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a b s t r a c t 

We show that existing Bayesian network (BN) modelling techniques cannot capture the correct intuitive 

reasoning in the important case when a set of mutually exclusive events need to be modelled as separate 

nodes instead of states of a single node. A previously proposed ‘solution’, which introduces a simple con- 

straint node that enforces mutual exclusivity, fails to preserve the prior probabilities of the events, while 

other proposed solutions involve major changes to the original model. We provide a novel and simple 

solution to this problem that works in all cases where the mutually exclusive nodes have no common 

ancestors. Our solution uses a special type of constraint and auxiliary node together with formulas for 

assigning their necessary conditional probability table values. The solution enforces mutual exclusivity 

between events and preserves their prior probabilities while leaving all original BN nodes unchanged. 

© 2016 The Authors. Published by Elsevier B.V. 
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. Introduction 

A Bayesian network (BN) is a graphical probabilistic model

hat is especially well-suited in decision-making scenarios that re-

uire us to consider multiple pieces of uncertain evidence involv-

ng causal relationships [6] . A BN consists of a set of nodes (that

epresent uncertain variables) and directed edges between those

odes for which there is a causal or evidential relationship. Ev-

ry node has an associated conditional probability table (CPT); for

ny node without parents the CPT specifies the prior probabili-

ies of each of the node states, while for any node with parents

he CPT captures the prior probability of each node state condi-

ioned on each combination of states of the parent nodes. In addi-

ion to its powerful visual appeal, a BN has an underlying calculus

ased on Bayes Theorem that determines the revised probability

eliefs of all uncertain variables when any piece of new evidence is

resented. This process is called evidence propagation [6,14] . There
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re widely available BN tools that implement standard propaga-

ion algorithms (see [12] for extensive list and comparisons), and

ence enable non-specialist users to easily build and run BN mod-

ls. With propagation a BN can be used for both prognostic and

iagnostic types of reasoning. In prognostic reasoning we enter ev-

dence about causes in order to reason about effects (we also refer

o this as ‘forward inference’) whereas in diagnostic reasoning we

nter evidence about effects to reason about causes (we also refer

o this as ‘backward inference’). 

What we are interested in here is the special case where dif-

erent possible events or outcomes are necessarily mutually exclu-

ive (meaning that only one can be true at any time) but where

hese outcomes need to be modelled as separate BN nodes rather

han states of a single node. We assume that these separate nodes

ave no common ancestors. In Section 2 we describe why this

s a common and important problem and what properties need

o be satisfied in any BN that attempts to model mutually ex-

lusive outcomes as separate nodes. Although previous work has

ouched on the problem (Diez and Druzdzel [5,8,9,11,14–16] ) it has

ever been stated explicitly nor has it been adequately resolved,

lthough the problem of transforming the states of a variable into

ultiple mutually exclusive variables appears to bear a close re-
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 
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Fig. 1. BN model fragment based around a node S with n states. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Ideal structure separating the mutually exclusive outcomes into distinct 

(Boolean) nodes (note that, although we allow common descendants of the status 

nodes, we do not consider common ancestors). 

l  

B  

m  

v  

a

 

 

 

 

 

 

 

 

 

 

 

 

 

f

 

t  

r  

m  

f  

p  

c  

w  

a  

s  

o

 

d  

w  

B  

p

P  

e

P  

i  

t

semblance to the problem of transforming an n -ary constraint into

multiple binary ones in the field of constraint satisfaction [17] . In

Section 3 we review previously proposed solutions and show their

limitations. In Section 4 we provide a novel solution to the prob-

lem that involves introducing an auxiliary node with a constraint,

and provide the formulas needed to assign values to the new CPTs.

Section 5 provides examples and guidelines on where it is appro-

priate to use the proposed solution. 

Executable versions of all of the BN models described in the

paper are freely available for inspection and use in the supplemen-

tary content. 

2. The problem 

The generic BN in Fig. 1 involves a node S – with n discrete

states – and a set of ancestor and descendant nodes. This BN struc-

ture is typical of many that arise in real world problems, such as

in legal arguments and inquests. The states of node S represent n

mutually exclusive and exhaustive, but unobservable, hypotheses

of which we seek to determine which is/was the most likely. For

example, in an autopsy the states of S might correspond to the set

of possible causes of death {natural, suicide, accident, murder}. The

example in Appendix A is of a legal trial of a defendant D where

the hypotheses are not simply just {guilty, not guilty}. There are a

wide range of applications where the problem occurs and needs to

be solved, including any problem in which the events that we wish

to determine or predict represent a classification of some outcome.

For example: 

• Identifying an airborne enemy threat { Missile , Aircraft , Drone ,

Other }: 

• Predicting the winner of an election {candidate1, candidate2,

…candidateN) 

What characterises these sorts of BN model fragments are the

following common properties: 

• The ancestors of S typically represent separate ‘causal path-

ways’ for the different states of S. So, in the autopsy case

the ‘accident’ hypothesis might involve a narrative with factors

such as “participating in dangerous sports”, while the ‘murder’

hypothesis might involve a narrative with factors such as “in

dispute with known criminal gang”

• The descendants of S typically represent diagnostic and other

evidence about the individual states of S. For example, evidence

of a bullet found in the back of the body supports the murder

hypothesis. 

The focus of the model is in determining, after observing the

evidence and considering all prior assumptions and probabilities,

which of the mutually exclusive states of the node S is the most
ikely. However, there is a fundamental problem in building such a

N: it requires us to complete CPTs which (in realistic examples with

ultiple causes and outcomes) are infeasibly large and for which the

ast majority of entries are either redundant or meaningless . For ex-

mple: 

• The CPT for S : In the example in Appendix A , even if we assume

all causal parents have just two states (true and false), this CPT

has 6 ×2 7 = 768 entries. Although each causal node influences

only one possible hypothesis we are forced to give (redundant)

separate probabilities conditioned on every combination of all

the other causal factor states. For example, “X often swam in

sea” can only influence whether or not “X died accidentally”;

yet we are forced to provide separate probabilities of “X died

accidentally” given each of the 64 possible combinations of val-

ues for the other causal factors – none of which is relevant. 

• The CPT for child nodes of S : Since most of these are also only

relevant for a single hypothesis, we again have to unnecessarily

specify separate probabilities conditioned on each of the differ-

ent hypotheses states. 

Hence, the problem we wish to solve can be characterised as

ollows: 

The states of the main node S correspond – by definition – to mu-

ually exclusive alternative ‘events’ or ‘states of the world’. These sepa-

ate events have independent causal parental pathways (by which we

ean no common ancestors) as well as largely independent causal ef-

ects, diagnostics and evidence. Yet, because the separate events are

art of a single BN node we are unable to disentangle the separate

auses and effects. Ideally, we would like to use instead a model in

hich the separate ‘events’ are modelled as separate Boolean nodes

s shown in Fig. 2 and in which the revised model successfully pre-

erves the prior probabilities of each of the mutually exclusive events

ccurring. 

Specifically, and completely generally, we want to be able to

efine a transformation of an n -state node into n Boolean nodes,

here C i is the random (binary) variable associated with i th ‘new’

oolean node. The revised model must satisfy the following two

roperties to ensure it is semantically equivalent to the original: 

roperty 1 (Basic Mutual Exclusivity) . P(C j = false | C i = true) = 1 for

ach i � = j 

roperty 2 (Equivalence of prior probabilities of the events) . For each

 , the prior marginal probability P ( C i = true ) is equal to P ( S = c i ) in

he original model. 
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Fig. 3. Solution for special case when node S has no ancestors. 
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Fig. 4. Enforcing mutual exclusivity by introducing simple Boolean constraint node. 
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. Previously proposed solutions and their limitations 

.1. Basic solution 

There is a simple solution to the problem in the special case

hen there are no ancestors of the node S . In this case, the solu-

ion is to retain the node S and introduce the C i nodes as children

s shown in Fig. 3. 

In this case, for i = 1 to n , the CPT for node C i is defined by: 

 

(
C i = true | c j 

)
= 

{
1 i f i = j 
0 is i � = j 

f or j = 1 , . . . , n. 

This CPT assignment ensures both Properties 1 and 2 hold: 

Property 1 holds since If C i is true then P ( C j = false ) = 1 for each

 � = j . 

Property 2 holds since 

 ( C i = true ) = 

n ∑ 

j=1 

P 
(
C i = true | c j 

)
P 
(
c j 

)
= P ( c i ) . 

Clearly, because this solution involves node S as a parent of

ach of the consequence nodes C i it does not help us in the case

here S has ancestors. 

.2. Solution with linked c i nodes 

It turns out (as explained in Appendix B ) that for the gen-

ral case it is possible to construct a ‘solution’ that satisfies both

roperties 1 and 2 by directly linking C i nodes together. However,

y introducing direct links between the C i nodes we destroy the

ntire rationale for introducing separate event nodes, which was to

eparate the causal pathways to and from the events. Appendix B ,

herefore, also explains in detail why linking consequence nodes is

nsatisfactory (in the solution we propose in Section 4 there are no

irect dependencies between any of the C i nodes). The solution in

ppendix B is also infeasible where the number of states n is large,

ince for i = 2…n , even if the node C i has no causal parent nodes,

t has i -1 enforced parent nodes (namely C 1 ,…C i-1 ) and hence 2 i 

PT entries. 

.3. The simple constraint method 

Jensen and Nielsen [9] proposed a solution by introducing a

oolean constraint node (as shown in Fig. 4 for the simplest case

here n = 2) and setting it to be true . The CPT for the constraint

ode is a deterministic XOR , i.e. is defined as true when exactly

ne of the parents is true and false otherwise (so this easily gener-

lizes to arbitrary n nodes). Providing the constraint is always set

o be true when the model is run, Property 1 is clearly satisfied
ecause if C i is true then, since the constraint is true, C j must be

alse for each j � = i because of the definition of the CPT. 

However, since this solution requires the constraint node to be

rue it does not in general preserve the prior probabilities of C 1 
nd C 2 , and thus it does not satisfy Property 2 . To see this, sup-

ose P ( C 1 = true) = x . Then, since there are just two mutually ex-

lusive causes, this means that we would expect P ( C 2 = true) = 1- x .

ut then 

 ( C1 = t rue | Const raint = t rue ) 

 

P ( C1 = true ) × ( 1 − P ( C2 = true ) ) 

( P ( C1 = true ) × ( 1 − P ( C2 = true ) ) + P ( C2 = true ) × ( 1 − P ( C1 = true ) ) )

 

x 2 

x 2 + ( 1 − x ) 
2 
, 

hich is equal to x only when x = 1 or x = 0.5 

For example, suppose P ( C 1 = true) = 0.7. Then, P ( C 1 = true |

onstraint = true) = 0.8448. 

So, when the constraint is set to true (as is necessary) the priors

or the cause nodes change even though no actual evidence has

een entered. 

It is important to note that in the examples in [9] the priors for

he mutually exclusive nodes were assumed to be uniform (i.e. in

he 2-node example the prior true and false probabilities were 0.5

or each C i node). 

.4. Extended XOR solution 

Diez and Druzdzel [5] also introduced an XOR constraint node

nd proposed a method that also satisfies Property 2 . This solution

nvolves directly changing the CPTs of every cause node. Specif-

cally, assuming the original prior probability P ( C i = True ) = x i then

he CPT of C i is changed to 

 ( Ci = T rue ) = 

x i 
1 + x i 

These prior probability values ensure that the posterior prob-

bility of C i is equal to x i when the deterministic XOR constraint

s instantiated. The drawback here is that user sees a completely

ifferent set of CPTs for the original cause nodes so the model be-

omes unrecognisable from the original model. Furthermore, in its

urrent form this solution also has limited value when mutually

xclusive events have ancestors, as it becomes difficult to define

he correct CPT values that satisfy the target posterior probability

istribution. 

. Proposed general solution 

Our solution (see Fig. 5 for the structure) avoids the problems

f the previous solutions and leaves all of the original BN nodes –

nd their relationships – unchanged. 
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Fig. 5. Structure for general solution. 

Table 1 

CPT for auxiliary cause node (specifically: P ( ci = 1) when Ci 

= true and Cj = false for each i � = j ; otherwise P ( ci = 0); P ( NA ) = 

0 if exactly one Ci is true and 1 otherwise). 

C 1 False True 

C 2 False True False True 

…

C n False True False True False True False True 

c 1 0 0 0 0 1 0 0 0 

c 2 0 0 1 0 0 0 0 0 

…

c n 0 1 0 0 0 0 0 0 

NA 0 0 0 1 0 1 1 1 

Table 2 

CPT for constraint node. 

Auxiliary c 1 c 2 … c n NA 

False x 1 x 2 … x n 1 

True 1 - x 1 1 - x 2 … 1 - x n 0 
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The solution is to add two nodes to the network in Fig. 2: an

auxiliary classification node, which is a common child of the C i 
nodes, and a constraint node child of this auxiliary node to satisfy

Properties 1 and 2 . Setting the constraint node to true does not

change the prior probabilities for the C i nodes. 

The auxiliary node has n + 1 states, namely the n original states

c i (for i = 1 to n ) of the node S plus a special NA state stand-

ing for “Not Applicable” and representing impossible combina-

tions. In what follows we will assume that in the original model

P(S = c i ) = x i for i = 1 to n and hence that the necessary prior prob-

abilities for each node Ci are P( Ci = true) = x i. 

Theorem. If the CPT of the auxiliary node is defined as in Table 1 ,

and the CPT of the constraint node is defined as in Table 2 , then

both Properties 1 and 2 are satisfied when the constraint is true. 

Proof. First we prove Property 1 holds, i.e. P ( C j = false |

C i = true) = 1 for each i � = j . �

We argue by contradiction. Suppose Property 1 does not hold.

Then C j is true for some i � = j when C i is true . But, if C i and C j
are both true then, from the definition of the CPT for the auxil-

iary node, we must have P ( NA ) = 1. But then, from the definition

of the CPT for the constraint node P (constraint = true) = 0, which

contradicts the fact that the constraint is ‘true’. 

To prove Property 2 we have to show that the marginal proba-

bilities for the C nodes do not change when the constraint is set
i 
o true, i.e. we have to show for each i = 1 to n 

 ( C i = true | constraint = true ) = P ( C i = true ) (1)

By Bayes 

 ( C i = true | constraint = true ) 

= 

P (const raint = t rue | C i = t rue ) × P ( C i = true ) 

P ( const raint = t rue ) 
(2)

Hence, if we can show 

 ( const raint = t rue | C i = t rue ) = P ( const raint = t rue ) , (3)

t follows from (2) that (1) is true. 

When C i = true it follows from the definition of the CPT for the

uxiliary node that 

 

(
c j | C i = true 

)
= 

{ n ∏ 

j � = i 
P 
(
C j = false 

)
= 

n ∏ 

j � = i 

(
1 − x j 

)
if j = i 

0 if j � = i 

(4)

Using (4) it follows from the definition of the CPT for the con-

traint node and marginalisation that: 

 ( const raint = t rue | C i = t rue ) = 

n ∑ 

j=1 

(1 − x j ) × P ( c j | C i = true ) 

= ( 1 − x i ) ×
n ∏ 

j � = i 
(1 − x j ) (by (4)) 

= 

n ∏ 

i =1 

(1 − x i ) (5)

Now we know from the definition of the CPT for the auxiliary

ode that: 

 ( c 1 ) = P ( C 1 = true, C 2 = false, . . . , C n = false ) 

= x 1 ( 1 − x 2 ) . . . ( 1 − x n ) 

 ( c 2 ) = P ( C 1 = false, C 2 = true, . . . , C n = false ) 

= ( 1 − x 1 ) x 2 . . . ( 1 − x n ) 

 . . 

 ( c n ) = P ( C 1 = false, C 2 = false, . . . , C n = true ) 

= ( 1 − x 1 ) ( 1 − x 2 ) . . . x n 

So, in general for each i : 

 ( c i ) = x i 

n ∏ 

j � = i 

(
1 − x j 

)
Using this together with the definition of the CPT for the con-

traint node and marginalisation: 

 ( const raint = t rue ) = 

n ∑ 

i =1 

( 1 − x i ) P ( c i ) 

= 

n ∑ 

i =1 

( 

( 1 − x i ) x i 

n ∏ 

j � = i 

(
1 − x j 

)) 

= 

n ∑ 

i =1 

( 

( x i 

n ∏ 

i =1 

( 1 − x i ) 

) 

= 

n ∏ 

i =1 

( 1 − x i ) 

( 

n ∑ 

i =1 

x i 

) 

= 

n ∏ 

i =1 

( 1 − x i ) , (6)



N. Fenton et al. / Knowledge-Based Systems 113 (2016) 39–50 43 

Fig. 6. Example model showing the solution in action ( n = 3). 
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Table 3 

Alternative CPT for constraint node with constant multiple. 

Auxiliary c 1 c 2 … c n NA 

False 1 −k( 1 −x 1 ) 1 −k( 1 −x 2 ) … 1 −k( 1 −x n ) 1 

True k( 1 − x 1 ) k( 1 − x 2 ) … k( 1 − x n ) 0 

 

 

 

 

 

 

 

ince 
∑ n 

i =1 x i = 1 

This completes the proof. An example using the solution is

hown in Fig. 6. 

There are four important points to note about the solution: 

1. The values in Table 2 are not unique . In fact, it follows from the

above proof that any constant multiple of the values will also

work (provided the results are all between 0 and 1 as they are

probabilities assigned to a CPT), i.e. for any constant, for which 

0 < k ( 1 − x i ) < 1 for each i. 

Multiplying the probabilities by k is correct because only the

relative likelihoods transmitted from ‘constraint’ to ‘auxiliary’

are relevant. For example, Table 3 also works. 

2. It extends to non-exhaustive events . If our starting point for the

mutual exclusivity problem is a node whose states we wish

to represent as separate nodes then, by definition, the set of

states are not only mutually exclusive but also exhaustive . How-

ever, in many situations our starting point for the problem is a
BN in which we already have constructed separate nodes that

we wish to force to be ‘mutually exclusive’. In such situations

the set of states may not be exhaustive. The proposed solution

works in such situations by simply adding a ‘leak’ state to the

auxiliary node. This state represents the logical alternative 

not ( C 1 or C 1 or . . . o r C n ) , 

where C 1 , …, C n are the nodes representing the known mu-

tually exclusive events. By definition adding this state ensures

the set { C 1 , …, C n , leak } is mutually exclusive and exhaustive,

and the prior probability of the state leak is simply 1 − ∑ n 
i =1 x i 
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Table 4 

CPT for constraint node where the states C 1 , …, C n are not exhaustive. 

Auxiliary c 1 c 2 … c n leak NA 

False x 1 x 2 … x n 
∑ n 

i =1 x i 1 

True 1 − x 1 1 − x 2 … 1 − x n 1 − ∑ n 
i =1 x i 0 

Fig. 7. Blood is found on the defendant’s shirt. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B  

a  

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

a  

m  

n

 

 

 

 

 

 

 

 

 

 

d  

t  

c  

p  

t  

p  

t  

c  

m  

n

 

a  
where x i is the prior probability of state C i . Hence, the neces-

sary CPT for the constraint node is that shown in Table 4. 

3. There is an equivalent solution that does not require a separate

constraint node . The constraint on the auxiliary node can also

be imposed by using virtual evidence [2–4] directly on the aux-

iliary. This is explained in Appendix C , but this solution is more

difficult to implement practically. 

4. The solution does not work if there are common ancestors of the

C i nodes . Suppose, for example, that two nodes C i and C j have

a common parent node A . Then these nodes are d -connected

once the evidence “true” is entered in the constraint node. So

back propagation from C i to A can result in a change to P( C j ).

No such change is possible if there are no common ancestors.

There are no problems for common descendants since evidence

in the constraint node does not change the conditional inde-

pendence assertions of descendant nodes. 

5. Using the proposed solution in practice 

Our original motivation for solving the problem was driven by

its frequent occurrence in handling legal arguments where the

prosecution and defence hypotheses normally have clearly differ-

ent causal explanations and evidence [7] . Indeed, in that paper we

identified it as an ‘idiom’ that was a special case of the classic

‘explaining away’ reasoning. Fig. 7 shows an example fragment of

a model from [7] in which two nodes need to be separate (be-

cause of different causal pathways) but also have to be mutually

exclusive. The solution proposed in Section 4 achieves the logically

‘correct’ probabilistic reasoning in this model when evidence is en-

tered. Ordinary ‘explaining away’ (which can only be achieved by

the definition of the CPT for node ‘Blood on shirt matches victim

blood’) simply does not work. 

Our proposed solution has also already been adopted by Vlek

et al. [18] to analyse evidence in legal trials using narratives. Vlek

et al. [18] used mutually exclusive causes to combine multiple BN

fragments about different narratives in a real legal case study. Each
N fragment represented an alternative scenario explaining the

vailable evidence. Since only one scenario can be true, the sce-

arios are modelled as mutually exclusive causes of the incident. 

The proposed method comes with some limitations: 

• The benefits of the method are limited when the number of

mutually exclusive causes is low. In real-world problems, how-

ever, it is very common to deal with multiple causes and/or

classifications, and in these cases the method becomes useful. 

• There is a need to update the CPT of the constraint node when

the CPTs of the ancestors of the Ci ’s change. Care is needed in

situations where the mutually exclusive events represent alter-

native ‘causes’ of some incident. 

• It may be impossible to identify the set of all potential causes

and hence there is a danger in assuming that the set of iden-

tified potential causes is exhaustive. This danger is especially

pertinent for some legal arguments, where the causes repre-

sent different hypotheses (for example, the defendant fired a

weapon without provocation or fired in self-defence). Strong

evidence against one hypothesis here would result in favour-

ing the other. This would be an inappropriate conclusion in the

case where an additional potential hypothesis, say ‘fire by ac-

cident’, had been wrongly omitted from the model. The ‘fix’ to

this problem is either to accept that the causes are not exhaus-

tive (and to use probability to deal with unknown causes) or

to add a catch-all ‘other/unknown’ cause to the list of known

causes. The none state in our solution represents the case where

all causes in the model are false and therefore it can be used

to model ‘other/unknown’ causes that are not included in the

model. However, modelling unknown causes in a BN model cre-

ates different problems, notably that of completing the neces-

sary prior conditional probabilities for the effect given a cause

that we do not know. 

. Conclusions 

BNs have proven to be a very powerful method for reasoning

bout uncertainty. However, in situations where we wish to model

utually exclusive events as part of a complex argument there is

o ‘natural’ BN model that works. We can: 

• Model the events as the states of a single node . But this comes at

the heavy cost of introducing complex and often meaningless

sets of conditional probabilities. In practice we have found this

‘solution’ is unsatisfactory and often infeasible. 

• Introduce direct links between the nodes . However, the ‘obvious’

solution fails to retain the prior probabilities of the event states.

Although we have shown it is possible to get round this prob-

lem using a special assignment of CPT values ( Appendix B ), any

linked nodes solution defeats the objective of keeping causal

pathways into individual nodes separate. Hence, this ‘solution’

never makes sense unless the event nodes have no parents. 

We showed that the proposed ‘solution’ ( Section 3.3 ) of intro-

ucing a simple XOR constraint node and setting it to ‘ true ’ fails

o retain the prior probabilities of the event states except in spe-

ial cases. The proposed extended XOR solution ( Section 3.4 ) does

reserve the priors but at the unacceptably heavy cost of having

o redefine every event node CPT. The verified solution we have

roposed makes no changes at all to the original BN nodes and

heir links. What we have done is produce an auxiliary node and a

onstraint node that is set to ‘ true ’. Our solution provides a simple

ethod for assigning the necessary CPT values in all cases to these

ew nodes. 

Our solution is by no means ideal since it involves additional

rtificial nodes, as well as a NA state that represents impossible
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Fig. 8. Simplified example of BN model used for prognosis and diagnosis. 
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tate combinations, and a None state where the mutually exclusive

vents are not exhaustive. However, there is no solution to the mu-

ual exclusivity problem without changing the original BN struc-

ure, and the solution we have provided solves the problem under

he properties described in this paper, which represent common

odelling scenarios. 

Although we have described the problem and its solution in

eneric form this is certainly not a purely theoretical exercise.

xamples mentioned in the paper (legal arguments and military

hreat assessment) are examples involving real clients where we

eeded to model mutually exclusive causes and discovered that the

tandard BN solutions did not work. 
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ppendix A. Example problem. 

The example BN in Fig. 8 is a simplified version of a typical

N used to model legal arguments. In this example a defendant

 is charged with the murder of X. Although the body of X has

ever been discovered the prosecution case is based around the

ollowing evidence: 

• Opportunity and motive (causal factors) : A witness claims to

have seen D entering X’s apartment the day before he was re-

ported missing (opportunity) and other witnesses claim that D

had said he wanted to kill X following a dispute (motive). 
• Diagnostic and other evidence : Various forensic evidence

found on D and at X’s apartment after X’s disappearance link-

ing D to a violent confrontation with X; evidence of a struggle

taking place at X’s apartment 

The defence has one piece of evidence (an alibi from D that

hallenges the ‘opportunity’ evidence of the prosecution) but also

uggests a number of possible alternatives hypotheses to the pros-

cution’s each of which has its own different narrative and ev-

dence (both causal and diagnostic). The ideal structure for this

roblem, involving separate ‘mutually exclusive’ nodes for each hy-

othesis about X is shown in Fig. 9. 

ppendix B. Solution involving direct dependencies between 

he C i nodes. 

Mutual exclusivity between separate nodes can also be enforced

y adding edges between every pair of those nodes. The main task

n this case is to assign the CPTs of those in such a way that both

roperties of mutual exclusivity are satisfied, and to avoid intro-

ucing cycles to the BN structure. Let C 1 , …C n be separate nodes

hat we want to enforce mutual exclusivity. In order to have edges

etween every pair of those nodes, we need to add ( 
n 

2 
) edges. 

Suppose any edge added between C i to C j is directed from C i to

 j where i < j . In other words, C 1 has no parents, C 2 has 1 parent

i.e. C 1 ), C n has n −1 parents (i.e. C 1 , …, C n −1 ) etc. ( Fig. 10 shows

n example where n = 3). Our task is to assign the CPTs of C 1 , …C n 
n such a way that both properties of mutual exclusivity are satis-

ed. A possible ‘solution’ is to define the CPT of the node C i (where

 > 1) to be false for all columns except one: the column in which

ll the parents are false . For this column, the CPT is defined as: 
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Fig. 9. Ideal structure separating the mutually exclusive outcomes into distinct (Boolean) nodes (note that, although we allow common descendants of the status nodes, we 

do not consider common ancestors). 

Fig. 10. Ensuring mutual exclusivity through direct dependencies between the C i 
nodes. Note that the last column of the CPT for C3 represents an impossible state 

combination and so can be defined with any values. 

 

 

 

 

Fig. 11. Marginal values for C i = true are all equal to 1/3 . 

Fig. 12. Marginals of 0.7, 0.2, 0.1 are NOT preserved. 
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• for i < n: true and false are both assigned probabilities 0.5 

• for n : it must be true (i.e. true is assigned probability 1) 

However, it turns out that the solution fails to satisfy

Property 2 (equivalence of prior marginals), except in some spe-

cial cases (such as when n = 2). This is because whatever value x 1 ,

i.e. the prior of C 1 , is set to the other C i ’s will have the following

marginal values for true : 

In the case where n = 3 

P ( C 2 = T rue ) = ( 1 − x 1 ) / 2 

P ( C 3 = T rue ) = ( 1 − x 1 ) / 2 

In the case where n = 4: 

P ( C 2 = T rue ) = ( 1 − x 1 ) / 2 

P ( C 3 = T rue ) = ( 1 − x 1 ) / 4 

P ( C 4 = T rue ) = ( 1 − x 1 ) / 4 

In the case where n = 5: 

P ( C 2 = T rue ) = ( 1 − x 1 ) / 2 

P ( C 3 = T rue ) = ( 1 − x 1 ) / 4 

P ( C 4 = T rue ) = ( 1 − x 1 ) / 8 

P ( C 5 = T rue ) = ( 1 − x 1 ) / 8 
P

etc. 

So, in the special case when n = 3 and each of the priors hap-

ens to be 1/3 the solution will work as shown in Fig. 11. 

However, suppose that the marginals for states c 1 , c 2 , c 3 are

.7, 0.2 and 0.1 respectively. Then, because x 2 � = x 3 , the marginals

re not preserved (as shown in Fig. 12 ). 

In order to preserve the marginals we have to be much more

areful in the definition of the CPTs of nodes C i where 1 < i < n .

pecifically, we cannot assign uniform values to true and false for

he column where all parents are false . 

Instead, we have to assign values that preserve the priors. Now

e know that the marginal probability P ( C i = true ) is simply the

um of all probabilities of the form: 

 ( C i = true | C 1 = true, C 2 = false, . . . , C i −1 = true ) 
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Fig. 13. Marginals 0.7, 0.2, 0.1 are preserved. 
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 ( C 1 = true ) . . . P ( C i −1 = true ) 

here we consider all state combinations of the parents C 1 , …,

C i −1 

However, we also know that the conditional probability that C i 
s true given the parents’ states is 0 unless all the parents are false .

ence, we can conclude that the marginal probability P ( C i = true )

s equal to: 

 ( C i = true | C 1 = false, C 2 = false, . . . , C i −1 = false ) 

 ( C 1 = false ) . . . P ( C i −1 = false ) 

However, we need P ( C i = true ) to be equal to the marginal prob-

bility for the state c i , i.e. x i . Then it follows that: 

 i = P ( C i = true | C 1 = false, C 2 = false, . . . , C i −1 = false ) 

× (1 − x 1 )(1 − x 2 ) . . . ( 1 − x i −1 ) 

nd hence 

 ( C i = true | C 1 = f alse, C 2 = f alse, . . . , C i −1 = f alse ) 

= 

x i 
( 1 − x 1 )( 1 − x 2 ) . . . ( 1 − x i −1 ) 

So, the required CPT entry for C i being true when all the parents

re false is: 

x i 

( 1 − x 1 ) ( 1 − x 2 ) . . . ( 1 − x i −1 ) 

As an example consider the case where the marginals for

 1 , c 2 , c 3 are respectively 0.7, 0.2, 0.1 then it is the CPT for

ode C 2 that has to be redefined with P (C 2 = true |C 1 = false ) equal

o 0.2/(1 −0.7) = 2/3. With this assignment we get the preserved

arginal as shown in Fig. 13. 

Although we have shown that it is possible to configure the

PTs such that Properties 1 and 2 are both satisfied, the solution is

nsatisfactory because it compromises the fact that the main ob-

ective of creating separate nodes for each outcome was to sepa-

ate the largely independent causal pathways to and from the out-

omes. By introducing direct links between the C i nodes we de-

troy the separation, and actually create a model that is far more

omplex than the original. Not only do we now need carefully con-

tructed CPTs for each of the C i nodes conditioned on other C j 
odes, but these CPTs have to be completely redefined as soon

s there are causal parents for node C i . We are again forced to

onsider all the irrelevant combinations of states of all the other

 j nodes in defining the CPT for C j given the causal factors. Even

ithout causal factor parents, the CPTs involve a whole range of

eaningless columns and impossible state combinations. 

Another unsatisfactory aspect of this ‘solution’ is the fact that

e have to arbitrarily decide which one of C i and C j is to be the

parent’ of the other even in cases where a temporal or causal as-

ociation between these mutually exclusive events simply does not

xist. 
ppendix C. Virtual evidence solution 

The constraint node linked to the auxiliary node (described in

ection 4 ) can also be interpreted as uncertain evidence and han-

led accordingly. BNs have two types of uncertain evidence – vir-

ual and soft evidence – that are often confused with each other

2,4,14] . Virtual evidence uses a likelihood ratio to represent the

ncertainty of evidence. The formal definition of virtual evidence

s as follows: 

Let η be some uncertain evidence imposed on a set of mutually

xclusive and exhaustive events c 1 , …, c n and assume that such

vidence is specified by w 1 , …, w n such that: 

 ( η| c 1 ) : . . . : P ( η| c n ) = w 1 : . . . : w n , 

he revised distribution proposed by the virtual evidence is P (.| η).

he virtual event η is independent of all other events given c i for

 = 1,…, n . 

In BNs, virtual evidence can be manually modelled by: 

1. adding a dummy node that corresponds to η, 

2. adding a directed edge between the node containing c i and the

dummy node, 

3. instantiating the dummy node. 

The dummy node is equivalent to the constraint node in our

ethod. The conditional probabilities of the instantiated state of

he dummy node are defined according to the likelihood ratio of

ncertain evidence. 

Virtual evidence is implemented in many commercial BN soft-

are packages that automatically handle the dummy variable and

ts CPT. When we use such software, our task is only to set the

irtual evidence weights representing likelihood ratios: 

( w 1 , w 2 , . . . , w n , w NA ) 

or the respective states c 1 , …, c n , NA in such a way that the re-

ulting marginal for the auxiliary node is equal to: 

( x 1 , x 2 , . . . , x n , 0 ) . 

Note that we also have to define a weight for the NA state in

ur auxiliary node. The required virtual evidence weights are the

ame as the CPT parameters of the constraint node described in

ection 4 : 

 i = k ( 1 − x i ) for i = 1 , . . . , n, 

 NA = 0 , 

here k is any constant for which 1 > k (1 −x i ) > 0 . 

Fig. 14 shows how the constraint is imposed with virtual

vidence in AgenaRisk [1] using the same example shown in

ection 4 . 

We use virtual evidence to set the probabilities of the auxiliary

ode to a target value. This is analogous to the second type of un-

ertain evidence called soft evidence. While virtual evidence uses

ncertain evidence values as likelihood ratios, soft evidence uses

hem as the target posterior distribution. In other words, when soft

vidence is applied, the result of propagating the BN is such that

he marginal distribution for the node N is exactly the array ( x 1 ,

 2 , …, x n ), where x i ’s sum to one. The formal definition of soft ev-

dence is as follows: 

Let η be some uncertain evidence imposed on a set of mutually

xclusive and exhaustive events c 1 , …, c n , the revised distribution

roposed by soft evidence satisfy the following constraint 

 ( c i | η) = x i . 

The solution described in this appendix uses the virtual ev-

dence updating to produce the soft evidence outcome. Another
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Fig. 14. Alternative Solution using Virtual (Soft) Evidence. 
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way to impose soft evidence by using virtual evidence is to use

the following likelihood ratios as weights of the virtual evidence. 

x 1 
p 1 

: 
x 2 
p 2 

: . . . : 
x n 

p n 
, 

where p i are the probabilities of the states c i before the uncertain

evidence is applied for i = 1,…, n . In our example, p 1 , p 2 , p 3 and p NA

are the probabilities in the auxiliary node before the constraint is

imposed, and their values are 0.504, 0.054, 0.024 and 0.418 respec-

tively (see Fig. 14 ). The target probabilities of the states of the aux-

iliary nodes are 0.7, 0.2, 0.1 and 0 respectively. The likelihood ratios

that satisfy these target probabilities are: 

0 . 7 

0 . 504 

: 
0 . 2 

0 . 054 

: 
0 . 1 

0 . 024 

: 
0 

0 . 418 

. 

These likelihood ratios are the equivalent to the virtual evi-

dence weights computed by w i = k (1 −x i ). 

Soft evidence is not readily implemented in the popular BN

tools; the likelihood ratios that satisfy the desired soft evidence

must be manually calculated and entered by users [12] . There are
ropagation algorithms for soft evidence (for example ‘big clique’

10] , IPFP [13] but none are provided with any of the widely avail-

ble BN tools. There is also a philosophical concern about whether

oft evidence has any rational meaning in the real world. [14] con-

idered that the only sensible type of ‘uncertain evidence’ that

ould rationally be specified was ‘virtual evidence’. The distinction

nd comparison between the different types of uncertain evidence

s explained in detail by [2,4,14] . 
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