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Fuzzy inference systems, a sub-branch of artificial intelligence, are decision support 

systems based on fuzzy set theory. The knowledge is transmitted to these systems through 

linguistic fuzzy rules. In general, the rule base is determined by expert opinion. However, 

the rules are generated by automatic rule generation methods when the problem domain 

becomes complex and expert knowledge is insufficient. In the studies conducted so far, 

the dataset used to produce the rules with automatic rule generation methods has not been 

analyzed in detail. The dataset may mislead the model and the ruleset obtained from the 

project may not always be the most accurate one. The most accurate and generalizable 

ruleset may be produced from another project. Thus, the rules can be transferred to 

another application for the same problem domain. The goal of this study is to solve new 
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problems more effectively and faster way by using the ruleset of a different project 

without having to re-generate the rules when the dataset is changed. Therefore, unlike the 

data-driven approaches, the knowledge is transferred from the source project to the target 

project to make a predictive model in the current project. We investigate the portability 

of the rules by generating them from five different projects for Software Fault Prediction 

problem. The rulesets are generated by three automatic rule generation methods, namely 

“Wang-Mendel”, “Interval-Valued Fuzzy Reasoning Method with Tuning and Rule 

Selection” and rule production approach of “Defuzzification-free Hierarchical Fuzzy 

System”. In addition, automatic rule generation methods were compared with Artificial 

Neural Networks, which is a data-driven machine learning method to compare the success 

of the model. The results of the experiments indicate that the rules generated from more 

consistent datasets instead of own dataset of a project significantly improves the 

performance of existing fuzzy inference systems. 

 

 

Keywords: Fuzzy rule learning, Portability of fuzzy systems, Software fault prediction, 

Fuzzy inference systems, Transfer learning 
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Yapay zekanın bir alt dalı olan bulanık çıkarım sistemleri, bulanık küme teorisine 

dayanan karar destek sistemleridir. Bilgi bu sistemlere dilsel bulanık kurallarla iletilir. 

Genel olarak, kural tabanı uzman görüşü ile belirlenir. Ancak, problem alanı karmaşık 

hale geldiğinde ve uzman bilgisi yetersiz olduğunda kurallar otomatik kural üretme 

yöntemleriyle üretilir. Şimdiye kadar yapılan çalışmalarda, otomatik kural üretme 

yöntemleri ile üretilen kurallarda kullanılan veri seti ayrıntılı bir şekilde analiz 

edilmemiştir. Veri seti modeli yanlış yönlendirebilir ve projeden elde edilen kural kümesi 

her zaman en iyi kural kümesi olmayabilir. En doğru ve genellenebilir kural kümesi başka 

bir projeden üretilebilir. Böylece, kurallar aynı problem alanı için başka bir uygulamaya 

aktarılabilir. Bu çalışmanın amacı, veri seti değiştirildiğinde kuralları yeniden oluşturmak 
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zorunda kalmadan farklı bir projenin kural kümesini kullanarak yeni sorunları daha etkili 

ve daha hızlı bir şekilde çözmektir. Bu nedenle, veri odaklı yaklaşımların aksine, bilgi, 

mevcut projede öngörücü bir model oluşturmak için kaynak alandan hedef alanına 

aktarılır. Kuralların taşınabilirliği, kuralları Yazılım Arıza Tahmin problemi için beş 

farklı projeden üreterek araştırıldı. Kural kümeleri, Wang-Mendel, Ayarlama ve Kural 

Seçimi ile Aralıklı Değerli Bulanık Muhakeme yöntemi ve Durulaştırmasız Hiyerarşik 

Bulanık Çıkarsama Sistemi’nin kural üretim yaklaşımı olan üç otomatik kural üretme 

yöntemi ile üretildi. Ayrıca, modelin başarısını karşılaştırmak için otomatik kural üretme 

yöntemleri, veri odaklı bir makine öğrenme yöntemi olan Yapay Sinir Ağları ile 

karşılaştırıldı. Deney sonuçları, bir projenin kendi veri kümesi yerine daha tutarlı veri 

setlerinden oluşturulan kuralların, mevcut bulanık çıkarım sistemlerinin performansını 

önemli ölçüde geliştirdiğini göstermektedir. 

 

 

Anahtar Kelimeler: Bulanık kural öğrenme, Bulanık sistemlerin taşınabilirliği, Yazılım 

hata tahmini, Bulanık çıkarım sistemleri, Transfer öğrenimi 
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1. INTRODUCTION 

Fuzzy logic is a mathematical approach that provides simple solutions to the control of 

uncertain, time-varying, complex, not well-defined systems that cannot be solved by a 

classical logic method. In this approach, the classical set theory is replaced by fuzzy sets. 

Fuzzy inference systems (FISs) are the extension of rule-based inference by fuzzy set or 

fuzzy logic approach. These systems are used in the design of artificial intelligence based 

systems such as control systems, decision support systems, and expert systems, which are 

created for various problems. Although the success of FIS inevitably depends on the 

determination of membership function (MF) and the choice of fuzzy reasoning methods, 

the selection of fuzzy rules is always crucial to the accuracy of inference. 

 

One of the most significant advantages of using FISs is linguistically expressible fuzzy 

rules, which are the main components of the system, are interpretable and portable. An 

interpretable FIS allows a user to give each fuzzy set a linguistic value and express the 

behavior of the system in an understandable manner by inspecting the fuzzy rules [1,2]. 

This strongly depends on model structure, such as the number of input variables and the 

complexity of fuzzy rules and sets, the shape of MFs, etc. Decision trees and fuzzy 

cognitive maps are also interpretable systems like FISs. These systems describe the model 

in the context of a cause-effect relationship. The domain expert does not know these 

relationships and it is not known whether a correct relationship is established or not. 

Machine learning algorithms may associate unrelated features. Since the internal structure 

of the model is unknown, it cannot be moved to another application field. In the field of 

data mining and information discovery, it is essential for decision support systems to 

extract knowledge from databases and represent it clearly or to make the process 

transparent to the user. Thus, it is easier for the user to validate the knowledge obtained 

from the FIS with the domain information, and to be convinced that the system behavior 

is reliable. This knowledge is provided to FISs by fuzzy rules. 

 

Rules can be determined by the expert or can be obtained by learning algorithms. It may 

not always be possible to find experts in the field of study. In today's conditions, there are 

not enough experts in every field, and even if they exist, they cannot allocate sufficient 
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time. As a result of different perspectives of experts on the same subject, the information 

that the experts have adopted and presented correctly may be inconsistent. In order to 

overcome such problems can only be achieved by generating rules with automatic rule 

generation methods. Therefore, we have created rules with three automatic rule 

generation methods namely “Wang-Mendel’s rule generation method” (WM) [3], 

“Interval-Valued Fuzzy Reasoning Method with Tuning and Rule Selection” (IVTURS) 

[4] and the expert-cooperated rule production scheme proposed in “Defuzzification-free 

Hierarchical Fuzzy System” (DF-HFS) [5] on different datasets. In order to compare the 

performance of FISs, widely used ANN is also implemented. 

 

The rules do not always have to be generated from its data of the current project. We 

investigated the rules that were created for several datasets, namely, CM1, JM1, KC1, 

KC2, PC1 to discuss which dataset should be used to obtain the best set of rules for 

software fault prediction (SFP) problem by performing several FISs. 

 

1.1. Motivation 

The quality of rules is related to the quality of the dataset.  Therefore, when the rule is 

generated from the data instead of expert knowledge, the dataset should be analyzed in 

detail. In addition, there will be information loss when the dataset is divided, and it 

directly affects the rule coverage of domain. In the literature, the rules are always 

produced from the target dataset (the dataset of the project itself). More specifically, both 

fuzzy applications [6–8] of SFP and the other studies [9–13] used the dataset of current 

projects while generating rules. However, the rules should be produced from the highest 

quality dataset to ensure that FIS has a better prediction on the problem domain. 

 

Transfer learning focuses on solving a different but relevant problem in machine learning 

by using the knowledge obtained from a previously solved problem. Based on this 

approach, the best ruleset is determined from the source dataset, and it can be transferred 

to other problems with respect to dataset characteristics of the target domain. The 

portability property of FIS makes it possible to use pre-acquired knowledge to improve 

the effectiveness and learning accuracy in another project similar to the source project 
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[14,15]. Unlike machine learning algorithms that learn from domain-specific data, 

selected highest quality ruleset can be used on different domains for the same problem. 

We criticize that the ruleset of an investigated problem should always be produced from 

its dataset. In order to determine the best set of rules for a problem, we investigated 

whether it is better to use the corresponding project's dataset or to use another dataset that 

performs better for this problem domain. 

 

The rule base, one of the main components of the FIS, is generally determined by domain 

experts who have comprehensive knowledge of the problem. The established rule base 

should bring a general solution to the problem and reflect the domain knowledge of the 

FIS.  However, expressing this knowledge is a challenging task for the expert in real-

world problems. In practice, the input space of the given data is usually high dimensional. 

In these circumstances, the expert cannot create consistent and complementary rules 

because s/he has difficulty relating expert system variables with the output. Because of 

this bottleneck, researchers prefer using automatic rule generation methods that work with 

previously acquired knowledge. 

 

In the literature, there are several automatic rule generation algorithms were performed 

based on evolutionary optimization algorithms [4,16], genetic algorithms [17,18], 

clustering [19], linear solutions [3,12], data-driven machine learning algorithms such as 

decision tree [20] and association rule mining [21]. Although data-driven rule learning 

methods are widely used and produce reasonable rules, they are always domain-specific 

and limited with the dataset boundaries. Furthermore, data-driven approaches are 

insufficient to explain in a human-understandable manner since the decision is hidden 

within the network. On the other hand, the rules obtained by automatic rule generation 

methods are interpretable and represent the domain-related know-how with linguistic 

fuzzy rules. 

 

In order to investigate the best ruleset to be used in the project, some automatic rule 

generation methods were used based on the SFP problem. The inter-module dependence 

and increasing complexity of the software have made it difficult to deliver high-quality 
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and sustainable software at a low cost. Therefore, SFP is an essential activity to reduce 

maintenance efforts and improve software quality by locating faults and making 

improvements to the code before the software is released. In recent years, many studies 

have been made on the SFP problem [6,8,22–27]. This problem has an advantage in terms 

of the dataset since there are various datasets in this domain, and the selected datasets 

contain the same input linguistic variables. The utilized datasets CM1, JM1, KC1, KC2, 

PC1 [9,28,29] were obtained from PROMISE Software Engineering Repository [30]. We 

generate the rules by performing several automatic rule generation methods on these 

datasets, namely, WM, IVTURS, and rule generation scheme of DF-HFS. Several FISs 

were generated by different combinations of selected rule generation methods and 

datasets. 

 

Misleading rules derived from the rule generation methods may be due to data corruption. 

The main argument of this thesis is the rule learning data investigation should be 

conducted according to its ability to provide a general solution that brings the subject to 

portability of the generated rules. 

 

The set of rules produced for a specific problem does not have to be generated from the 

own dataset of the problem. FISs are created with a set of rules provided from a different 

project that can give more accurate results. At this point, the vital issue is that the selected 

dataset should be generalizable and reflects the problem domain in the most 

comprehensive way. Therefore, the rules should be produced from the most appropriate 

dataset by investigating the data of different projects.  

 

1.2. Contributions 

1. In the experiments conducted on SFP, the ruleset produced from each project was 

transferred between projects based on the transfer learning approach. We 

observed that the best ruleset is obtained from more consistent datasets instead of 

their project. This demonstrates that the portability feature of the rules between 

different projects. 
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2. We have observed that the FISs that we generate are more successful by 

comparing them with the ANN algorithm, which is highly preferred in 

classification problems. 

 

3. In this study, the transfer learning approach was performed for the first time using 

FISs on the SFP problem. This approach protects the confidentiality of the source 

dataset since only fuzzy rules are transferred to other projects. 

 

1.3. The Outline of the Thesis 

Chapter 2 presents the background of fuzzy logic, FISs, rule generation algorithms, ANN, 

and SFP. Chapter 3 presents related works on automatic rule generation methods, transfer 

learning, and SFP. Chapter 4 presents comparisons of fuzzy rule generation algorithms 

and ANN for SFP problem. Chapter 5 presents the experiments and results on FISs. The 

last chapter, Chapter 6 presents the conclusion and future work.
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2. BACKGROUND 

 

2.1. Fuzzy Logic 

Aristotle is the founder of the science of classical logic. Aristotle systematized the 

previous studies (384-322 BC) about logic and made it a branch of science. Formal logic 

is based on three main laws with respect to the law of identity, the law of non-

contradiction, the law of impossibility of the third state [31]. In these laws, he argues that 

everything is identical to itself, that an object cannot be another object than itself, and 

finally, there is no in-between situation. Aristotle's understanding of logic has been 

recognized as an authority in all around the world for centuries. 

 

In classical logic or Aristotle’s logic, when a question is asked to any proposition, the 

answer depends only on two parameters, true or false. In computer science, the value of 

the answer is “1” if it is true and “0” if it is false. Aristotle logic is not enough to explain 

the real-world uncertainties.  In 1965, Zadeh [32] expanded the classical Aristotle logic 

and laid the foundations of fuzzy logic based on the fuzzy set theory. Fuzzy logic 

transforms the human knowledge experience into rule bases and draws conclusions that 

correspond to a specific mathematical function of each rule base. The basic idea behind 

fuzzy logic is expressed in linguistic variables such as a proposition tall, short, very tall, 

very short, very very short, very very tall, etc. Classical logic, which argues that an entity 

is only an element of a set, leaves its place in the fuzzy logic that an entity can be more 

than one element of the set according to the values that an asset takes.  

 

The value that determines how much an input value belongs to a term of the linguistic 

variable is called the MD, which varies from “0” to “1”. MFs are the changes of 

membership degrees (MDs) within a subset. For example, let us define a subset of TALL 

that will answer the question “Who is tall?” according to both logic. As seen in Figure 

2.1, according to the classical set logic, a person who is 160 cm is not in the tall people 

set, and even 169 cm person is not in the tall people set. However, according to the fuzzy 

logic, 160 cm person is not called as short. Because it is partly within the set of tall people. 

In fuzzy logic, 160 cm one can be tall with 0.6 MDs, one 170 cm tall with 0.7 MDs, and 
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one 180 cm tall with 1.0 MDs. Larger MDs are considered less fuzzy, while smaller MDs 

are considered fuzzier. 

Figure 2.1 Comparison of the fuzzy set and the classical set 

 

In Figure 2.2, the borders of the fuzzy set are shown by the Venn scheme. Here, the 

element “a” is the absolute element of the fuzzy set of “A”. The MD of this element is 

expressed as “1”. The MD is considered as “0” since element “b” does not belong to the 

fuzzy set “A”. The element “c” is in the fuzzy set “A” at a certain level. This is indicated 

by a MD in the range of [0, 1]. 

 

 

 

 

 

 

 

 

2.1.1. Membership Functions 

The possible basic figures that MFs can take are shown in Figure 2.3. Each qualified 

definition used in the spoken language is written as an MF. Membership classes are 

determined at each point, and the boundaries applied. 
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Figure 2.2 Borders of a fuzzy set 
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Figure 2.3 Several types of membership functions 

 

In fuzzy logic, it is necessary to identify appropriate MFs to be used to specify the 

boundaries of regions that facilitate linguistic expression and to determine the 

membership weights of a real-world problem. MFs define system parameters. There is no 

restriction on the number and form of MFs, and it depends entirely on the desire and 

experience of the designer. 

 

2.2. Fuzzy Inference 

 

2.2.1. Fuzzy Inference Systems 

A set of fuzzy rules from an expert is required to establish an FIS. The MDs of several 

fuzzy input and output sets are defined by a set of curves. Then, this relationship can be 

plotted between the input and output sets. “If weather is cool then decrease the engine 
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speed” rule is given, the temperature and the speed of the motor represent the input and 

the output variables, respectively. These fuzzy sets will form a fuzzy region representing 

the set of all associations of the inputs and outputs of the rule. The size of the fuzzy region 

reflects the fuzziness of the rule. The area becomes smaller as the fuzzy set becomes 

certain. 

 

FIS is the process of obtaining outputs from inputs by using fuzzy rules generated by 

using expert knowledge. In this sense, the fuzzy system approaches a mathematical cause-

effect function. 

 

 

 

Figure 2.4 represents the configuration of a simple FIS. Here, in the “Fuzzifier“ stage, the 

real-world values are converted to membership values in fuzzy sets. Then, “Fuzzy 

Inference Engine” (FIE) converts “IF-THEN” rules to a defined fuzzy relationship in the 

input-output space. In the “Defuzzifier” stage, the fuzzy set is converted to real-world 

values. 

 

For example, let us consider a “fuzzy air conditioner” based on the four rules, hence four 

fuzzy sets to match the air temperature to the engine speeds. The temperature sets “cold, 

cool, warm and hot” and the engine speed sets “very slow, slow, fast and very fast” cover 

all fuzzy inputs and outputs. For example, the temperature of 20 degrees can be 30 percent 

cool and 70 percent warm.  In addition, the weather is zero percent cool, warm, and hot. 

The “cool and warm” rules will activate both “slow and medium” engine speeds. Both 

Figure 2.4 Fuzzy Inference System 



 

 

 
10 

rules contribute the same to the final speed of the engine. The fuzzy relationships derived 

from the defined rules form the fuzzy output set. This type of output cannot help 

controllers running in a binary system when in fuzzy form. The last step is a “defuzzifier” 

process that the fuzzy output value becomes a single numerical value. Thus, the system 

can be operated by a quantitative temperature input with the help of the temperature and 

engine speed sets to obtain a precise and convenient speed output. 

 

Mostly, words are used to meet the variables that we use in our daily life. For example, 

in the sentence “it is very cold today”, the linguistic variable is the air temperature of 

today, and the output value is very cold. 

 

In fuzzy systems, fuzzy sets represent words in the area in which they are defined. When 

extracting a fuzzy model of the speed of a car, we first need to determine the area in which 

it is defined. This range is between the maximum and minimum speed a car can reach. 

After deciding this area, fuzzy sets are determined to represent linguistic variables such 

as “very slow, slow, fast and very fast” (Figure 2.5). 

 

 

Figure 2.5 Speed of the car with fuzzy sets 

 

The control of the systems can be provided by rules established using human knowledge 

and experience. The linguistic form of fuzzy rule is shown in Eq. (1) where I and O 

represent input and output linguistic variables, respectively, m is the number of input and 

𝑓 represents fuzzy sets. 

𝐼𝐹 𝐼1 𝑖𝑠 𝑓1 𝐴𝑁𝐷/𝑂𝑅 𝐼2 𝑖𝑠 𝑓2 𝐴𝑁𝐷/𝑂𝑅 … 𝐼𝑚  𝑖𝑠 𝑓𝑘 𝑇𝐻𝐸𝑁 𝑂 𝑖𝑠 𝑓𝑝 (1) 

0

1
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2.2.2. Fuzzy Inference Models 

The FIS combines the implications of each rule to determine how the entire system will 

output under the inputs. The main components of inference differ in some cases, and it 

leads to differentiation of consequent of fuzzy rules. Three main types of rule-based 

inference models were created based on the result consequent of fuzzy rules that are 

Mamdani, Takagi-Sugeno, and Tsukamoto models. The fuzzy systems used within the 

scope of the thesis were performed through the Mamdani type inference model. 

 

2.2.2.1. Mamdani Model 

The Mamdani model is a rule-based inference method that requires expert knowledge and 

can be applied to solve any problem. Therefore, it forms the baseline of other fuzzy 

inference models and is still widely used. Firstly, it was used for the control of a steam 

engine with the verbal rules produced with human experience by Mamdani and Assilian 

in 1975 [33]. Mamdani type fuzzy model consists of following these steps; 

 The MD of the input variables varying in the range of [0, 1] is determined using 

fuzzy expressions in the fuzzification phase. 

 The rules are determined using logical operators (“and”, “or”). 

 The output fuzzy sets are aggregated for each rule. 

 Fuzzy output sets are converted to crisp numbers in the defuzzification phase. 

 

Mamdani has been proposed to express existing qualitative knowledge in the form of “IF-

THEN” rules shown in Eq. 2. 

 

Ki = 𝐼𝐹 𝑥 𝑖𝑠 Ai 𝑇𝐻𝐸𝑁 𝑦 𝑖𝑠 Bi      , 𝑖 = 1,2,3, … , 𝑟 (2) 

 

The “x” is the linguistic input variable, and “Ai“ is the premise linguistic term. Likewise, 

“y” is the linguistic output variable, and “Bi“ is the consequent linguistic term. Ai and Bi 

linguistic terms are fuzzy sets determined in their value set. MFs of the premise and 

consequent fuzzy sets are shown in Eq. 3.  
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µ(x): X → [0,1]  𝑎𝑛𝑑 µ(y): Y → [0,1]   (3) 

 

The rule base R = {Ki | i = 1, 2, 3…r} and “A” and “B” sets creates the information base 

of linguistic model. 

 

2.2.2.2. Takagi-Sugeno Kang Model 

“Takagi-Sugeno” fuzzy logic was first used in 1985 [34]. The fuzzification of input 

variables and the fuzzy logic operations are the same as for Mamdani fuzzy modeling. 

Two models differ in terms of the output MFs. In Sugeno type fuzzy modeling, output 

MFs are linear or constant, and for the input variable, it uses a mathematical function 

instead of fuzzy sets. They are called zero-order when output MFs are constant, and when 

they are in the form of linear equation, they are called first-order Sugeno fuzzy model. 

The first-order Sugeno type fuzzy rule form is shown in Eq. 4. The “a”, “b” and “c” 

represent linguistic variables. The “X” and “Y” are fuzzy sets, and 𝑓(𝑎, 𝑏)  is a 

mathematical function.  

 

IF a is X AND b is Y THEN c is 𝑓(𝑎, 𝑏) (4) 

 

The widely used “zero-order Sugeno fuzzy model” rule form is shown in Eq. 5. In this 

case, the output of each fuzzy rule is constant. 

 

IF a is X AND b is Y THEN c is 𝑘, where k is constant. (5) 

 

The Sugeno model works well with the optimization and adaptive techniques and 

improves the results by optimizing the output parameters. It can use linear techniques to 

control nonlinear systems. On the other hand, high dimensional input parameters and 

subsets make it difficult to train the data and increase the number of output parameters 

that must be determined to obtain results. 
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2.2.2.3. Tsukamoto Model 

In the “Tsukamoto model” [35], the consequent part of each “IF-THEN” fuzzy rule is 

represented by a fuzzy set with a monotone MF. Only monotone incremental or 

decreasing functions can be used for the output value. The “firing strength” of the rule 

creates the output as a crisp value for each rule. The crisp output is calculated by the 

“weighted average” in Tsukamoto FISs. The Tsukamoto rule form is represented in Eq.6. 

 

𝐼𝐹 𝑥 𝑖𝑠 Ai 𝑇𝐻𝐸𝑁 𝑦 𝑖𝑠 Bi      , 𝑖 = 1,2,3, … , 𝑛, Bi (6) 

 

The overall output is always crisp value, even if the inputs are fuzzy. The output is 

calculated by the Eq. 7. 

 

B(x) =
∑ Bi

−1𝐴𝑖(𝑥)
𝑛

𝑖=1

∑ 𝐴𝑖(𝑥)
𝑛

𝑖=1

 
(7) 

 

This model is not used frequently because it is not as transparent as the other inference 

models. The differences between the inference models are represented in Table 2.1. 

 

Table 2.1 Inference models for FIS 
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2.2.3. Mamdani Type Fuzzy Inference System Components 

The critical point of FIS is to establish the knowledge, experience, intuition, and control 

strategy of a specialist system operator as a knowledge base in inference design. 

Inferences are not performed by complex and classical algorithms but by linguistic rules 

based on knowledge and experience. As shown in Figure 2.4, FIS contains four essential 

components that are “fuzzifier”, “fuzzy rule base”, “fuzzy inference engine” and 

“defuzzifier”. 

 

2.2.3.1. Fuzzification 

“Fuzzification” is the converting process of numeric input variables (crisp data) into their 

corresponding fuzzy set. In other words, these variables, which are defined by fuzzy sets 

via MFs, are given a label to provide linguistic quantity. 

 

In many applications, the inputs and outputs of fuzzy systems are crisp numbers. The 

inference mechanism models the thinking mechanism of human-based on fuzzy values 

and cannot be applied to the system because its output is fuzzy values. Therefore, crisp 

numbers are converted to linguistic variables, which is the name of one of the fuzzy sets, 

as shown in Figure 2.5.  

 

2.2.3.2. Fuzzy Rule Base 

The “fuzzy rule base” is the database in which the control rules are stored. When 

developing the rule base for a system, the input values that affect the output of the system 

should be determined. Fuzzy rules are generally created from expert knowledge. The rules 

are generated by automatic rule generation methods using dataset when expert knowledge 

is not sufficient. 

 

The rule-base includes control rules that determine the behavior of the FIS. It consists of 

many parallel rules and audit variables used in decision-making. These rules explain the 

logical relationships between the inputs-outputs of the system. The output of the FIE is 

obtained by evaluating the rules describing the system. The rules are created with 
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commands “IF” and “THEN” which are defined by system and control variables, 

respectively. The fuzzy rule forms for a multiple-input single-output (MISO) system is 

shown in Eq. 1. In a fuzzy rule “IF x is T THEN y is Z”, “x is T” and “y is Z” represent 

premise and consequent parts, respectively. 

 

2.2.3.3. Fuzzy Inference Engine 

The FIE is the leading block where the control algorithm is executed, and the decision-

making stage takes place. The inputs of the defuzzification unit are the outputs of the FIE. 

FIE accesses the knowledge base and processes fuzzy rules and linguistic variables from 

the fuzzification interface. As a result of this process, it decides the control action. The 

rules in the fuzzy rule base are applied to the linguistic variables, and the control action 

is created by the chosen logical inference mechanism. 

 

FIE architecture can be summarized as follows [33]: 

 “Getting the fuzzy inputs.” 

 “Applying the fuzzy operators.” 

 “Applying the implication methods.” 

 “Aggregating the output fuzzy sets.” 

 “Creating the fuzzy outputs.” 

 

In the fuzzy rule base, the premise part of a rule is interconnected by the AND (min, prod) 

method or OR (max, probor) methods, and they reflect an MD to the output representing 

the rule degree. Then, each fuzzy rule consequent is determined by implication methods. 

Mamdani’s minimum operator MAX-MIN or Larsen’s product operator MAX-DOT 

implication methods are used to reshape the consequent of each fuzzy rule [33]. 

 

The MFs of all pre-clipped or scaled rule consequents are considered and combined into 

a single fuzzy set is called as an aggregation process (Figure 2.6).  
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Figure 2.6 Aggregation of rule outputs 

 

2.2.3.4. Defuzzification 

The inference unit generates the fuzzy output values by evaluating the fuzzy inputs that 

come from the fuzzification interface under the fuzzy rule base. “Fuzziness” helps in 

evaluating rules, but the output of a system must be a “crisp” number. Fuzzy output values 

are scaled in the defuzzification interface and converted to real numbers. Each fuzzy 

output set of membership values for each rule used is determined in the output universal 

set. Then, one of the defuzzification methods is used on the logical combination set 

created by these sets and the defuzzification process is done by finding a single output 

value. 

 

The most common defuzzification methods are “center of sums (COS) method”, “center 

of gravity (COG)” / “centroid of area (COA) method”, “bisector of area (BOA) method”, 

“weighted average method” and “maxima methods”. 

 

COS is the fastest defuzzification method that uses algebraic sums instead of combining 

two output fuzzy sets. In COS, the overlapping areas are added twice. The defuzzified 

value is calculated by Eq. 8. 

 

z∗ =
∫ 𝑧 ∑ μCk

z ⅆz
𝑛

𝑘=1
𝑧

∫ ∑ μCk
z ⅆz

𝑛

𝑘=1
𝑧

 

  

(8) 
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COG or COA is one of the most widely used defuzzification techniques and evaluated by 

the center of gravity. The MF values and the scalar weights of fuzzy outputs of rules are 

multiplied, and their sums are calculated. The obtained value is divided by the sum of the 

MF values as in Eq.9. 

 

COG =
∫ μA(x)x ⅆx

𝑏

𝑎

∫ μA(x) ⅆx
𝑏

𝑎

 

(9) 

 

BOA method divides under the curve into two equal areas. The value that partitions both 

sides into equal regions is the output value by Eq. 10. 

 

x∗ = ∫ μA(x) ⅆx

𝑥∗

𝛼

=  ∫ μA(x) ⅆx

𝛽

𝑥∗

 

(10) 

 

In the weighted average method, all fuzzy values and MDs are used for defuzzification. 

The output value is calculated by weighting each MF with its maximum value by Eq. 11. 

Maxima method takes the element with the highest MD in the fuzzy set as the defuzzified 

value. 

 

x∗ =
∑ μ(x)x

∑ μ(x)
 

(11) 

 

2.3. Fuzzy Rule Generation Algorithms and Neural Network 

 

2.3.1. Wang-Mendel Method 

Wang and Mendel [3] proposed a common method to produce linguistic fuzzy rules from 

numerical data by designing a control system to replace the human controller. We need a 

human controller and input-output pairs to design the system. The human controller 

expresses his/her knowledge as linguistic “IF-THEN” rules. The rules are not sufficient 
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for creating the system because the human controller will lose information when 

transmitting it. In addition, the input and output pairs cannot cover all possible conditions 

of the system and not sufficient to create a successful control system. Therefore, Wang 

and Mendel produced rules from numerical data by combining both information. 

 

WM method consists of five steps that are “dividing input-output spaces into fuzzy 

regions, generation of the fuzzy rule, assigning degree to each rule, creating a combined 

fuzzy rule base and determining a mapping based on the integrated rule base”. Let us 

assume a1, a2 are inputs, and b is the output. Domain intervals of inputs, and outputs are 

[a1
−, a1

+], [a2
−, a2

+] and [b−, b+]. The domain interval of a variable represents the interval 

between minimum and maximum value that a variable can take. Each domain interval is 

divided into “2N + 1” regions (value of N differentiates with respect to a variable and 

region length can be equal or not) and assigned a fuzzy MF. The shape of the MFs are 

triangular.  

 

In the second step, the degrees of input and output variables are determined and assigned 

a region that has a maximum degree. As shown in Figure 2.7, a2
(1)

 belongs to region S1, 

similarly b(1) belongs to region CE. By assigning regions to the variables,  

 Rule 1: IF a1 is X1 and b2 is S1 THEN c is CE 

 Rule 2: IF a1 is X1 and b2 is CE THEN c is X1 

rules are determined from input-output pairs. Inputs of all rules are connected with logical 

‘AND’ operator. 

 

Since each data pair generates a rule, many rules are obtained. The resulting rules have 

conflicting rules with the same “IF” (premise) and different “THEN” (consequent) part. 

In the third step, the rule with the maximum degree is selected from the conflict group by 

assigning degrees to each rule to solve this conflict. Thus, the number of rules is reduced. 

The degree of a rule is calculated by Eq. 12. 

 

D(rule) = 𝜇𝐴(𝑥1)𝜇𝐵(𝑥2)𝜇𝐶(𝑦) (12) 
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For instance, Rule 1 a has degree; 

D(rule) = 𝜇𝐵1(𝑥1)𝜇𝑆1(𝑥2)𝜇𝐶𝐸(𝑦) 

              =  0.5 ∗ 0.6 ∗ 0.7 

              =  0.21 

(13) 

 

In the presence of an expert, the data pairs are examined and assigned a degree according 

to their usefulness. Therefore, the human controller determines the degree of the rules. 

 

 

Figure 2.7 Fuzzy regions of input and output variables [3] 



 

 

 
20 

 

The rules derived from numerical data form a combined fuzzy rule basis. The rule with 

the highest degree is used when there are several rules in the resulting rule base. Thus, 

both numerical data and linguistic information are combined in the fourth step. 

 

As a final step, Wang and Mendel determined the output for given 𝑥1, 𝑥2 inputs and began 

with identifying the output degree (𝜇
𝑂𝑖
𝑖 ), using defuzzification by Eq. 14, where 𝑂𝑖

 and 𝐼𝑗
𝑖  

represent the output and input regions of rule i respectively. 

 

𝜇
𝑂𝑖
𝑖 = 𝜇𝐼1

𝑖 (𝑥1)𝜇𝐼2
𝑖 (𝑥2) (14) 

 

They used “centroid defuzzification” to determine the output by Eq. 15, where 𝑦̅𝑖 

represents the center of a fuzzy region 𝑂𝑖 and “K” is the number of rules of the obtained 

fuzzy rule base.  

 

y =

∑ 𝜇
𝑂𝑖
𝑖 𝑦̅𝑖

𝐾

𝑖=1

∑ 𝜇
𝑂𝑖
𝑖

𝐾

𝑖=1

 

(15) 

 

WM is a method that very simple and easy to construct. Unlike the neural approach, the 

training process does not require time and effort. In addition, this approach can be 

extended to multi-input and multi-output problems. WM is independent of the number of 

inputs and outputs from the 1st step to the 4th step. For the last step, the only difference in 

Eq. 15 is the output degree should be (𝜇
𝑂𝑗

𝑖 ) instead of (𝜇
𝑂𝑖
𝑖 ),  j denotes the jth output 

component. 

 

If we consider the five-step procedure as a block, the input-output samples and the 

linguistic rules are inputs, and mapping from input to output space is the output to the 
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block. This approach is a general method that can adapt when examples and linguistic 

rules change. 

 

2.3.2. Interval-Valued Fuzzy Reasoning Method with Tuning and Rule Selection 

The selection of MFs is one of the essential factors determining the success of fuzzy rule-

based classification systems. This is a complex problem resulting from the uncertainty 

associated with definitions of linguistic terms. “Interval-valued fuzzy sets” (IVFSs) are 

used to define fuzzy terms with system uncertainties. IVFS defines an interval rather than 

a single number as the MD of each element. The IVTURS [4] is a new “interval-valued 

fuzzy reasoning method” by extending the classical fuzzy reasoning method. 

 

This method called as IVTURS-FARC [4] since IVTURS is combined with FARC-HD 

[21] (“fuzzy association rule-based classification model for high dimensional problems”) 

algorithm which is used for rule learning process. IVTURS is composed of three steps: 

1) “Interval-valued fuzzy rule-based classification system” (IV-FRBCS) is 

generated by the FARC-HD method, and linguistic labels are determined by 

IVFSs. Then interval-valued restricted equivalence functions (IV-REFs), that 

measure the equivalence between intervals, are generated for each variable. 

2) The fuzzy reasoning method is extended on IVFSs. 

3) Optimization is applied for genetic tuning and the rule selection process. 

 

In order to learn the FRBCS, association rules are extracted by using a search tree, and 

rules, are selected using subgroup discovery that reduces the computational cost. After 

creating the initial FRBCS, linguistic labels are determined by generating the upper and 

lower bounds of each MF. Then, initial IV-REFs are generated for each variable. 

 

A rule learning algorithm is used to generate a knowledge base. Fuzzy rule form is 

represented in Eq. 16, where an algorithm uses a set of patterns (𝑥1, … . , 𝑥𝑛), and Rj is the 

jth rule, Ajn is the fuzzy set that represents a linguistic term. 
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Rule Rj = 𝐼𝑓 𝑥1 𝑖𝑠 𝐴𝑗1  … 𝑎𝑛𝑑 𝑥𝑛 𝑖𝑠 𝐴𝑗𝑛  𝑡ℎ𝑒𝑛 𝐶𝑙𝑎𝑠𝑠 = 𝐶𝑗  𝑤𝑖𝑡ℎ 𝑅𝑊𝑗  (16) 

 

Certainty factor is applied to compute rule weights, as shown in Eq. 17, where μA𝐽
(x𝑝) 

is the matching degree of pattern x𝑝. 

RW𝑗 = CF𝑗 =

∑ μA𝐽
(x𝑝)

x𝑝 € 𝐶𝑙𝑎𝑠𝑠 C𝑗

∑ μA𝐽
(x𝑝)

𝑃

𝑝=1

 

(17) 

 

IV-REFs compute how similar the interval MDs of each variable is to the ideal MD 

([1,1]). Although initial IV-REF (a) is an interval MD, it varies according to the values 

of the parameters (b, c).  

 

In the final step, the genetic algorithm is used to set the values of the parameters used in 

the construction of the IV-REFs and to perform the selection process between obtained 

rules. 

 

2.3.3. Rule Production Approach of Defuzzification-Free Hierarchical Fuzzy 

System 

Increasing the number of input parameters makes the single fuzzy system inapplicable 

since it increases the computational cost and complexity of the rules. In this case, 

hierarchical fuzzy systems are highly preferred. Mutlu et al. [5] proposed a new strategy 

called as DF-HFS that preserves the fuzziness of data while transferring it between layers.  

 



 

 

 
23 

Data may not always be consistent, complete, or even exist. In the DF-HFS algorithm, 

Mutlu et al. [5] proposed a straightforward approach as a solution to these problems. The 

rule scheme of the DF-HFS algorithm does not need expert knowledge to produce rules. 

The DF-HFS generates the complete ruleset by using tiny information of data. In our 

study, we used only the rule production scheme of DF-HFS. 

 

First, MFs are determined as whose boundaries of fuzzy sets equally partitioned. Each 

input-output variable has five fuzzy sets. The complete ruleset is determined as R = [Rant 

Rcons] where “Rant” is rule antecedent, and “Rcons” is rule consequent. Rant is [nm by m] 

matrix that stores all variations of fuzzy sets for each input variable, where “n” is the 

number of fuzzy sets and “m” is the number of input variables. Rcons is a [nm by 1] matrix 

that contains the consequent fuzzy set of each rule. Score adjustment of these MFs 

determined by expert opinion in case of no data available or according to the rate of 

predetermined fuzzy sets. The rating factor (RF) is specified for each fuzzy set (f) of each 

input variable (i) and represented as RTi,f. All RFs are normalized by dividing summation 

of the maximum RFs of each input variable, as shown in Eq. 18. The consequent of rule 

r is calculated by the summation of normalized RFs 𝑅𝑇(𝑖,𝑓)𝑟
 for ith input, and f th fuzzy set 

as shown in Eq. 19. 

 

𝑅𝑇𝑖,𝑓
̅̅ ̅̅ ̅̅ =

𝑅𝑇𝑖̇,𝑓

∑ max𝑓=1→𝑛𝑅𝑇𝑖̇,𝑓

𝑚

𝑖=1

 
(18) 

 

𝑅𝑟
𝑐𝑜𝑛𝑠 = ∑ 𝑅𝑇(𝑖,𝑓)𝑟

̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑚

𝑖=1
  

(19) 

 

Finally, the fuzzy set of the rule consequents is determined by equation Eq. 19. The Rcons 

determines the rule consequent belong to which fuzzy set. For example, it is 0,82. The 

output space is divided into 5 equal intervals as K1= [0.8–1.0], K2= [0.6–0.8), K3= [0.4–

0.6), K4= [0.2–0.4), K5= [0–0.2). Then the output belongs to 1st fuzzy set since it is in 

interval K1= [0.8–1.0].  
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2.3.4. Artificial Neural Network 

ANN is inspired by the human brain through the mathematical modeling of the learning 

process. ANNs are composed of many neurons, and these neurons work simultaneously 

to perform complex functions. In other words, complex functions are created by the 

simultaneous operation of many neurons.  

 

The task of the ANN is to produce an output in response to the information given as an 

input set [36]. A 3-layer (or layered) feedforward neural network model consists of input, 

hidden, and output layers are shown in Figure 2.8. 

 

 

Figure 2.8 The ANN modeling 

 

There are different types of ANN architectures, but the most popular ones are “feed-

forward neural network” and “back-propagation neural network”.  

 “Feed-Forward Neural Network”: There is a one-way flow of information, as 

shown in Figure 2.9. The information on the input layer is transmitted to the 

hidden layer. The output value is obtained by processing from the hidden layer 

and transmitting it to the output layer and then processing in the output layer. 
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Figure 2.9 Feed-forward Neural Networks 

 

 “Feedback Neural Network”: It is a network structure that the outputs in the 

output and hidden layers are fed back to the input layer or to the previous hidden 

layers, as shown in Figure 2.10. Thus, the inputs are transmitted both in the 

forward direction and in the reverse direction. This type of neural network has a 

dynamic memory that the current output reflects the current and previous inputs. 

They are especially suitable for prediction applications. 

 

 

Figure 2.10 Feedback Neural Networks 
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In the process of developing ANNs, data is divided into two; one part trains the network 

and called as the training set and the other part measures the performance of the network 

other than the training data and is called the test set. ANN training is the process of 

optimizing the weights of the network. There are two conditions for changing the weights 

of the network. These are changing weights between the hidden layer and the output layer 

and changing the weights between the hidden layer and the input layer. The aim is to find 

the weight values that will produce the correct outputs for the training set. The process is 

repeated until the calculated error rate falls to the predefined threshold. As a result of the 

training process, the error calculated on the ANN is expected to decrease to an acceptable 

error rate. However, the decrease of the mean error does not always indicate that the ANN 

has reached generalization. The inputs in the test set are given to the ANN model, and the 

output value is compared with the desired output. The real purpose of the ANN reaches 

the generalization for the input-output samples. 

 

2.4. Software Fault Prediction 

The increasing size and complexity of the software make it difficult to offer high-quality 

software at a low cost. SFP plays a crucial role in improving software quality and reducing 

maintenance efforts. Early detection of failures enables early correction of these failures, 

cost reduction, and maintainable software delivery. In the literature, various software 

metrics are available. These metrics can be used to predict faulty modules in the early 

stages of the software development life-cycle. 

 

SFP classifies modules or classes as faulty or non-faulty. Software metrics from similar 

projects or previous versions of the project can be used to generate a model that predicts 

fault. This model can be applied to the new project to find faulty modules or classes. 

Software practitioners can then find and correct existing faults in the fault-prone areas of 

the software at an early stage of software development. Therefore, higher quality and 

easy-to-maintain software can be produced at the given time and budget. 

 

SFP metrics are classified as “method-level”, “class-level”, “component-level”, “file-

level”, “process-level” and “quantitative-level” [37]. Halstead and McCabe method-level 
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metrics are the most popular metrics for SFP problem. These metrics are included in 

public datasets that available in the PROMISE repository. There are several datasets for 

SFP problem classified as “public”, “private”, “partial” and “unknown”. The PROMISE 

and the NASA MDP repositories are commonly preferred to have public datasets. 

 

In order to identify faults, there are several approaches, which we can group them as 

“statistical methods”, “machine learning-based methods”, “statistical methods combined 

with an expert opinion”, “statistical methods combined with machine learning-based 

methods”. Naïve Bayes, Random Forests, and J48 [37] machine learning algorithms are 

mostly used for SFP problems. According to reviews of Catal and Diri [37], distribution 

of methods is presented in Figure 2.11. 

 

 
 

Figure 2.11 Distribution of Methods 
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3. RELATED WORKS 

 

3.1. Fuzzy Rule Generation Algorithms 

Fuzzy logic utilizes human knowledge, processing them as rule bases, and resulting in 

the conclusion of each rule base corresponding to a specific mathematical function. It 

requires expert knowledge to determine the rules accurately. Expert opinions may not be 

consistent when data complexity increases. In addition, to find an expert is usually a 

costly and time-consuming task. In order to overcome these challenges, several automatic 

fuzzy rule generation approaches have been proposed to generate human-understandable 

rules in recent decades [19,38–41]. Michalski and Chilausky [42] have done one of the 

first studies of creating IF-THEN rules from given data inductively instead of expert 

knowledge. They realized that inductively derived decision rules were performed better 

than the rules derived from the expert knowledge. Inductively derived rules diagnosed 

the 100% of diseases, while expert derived rules diagnosed 96.2%.  

 

Fuzzy rules have an essential role in determining the robustness of fuzzy systems. There 

are various methods to extract rule base, such as genetic algorithms [6, 21], association 

rule mining [21,43,44], fuzzy clustering [19,45], linear solutions [3,12,46] and 

evolutionary rule learning methods [4,16,47].  

 

Neural networks are widely preferred while dealing with prediction and classification 

problems. However, the main drawback is the rules produced by neuro-fuzzy systems are 

not human-understandable, that makes these systems lack interpretability [39,48]. 

Therefore, neuro-fuzzy systems were excluded from this study. 

 

The selection of a ruleset is one of the main problems when the number of rules increases. 

Genetic algorithms [17] are used to maximize the number of accurately classified patterns 

and reduce the redundant fuzzy if-then rules. The ruleset represented as a string and 

treated individually. The rules are classified as dummy rules, relevant and irrelevant rules. 

The genetic algorithm assigns a degree to each rule, “0” to dummy rules, “1” to relevant, 
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and “-1” to irrelevant rules randomly. After n (pre-defined stopping value) generations, 

the final ruleset is determined. The determined ruleset was tested with Iris data and 

obtained a 94.67% classification rate. 

 

In high-dimensional problems, one of the main challenges is knowledge extraction. The 

fuzzy association rule-based classification method [21] is proposed to reduce the 

computational cost. Association rules extract interesting relations between values in a 

database. Rule interestingness measured with two factors, which are support and 

confidence. Different algorithms [44] are offered for the generation of association rules. 

 

In fuzzy systems, the complexity of the model is essential in terms of the number of fuzzy 

rules. Fuzzy clustering methods [19,45] establishes a balance between model accuracy 

and complexity. During the clustering process, redundant and less critical clusters are 

removed with the orthogonal least-squares method [45]. “Fuzzy c-means clustering 

algorithm” [19] clusters the samples effectively by reducing the scale of samples. Then, 

the resulting samples are used to generate fuzzy rules. 

 

For complex systems, the human controller is the most essential part of decision-making 

that expresses his knowledge by defining linguistic IF-THEN rules. In most of the cases, 

linguistic rules which represented by the human controller cannot describe all system. 

Numerical input-output data pairs and linguistic rules are together is sufficient for a 

successful design. In this circumstance, Wang and Mendel [3] propose a linear approach 

that generates fuzzy rules from numerical data by learning from examples. This method 

combines both numerical data and linguistic information then suggests a fuzzy rule base.  

 

As an evolutionary rule learning method, IVTURS-FARC [4] is a trendy method based 

on the “interval-valued fuzzy reasoning method”. Computational cost is higher according 

to linear approaches because of tuning matching degrees and rule selection steps. 
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3.2. Transfer Learning 

Data science analyzes massive amounts of data and extracts knowledge from them. Data-

driven methods cannot produce meaningful information when data is corrupted or in cases 

of data deficiency. On the other hand, people adapt to changing environmental conditions 

by transferring information from one situation to another in the learning process [15]. 

They produce a solution based on previous information instead of learning from scratch 

when they encounter new tasks.  

 

Transfer learning discusses how to exploit the pre-acquired knowledge in another project 

related to the original project to improve the accuracy of learning [49]. Several studies 

have been conducted in the field of transfer learning, and related studies can be divided 

into various categories based on problem identification: “multitasking learning” [50], 

“domain adaptation” [51], “cross-domain adaptation” [52] and “heterogeneous learning” 

[53]. The main research flows include “the transferring knowledge of samples [54,55], 

transferring knowledge of feature representations [56], transferring knowledge of model 

parameters [57] and transferring relational knowledge” [58] when categorized by the 

transferring approach. Existing studies are classified from the application point of view 

as classification [59,60], unsupervised learning [61,62] and regression [63,64]. 

 

Do and Ng [65] proposed an algorithm that finds a good parameter function to solve novel 

classifications tasks. The learning algorithm learned from 450 classification problems and 

outperforms the well-known naïve Bayes, softmax regression, and SVM algorithms. The 

proposed algorithm performed 0.459 accuracy while softmax achieved 0.376. 

 

Quattoni et al. developed a new method by leveraging previous knowledge from the 

unlabeled data to learn a new visual category. They collected 10382 images that belong 

to 108 topics from “Reuters news web-site” and built a representation of image prototype. 

Experiments to estimate whether the image belongs to a news topic indicate that when 

only a few examples are available to train a target subject, the use of information learned 

from other subjects can significantly improve performance. 
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Zuo et al. [15] proposed a Takagi-Sugeno fuzzy regression model for transferring 

knowledge. The rules were constructed using source data and modified to reuse them in 

target data. In the experiments, they used syntactic and real-world datasets. They used the 

same feature dimensionality for both the source domain and target domain. The 

experiment results showed that the introduced fuzzy regression model effectively 

estimates the values of the target domain. 

 

Shell and Coupland [14] combined the transfer learning and fuzzy logic in a novel 

framework. This framework learns from labeled data generates fuzzy rules, sets, and 

transferable FIS. It transfers the knowledge to unlabeled data using FIS. The framework 

was compared with K-Nearest Neighbour and Support Vector Machine and outperformed 

with a lower Root Mean Squared Error in 54.5% and 67.9%, respectively. 

 

3.3. Software Fault Prediction 

People work directly or indirectly in software-related jobs. This situation increases the 

dependence on software day by day. The software is used in several applications, so its 

quality and reliability are vital. Failures in software can lead to loss of labor, money, and 

even life. That is why software quality and reliability is a significant area of research. 

 

The software is developed by the human beings and measured in man-month. This 

measure is the nature of the fuzzy approach. Software quality is measured by determining 

the defects/faults in the software. Several studies have been proposed in the field of SFP 

and estimation [6,8,66,67,9,22–27,37]. Catal and Diri [9,37] provided a comprehensive 

review of several SFP that is categorized as metrics, methods, and datasets. 

 

In order to deliver reliable software, fault prediction is desirable in each phase of the 

software development life cycle [26,66]. The fault estimate made in the testing phase of 

the development can be quite costly, as it will cause changes in all previous phases. 

Therefore, SFP was performed in requirement analyses, design, coding, and testing 

phases. FIS was employed to develop the model. 
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Better design decisions can be made using object-oriented metrics for SFP, and more 

appropriate design alternatives can be easily selected. Ertürk and Sezer [23] were 

predicted the faults by using Mamdani FIS with class-level metrics that correspond to 

object-oriented metrics. In addition, they [6] made another study using both class-level 

and method-level metrics. FISs with method-level metrics were as successful as class-

level metrics. 

 

Marian et al. [25] proposed a new approach for SFP problem using fuzzy decision trees. 

They used JEdit and Ant datasets and reduced the software metric size to three as WMC, 

CBO, RFC. They compared their study with Weka – Decision Tree, Orange – Decision 

Tree, Logistic Regression, Bayesian networks and it outperforms all of them with the 

accuracy of 0.735 and 0.707 for JEdit and Ant datasets respectively. 

 

Kaur et al. [68] investigated whether early lifecycle metrics (requirement metrics) and 

late lifecycle metrics (code metrics) can be used to identify faulty modules. They used 

JM1, PC1, and CM1 NASA software projects to test faultiness by using the “K-means 

clustering algorithm”. The experiment results show that the best prediction model is 

identified by the combination of requirement and code metrics. 

 

Menzies et al. [69] performed several data mining algorithms for SFP problem on NASA 

datasets by using method-level metrics. They showed that the Naïve Bayes algorithm 

outperformed the J48 algorithm, but changing dataset characteristics changed the best-

performed algorithm. SFP problem should be examined with several datasets by using 

several learning algorithms. 
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4. COMPARISONS OF FUZZY RULE GENERATION 

ALGORITHMS AND ANN FOR SOFTWARE FAULT 

PREDICTION PROBLEM 

FIS is a rule-based system that uses knowledge and experience to solve complex problems 

based on fuzzy IF-THEN rules. These rules play an essential role in determining the 

performance of fuzzy systems and the capabilities of the fuzzy system. The main 

approach of creating a fuzzy system is to extract fuzzy rules from samples. These rules 

are derived from several algorithms, such as heuristic and genetic algorithms, neural 

networks, fuzzy clustering, etc. However, these methods require continuous repetitive 

learning and are difficult to implement due to their complex mechanisms. In our study, 

three automatic rule generation algorithms are implemented, namely “Wang-Mendel”, 

“Interval-Valued Fuzzy Reasoning Method with Tuning and Rule Selection”, rule 

production approach of “Defuzzification-free Hierarchical Fuzzy System”. As seen in the 

study [38], these algorithms have been preferred in rule generation since they have an 

outstanding performance, and they all have some individual differences.    

 

The WM [3] method can effectively produce fuzzy rules from sample data. The method 

uses a lookup table to extract the rules for each fuzzy subspace by dividing the input into 

equal fuzzy sets. The WM method is simple and practical because it does not require 

repeated learning steps. 

 

A better fuzzy rule base produced from sample data can improve the success of the fuzzy 

system. As a result, the WM method provides the rules based entirely on the input-output 

relationships, so the dependence on samples is quite high. The fuzzy rule base extracted 

by the WM method will also not be consistent if the sample set is corrupted. Accordingly, 

the accuracy of the generated fuzzy system with the wrong set of rules will be poor. At 

this point, each method may have drawbacks in terms of applicability or accuracy. 

 

Unlike the WM method, DF-HFS [5] combines some of the features that are gathered 

from expert knowledge and data. This allows DF-HFS to be applicable when there is not 

enough data or expert opinion, allowing existing information to replace the missing. 
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Because, unlike data-driven machine learning algorithms, this approach underlines that 

the fuzzy systems are also robust in the absence of data.  

 

The rule production scheme of DF-HFS is based on the score values of each fuzzy input 

variable that is a measure of the effect of each fuzzy set. Unlike the original method, we 

determined three fuzzy sets for input and two fuzzy sets for the output variable. The score 

adjustment can be made by the expert in the absence of any data or can be calculated 

automatically, taking into account the regression between the input and output variable. 

Finally, after the scores have been set, the rule matrix is created to cover each possible 

input and output variations. In addition, since the DF-HFS method generates a complete 

set of rules, the system can be interpreted more easily, considering all metrics. 

 

The IVTURS-FARC [4] algorithm optimizes and tunes the fuzzy rules based on MF 

definition with an evolutionary approach. This approach provides a fuzzy rule base, 

covering substantially the corresponding data. Nevertheless, this method is more 

expensive than linear approaches since they require extensive calculations during the 

learning and optimization processes. Since the algorithm may not include all metrics in 

the rule base it provides, the interpretation of the system will be difficult. On the other 

hand, the algorithm achieves very high classification success as it combines the 

equivalence setting with the rule selection to reduce the complexity of the system. 

 

On the other hand, the ANN method was examined to compare the success of the 

classification of fuzzy systems with machine learning algorithms, which are preferred 

frequently. ANN algorithm is completely dependent on data and hides the learning 

mechanism in the inner layers of the network. Therefore, accurate results may not be 

obtained when the model is learned from a project and tested with a different project. 

Considering that “loc” is used as an input in a model established with ANN, only the 

relation of “loc” metric with the data format and output parameter is considered in this 

model. However, if the prediction model is FIS, as mentioned above, the classification 

process can be performed without being dependent on the data. 
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The rule base was created by learning from the source dataset with different rule 

generation algorithms for each project. A transferable FIS was created with the obtained 

rules. The generated FISs were tested with target projects, and the knowledge learned 

from the source project was transferred to the target project, and fault prediction was 

made, as shown in Figure 4.1.  

 

 

Figure 4.1 Overview of the Fuzzy Transfer Learning framework 
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4.1. Implementation Details 

WM and the rule generation scheme of the DF-HFS algorithm were implemented with 

Java programming language on IntelliJ IDEA 2017.2.5. The IVTURS-FARC is included 

algorithm in open-source Java software tool “Knowledge Extraction based on 

Evolutionary Learning” (KEEL) [70]. KEEL provides a simple frontend that allows 

designing experiments with different datasets.  

 

For all rule generation algorithms, triangular MFs are used, and fuzzy sets are divided 

equally. The generated rules were included in the FISs since the fuzzy rules define how 

the FIS can decide to classify an input and control an output. FIS properties are as follows: 

 Type of inference model: Mamdani 

 Type of rules: AND 

 Type of MF: Triangular 

 Fuzzy reasoning method: COA 

 Implication method: Minimum  

 Aggregation method: Maximum 

 Environment: MATLAB 9.5.0 (R2018b) 

 Toolbox: Fuzzy logic 

 

FISs were created by using the Fuzzy Logic Toolbox provided by MATLAB. Here are 

several editors and viewers provided by the toolbox: 

 FIS editor: represents the general information about the FIS 

 MF editor: allows displaying and editing the MFs associated with the input and 

output variables 

 Rule editor: allows viewing and editing the fuzzy rules 

 Rule viewer: views detailed behavior of a FIS 

 

The main parameters and implementation details of utilized ANN are as follows: 

 Type of architecture: Feed-forward neural network 

 Train size: 80% of data 
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 Test size: 20% of data 

 Number of epocs: 100 

 Number of hidden layers: 3 

 Number of neurons: 48 in the first layer, 24 in the second layer, 1 in the third 

layer 

 Activation function: Sigmoid 

 Training algorithm: Gradient descent 

 Evaluation: 5-fold cross-validation 

 Environment: Python/Keras library [71] 
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5. EXPERIMENTS AND RESULTS 

In this section, WM, IVTURS-FARC, rule production scheme of DF-HFS and ANN 

algorithms are compared based on their classification performance. FISs were created for 

different rulesets derived from these algorithms on several datasets. 

 

5.1. Datasets 

CM1, JM1, KC1, KC2, and PC1 publicly available SFP datasets obtained from 

PROMISE Software Engineering Repository [30]. These datasets are preferred since they 

are the most popular datasets in the SFP research area [6,9,28,29,38,72,73] and all contain 

the same metrics. Each dataset consists of 21 features that have 5 different lines of code 

measure, 4 McCabe metrics [20], 11 Halstead measures [16], 1 branch-count, and 1 class 

variable, which defines the instance whether defected or not. The specifications of the 

datasets are shown in Table 5.1. 

 

Table 5.1 Dataset Specifications 

Data Language # Modules # Faulty Modules Faulty Modules % 

CM1 C 498 49 9.83 % 

JM1 C 10885 8779 80.65 % 

KC1 C++ 2109 326 15.45 % 

KC2 C++ 522 105 20.5 % 

PC1 C 1109 1032 93.05 % 

 

During the data-preprocessing step, we transformed the class variables into a binary 

attribute, to denote whether defected or not. The value “1” represents defective entities, 

and the “0” is for non-defective ones. The number of inputs to be studied was reduced to 

nine that consist of McCabe and Halstead metrics. Although McCabe and Halstead’s 

metrics were introduced in the 1970s for fault prediction activities, they are still the most 

common metrics. According to Catal and Diri [37], predictive fault-prone modules may 

have faults during system testing or field testing. McCabe metrics used in the fault 

prediction are explained as follows: 
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 Line of code (loc): It measures the physical count of LOC. 

 Cyclomatic complexity (v(g)): It measures the number of linearly independent 

paths in a program module. It is one of the most common and accepted software 

metrics, independent of programming language and writing. The v(g) is the 

number of conditional branches. Increased v(g) leads to increasing processing 

paths in the function, and makes it hard to understand the program. 

 Essential complexity (ev(g)): It used to determine the amount of unstructured 

code and the quality of a program construct. Program is qualified as unstructured 

if an ev(g) is greater than “1” and far away from the well-structured programming. 

 Design complexity (iv(g)): It is proportional to the number of calls the method 

makes to other methods. The complexity of the code that occurs when the not-

called code is eliminated. 

 

Halstead metrics are explained as follows: 

 Volume (v): It represents the size of the space required to store the program in bits 

that proportional to the program size. This parameter depends on the specific 

algorithm implementation. 

 Difficulty (d): It measures the difficulty level of a program. It is a metric that 

shows faults due to the overuse of the unique operands. Therefore, programming 

applications such as overuse of operands or wrong usage of higher-level control 

structures will be prone to increase difficulty. 

 Intelligence (i): It provides a measurement of a particular algorithm complexity 

regardless of the implemented programming language. 

 Length (n): It measures the total number of operators and operands that occurred 

in the module. 

 Effort (e): It measures the mental activity amount required to convert the current 

algorithm into implementation in the specified program language. 
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5.2. Case Study: Software Fault Prediction 

In order to perform our experiments, three fuzzy rule generation algorithms, namely WM, 

IVTURS-FARC, rule production scheme of DF-HFS methods, and ANN algorithm were 

implemented. First, we produced the rules in order to apply to FISs by using the 

aforementioned automatic rule generation algorithms. The experiments were performed 

separately for Halstead metrics and McCabe metrics for each of the five datasets. In the 

rule generation process, three and two fuzzy sets are used that are Low (L), Moderate (M), 

High (H) for corresponding input linguistic variable and Low-Fault-Proneness (L), High-

Fault-Proneness (H) for corresponding output linguistic variables. Input and output fuzzy 

sets were divided into equal intervals. MF values were represented as seen in Table 5.2, 

Table 5.3, Table 5.4, Table 5.5, and Table 5.6 for each dataset.  

 

Table 5.2 The MF values of Cm1 dataset 
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Table 5.3 The MF values of Jm1 dataset 

 

 

Table 5.4 The MF values of Kc1 dataset 
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Table 5.5 The MF values of Kc2 dataset 

 

 

Table 5.6 The MF values of Pc1 dataset 

 

 

Rule weights are determined as “1” for all algorithms to make a fair comparison. 

Generated rule numbers are shown in Table 5.7 and Table 5.8, that varies depending on 

the algorithm. 
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Table 5.7 Generated rule numbers derived from McCabe metrics by Wang-Mendel, 

IVTURS-FARC, DF-HFS algorithms 

Ruleset Wang-Mendel IVTURS-FARC DF-HFS 

Cm1’s Rules 16 7 81 

Jm1’s Rules 13 4 81 

Kc1’s Rules 18 6 81 

Kc2’s Rules 4 4 81 

Pc1’s Rules 9 7 81 

Frequent Rules 5 7 81 

 

Table 5.8 Generated rule numbers derived from Halstead metrics by Wang-Mendel, 

IVTURS-FARC, DF-HFS algorithms 

Ruleset Wang-Mendel IVTURS-FARC DF-HFS 

Cm1’s Rules 15 4 243 

Jm1’s Rules 17 3 243 

Kc1’s Rules 14 8 243 

Kc2’s Rules 8 6 243 

Pc1’s Rules 11 6 243 

Frequent Rules 10 6 243 

 

In addition to generating rules for each dataset, a customized ruleset called as frequent 

rules (FR) was created. The rules generated from each dataset were combined, and the 

repeated rules in the resulting ruleset form the frequent ruleset. For example, regarding 

the WM algorithm, the rules derived from Cm1, Jm1, Kc1, Kc2, and Pc1 with McCabe 

metrics were combined (16+13+18+4+9) and obtained a total of 60 rules. The repetitive 

5 rules in the combined ruleset, which consists of 60 rules, form the FR. FR set of WM 

and IVTURS-FARC algorithms are represented in Table 5.9 and Table 5.10, respectively. 

 

Although the number of rules generated from different datasets differs in WM and 

IVTURS-FARC algorithms, it is constant for the DF-HFS algorithm since DF-HFS’s rule 

generation algorithm produces a complete ruleset that covers all input-output interactions. 

Therefore, the ruleset is the same for each dataset. The number of rules was calculated as 

34 for 3 fuzzy sets and 4 McCabe metrics and 35 for 5 Halstead metrics. In the DF-HFS 

algorithm, the consequent part of the rules is updated according to the distribution of rules 

in the entire ruleset, whether the rules are defective or not. 
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Table 5.9 The Frequent Ruleset of WM algorithm 

 

Table 5.10 The Frequent Ruleset of IVTURS-FARC algorithm 

 

The complete ruleset is represented in Table 5.11. All rules were different because they 

contained each possible state for this algorithm. Thus, the entire rules created the FR set 

(Table 5.11). 
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Table 5.11 The ruleset derived from DF-HFS algorithm with McCabe metrics 
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Automatic rule generation algorithms have differences in certain aspects. The WM and 

DF-HFS algorithms produce complete rulesets, but the rules that IVTURS-FARC 

generates may not include all input variables. The rules generated by each algorithm for 

both McCabe and Halstead metrics. The rulesets that are generated from the WM 

algorithm are shown in Table 5.12 and Table 5.13. In addition, the IVTURS-FARC 

algorithm generates rules, as shown in Table 5.14 and Table 5.15. 
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Table 5.12 The ruleset derived from WM algorithm with McCabe metrics 

 



 

 

 
48 

 

Table 5.13 The ruleset derived from WM algorithm with Halstead metrics 

 



 

 

 
49 

Table 5.14 The ruleset derived from IVTURS-FARC algorithm for McCabe metrics 
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Table 5.15 The ruleset derived from IVTURS-FARC algorithm for Halstead metrics 

 

 



 

 

 
51 

In the rule generation process, we also combine all datasets and generate the rules with 

each algorithm. The generated ruleset is called as a union ruleset. The union rulesets are 

shown in Table 5.16, Table 5.17, and Table 5.18. The union ruleset is the same as the 

ruleset in Table 5.11 for DF-HFS algorithm since it does not show any differences for 

different datasets. 

 

Table 5.16 The union ruleset derived from WM algorithm for McCabe metrics 

 

Table 5.17 The union ruleset derived from WM algorithm for Halstead metrics 
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Table 5.18 The union ruleset derived from IVTURS algorithm 

 

In order to evaluate the performance of FISs, “Area Under Receiver Operating 

Characteristic Curve” (ROC-AUC) was used. ROC-AUC is one of the most frequently 

used performance evaluation criteria for classification problems at all classification 

thresholds. ROC curve plots two parameters, which are true positive rate (TPR as seen 

Eq.20) and false positive rate (FPR as seen in Eq.21). The AUC is the area under the ROC 

curve, as shown in Figure 5.1. 

 

Figure 5.1 Area under the ROC Curve (AUC) 

 

True positive rate (TPR) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(20) 

 

False positive rate (FPR) =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

(21) 
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In order to make experiments on differently modeled FISs, seven FISs were generated for 

each software project in different scenarios. Each experiment was performed separately 

for the McCabe and Halstead metrics. 

 

5.2.1. Ruleset of the current (target) project 

In the first scenario, the FIS in a certain project was generated by using the data of the 

current project to determine the parameters of MFs and create the rule base. In order to 

explain in more detail, five FISs were produced for this scenario. The FIS generated with 

Cm1 data was tested with Cm1 rules, and the other four projects (Jm1, Kc1, Kc2, and 

Pc1) were tested with their own rulesets. Experiment results are shown in Table 5.19 and 

Table 5.20. Here, scenarios for each project are represented by presenting the name of the 

current project and the source project, that the rules were generated from, concatenated 

by “W” symbol. For this experiment, each case is denoted as CM1 W CM1, JM1 W JM1, 

KC1 W KC1, KC2 W KC2, and PC1 W PC1. 

 

Table 5.19 Experiment results of projects tested with the ruleset of the current project 

regarding McCabe metrics 

Ruleset 

Dataset 

Wang-Mendel IVTURS-FARC DF-HFS ANN 

CM1 W CM1 

JM1 W JM1 

KC1 W KC1 

KC2 W KC2 

PC1 W PC1 

0,7003 

0,6888 

0,7897 

0,8416 

0,6957 

0,7239 

0,6116 

0,7212 

0,8422 

0,6876 

0,7247 

0,6909 

0,7903 

0,8416 

0,6704 

0,676 

0,60 

0,793 

0,823 

0,614 
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Table 5.20 Experiment results of projects tested with the ruleset of the current project 

regarding Halstead metrics 

Rule set 

Dataset 

Wang-Mendel IVTURS-FARC DF-HFS ANN 

CM1 W CM1 

JM1 W JM1 

KC1 W KC1 

KC2 W KC2 

PC1 W PC1 

0,7236 

0,6202 

0,7865 

0,8249 

0,6849 

0,7113 

0,6087 

0,7951 

0,8446 

0,6742 

0,7056 

0,6192 

0,7932 

0,8254 

0,6709 

0,824 

0,733 

0,783 

0,815 

0,614 

 

 

5.2.2. Ruleset of the source project 

In the second to fifth scenarios, MFs and FISs are determined by using the data of the 

current project the same as in the first scenario. On the other hand, the rule base of their 

FISs was generated from other data of projects instead of its own data. In this case, four 

separate FISs were created using the ruleset of the other four projects while each project 

was tested. For example, regarding the Cm1 project, the Cm1 dataset was used to 

determine MFs and FIS. The datasets of Jm1, Kc1, Kc2, and Pc1 were utilized for the 

rule generation. AUC values for these experiments are shown in Table 5.21, and Table 

5.22 denoted as CM1 W JM1, CM1 W KC1, CM1 W KC2, and CM1 W PC1. 

 

Table 5.21 Experiment results of projects tested with the ruleset of the source project 

regarding McCabe metrics 

Ruleset 

Dataset 

Wang-Mendel IVTURS-FARC DF-HFS ANN 

CM1 W JM1 

CM1 W KC1 

CM1 W KC2 

CM1 W PC1 

0,7202 

0,7183 

0,7118 

0,7415 

0,5863 

0,6973 

0,7514 

0,7239 

0,7247 

0,7247 

0,7247 

0,7247 

0,485 

0,279 

0,298 

0,483 

JM1 W CM1 

JM1 W KC1 

JM1 W KC2 

JM1 W PC1 

0,6817 

0,6889 

0,6882 

0,7010 

0,6897 

0,6603 

0,7087 

0,6897 

0,6909 

0,6909 

0,6909 

0,6909 

0,485 

0,463 

0,484 

0,487 
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KC1 W CM1 

KC1 W JM1 

KC1 W KC2 

KC1 W PC1 

0,7891 

0,7920 

0,7907 

0,7908 

0,7914 

0,6111 

0,7904 

0,7914 

0,7903 

0,7903 

0,7903 

0,7903 

0,689 

0,608 

0,749 

0,632 

KC2 W CM1 

KC2 W JM1 

KC2 W KC1 

KC2 W PC1 

0,8438 

0,8417 

0,8398 

0,8430 

0,8441 

0,7073 

0,8184 

0,8441 

0,8416 

0,8416 

0,8416 

0,8416 

0,651 

0,581 

0,440 

0,486 

PC1 W CM1 

PC1 W JM1 

PC1 W KC1 

PC1 W KC2 

0,6660 

0,6797 

0,6648 

0,6591 

0,6885 

0,5828 

0,6292 

0,6872 

0,6704 

0,6704 

0,6704 

0,6704 

0,653 

0,621 

0,759 

0,711 

 

Table 5.22 Experiment results of projects tested with the ruleset of the source project 

regarding Halstead metrics 

Ruleset 

Dataset 

Wang-Mendel IVTURS-FARC DF-HFS ANN 

CM1 W JM1 

CM1 W KC1 

CM1 W KC2 

CM1 W PC1 

0,7274 

0,7283 

0,7180 

0,6998 

0,7064 

0,7345 

0,7491 

0,7360 

0,7056 

0,7056 

0,7056 

0,7056 

0,292 

0,212 

0,164 

0,294 

JM1 W CM1 

JM1 W KC1 

JM1 W KC2 

JM1 W PC1 

0,6210 

0,6252 

0,6198 

0,6208 

0,6254 

0,6277 

0,6203 

0,6271 

0,6192 

0,6192 

0,6192 

0,6192 

0,7071 

0,783 

0,847 
0,719 

KC1 W CM1 

KC1 W JM1 

KC1 W KC2 

KC1 W PC1 

0,7916 

0,7847 

0,7499 

0,7840 

0,7737 

0,7829 

0,7799 

0,7899 

0,7932 

0,7932 

0,7932 

0,7932 

0,704 

0,690 

0,835 

0,660 

KC2 W CM1 

KC2 W JM1 

KC2 W KC1 

KC2 W PC1 

0,8287 

0,8355 

0,8371 

0,8301 

0,8269 

0,8311 

0,8414 

0,8413 

0,8254 

0,8254 

0,8254 

0,8254 

0,772 

0,697 

0,753 

0,834 

PC1 W CM1 

PC1 W JM1 

PC1 W KC1 

PC1 W KC2 

0,6867 

0,7126 

0,6888 

0,7134 

0,6852 

0,6323 

0,6914 

0,6986 

0,6709 

0,6709 

0,6709 

0,6709 

0,653 

0,621 

0,759 

0,711 
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5.2.3. Ruleset of the frequent rules 

In the sixth scenario, the rules produced in the first five scenarios were combined, and the 

rules that were included in more than one ruleset constituted the frequent ruleset. As in 

other scenarios, MFs and FISs were created using the data of the current project. Five 

different FISs were created since the FR set was tested with each project. Experiments 

are represented as CM1 W FR, JM1 W FR, KC1 W FR, KC2 W FR, PC1 W FR in Table 

5.23, and Table 5.24. 

 

Table 5.23 Experiment results of projects tested with the frequent ruleset regarding 

McCabe metrics 

  Ruleset 

Dataset 

Wang-Mendel IVTURS-FARC DF-HFS ANN 

CM1 W FR 

JM1 W FR 

KC1 W FR 

KC2 W FR 

PC1 W FR 

0,7383 

0,7010 

0,7905 

0,8431 

0,6944 

0,7221 

0,6899 

0,7897 

0,8445 

0,6876 

0,7247 

0,6909 

0,7903 

0,8416 

0,6704 

NA 

NA 

NA 

NA 

NA 

 

Table 5.24 Experiment results of projects tested with the frequent ruleset regarding 

Halstead metrics 

Ruleset 

Dataset 

Wang-Mendel IVTURS-FARC DF-HFS ANN 

CM1 W FR 

JM1 W FR 

KC1 W FR 

KC2 W FR 

PC1 W FR 

0,7295 

0,6252 

0,7856 

0,8395 

0,6890 

0,7379 

0,6276 

0,7933 

0,8410 

0,6929 

0,7056 

0,6192 

0,7932 

0,8254 

0,6709 

NA 

NA 

NA 

NA 

NA 

 

5.2.4. Ruleset of the union data 

In the last experiment on FIS, a new dataset is created called “union”  by combining the 

data of five projects. For the union dataset, new MFs and FIS are determined. The rules 

produced from this dataset are tested with FIS. Experiment results are shown in Table 

5.25. 
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Table 5.25 Experiment results of projects tested with the union of datasets 

Metric Wang-Mendel IVTURS-FARC DF-HFS ANN 

McCabe 

Halstead 

0,7076 

0,6483 

0,6136 

0,6526 

0,7092 

0,6458 

0,737 

0,641 

 

 

5.2.5. Portability of the rules 

In order to investigate the portability of the rulesets obtained from rule generation 

algorithms, we assign weights between 0-6 to the rulesets. The most accurate ruleset gets 

“6”, and the least accurate one gets “1” for the corresponding project. If the AUC value 

of the ruleset tested with a project is less than the AUC value received when tested with 

the project's own ruleset, it takes the “0”. For example, since the CM1 project receives 

the highest AUC value when it is tested with the ruleset of PC1 project, the weight of  the 

PC1 ruleset is given as “6”, as seen in Table 5.26. On the other hand, when JM1 project 

is tested with CM1 and KC2 rulesets, it gets “0” since AUC values of CM1 (0,6817) and 

KC2 (0,6882) is lower with respect to tested with its own data (0,6888). Total weights of 

rules are shown in Table 5.26, Table 5.27, Table 5.28, Table 5.29, and Table 5.30. 

 

Table 5.26 Total rule weights obtained from the Wang-Mendel method regarding 

McCabe metrics 

Ruleset CM1 JM1 KC1 KC2 PC1 Total Rule Weights 

CM1’s Rule 1 0 0 6 5 12 

JM1’s Rule 4 4 6 3 0 17 

KC1’s Rule 3 5 2 0 0 10 

KC2’s Rule 2 0 4 2 0 8 

PC1’s Rule 6 6 5 4 0 21 

Frequent Rules 5 6 3 5 0 19 
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Table 5.27 Total rule weights obtained from the Wang-Mendel method regarding 

Halstead metrics 

Rule Set CM1 JM1 KC1 KC2 PC1 Total Rule Weights 

CM1’s Rule 3 5 6 2 2 18 

JM1’s Rule 4 3 0 4 5 16 

KC1’s Rule 5 6 5 5 3 24 

KC2’s Rule 0 0 0 1 6 7 

PC1’s Rule 0 4 0 3 1 8 

Frequent Rules 6 6 0 6 4 22 

 

 

Table 5.28 Total rule weights obtained from the IVTURS-FARC method regarding 

McCabe metrics 

Ruleset CM1 JM1 KC1 KC2 PC1 Total Rule Weights 

CM1’s Rule 5 4 6 5 6 26 

JM1’s Rule 0 2 0 0 5 7 

KC1’s Rule 0 3 3 0 0 6 

KC2’s Rule 6 6 5 3 0 20 

PC1’s Rule 5 4 6 5 0 20 

Frequent Rules 0 5 4 6 5 20 

 

Table 5.29 Total rule weights obtained from the IVTURS-FARC method regarding 

Halstead metrics 

Ruleset CM1 JM1 KC1 KC2 PC1 Total Rule Weights 

CM1’s Rule 2 3 0 0 3 8 

JM1’s Rule 0 1 0 0 0 1 

KC1’s Rule 3 6 6 0 4 19 

KC2’s Rule 6 2 0 6 6 20 

PC1’s Rule 4 4 0 0 2 10 

Frequent Rules 5 5 0 0 5 15 

 

Table 5.30 Total rule weights obtained from the DF-HFS method regarding 

McCabe/Halstead metrics 

Ruleset CM1 JM1 KC1 KC2 PC1 Total Rule Weights 

CM1’s Rule 6 6 6 6 6 30 

JM1’s Rule 6 6 6 6 6 30 

KC1’s Rule 6 6 6 6 6 30 

KC2’s Rule 6 6 6 6 6 30 

PC1’s Rule 6 6 6 6 6 30 

Frequent Rules 6 6 6 6 6 30 
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5.2.6. Experiments with the ANN algorithm 

Regarding ANN, experiments were performed differently from fuzzy rule generation 

algorithms. Five different scenarios were defined for ANN. In the first scenario, ANN 

was trained with 80% of data and tested with 20% of data for each project as a regular 

machine learning evaluation process. These experiments are shown as CM1 W CM1, JM1 

W JM1, KC1 W KC1, KC2 W KC2, PC1 W PC1 in Table 5.31 and Table 5.32 since the 

train and test data belong to the same project. 

 

In the other four experiments, ANN was trained with 100% data of the current project 

and tested with 100% data of source project. For the CM1 project, ANN was trained with 

the CM1 project and tested with four other projects. Four different experiments were 

performed for each project called as CM1 W JM1, CM1 W KC1, CM1 W KC2, and CM1 

W PC1 in Table 5.31 and Table 5.32. 

 

Table 5.31 AUC values of FISs and ANN regarding McCabe metrics 

Ruleset 

Dataset 

Wang-Mendel IVTURS-FARC DF-HFS ANN 

CM1 W CM1 

CM1 W JM1 

CM1 W KC1 

CM1 W KC2 

CM1 W PC1 

CM1 W FR 

0,7003 

0,7202 

0,7183 

0,7118 

0,7415 

0,7383 

0,7239 

0,5863 

0,6973 

0,7514 

0,7239 

0,7221 

0,7247 

0,7247 

0,7247 

0,7247 

0,7247 

0,7247 

0,676 

0,485 

0,279 

0,298 

0,483 

NA 

JM1 W JM1 

JM1 W CM1 

JM1 W KC1 

JM1 W KC2 

JM1 W PC1 

JM1 W FR 

0,6888 

0,6817 

0,6889 

0,6882 

0,7010 

0,7010 

0,6116 

0,6897 

0,6603 

0,7087 

0,6897 

0,6899 

0,6909 

0,6909 

0,6909 

0,6909 

0,6909 

0,6909 

0,60 

0,485 

0,463 

0,484 

0,487 

NA 

KC1 W KC1 

KC1 W CM1 

KC1 W JM1 

KC1 W KC2 

KC1 W PC1 

KC1 W FR 

0,7897 

0,7891 

0,7920 

0,7907 

0,7908 

0,7905 

0,7212 

0,7914 

0,6111 

0,7904 

0,7914 

0,7897 

0,7903 

0,7903 

0,7903 

0,7903 

0,7903 

0,7903 

0,793 

0,689 

0,608 

0,749 

0,632 

NA 
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KC2 W KC2 

KC2 W CM1 

KC2 W JM1 

KC2 W KC1 

KC2 W PC1 

KC2 W FR 

0,8416 

0,8438 

0,8417 

0,8398 

0,8430 

0,8431 

0,8422 

0,8441 

0,7073 

0,8184 

0,8441 

0,8445 

0,8416 

0,8416 

0,8416 

0,8416 

0,8416 

0,8416 

0,823 

0,651 

0,581 

0,440 

0,486 

NA 

PC1 W PC1 

PC1 W CM1 

PC1 W JM1 

PC1 W KC1 

PC1 W KC2 

PC1 W FR 

0,6957 

0,6660 

0,6797 

0,6648 

0,6591 

0,6944 

0,6876 

0,6885 

0,5828 

0,6292 

0,6872 

0,6876 

0,6704 

0,6704 

0,6704 

0,6704 

0,6704 

0,6704 

0,614 

0,653 

0,621 

0,759 

0,711 

NA 

UNION 0,7076 0,6136 0,7092 0,737 

 

Table 5.32 AUC values of FISs and ANN regarding Halstead metrics 

Ruleset 

Dataset 

Wang-Mendel IVTURS-FARC DF-HFS ANN 

CM1 W CM1 

CM1 W JM1 

CM1 W KC1 

CM1 W KC2 

CM1 W PC1 

CM1 W FR 

0,7236 

0,7274 

0,7283 

0,7180 

0,6998 

0,7295 

0,7113 

0,7064 

0,7345 

0,7491 

0,7360 

0,7379 

0,7056 

0,7056 

0,7056 

0,7056 

0,7056 

0,7056 

0,824 
0,292 

0,212 

0,164 

0,294 

NA 

JM1 W JM1 

JM1 W CM1 

JM1 W KC1 

JM1 W KC2 

JM1 W PC1 

JM1 W FR 

0,6202 

0,6210 

0,6252 

0,6198 

0,6208 

0,6252 

0,6087 

0,6254 

0,6277 

0,6203 

0,6271 

0,6276 

0,6192 

0,6192 

0,6192 

0,6192 

0,6192 

0,6192 

0,733 

0,7071 

0,783 

0,847 
0,719 

NA 

KC1 W KC1 

KC1 W CM1 

KC1 W JM1 

KC1 W KC2 

KC1 W PC1 

KC1 W FR 

0,7865 

0,7916 
0,7847 

0,7499 

0,7840 

0,7856 

0,7951 

0,7737 

0,7829 

0,7799 

0,7899 

0,7933 

0,7932 

0,7932 

0,7932 

0,7932 

0,7932 

0,7932 

0,783 

0,704 

0,690 

0,835 
0,660 

NA 

KC2 W KC2 

KC2 W CM1 

KC2 W JM1 

KC2 W KC1 

KC2 W PC1 

KC2 W FR 

0,8249 

0,8287 

0,8355 

0,8371 

0,8301 

0,8395 

0,8446 

0,8269 

0,8311 

0,8414 

0,8413 

0,8410 

0,8254 

0,8254 

0,8254 

0,8254 

0,8254 

0,8254 

0,815 

0,772 

0,697 

0,753 

0,834 

NA 
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PC1 W PC1 

PC1 W CM1 

PC1 W JM1 

PC1 W KC1 

PC1 W KC2 

PC1 W FR 

0,6849 

0,6867 

0,7126 

0,6888 

0,7134 

0,6890 

0,6742 

0,6852 

0,6323 

0,6914 

0,6986 

0,6929 

0,6709 

0,6709 

0,6709 

0,6709 

0,6709 

0,6709 

0,614 

0,653 

0,621 

0,759 

0,711 

NA 

UNION 0,6483 0,6526 0,6458 0,641 

 

5.3. Experimental Results 

The experimental results are: 

1) Although the Kc2 dataset commonly studied with machine learning algorithms, 

the fuzzy approach used in our study is also quite successful and competitive with 

other approaches. Indeed, our study outperforms all other algorithms except the 

study of Kalsoom et al. [74]. 

2) In the experiments with the WM algorithm, FISs achieve better AUC values when 

tested with rules created using datasets of other projects instead of their project. 

The FIS for Pc1 is the only project that disrupts this conclusion by giving the most 

successful AUC value with the ruleset generated from its data. This emphasizes 

that the Pc1 project is the most consistent dataset. 

3) In the experiments with the IVTURS-FARC algorithm, FISs are more accurate 

when tested with the rules generated from other projects that consist of McCabe 

metrics. In contrast, Kc1 and Kc2 projects consisting of Halstead metrics are more 

accurate with their own ruleset. 

4) In the experiments conducted with the DF-HFS algorithm, the same AUC value 

is taken in different scenarios created for a project since the algorithm generates 

the same set of rules for each project. 

5) In projects that consist of McCabe metrics, ANN usually performs better when 

tested with its dataset. On the other hand, for the projects that include Halstead 

metrics, ANN is more accurate when tested with the dataset of other projects 

except for the Cm1 and Kc2 projects. It concludes that the minimum and 

maximum values of the dataset used to train the model covers the dataset used for 

the test. 
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6) In the experiments performed on the Cm1 project with the ANN algorithm, there 

are huge differences in performance values. AUC values decrease dramatically 

when the Cm1 project is trained with its data and tested with the data of other 

projects. Since Cm1 is a small dataset, it cannot exhibit a general behavior when 

it is learned from its data. However, FISs tested with rules generated by Cm1 data 

gives highly accurate results. 

7) In experiments with the union dataset, a dataset consisting of McCabe metrics 

gives the most accurate performance result with the ANN algorithm. In contrast, 

the dataset consisting of Halstead metrics gives the best AUC value with the WM 

algorithm. 

8) The most vital result of our study, FIS does not have to provide the most accurate 

performance results while tested with its own ruleset. As shown in the 

experiments, FIS presents the best AUC values with the rulesets produced from 

the more consistent datasets. 

In addition to the experiments performed, the results of AUC values in our study were 

compared with other studies in Table 5.33.  

 

Table 5.33 Comparison of the performance results with other studies 

Study Year Method Dataset AUC 

Catal and Diri [9] 2008 Random Forest Kc2 0,79 

Riquelme et al. [72] 2008 Naïve Bayes Kc2 0,83 

Mende et al. [29] 2009 Random Forest Kc2 0,84 

De Carvalho et al. [28] 2010 SVM Kc2 0,6460 

Erturk and Sezer [6] 2016 FRBS Kc2 0,7304 

Yohannese et al. [73] 2017 Ensemble Learning Algorithms 

Information Gain 

Kc2 0,801 

Kalsoom et al. [74] 2018 SMOTE + Random Forest Kc2 0,93 

Mutlu et al. [38] 2018 FRBS Kc2 0,8272 

This Study 2020 FRBS Kc2 0,8446 
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6. CONCLUSION AND FUTURE WORK 

 

6.1. Conclusion 

FISs are based on two main components, “the inference system” and “the fuzzy rule 

base”. The inference system that implements the fuzzy inference process necessary to 

obtain an output from the FIS when an input is specified. The fuzzy rule base, a collection 

of fuzzy rules that represents knowledge about the problem. The linguistic fuzzy rule base 

is determined by domain experts. Setting the rules is a very time consuming and difficult 

task for the experts. The problem domain may not always be simple and straightforward, 

and when the problem is complicated, it may not be possible to determine the rule base 

for the expert. In such cases, the rule base is generated using automatic rule generation 

methods. 

 

In literature, researchers have always been produced the rules using their own project 

data. In order to solve similar problems more quickly and effectively, the previously 

acquired information should be transferred to the new problem domain. In this study, the 

knowledge acquired from previous studies is transferred through the interpretable rules 

to the new problem domains. The investigated project is tested with FISs created with the 

rules produced from its own project and the datasets of other projects. We drew attention 

to the rules that are produced by using datasets other than their own dataset, and we 

proved that better performance could be achieved with these rulesets. 

 

In the rule generation process, three automatic rule generation approaches are employed, 

namely WM, IVTURS-FARC, and the rule generation scheme of DF-HFS. In order to 

demonstrate that the portability of the rules is not only related to rule generation 

algorithms but also the dataset used, we perform experiments on the five different projects 

(CM1, JM1, KC1, KC2, and PC1) in which each process corresponded to metrics of a 

software module on the scope of SFP.  
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The rules are created for both McCabe and Halstead’s metrics of each project. In the 

experiments with McCabe metrics, the ruleset obtained from the Pc1 project is more 

accurate than the ruleset of the corresponding project. On the other hand, for Halstead 

metrics, we realized that the ruleset produced from the Kc1 project is more consistent 

instead of the ruleset of the corresponding project in most of the circumstances. 

 

We also investigate ANN for validation purposes. From the point of view of ANN, it is 

quite unsuccessful when it cannot generalize the knowledge it learns from its own dataset 

and is tested with the dataset of other projects. However, it is successful when training 

with the most comprehensive dataset and tested with other projects. Furthermore, it is 

difficult to understand and interpret information learned from neural networks. The 

information cannot be transferred to another project since the internal structure of the 

neural networks is unknown.  

 

On the other hand, fuzzy rule-based models are easy to understand since they use 

linguistic variables and interpretable rulesets. Although neural models are frequently used 

in prediction problems, the results show that FRBSs are highly acceptable and 

competitive with ANN. In ANN, reasonable accuracy can only be achieved by a complete 

dataset of a project, which is not possible in the early phases of the software development 

life cycle. On the contrary, FISs can be used at any stage of the development, because as 

we see in this study, having a complete dataset for the corresponding project is not vital 

for the reasonable behavior of the inference system. 

 

Experiment results conclude that the dataset of a project may not provide the best-

performed rules. In fact, the most accurate rules can be derived from another dataset 

corresponding to the project in SFP. This proves that the portability of the rulesets 

between different projects. 

 

6.2. Future Work 

As we pointed out in the experiments and results section, we have only considered the 

cases where the input metrics of the source project and the target project have the same 
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dimensions. In future studies, it will be useful to address the more challenging problem 

where the two projects have different feature sizes. 

 

The Halstead and McCabe features were defined in the 1970s, and since then, technology 

has considerably improved. In addition to the Halstead and McCabe metrics, which are 

intramodule metrics, it should be possible to define new intermodule metrics that give 

better predictors of the defect. 
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Abstract. Interpretability is one of the most essential reasons for the common use of fuzzy 

rule-based systems, compared with the black-box machine learning models. This 

interpretability comes from the linguistically expressible fuzzy sets and fuzzy rules. In 

general approach, the rules are generated by human experts; however, in case of non-

existence of expert opinion, or investigated problem is getting complex to be handled by 

a human, existing datasets can be used to provide fuzzy rules by automatic rule generation 

approaches. The existing studies have been focused on rule generation methods to provide 

more accurate rules. However, they have not deeply analyzed the utilized datasets for this 

purpose. The dataset for a real-world problem may mislead the model. Perhaps a more 

consistent dataset exists to generate rules that can be easily applied to new datasets with 

the same characteristics, without having to re-generate rules every time when the dataset 

is changed. However, the standard process of train-test set partitioning makes this 

situation stay latent. This study was empirically addressed this issue for the software fault 

prediction problem. We investigated the portability of the ruleset by generating rules from 

different datasets for a specific project. The datasets of five projects were acquired and 

fuzzy systems obtained from using several combinations of these datasets were evaluated 

by their accuracy. The results show that more accurate rules can be obtained from other 

projects instead of their own projects. In addition, it emphasizes that the resulting ruleset 

can be transferred to other projects by the portability property of the rules. 

Keywords: Fuzzy rule learning • Portability of fuzzy systems • Software fault 

prediction. 
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INTRODUCTION 

Fuzzy rule-based systems (FRBSs) have been successfully employed in numerous studies 

on several research fields [1,8,15,32,41]. Even though the success of the applications 

inevitably depend on the membership function (MF) modeling and choice of fuzzy 

reasoning methods, the selection of the fuzzy ruleset has always been vital in inference 

accuracy. One of the most important advantages of using FRBSs is the interpretability 

and portability of these rules. Interpretability is an understanding of the real system 

behavior by human beings by inspecting the fuzzy rules [15,26]. It depends on the model 

structure such as the number of input variables, the number of fuzzy rules, the complexity 

of each individual rule and the shape of MFs. There are other interpretable systems such 

as decision trees and fuzzy cognitive maps just like FRBSs. In these systems, the model 

establishes a cause-effect relationship within itself. Since these relationships are not 

known in classical machine learning algorithms, it is not known whether the correct 

causes are associated with the correct effects. Machine learning algorithms can also 

establish a natural relationship with unrelated features. Since the established relationships 

are not known by the domain expert, it is not clear how to move the model to another 

application field. Interpretable models are transparent to the domain expert. On the other 

hand, non-interpretable models must be retrained when investigating a new domain. 

Thus, new relationships are established in the new domain. It is not known whether the 

new cause-effect relationships are the same as those in the old domain. In FRBSs, these 

relations are obtained through rules. 

 

The quality of the rules depends on the quality of the dataset used to produce the rule. If 

the rules are obtained from data rather than the expert, certain information is discarded 

and the quality of the data should be investigated. In addition, when the dataset is divided, 

in fact, more information is lost. It is clear that the quality of the data space affects the 

quality of the generated rules. In the literature, the rules have been produced from the 

source dataset so far. More specifically, both the fuzzy applications of software fault 

prediction (SFP) [14,31,37] and the other studies [9,19,28,39] produced the rules using 

their own datasets. However, rules should be produced using the highest quality dataset 

as much as possible. Thus, we obtain the best ruleset and make the resulting FRBS have 

a better insight about the corresponding problem. By portability property of FRBSs, the 
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information is transferred from an existing similar but not identical source project to the 

target project to improve the learning [36,41]. Subsequently, once the ruleset is 

transferred to another domain, it becomes possible to use it as a rule template, and apply 

it according to the characteristics (MFs) of different target domains. This means that the 

best performing fuzzy ruleset can be used in different domains for the same research 

problem, contrary to machine learning approaches that are strictly dependent on domain-

specific data. In this study, we criticize that the set of rules to be used in the investigated 

problem is always produced from its own dataset. In order to determine the best ruleset 

of a problem, we investigated whether it would be better to use the dataset of the 

corresponding project itself or to use another dataset that performs better for this problem 

domain. 

 

Ideally, the rules should be provided from a domain expert who can comprehensively 

consider the problem and the influencing factors of it. The resulting system provides a 

general solution in situations where human perspective and domain knowledge are 

reflected to the fuzzy rules. However, this knowledge is difficult to obtain from most of 

the real-world problems. Because the problems usually influenced by several factors. The 

use of several factors as independent variables of an inference problem makes the targeted 

rule base high dimensional. The increase in the number of these variables causes both a 

linear increase in the complexity of each rule and an exponential increase in the total 

number of fuzzy rules to be determined. In these circumstances, the domain expert may 

be inadequate to define the relationship of all system variables to the output and generate 

rules over these relationships. Therefore, rule production becomes very challenging for 

the expert in such a high dimensional variable set, since rules present the know-how of 

the domain. Because of this bottleneck in human-based rule determination, the 

researchers have transferred their effort in another direction, automatic rule generation 

from historical knowledge, i.e. existing datasets. 

 

The automatic generation of rules can be performed by data-driven methods [4,16,30,35] 

or expert-cooperated procedures [28,29]. The model produced from data-driven 

approaches consists entirely of input-output relationships in the data, while expert-
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cooperated procedures use some general information obtained from data or expert during 

the rule generation procedure. 

 

The majority of recent researches on automatic rule generation has been focused on 

evolutionary optimization algorithms [10,34], clustering [16,35], genetic algorithms 

[6,18], linear solutions [28,38], machine learning approaches such as decision tree [2] 

and association rule mining [4,30]. Although data-driven rule learning methods are 

widely used and serve reasonable rules to FRBSs, these systems are always domain-

specific and restricted with the limits of the dataset. This is the natural outcome of data-

dependent machine learning models. An obstacle to the more widespread acceptance of 

data-driven methods (such as artificial neural networks) is incapable of explaining how 

the network has reached a particular decision in a human-understandable manner. On the 

other hand, FRBSs are easy to understand since they use linguistic fuzzy IF-THEN rules. 

 

In order to perform this investigation, some automatic rule learning methods were 

performed on the SFP problem. The error rate increases as the size of the software grow. 

In order to improve software quality, the error rate should be decreased. Fault prediction 

activities also serve to this purpose, it aims to detect faults in the software automatically. 

In recent years, there are many studies for SFP problem [5,13,14,22,23,29]. The SFP 

problem has an advantage based on the dataset since there are a lot of datasets from 

various projects on the scope of SFP. CM1, JM1, KC1, KC2, PC1 datasets, which are 

commonly used in SFP [7,12,25], were obtained from PROMISE Software Engineering 

Repository [11]. The rules are generated using these datasets by automatic rule generation 

methods, which are Wang-Mendel’s rule generation method (WM) [38], Interval Valued 

Fuzzy Reasoning Method with Tuning and Rule Selection (IVTURS) [34] and the expert-

cooperated rule production scheme proposed in Defuzzification-free Hierarchical Fuzzy 

System (DF-HFS) [29]. Subsequently, several FRBSs were generated and the 

performance evaluation of each resulting FRBS was employed based on the accuracy of 

the inference tendency of system. 
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The misleading rules obtained from the rule learning methods may be caused by 

misleading situations of data. The main argument of the paper is that the dataset of rule 

learning should be investigated according to its ability of providing a general solution, 

which brings the subject into portability capability. The most leading dataset should be 

used during the rule generation process. The best ruleset may be obtained from different 

datasets since there is no strict rule that the ruleset can only be produced by using its own 

dataset. In this paper, the experiments on SFP presented that the automatically generated 

rules obtained from the datasets from other projects can be more accurate since they 

contain more consistent data for that project. Through this empirical study, it was also 

presented that the rules are portable if the underlying dataset can be selected accurately. 

1 FUZZY RULE GENERATION ALGORITHMS 

 

1.1 Wang-Mendel 

Being one of the most pioneering rule generation methods in this domain, WM is a widely 

used solution since it is not a problem-dependent but a general solution and it does not 

contain exhaustive learning/optimization iterations. By these properties it is being 

straightforward and easy to understand [38]. It combines both linguistic and numerical 

information by producing fuzzy rules from numerical data. The rule learning process of 

WM consists of three steps. First, it divides the input and output spaces into fuzzy 

regions. Second, fuzzy rules are generated from given each transaction of data. Since the 

number of transactions will be very high, the number of rules produced is also high. This 

strategy may cause conflicting rules, which consist of the same antecedent but different 

consequent. This conflict is solved in the third step by determining a degree to each 

candidate rule and selecting the rule with the greatest degree as the rule in the final 

ruleset. The final linguistic rule form is shown in Eq.(1) where I and O represent input 

and output linguistic variables respectively, m is the number of input and f corresponds 

fuzzy sets. By WM, each rule contains all input variables which are connected with 

logical AND operator. 

 IF I1 is fi  AND I2  is fj  AND ... Im  is fk  THEN O is fp (1) 
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1.2 IVTURS-FARC 

IVTURS is an interval-valued fuzzy rule learning classification method [34]. The method 

is called IVTURS-FARC, because FARC-HD [9] algorithm is based in the rule learning 

process. IVTURS built with three steps. Firstly, the algorithm initializes the interval-

valued FRBSs by using FARC-HD algorithm [9] and generates an interval-valued 

equivalence function for every single variable. The second step creates the new fuzzy 

reasoning method by extending it which is based on interval-valued fuzzy sets. The final 

step is composed of optimization tasks, which corresponds tuning of the MFs and 

selecting the rule base to reduce computational cost. 

 

1.3 Rule Generation Scheme of DF-HFS 

In decision-making mechanisms, data may not always be complete, consistent, or be even 

exist. Mutlu et al. [29] propose a very simple but effective method to overcome these 

issues. DF-HFS generates a complete ruleset that contains every possible situation of 

inputs and outputs. The method does not require expert knowledge, but small information 

that how much the input MFs affect the output. The researchers proposed a simple 

procedure to measure this effect by using little information of data without implementing 

a whole learning process. This effect called as rating factor. The degree of a consequent 

rule (Rcons) is formed by a simple summation operation based on the rating factors (see 

Eq.(2)). In this study, the output divided into two equal intervals as K1 = [0-0.5), K2 = 

[0.5-1]. The fuzzy set which is triggered by (Rcons) at the highest level is selected as the 

consequent fuzzy set of corresponding rule. For instance, if it is calculated as 0.32, then 

output belongs to K1 which is in the first fuzzy set. The complete ruleset is rearranged by 

determining the output fuzzy sets for each rule. 

    (2) 

 

At the end of the rule generation procedure of DF-HFS, (nm) rules obtained in resulting 

ruleset, where n is the number of fuzzy sets and m is the number of inputs. 
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2 EXPERIMENTS 

 

2.1 Datasets 

CM1, JM1, KC1, KC2, PC1 software defect prediction datasets were obtained from 

PROMISE software engineering repository [11]. These datasets commonly preferred in 

the software engineering research area [7,12,27,33] and also they all have the same 

software metrics. Each dataset contains total 22 metrics belongs to the software modules 

which has 5 different lines of code measure, 3 McCabe metrics [24], 4 base Halstead 

measures [17], 8 derived Halstead measures [17], 1 branch-count and 1 output variable 

which defines the instance whether has defects or not. Table 1 shows the characteristics 

of the selected datasets. 

 

Input metrics were reduced to 9 that consists of 4 McCabe (loc, v(g), ev(g), iv(g)) and 5 

Halstead metrics (v, d, i, n, e) and explained as follows: 

– Line count of code (loc) : Measures the line count of code. 

– Cyclomatic complexity (v(g)) : Measures the number of linearly independent paths. 

– Essential complexity (ev(g)) : Measures the degree of unstructured constructs. 

– Design complexity (iv(g)) : Measures the amount of integration between modules. 

– Volume (v) : The number of bits required for storing the program. 

– Difficulty (d) : Measures the ability of a program to be written or understood. 

– Intelligence (i) : Measures the complexity of a particular algorithm, regardless of the 

language used. 

– Length (n) : The total number of operator and operand appearances. 

– Effort (e) : The estimated time required to implement the program. 
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Table 1. Dataset specifications 

Data Language # Modules # Faulty Modules Faulty Modules % 

CM1 C 498 49 9.83% 

JM1 C 10885 8779 80.65% 

KC1 C++ 2109 326 15.45% 

KC2 C++ 522 105 20.5% 

PC1 C 1109 1032 93.05% 

 

2.2 Case Study: Software Fault Prediction 

In the experiments, three fuzzy rule generation algorithms (WM, IVTURSFARC, and 

DF-HFS) and an artificial neural network (ANN) were implemented which make a 

difference in certain aspects. WM and IVTURS-FARC methods are based on the 

relations of all input-output data, while DF-HFS approach generates rules based on few 

information of data. On the other hand, ANN is a data-driven approach that requires data 

to learn and completely dependent on data. 

 

WM and DF-HFS rule generation methods were implemented with Java programming 

language. Knowledge Extraction based on Evolutionary Learning (KEEL) open source 

Java software tool [3] was used for IVTURS-FARC algorithm. Regarding ANN, 

implementation details are as follows: 

– Number of neurons: 48 in the first layer, 24 in the second layer, 1 in the third layer 

– Number of epochs: 100 

– Activation function: Sigmoid 

– Training algorithm: Gradient descent 

– Environment: Python/Keras library [21] 

– 5-fold cross validation: 80%-20% of data for training and evaluation 

 

In the rule generation process, three and two fuzzy sets are used for each input and output 

linguistic variables respectively. These fuzzy sets were divided into equal intervals. In 

the implementation of rule generation approaches, rules were generated from McCabe 

and Halstead metrics of each dataset with all algorithms. Rule weights were set to 1 for 



 

 

 
79 

each algorithm to make a fair comparison. Table 2 presents the number of fuzzy rules 

generated by using McCabe and Halstead metrics. 

Table 2. The number of rules generated by WM, IVTURS-FARC, DF-HFS. 

Metric McCabe Halstead 

Ruleset Cm1 Jm1 Kc1 Kc2 Pc1 FR Cm1 Jm1 Kc1 Kc2 Pc1 FR 

WM 16 13 18 4 9 5 15 17 14 8 11 10 

IVTURS-FARC 7 4 6 4 7 7 4 3 8 6 6 6 

DF-HFS 81 81 81 81 81 81 243 243 243 243 243 243 

 

Rule generation algorithm of DF-HFS produces a complete ruleset, the number of 

resulting rules was constant (34 and 35 for McCabe and Halstead metrics respectively) in 

these tables. The rules generated from each dataset were combined and the repeated ones 

form a customized ruleset called as frequent rules (FR). For example, the total number 

of rules generated by the WM algorithm using McCabe metrics were 60 (rule numbers 

of Cm1 + Jm1 + Kc1 + Kc2 + Pc1 projects). A total of 5 rules out of 60 rules form a set 

of FR since they are generated from more than one project. The FR contains all the rules 

generated by DF-HFS rule generation scheme since the rules generated for each dataset 

were the same. 

 

The ruleset was presented in Table 3 that was generated from Pc1 and Kc1 projects by 

IVTURS-FARC algorithm. 

Table 3. Rules belong to Pc1 and Kc1 datasets which consist of McCabe and Halstead 

metrics respectively 

Metrics Dataset Rules 

McCabe Pc1 

If (iv(g) is M) then (faultiness is H) 

If (iv(g) is L) then (faultiness is L) 

If (ev(g) is L) then (faultiness is L) 

If (ev(g) is M) then (faultiness is H) 

If (v(g) is L) then (faultiness is L) 

If (loc is M) then (faultiness is H) 

If (loc is L) then (faultiness is L) 
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Halstead Kc1 

If (d is H) then (faultiness is H) 

If (d is M) then (faultiness is H) 

If (n is L) and (v is L) then (faultiness is H) 

If (n is L) and (v is L) and (e is L) then (faultiness is H) 

If (d is M) and (e is L) then (faultiness is H) 

If (e is L) then (faultiness is L) 

If (v is L) and (i is L) then (faultiness is L) 

If (d is L) and (i is L) then (faultiness is L) 

 

After the rule evaluation phase, the resulting rulesets were included in FRBSs. The 

common properties of FRBSs are as follows: 

– Type of inference: Mamdani 

– Implication-aggregation-defuzzification: minimum-maximum-centroid 

– Environment: MATLAB 9.5.0 (R2018b) 

 

In order to test the modeled FRBSs, several scenarios were defined that led to the creation 

of six FRBSs for each software project. In the first scenario, the FRBS in a certain project 

was generated by using the data of the current project to determine the MF parameters 

and generate the rules. In the other four scenarios, the MFs of an FRBS created for a 

specific project were determined by using the data of current project similar to the first 

scenario. On the other hand, the ruleset was generated from other projects instead of its 

own dataset. In the example, the FRBSs of CM1 were modeled by using its own project 

for the determination of MF parameters. On the other hand, the datasets of JM1, KC1, 

KC2, and PC1 projects were utilized for rule generation which led to four FRBSs to be 

obtained. Unlike other scenarios, in the sixth scenario, FR is used as a ruleset. In the last 

scenario, all acquired datasets were combined to create a union dataset, the rules and the 

MF parameters of an FRBS were generated from this dataset. 

 

Only five scenarios were defined for ANN and they performed differently from fuzzy 

rule generation algorithms. As a regular machine learning evaluation process, in the first 

scenario, the ANNs were trained with 80% and tested with 20% of the data respectively 

for each project. In the other four scenarios, the ANNs were trained with the data (100%) 
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of current projects and tested with the data (100%) of source projects. In the example, 

CM1 was trained with the CM1 and tested with the other four datasets. Here, each 

aforementioned scenario corresponds to an experiment that is performed for both 

McCabe and Halstead metrics respectively. The performance results of FRBSs and ANNs 

were presented in Table 4 and Table 5. 

 

Area Under Receiver Operating Characteristic Curve (ROC-AUC) values were measured 

to evaluate the resulting experiments. Here the scenarios for each project were addressed 

by presenting the name of the current project and the source project concatenated by W 

to generate fuzzy rules together. For example, CM1 W JM1 means, the FRBS was created 

for CM1, while its rules were generated by using JM1 dataset. The results obtained from 

the experiments based on several scenarios are as follows: 

– Regarding the FRBSs whose rules were obtained from WM, FRBSs which were 

evaluated with the rulesets of other projects achieved better AUC values. The only 

exception is the Pc1 dataset which has performed better with its own ruleset. This 

means that the best ruleset belongs to the Pc1 dataset. 

Regarding the FRBSs whose rules were obtained from IVTURS-FARC, for the 

projects that are composed of Halstead metrics, better AUC values were obtained 

with datasets of other projects, while Kc1 and Kc2 were given the most successful 

performance results with their own set of rules. 

– The same AUC values were taken since DF-HFS rule generation algorithm produced 

the same complete ruleset for each project. 

– ANN performed mostly better when tested with their own projects which are 

composed of McCabe metrics. On the other hand, projects that consist of Halstead 

metrics achieved better AUC values when tested with other projects except Cm1 and 

Kc2 projects. This means that the minimum and maximum values of the dataset used 

to train the model cover the dataset used in the test. 

– Regarding Cm1 project, experiments on ANN showed that a considerable difference 

appeared between the evaluation results of models. Specifically, basing the AUC 

values obtained from CM1 W CM1, these values decreased dramatically when the model 

was tested with other projects. This situation can be explained by the fact that Cm1 is a 

small dataset, and ANN can not provide a general solution when it learned from Cm1.  
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Table 4. ROC-AUC values of FRBSs and         Table 5. ROC-AUC values of FRBSs and ANN   

ANN  regarding McCabe metrics.  regarding Halstead metrics. 

Dataset W/ 

Ruleset 
WM 

IVTURS 

FARC 

DF- 

HFS 
ANN 

 Dataset W/ 

Ruleset 
WM 

IVTURS 

FARC 

DF- 

HFS 
ANN 

CM1 W CM1 

CM1 W JM1 

CM1 W KC1 

CM1 W KC2 

CM1 W PC1 

CM1 W FR 

0,7003 

0,7202 

0,7183 

0,7118 

0,7415 

0,7383 

0,7239 

0,5863 

0,6973 

0,7514 

0,7239 

0,7221 

0,7247 

0,7247 

0,7247 

0,7247 

0,7247 

0,7247 

0,676 

0,485 

0,279 

0,298 

0,483 

NA 

CM1 W CM1 

CM1 W JM1 

CM1 W KC1 

CM1 W KC2 

CM1 W PC1 

CM1 W FR 

0,7236 

0,7274 

0,7283 

0,7180 

0,6998 

0,7295 

0,7113 

0,7064 

0,7345 

0,7491 

0,7360 

0,7379 

0,7056 

0,7056 

0,7056 

0,7056 

0,7056 

0,7056 

0,824 

0,292 

0,212 

0,164 

0,294 

NA 

JM1 W JM1 

JM1 W CM1 

JM1 W KC1 

JM1 W KC2 

JM1 W PC1 

JM1 W FR 

0,6888 

0,6817 

0,6889 

0,6882 

0,7010 

0,7010 

0,6116 

0,6897 

0,6603 

0,7087 

0,6897 

0,6899 

0,6909 

0,6909 

0,6909 

0,6909 

0,6909 

0,6909 

0,60 

0,485 

0,463 

0,484 

0,487 

NA 

JM1 W JM1 

JM1 W CM1 

JM1 W KC1 

JM1 W KC2 

JM1 W PC1 

JM1 W FR 

0,6202 

0,6210 

0,6252 

0,6198 

0,6208 

0,6252 

0,6087 

0,6254 

0,6277 

0,6203 

0,6271 

0,6276 

0,6192 

0,6192 

0,6192 

0,6192 

0,6192 

0,6192 

0,733 

0,7071 

0,783 

0,847 

0,719 

NA 

KC1 W KC1 

KC1 W CM1 

KC1 W JM1 

KC1 W KC2 

KC1 W PC1 

KC1 W FR 

0,7897 

0,7891 

0,7920 

0,7907 

0,7908 

0,7905 

0,7212 

0,7914 

0,6111 

0,7904 

0,7914 

0,7897 

0,7903 

0,7903 

0,7903 

0,7903 

0,7903 

0,7903 

0,793 

0,689 

0,608 

0,749 

0,632 

NA 

KC1 W KC1 

KC1 W CM1 

KC1 W JM1 

KC1 W KC2 

KC1 W PC1 

KC1 W FR 

0,7865 

0,7916 

0,7847 

0,7499 

0,7840 

0,7856 

0,7951 

0,7737 

0,7829 

0,7799 

0,7899 

0,7933 

0,7932 

0,7932 

0,7932 

0,7932 

0,7932 

0,7932 

0,783 

0,704 

0,690 

0,835 

0,660 

NA 

KC2 W KC2 

KC2 W CM1 

KC2 W JM1 

KC2 W KC1 

KC2 W PC1 

KC2 W FR 

0,8416 

0,8438 

0,8417 

0,8398 

0,8430 

0,8431 

0,8422 

0,8441 

0,7073 

0,8184 

0,8441 

0,8445 

0,8416 

0,8416 

0,8416 

0,8416 

0,8416 

0,8416 

0,823 

0,651 

0,581 

0,440 

0,486 

NA 

KC2 W KC2 

KC2 W CM1 

KC2 W JM1 

KC2 W KC1 

KC2 W PC1 

KC2 W FR 

0,8249 

0,8287 

0,8355 

0,8371 

0,8301 

0,8395 

0,8446 

0,8269 

0,8311 

0,8414 

0,8413 

0,8410 

0,8254 

0,8254 

0,8254 

0,8254 

0,8254 

0,8254 

0,827 

0,751 

0,698 

0,539 

0,710 

NA 

PC1 W PC1 

PC1 W CM1 

PC1 W JM1 

PC1 W KC1 

PC1 W KC2 

PC1 W FR 

0,6957 

0,6660 

0,6797 

0,6648 

0,6591 

0,6944 

0,6876 

0,6885 

0,5828 

0,6292 

0,6872 

0,6876 

0,6704 

0,6704 

0,6704 

0,6704 

0,6704 

0,6704 

0,614 

0,653 

0,621 

0,759 

0,711 

NA 

PC1 W PC1 

PC1 W CM1 

PC1 W JM1 

PC1 W KC1 

PC1 W KC2 

PC1 W FR 

0,6849 

0,6867 

0,7126 

0,6888 

0,7134 

0,6890 

0,6742 

0,6852 

0,6323 

0,6914 

0,6986 

0,6929 

0,6709 

0,6709 

0,6709 

0,6709 

0,6709 

0,6709 

0,815 

0,772 

0,697 

0,753 

0,834 

NA 

UNION 0,7076 0,6136 0,7092 0,737 UNION 0,6483 0,6526 0,6458 0,641 

   a NA represents not applicable. 



 

 

 
83 

However, FRBSs can present more reasonable behaviors even if the fuzzy rules were 

generated by Cm1. 

 

– In the experiment conducted with a union of datasets, the dataset consisting of 

McCabe metrics achieved the best AUC values with the ANN algorithm. On the other 

hand, for the experiment with Halstead metrics, FRBS with WM rules provided the 

best AUC value. 

 

In addition to these experiments, a comparison of the performance results of our study 

and some previous studies on fuzzy logic was listed in Table 6. It is clearly seen 

according to the table, the performance result obtained in this study is quite competitive 

compared to other studies. 

 

Table 6. Comparison of the results with other studies 

Study Year Method Dataset AUC 

Catal and Diri [7] 2008 Random Forest Kc2 0,79 

Riquelme et al. [33] 2008 Naive Bayes Kc2 0,83 

Mende et al. [25] 2009 Random Forest Kc2 0,84 

De Carvalho et al. [12] 2010 SVM Kc2 0,6460 

Erturk and Sezer 14] 2016 FRBS Kc2 0,7304 

Yohannese et al.[40] 2017 Ensemble Learning Algorithms + Information 

Gain 

Kc2 0,801 

Kalsoom et al. [20] 2018 SMOTE + Random Forest Kc2 0,93 

Mutlu et al. [27] 2018 FRBS Kc2 0,8272 

This Study 2019 FRBS Kc2 0,8446 

 

As a result, an FRBS does not have to give the most accurate results when tested with its 

own set of rules. The rulesets from other projects provide very successful results. 

3 CONCLUSION 

The most essential problem of FRBS modeling has been determining the FRBS rules 

accurately. Ideally, domain experts have been expected to be the main contributor of rule 

generation. On the other hand, obtaining knowledge may be very challenging in some 
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complex problems. Therefore, automatic rule generation methods have been 

recommended in numerous studies in the existence of data rather than expert knowledge. 

In the literature, rules are always generated by using the dataset of the corresponding 

project. On the other hand, more accurate rules can be produced by using other datasets 

that belong to different projects. Thus, we emphasized the portability of the rules by using 

the most accurate ruleset in different projects. 

 

In order to present that the portability is not strongly related with the rule generation 

algorithm, but the utilized dataset, three different rule generation approaches (WM, 

IVTURS-FARC and rule generation scheme of DF-HFS) were employed. Experiments 

were performed on the dataset of five different projects on the scope of SFP. For each 

project, the rules were both generated by using its own dataset, as usual, and by using 

other projects’ datasets. In order to evaluate these rule bases, FRBS implementation was 

performed for each project. Provided results show that when working with McCabe 

metrics, in most of the circumstances more successful performance results were obtained 

when FRBSs were evaluated with the rules that were generated from Pc1 dataset instead 

of its own dataset. Regarding the use of Halstead metrics, the rules that were generated 

from Kc1 dataset were more accurate with respect to the own dataset of a project. 

 

Furthermore, ANN was investigated for validation purposes. Regarding the neural 

network point of view, they provide higher accuracy results for datasets composed of 

Halstead metrics. However, it is difficult to understand and interpret the knowledge 

learned from neural networks. In contrast, fuzzy rule-based models are easy to understand 

since they use linguistic variables and interpretable rulesets. Though neural models have 

a great advantage in having several iterations to perform better on corresponding data, 

provided results show that FRBSs have performed quite acceptable and competitive with 

ANN. On the other hand, there is a serious trade-off between the accuracy and 

applicability of ANNs for fault prediction. Because a good accuracy can only be achieved 

by a complete dataset of its own project, which is highly difficult to obtain in the early 

stages of the software development life-cycle. Contrary, fuzzy systems can be utilized at 

any stage of a life-cycle because as shown in this study having a dataset for the 

corresponding project is not vital for fuzzy reasoning to behave plausibly. The results of 

experiments conclude that the dataset of a project may not lead to the most accurate rules 
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to be generated. Indeed, the best ruleset may be obtained from other data acquired from 

a different project. 
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