ code are using malloc 

for the memory allocation, all you need to do replace it with CUDA method then 

you are ready to go. This is very useful for fast prototyping and maintenance of a 

software. 
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