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Synopsis

Percussive drills are widely used in engineering projects such as mining
and construction. The prediction of penetration rates of drills by indirect
methods is particularly useful for feasibility studies. In this investigation,
the predictability of penetration rate for percussive drills from indirect
tests such as Shore hardness, P-wave velocity, density, and quartz content
was investigated using firstly multiple regression analysis, then by
artificial neural networks (ANNSs). Operational pressure and feed pressure
were also used in the analyses as independent variables. ANN analysis
produced very good models for the prediction of penetration rate. The
comparison of ANN models with the regression models indicates that ANN
models are the more reliable. It is concluded that penetration rate for
percussive drills can be reliably estimated from the Shore hardness and
density using ANN analysis.
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Introduction

Percussive drills are extensively used in open
pits, quarries, and on construction sites. The
prediction of the penetration rate of drilling
machines is very important for cost estimation
and planning of rock excavation projects.
Many researchers have investigated percussive
drilling theoretically or experimentally and
correlated the penetration rate with various
rock properties.

Protodyakonov (1962) developed drop
tests and described the coefficient of rock
strength (CRS) used as a measure of the
resistance of rock to impact. The
Protodyakonov test was subsequently
modified by Paone, Madson, and Bruce
(1969), Tandanand and Unger (1975), and
Rabia and Brook (1980, 1981). Paone,
Madson, and Bruce (1969) conducted research
work on percussion drilling in the field. They
concluded that uniaxial compressive strength
(UCS), tensile strength, Shore hardness, and
static Young’s modulus correlated tolerably
well with penetration rates in nine hard and
abrasive rocks. A much better correlation was
obtained by using the CRS. Paone, Madson,
and Bruce stated that no single property of a
rock was completely satisfactory as a predictor
of penetration rate. Tandanand and Unger
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(1975) developed an estimation equation that
showed good correlation with actual
penetration rates of percussive drills. They
concluded that CRS was useful in predicting
penetration rate and had a higher reliability
than other rock properties. Rabia and Brook
(1980, 1981) used a modified test apparatus
to determine the rock impact hardness number
and developed an empirical equation for
predicting drilling rates for both down-the-
hole and drifter drills. The equation relating
penetration rate to drill operating pressure,
Shore hardness, and rock impact hardness
number was found to give excellent correlation
for field data obtained from down-the-hole
and drifter drills.

Selmer-Olsen and Blindheim (1970)
conducted percussion drilling tests in the field
using light drilling equipment with chisel bits.
They established a good correlation between
penetration rate and the drilling rate index
(DRI) and found that rock hardness, strength,
brittleness, and abrasivity were important in
drilling. Selim and Bruce (1970) carried out
percussive drilling experiments on nine rocks
in the laboratory. They correlated the
penetration rate for a specific drill rig with
compressive strength, tensile strength, Shore
hardness, apparent density, static and dynamic
Young’s modulus, shear modulus, CRS, and
percentage of quartz, and established linear
predictive equations. They stated that the
established equations could be used for
predicting the performance of percussive drills.
Schmidt (1972) correlated the penetration rate
with compressive strength, tensile strength,
Shore hardness, density, static and dynamic
Young’s modulus, shear modulus, longitudinal
velocity, shear velocity, and Poisson’s ratio. He
found that only compressive strength and
those properties highly correlated with it, such
as tensile strength and Young's modulus,
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exhibited good correlations with penetration rate. Pathinkar
and Misra (1980) correlated several rock properties with the
penetration rate obtained from laboratory-scale drilling in five
different rock types, and concluded that conventional rock
properties such as compressive strength, tensile strength,
specific energy, Shore hardness, and Mohs hardness did not
individually provide good correlation with penetration rate.
They developed a good correlation between penetration rate
and a set of rock properties, but the relationship was
complex.

Howarth, Adamson, and Brendt (1986) correlated
penetration rate with rock properties and found that bulk
density, saturated compressive strength, apparent porosity,
and saturated P-wave velocity exhibited strong corrrelations
with penetration rate. However, the correlations of
penetration rate, Schmidt hammer value, and dry
compressive strength were not strong. They stated that
porosity could influence drillabillity, since high porosity was
likely to assist the formation of fracture paths and
networking of such paths. Howarth and Rowland (1987)
developed a quantitative measure of rock texture - the
texture coefficient - and found a close relation between the
texture coefficient and percussion drill penetration rates.
They found that a rock with a high texture coefficient has a
low drillability and a high compressive strength. Thuro and
Spaun (1996) measured drilling rates using 20 kW and
15 kW borehammers (Atlas Copco COP 1440 and COP 1238
ME) together with the geological documentation of the tunnel
face. They correlated specific rock properties with the
penetration rates of percussive drills and concluded that
penetration rate exhibits strong logarithmic relationships
with compressive and tensile strength. They also introduced a
new rock property, termed ‘destruction work’, for toughness
referring to drillability, and found a highly significant
correlation between destruction work and drillability.
Kahraman (1999) developed penetration rate models for
down-the-hole and hydraulic top-hammer drills using
multiple curvilinear regression analysis. The results showed
that the parameters significantly affecting penetration rate of
down-the-hole drills were operating pressure, piston
diameter, and Schmidt hammer value. For hydraulic top-
hammer drills, the most significant parameters were blow
frequency, compressive strength, and quartz content of the
rock. Kahraman (2002) statistically investigated the relations
between penetration rate of percussive drills and three
different measures of brittleness obtained from compressive
strength, tensile strength, and percentage of fines formed in
the Protodyakonov test using the raw data obtained from the
experimental work of different researchers. He showed that
there was no correlation between penetration rate and the
brittleness values derived from compressive strength and
tensile strength. However, he found a strong correlation
between penetration rate and the brittleness value derived
from compressive strength and percentage of fines formed in
the Protodyakonov test. He concluded that each method of
measuring brittleness has its usage in rock drilling,
depending on practical utility, Z.e. one method of measuring
brittleness shows good correlation with the penetration rate
of percussive drills, while the other method does not.
Kahraman, Bilgin, and Feridunoglu (2003) observed
percussive blast-hole drills in eight rock types at open pit
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mines and three motorway sites and correlated penetration
rates with rock properties. They found good correlations
between the penetration rate and some rock properties.

Compared to the traditional expert systems, artificial
neural networks (ANNs) are highly simplified models of
nervous systems in the human brain and have some
important features such as self-learning, adaptive
recognition, and nonlinear dynamic processing. For this
reason, ANNs have been used extensively in science and
engineering applications in recent years. ANNs have also
been applied in geotechnical engineering (Yuanyou,
Yanming, and Ruigeng, 1997; Yang and Zhang, 1998; Singh,
Singh, and Singh, 2001; Sonmez et al., 2006; Zorlu et al.,
2008; Kahraman et al., 2005, 2009, 2010).

There are few studies in the literature on the predictability
of drilling rate from ANNs. Akin and Karpuz used an ANN to
estimate major drilling parameters such as weight on bit,
rotational speed, and bit type for diamond drilling. They
concluded that the proposed methodology provided
satisfactory results both in relatively less-documented and
drilled formations as well as in well-known formations.
Monazami, Hashemi, and Shahbazian (2012) investigated
the predictability of penetration rate in oil well rotary drilling
by using an ANN. They constructed an ANN model and
showed that penetration rate could be estimated by using the
derived model. Aalizad and Rashidinejad (2012) studied the
predictability of penetration rates of rotary-percussive drill
using an ANN. Their model includes intact rock properties,
rock mass characteristics, the operational variables of the
drill, and some blast-hole parameters. They stated that the
ANN was a suitable tool for the prediction of the penetration
rate of percussive drills. Basarir, Tutluoglu, and Karpuz
(2014) evaluated penetration rate prediction for diamond bit
drilling by adaptive neuro-fuzzy inference system (ANFIS)
and multiple regression. They found that the prediction
performances of the ANFIS model were better than those
derived from the traditional multiple regression model, and
that the constructed models can be used for an initial
estimation of the penetration rate for similar cases.
Khandelwal and Armaghani (2016) investigated the
predictability of drilling rate index (DRI), which is a measure
of percussive drilling rate, from hybrid genetic algorithm and
artificial neural network (GA-ANN) models. They reported
that hybrid GA-ANN technique performed better in predicting
DRI compared to other developed models such as multiple
regression and ANN.

Although there are some studies in the literature on
drillability prediction from ANNS, only one of these (Aalizad,
and Rashidinejad, 2012) is related to percussive drilling and
includes numerous direct and indirect test results. In the
current study, because indirect tests are easy and economical
to carry out, the predictability of penetration rate for
percussive drills from indirect tests such as Shore hardness,
P-wave velocity, density, and quartz content is investigated
using an ANN.

Data analysis

The raw data was obtained from the study by Selim and
Bruce (1970). They reported the penetration rate data for
percussive drills used in the laboratory. Two drills were used
for drilling nine different rocks in the experiments. The drill
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included in this study was a 6.67 cm bore jackleg type, which
drill is a backstroke rifle-bar-rotation machine and bit
diameter is confined to 3.81 cm cross-bits. Operational
pressure was changed from 4.8 bar to 6.9 bar and feed
pressure was changed from 4.1 bar to 6.2 bar during drilling
tests for each rock type.

The descriptive statistics for the rock sample data are
listed in Table I, showing minimum, maximum, and average
values together with the standard deviations for each test
type. The skewness values of each test are also given.

Regression analysis

Firstly, the correlation matrix was constructed for the rock
properties to determine whether high redundancies exist
between these independent variables. As shown in Table II,
the correlation coefficients between the rock properties are
weak, indicating there is no redundancy between the
parameters. However, the correlation coefficients for density
and P-wave velocity, and quartz content and Shore hardness,
are not very weak. This may give rise to multicollinearity. For
this reason, density and Shore hardness were selected for
regression analysis since it is simpler to test these variables
than the others.

Multiple regression analysis was performed for the
estimation of penetration rate, including the parameters
operational pressure, feed pressure, and rock properties, and
three models were developed. Since the operational pressure
and feed pressure are intrinsic drilling parameters, they were
included in all models. A total of 100 data points were used
in the regression analysis. 22 data points that were used in
the ANN analysis were used for the validation of the derived
models. The derived models, together with the correlation
coefficients (r) and standard errors (SE), are as follows:

Table |

Descriptive statistics of the rock data (modified
from Selim and Bruce (1970)

Statistical Shore P-wave Density Quartz
parameter hardness | velocity (km/s)| (g/cm3) | content (%)
Number of data 144 144 144 144
Minimum 36.0 5.0 25 1.0
Maximum 92.0 6.6 3.8 98.0
Average 76.6 5.8 2.9 329
Standard deviation | +19.9 +0.5 +0.4 +30.7
Skewness -1.24 0.04 1.46 0.79
Table Il

Correlation matrix for the rock properties

Shore P-wave Density| Quartz
hardness | velocity (km/s)| (g/cm3) | content (%)

Shore hardness 1.00

P-wave velocity (km/s) 0.38 1.00

Density (g/cm3) 0.26 0.59 1.00

Quartz content (%) 0.53 -0.24 0.25 1.00
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PR =95.0+10.90P - 0.33FP - 0.79SH - 18 3p

i
r=10.92; SE=9.42 [ ]
PR = 62.8 + 8.80P - 0.64FP — 0.88SH )
r=0.80; SE= 12.78 [ ]
PR =742 +11.20P - 0.33FP - 32.8p 5

r=10.64; SE = 19.42

where PR is the penetration rate (cm/dk), OP is the
operational pressure (bar), FP is the feed pressure (bar), SH
is the Shore hardness, and p is the density (g/cm3).

Equations [1] and [2] have very strong and strong
correlation coefficients, respectively. However, the correlation
coefficient of Equation [3] is weak. All regression equations
were evaluated in the ANN analysis.

The regression models were validated by drawing scatter
diagrams of the observed and estimated values. Ideally, on a
plot of observed versus estimate values, the points should be
scattered around the 1:1 diagonal straight line. A point lying
on the line indicates an exact estimation. A systematic
deviation from this line may indicate, for example, that larger
errors tend to accompany larger estimations, suggesting
nonlinearity in one or more variables. The plots of estimated
versus observed values for the three equations are shown in
Figures 1-3. For all models, although some of the data points
are scattered uniformly about the diagonal line, others
deviate somewhat from the line, showing that there may be
some doubt about the model.

Artificial neural network (ANN) analysis

ANN models consist of an interconnected assembly of simple
processing elements, neurons, which are organized in a
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Figure 1—Estimated versus measured penetration rate for Equation [1]
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Figure 2—Estimated versus measured penetration rate for Equation [2]
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Figure 3—Estimated versus measured penetration rate for Equation [3]

layered fashion. Each neuron in a layer is connected to the
neurons in the subsequent layer and so on, as seen in
Figure 4. The interconnection between ith and jth layers is
labelled as wy and is called ‘weight’. These interconnections
between layers provide a powerful tool for prediction and
classification. During the learning phase, these intercon-
nections are optimized in order to minimize a predefined cost
function. The weighted sum of inputs to a neuron is
calculated and the output of a neuron, the activation of the
neuron, is determined by an activation function, which is
illustrated in Figure 4 as f ().

There are different types of neural network models. The
type of neural network used in this study is the multilayered
perception (MLP). A MLP neural network is shown in Figure
5. A MLP network consists of an input layer, one or more
hidden layers, and an output layer. Each layer has a number
of processing units (neurons) and each unit is fully intercon-
nected with weighted connections to units in the subsequent
layer. The MLP transforms 7 inputs into £ outputs through
nonlinear mapping functions.

The back-propagation algorithm (Rumelhart and
McClelland, 1986) is used in this study, because it is one of
the most common network types used in feed-forward
multilayer neural networks, and many other types are derived
from it. The Levenberg-Marquardt (LM) algorithm is the
fastest training algorithm. It is a Hessian-based algorithm for
nonlinear least squares optimization. Hessian-based
algorithms are used to allow ANNs to learn more suitable
features of a complicated mapping (Hagan and Menhaj, 1994;
Suratgar et al., 2005). LM is used as the training algorithm in
this study, since the training process converges quickly as the
solution is approached. Regarding the number of hidden
layers, there is no reason to use more than one hidden layer
for many practical problems (Heaton Research, 2016). For
this reason, one hidden layer is selected in this analysis.
There is no strict rule for selecting the number of neurons in
a hidden layer. Some rule-of-thumb methods to determine
the number of neurons for the hidden layers can be found in
the literature (Heaton Research, 2016).

The selected rule in this study is ‘the number of hidden
neurons should be between the size of the input layer and the
size of the output layer’. As a transfer function, a sigmoidal
function is selected because it is the most recommended
activation function for back-propagation learning (Joarder
and Aziz, 2002).
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Some researchers (Kumar, 2005; Altun, Bilgil, and Fidan,
2007) have shown that ANN models are not consistently
good in prediction in the case of highly skewed data. If the
data is skewed, some transformation, such as a power
transformation, can be used to reduce the skewness before
performing neural network analysis. Skewness is a measure
of the degree of symmetry in a normal distribution. If the
skewness coefficient is zero, the distribution is symmetric
(not skewed). Positive skewness indicates the distribution is
skewed to the right, and negative skewness indicates the
distribution is skewed to the left. As indicated in Table I, the
skewness of rock parameters can be accepted as low.
Therefore, the transformation or the treatment of data is not
necessary.

A total of 144 data points were used in the ANN analysis.
The first group, consisting of 100 data points, was used to
train the network ANN models. 22 data points were used for
the validation, and the remaining 22 were used for testing,

As shown in Figures 6-8, three different types of neural
network structure are implemented in the MATLAB
environment for the prediction of penetration rate to compare
with the regression models (Equations [1]-[3]). The
structures of the ANN models, namely the number of input
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Table Il
The structures of the ANN models for the prediction of penetration rate

Model Number Number Number Network Transfer Training Training
no. of input of hidden of output type function parameters algorithm
neurons neurons neurons
| 4 3 1 Feed-forward Tangent Learning rate: Levenberg-Marquardt back-
back-propagation sigmoid adaptive. Gradient: 15.6 propagation algorithm
Epochs: 17 (trainlm)
1l 3 2 1 Feed-forward Tangent Learning rate: Levenberg-Marquardt back-
back-propagation sigmoid adaptive. Gradient: 0.33 propagation algorithm
Epochs: 26 (trainlm)
1] 3 2 1 Feed-forward Tangent Learning rate: Levenberg-Marquardt back-
back-propagation sigmoid adaptive. Gradient: 4.00 propagation algorithm
Epochs: 16 (trainlm)

layer neurons, the number of hidden layer neurons. and the
number of output layer neurons, are given in Table III. The
training parameters and the algorithm that were employed in
the training phase are also shown Table III.

In the first trial, a neural network with the structure 4-3-
1 (Model I in Table II1) is employed. This structure is used to
construct a model that delineates the nonlinear relation
between the independent variables and the penetration rate.
The model is as follows:

PR = f(OP,FP,SH,p) [4]

where PR is the penetration rate (cm/dk), OP is the
operational pressure (bar), FP is the feed pressure (bar), SH
is the Shore hardness, and p is the density (g/cm3).

In the second trial, a neural network with the structure 3-
2-1 (Model 1 in Table II1) is constructed. The model is as
follows:

PR = f(OP,FP,SH) 5]

In the third trial, a neural network with the structure 3-2-
1 (Model I in Table III) is constructed. The model is as
follows:

PR = f(OP,FP,p) [6]

The estimation capability of the derived models can be
shown using scatter diagrams of the observed and estimated
values. Ideally, on a plot of observed versus estimated values,
the points should be scattered around the 1:1 diagonal
straight line. A point lying on the line indicates an exact
estimation. A systematic deviation from this line may
indicate, for example, that larger errors tend to accompany
larger estimations, suggesting nonlinearity in one or more
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variables. The plots of estimated versus observed penetration
rate for models I-1II are shown in Figures 9-11. In the plots
the points are scattered uniformly about the diagonal line,
suggesting that the models are reasonable.

Comparison of regression and ANN models

The models produced from ANN and regression analysis were
compared using the correlation coefficients, the estimation
capabilities, and the standard errors of estimates. The
correlation coefficients of Equations [1] and [2] are strong,
as shown in Table IV. However, the estimation capabilities of
these equations are not good, as shown in Figures 1 and 2.
Nevertheless, the corresponding ANN models (Model I and II)
have much stronger correlation coefficients than those of the
regression models and their estimation capabilities are very
good, as shown in Figures 9 and 10. Although the correlation
coefficient and the estimation capability of Equation [3] are
not good, the corresponding ANN model (Model I1I) has a
very strong correlation coefficient and its estimation
capability is good, as shown in Figure 11.

The standard errors of estimates, which are the other
criteria for the comparison, are also indicated in Table IV. The
values of standard error of estimates for the ANN models are
much lower than those of the regression models.

The comparison of the models produced from ANN and
regression analysis using the correlation coefficients and the
standard error of estimates indicates that ANN models for the
prediction of penetration rate are more reliable than the
regression models.

Comparison of derived models and previous models
Most of the previous regression models were derived for
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Table IV

Correlation coefficients and standard error of
estimates for the models produced from ANN and
regression analysis

Model type Model no. Coefficient of | Standard error
correlation (r) of estimate
Regression models Eq. [1] 0.92 9.42
Eq. [2] 0.80 12.78
Eq. [3] 0.64 19.42
ANN models Model | 0.99 2.57
Model Il 0.98 4.79
Model Il 0.95 6.06

specific cases. For example, while some of them are valid for
pneumatic drills, others are valid for hydraulic drills. The
rock bit type may also change from one study to another. On
the other hand, some previous models were derived for
constant operational variables and only include rock
properties. The examples of specific cases can be increased.
For this reason, a direct comparison between the models
derived in this study and the models suggested by other
authors is difficult - only a general comparison can be made.
Compared to the some previous models, the derived models
include operational variables such as operational pressure
and feed pressure. This makes the models more generalized.
Another advantage of the derived models is that they include
indirect test values, which can be easily determined.
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Regarding the studies on the predictability of drilling rate
from ANN, making a direct comparison between the ANN
models constructed in this study and the models suggested
by other authors is also difficult. As stated above, there are
very limited studies on this subject. Some of the derived
models are valid for diamond drilling (Akin and Karpuz,
2008; Basarir, Tutluoglu, and Karpuz, 2014) or oil well
rotary drilling (Monazami, Hashemi, and Shahbazian, 2012).
There is another available model (Khandelwal and
Armaghani, 2016) which is related to DRI, and is an indirect
measure of penetration rate. The ANN model constructed in
this study can only be compared to the ANN model suggested
by Aalizad and Rashidinejad (2012). The strength of the
Aalizad and Rashidinejad model is that it includes rock mass
and hole properties together with operational variables.
However, because the model includes seven intact rock
properties, it is too complex and not practical. Determining
seven rock properties is time-consuming and expensive. On
the other hand, it is known from the literature that there are
generally strong correlations among some of these seven rock
properties, such as uniaxial compressive strength, Brazilian
tensile strength, and P-wave velocity. As a result, it can be
said that because the ANN model constructed in this study
includes one or two indirect test values, it is more practical
than Aalizad and Rashidinejad’s model.

Conclusion

The predictability of penetration rate for percussive drills
from indirect tests such as Shore hardness, P-wave velocity,
799 4
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density, and quartz content was investigated using ANNs and
the results were compared with the derived regression
models. Very good models were derived from ANN analysis
for the prediction of penetration rate. The comparison of ANN
models with the regression models showed that ANN models
are more reliable than the derived regression models. This is
because the drillability of rock is a nonlinear multivariable
problem and ANNs show good performance in the solving
such problems.

This research has shown that the penetration rate for
percussive drills can be reliably estimated from the
operational pressure, feed pressure, Shore hardness, and
density by using ANN analysis. Three ANN models that are
reliable were derived. One of these models can be alterna-
tively used for the estimation purpose. Because the
constructed ANN models have little input, they can be used
practically. On the other hand, the rock properties included in
the ANN models are indirect test values which are easy and
cheap to obtain. Therefore, it can be said that the derived
ANN models will be useful for practitioners and researchers
studying rock drilling.

In conclusion, the ANN is a useful method for the
estimation of the penetration rate for percussive drills.
Further research should be carried out for different drilling
machines and different cases.
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