Artificial Intelligence 189 (2012) 69-94

Contents lists available at SciVerse ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

Filtering algorithms for global chance constraints ™

Brahim Hnich?, Roberto Rossi®*, S. Armagan Tarim €, Steven Prestwich ¢

4 Department of Computer Engineering, Izmir University of Economics, Turkey

b University of Edinburgh Business School, 29 Buccleuch Place, EH8 9JS, Edinburgh, UK
¢ Department of Management, Hacettepe University, Ankara, Turkey

d Cork Constraint Computation Centre, University College Cork, Ireland

ARTICLE INFO ABSTRACT

Article history: Stochastic Constraint Satisfaction Problems (SCSPs) are a powerful modeling framework for
Received 8 June 2011 problems under uncertainty. To solve them is a PSPACE task. The only complete solution
Received in revised form 7 May 2012 approach to date — scenario-based stochastic constraint programming — compiles SCSPs

Accepted 10 May 2012

Available online 14 May 2012 down into classical CSPs. This allows the reuse of classical constraint solvers to solve SCSPs,

but at the cost of increased space requirements and weak constraint propagation. This
paper tries to overcome these drawbacks by automatically synthesizing filtering algorithms

Is(fgg](;rifc constraint programming for global chance constraints. These filtering algorithms are parameterized by propagators
Stochastic constraint satisfaction for the deterministic version of the chance constraints. This approach allows the reuse
Global chance constraints of existing propagators in current constraint solvers and it has the potential to enhance
Filtering algorithms constraint propagation. Our results show that, for the test bed considered in this work,
Stochastic alldifferent our approach is superior to scenario-based stochastic constraint programming. For these

instances, our approach is more scalable, it produces more compact formulations, it is more
efficient in terms of run time and more effective in terms of pruning for both stochastic
constraint satisfaction and optimization problems.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

In this work we consider problems in which we are required to make decisions under uncertainty. The word uncer-
tainty is used to characterize the existence, in these problems, of uncontrollable or “random” variables,! which cannot be
influenced by the decision maker. In addition to random variables, the problems we consider also comprise controllable
or “decision” variables, to which a value from given domains has to be assigned. More specifically, a problem classified as
deterministic with respect to the degree of uncertainty does not include random variables, while a stochastic problem does.
Random variables are typically employed to model factors such as the customer demand for a certain product, the crop
yield of a given piece of land during a year, the arrival rate of orders at a reservation center and so forth. A continuous
or discrete domain of possible values that can be observed is associated with each random variable. A probabilistic mea-
sure — typically a probability distribution — over such a domain is assumed to be available in order to fully quantify the
likelihood of each value (respectively, range of values in the continuous case) that appears in the domain. The decision
making process comprises one or more consecutive decision stages. In a decision stage, a decision is taken by the decision

* This work is an extended version of Hnich et al. (2009) [11]. S. Armagan Tarim is supported by Hacettepe University (HU-BAB) and the Scientific and
Technological Research Council of Turkey (TUBITAK) under Grant No. 110M500.
* Corresponding author. Tel.: +44 (0) 131 651 4389.
E-mail addresses: brahim.hnich@ieu.edu.tr (B. Hnich), roberto.rossi@ed.ac.uk (R. Rossi), armagan.tarim@hacettepe.edu.tr (S.A. Tarim),
s.prestwich@4c.ucc.ie (S. Prestwich).
1 Alternatively, in the literature, these variables are also denoted as “stochastic”.

0004-3702/$ - see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.artint.2012.05.001

http://dx.doi.org/10.1016/j.artint.2012.05.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
mailto:brahim.hnich@ieu.edu.tr
mailto:roberto.rossi@ed.ac.uk
mailto:armagan.tarim@hacettepe.edu.tr
mailto:s.prestwich@4c.ucc.ie
http://dx.doi.org/10.1016/j.artint.2012.05.001

70 B. Hnich et al. / Artificial Intelligence 189 (2012) 69-94

maker who assigns a value to each controllable variable related to this decision stage of the problem and, subsequently, the
uncontrollable variables related to this stage are observed and their realized values become known to the decision maker.

Stochastic constraint satisfaction problems (SCSPs) are a powerful modeling framework for decision making under uncer-
tainty. SCSPs were first introduced in [28] and further extended in [26] to allow multiple chance constraints and a range of
different objectives. SCSP is a PSPACE-complete problem [28]. The approach in [26] compiles down SCSPs into deterministic
equivalent CSPs. Intuitively, the compilation strategy in [26] relies on a heavy use of binary variables that are employed in
order to encode every single possible future scenario in a monolithic constraint programming model. This makes it possible
to reuse existing solvers, but at the cost of increased space requirements and of weakened constraint propagation.

In this paper we overcome these drawbacks by automatically synthesizing filtering algorithms for global chance con-
straints. These filtering algorithms are built around propagators for the deterministic version of the chance constraints. Like
the approach in [26], our approach reuses the propagators already available for classical CSPs; nevertheless, our approach
uses fewer decision variables — since it does not rely on a reformulation employing binary variables associated with sce-
narios — and it has the potential to strengthen constraint propagation. The ease and power of the generic modeling tools
discussed in this paper make our approach appealing. For the test bed considered in this work, our approach is superior to
the one in [26], since it is more scalable, it produces more compact formulations, and it achieves stronger pruning; in these
experiments our approach is more efficient also in terms of run time and explored nodes for both stochastic constraint
satisfaction and optimization problems.

This work extends preliminary results presented in [11]. In particular, we have introduced additional material proving
the intractability of maintaining generalized arc consistency for global chance constraints that embed a global constraint
for which a poly-time propagator exists. We have introduced two incremental filtering algorithms that were not included
in [11]. In addition to the random stochastic constraint satisfaction problems discussed in [11], we have tested out approach
on two additional benchmark problems: the static stochastic knapsack problem and the stochastic plane landing scheduling
problem. The thorough experimental analysis in this work significantly extends the one in [11].

The paper is structured as follows: in Section 2 we provide the relevant formal background; in Section 3 we discuss
the structure of an SCSP solution; in Section 4 we describe the state-of-the-art approach to SCSPs; in Sections 5 and 6 we
discuss our novel approach; in Section 7 we propose incremental versions of our filtering algorithm; in Section 8 we discuss
our benchmark problems; in Section 9 we present our computational experience; in Section 10 we provide a brief literature
review; finally, in Section 11 we draw conclusions and outline our future work.

2. Formal background

A Constraint Satisfaction Problem (CSP) consists of a set of variables, each with a finite domain of values, and a set of
constraints specifying allowed combinations of values for some variables. A solution to a CSP is an assignment of variables
to values in their respective domains such that all of the constraints are satisfied. Constraint solvers typically explore partial
assignments enforcing a local consistency property. A constraint c is generalized arc consistent (GAC) if and only if when a
variable is assigned any of the values in its domain, there exist compatible values in the domains of all the other variables
of c. In order to enforce a local consistency property on a constraint ¢ during search, we employ filtering algorithms that
remove inconsistent values from the domains of the variables of c. These filtering algorithms are repeatedly called until no
more values are pruned. This process is called constraint propagation.

An m-stage SCSP is defined as a 7-tuple (V,S,D, P,C,6,L), where V is a set of decision variables and S is a set of
stochastic variables, D is a function mapping each element of V and each element of S to a domain of potential values.
In what follows, we assume that both decision and stochastic variable domains are finite. P is a function mapping each
element of S to a probability distribution for its associated domain. C is a set of chance constraints over a non-empty
subset of decision variables and a subset of stochastic variables. 0 is a function mapping each chance constraint h € C to 6y
which is a threshold value in the interval (0,1]. L =[(V1, S1),...,(Vi, Si), ..., (Vm, Sm)] is a list of decision stages such that
each V; C V, each S; C S, the V; form a partition of V, and the S; form a partition of S.

The solution of an m-stage SCSP is, in general, represented by means of a policy tree [26]. The arcs in such a policy tree
represent values observed for stochastic variables whereas nodes at each level represent the decisions associated with the
different stages. We call the policy tree of an m-stage SCSP that is a solution a satisfying policy tree.

3. Satisfying policy trees

In order to simplify the presentation, we assume without loss of generality that each V; = {x;} and each S; = {s;} are
singleton sets. All the results can be easily extended in order to consider |V;| > 1 and |S;| > 1. In fact, if S; comprises more
than one random variable, it is always possible to aggregate these variables into a single multivariate random variable [13]
by convoluting them. If V; comprises more than one decision variable, the following discussion still holds, provided that the
term DecVar, which we will introduce in the next paragraph, is interpreted as a set of decision variables.

B. Hnich et al. / Artificial Intelligence 189 (2012) 69-94 71

Let S ={s1,52,...,Sm} be the set of all stochastic variables in the problem and V = {x1,xa,...,Xn} be the set of all
decision variables. In an m-stage SCSP, the policy tree has

N=1+Is1]+Is1]-Isal+ -+ lsalIs2l < Ismoal =14 D[] Is,l
i=1 j=1

nodes, where |s;| denotes the cardinality of D(s;). We adopt the following node and arc labeling schemes for the policy
tree of an m-stage SCSP. The depth of a node can be uniquely associated with its respective decision stage, more specifically
Vi is associated with nodes at depth i — 1. We label each node with (DecVar, DecVal, Index) where DecVar is a decision
variable that must be assigned at the decision stage associated with the node, DecVal € D(DecVar) is the value that this
decision variable takes at this node, and Index € {0, ..., N — 1} is a unique index for this node. Each arc will be labeled
with (StochVar, StochVal) where StochVar € S and StochVal € D (StochVar). According to our labeling scheme, the root node has
label (x1, X1, 0) where X; is the value assigned to the variable x; associated with the root node and the index of the root
node is 0. The root node is at depth 0. For each value s; € D(s1), we have an arc leaving the root node labeled with (s{, 51).
The |s1| nodes connected to the root node are labeled from 1 to |sj|. For each node at depth 1, we label each of |s;| arcs
with (s, s2) for each s, € D(sy). For the nodes at depth 2, we label them from (x2, x2, [s1]| + 1) to (x2, X2, |s1] + [s1] - |s2]),
and so on until we label all arcs and all nodes of the policy tree. A path p from the root node to the last arc can be
represented by the sequence of the node and arc labelings, i.e. p = [{x1, X1, 0), (51,51), ..., {Xm, Xm,m — 1), (Sm, Sm)]. Let &
denote the set of all distinct paths of a policy tree. For each p € ¥, we denote by arcs(p) the sequence of all the arc
labelings in p whereas nodes(p) denotes the sequence of all node labelings in p. That is arcs(p) = [(51,51), .-, (Sm, Sm)]
whereas nodes(p) = [(x1,X1,0), ..., (Xm, Xm, m — 1)]. We denote by 2 = {arcs(p)|p € ¥} the set of all scenarios of the policy
tree. The probability of w € §2 is given by Pr{w} =]_[',“:l Pr{s; = s;}, where Pr{s; = s;} is the probability that stochastic
variable s; takes value s;.

Now consider a chance constraint h € C with a specified threshold level 6. Consider a policy tree 7 for the SCSP and
a path pe 7. Let h}, be the deterministic constraint obtained by substituting the stochastic variables in h with the corre-
sponding values (s;) assigned to these stochastic variables in arcs(p). Let Eip be the resulting tuple obtained by substituting
the decision variables in h, by the values (X;) assigned to the corresponding decision variables in nodes(p). We say that h
is satisfied with respect to a given policy tree T iff

Z Pr{arcs(p)} > 6

peWw: hyyehy,

Definition 1. Given an m-stage SCSP P and a policy tree 7, 7T is a satisfying policy tree to P iff every chance constraint of
‘P is satisfied with respect to 7.

Example 1. Let us consider a two-stage SCSP in which V1 ={x1} and S; = {s1}, V2 = {x2} and S, = {s,}. Stochastic variable
s1 may take two possible values, 5 and 4, each with probability 0.5; stochastic variable s; may also take two possible
values, 3 and 4, each with probability 0.5. The domain of x; is {1,...,4}, the domain of x, is {3,...,6}. There are two
chance constraints? in C, ¢1: Pr{six1 + S2x2 > 30} > 0.75 and c3: Pr{syx; = 12} > 0.5. In this case, the decision variable x;
must be set to a unique value before random variables are observed, while decision variable x, takes a value that depends
on the observed value of the random variable s;. A possible solution to this SCSP is the satisfying policy tree shown in
Fig. 1 in which x; =3, x; =4 and x% =6, where x; is the value assigned to decision variable x;, if random variable s; takes
value 5, and x% is the value assigned to decision variable x;, if random variable s; takes value 4. The four labeled paths of
the above policy tree are as follows:

(x1,3,0), (s1,5), (x2,4,1), (s

3

)

[x130 (s1,5), (x2,4,1), (s
=[(x1,3,0), (s1,4), (x2,6,2), (s

(2, 4]
(s2,3)]
(s2,4)],
pa=[(x1,3,0), (51,4), (x2,6,2), (s2,3)]

As the example shows, a solution to an SCSP is not simply an assignment of the decision variables in V to values, but it is
instead a satisfying policy tree.

2 In what follows, for convenience, we will denote a chance constraint by using the notation “Pr{(cons)} > 6", meaning that constraint (cons), constraining
decision and random variables, should be satisfied with probability greater or equal to 6.

72 B. Hnich et al. / Artificial Intelligence 189 (2012) 69-94

" Scenario !
82 :probability: C

c:53+44> 30

0.25

|
c43=12
|
|
|
:
|
| c:53+34<30
0.25 | e33#12
Xy :
0.25 I c:43+46>30
. : c,43=12
|
|
|
|
|
:
|
1 ¢:43+3:6>30
025 | 33412

Fig. 1. Policy tree for the SCSP in Example 1.

Constraints:

(1) (5x} +4x) >30) & (Z], =1) (6) (4x] =12) & (Z,, =1)

(2) 5x] +3x) 230) < (22 =1) (7) 3%} =12) < (22, =1)
(3) 4x} +4x3 >30) & (22 =1) (8) X} =12) & (23, =1)
(4) X +34 2300 < (Z4 =1) (9) Bx} =12) & (28 =1)
(5) Y1 0.2522 >0, (10) X4 _, 02528 > ¢,
Decision variables:

x1 €{1,2,3,4}, X} €1{3,4,5,6},

x% €{3,4,5,6}, Zp e{0,1} Yo =1,...,4; Vhe {c1,c2}.

Fig. 2. Deterministic equivalent CSP for Example 1.

4. Scenario-based approach to solve SCSPs

In [26], the authors discuss an equivalent scenario-based reformulation for SCSPs, which we shall call SBA in what
follows. This reformulation makes it possible to compile SCSPs down into conventional (non-stochastic) CSPs. For example,
the multi-stage SCSP described in Example 1 is compiled down to its deterministic equivalent CSP shown in Fig. 2. The
decision variables x}, x;, and x% represent the nodes of the policy tree. The variable x; is decided at stage 1 so we have one
copy of it (x}) whereas since x; is to be decided at stage 2 and since s; has two values, we need two copies for x,, namely
x% and x%. Chance constraint ¢q is compiled down into constraints (1), ..., (5), whilst chance constraint ¢, is compiled down
into constraints (6), ..., (10). Constraints (1), ..., (4) are reification constraints in which every binary decision variable Zf}i
is 1 iff in scenario w € {1,..., 4} constraint §1x} +§2x§ > 30 — where i € {1, 2} identifies the copy of decision variable x,
associated with scenario w — is satisfied. Finally, constraint (5) enforces that the satisfaction probability achieved must be
greater than or equal to the required threshold 6., = 0.75. Similar reasoning applies to constraints (6), ..., (10).

The scenario-based reformulation approach allows us to exploit the full power of existing constraint solvers. However, it
has a number of serious drawbacks that might prevent it from being applied in practice.

Increased space requirements: For each chance constraint, |£2| extra Boolean variables and at least |£2| + 1 extra con-
straints are introduced. This requires more space and might increase the solution time;

Weakened constraint propagation: The scenario-based reformulation heavily depends on reification constraints for con-
straint propagation. For this reason, it propagates weakly. Also, if the chance constraint involves a global constraint
(e.g., Pr{alldiff(x1, s1,x2)} > 0), then the corresponding reification constraints (e.g., alldiff(x}, §1,x;) < Zy) cannot
simply be supported in an effective way in terms of propagation by most of the current constraint solvers. While
a solver like Minion [10] effectively supports the above construct, in several other solvers it is often possible to

B. Hnich et al. / Artificial Intelligence 189 (2012) 69-94 73

decompose the alldiff into a clique of binary not-equals constraints and pose instead reification constraints of the
following form (x] #51 A X} #x) AX) #51) <> Zy, but this is, of course, not an ideal solution.

5. Formal background
Like the approach in [28], in order to solve an m-stage SCSP, we introduce a decision variable for each node of the policy

tree. Given an SCSP (V, S, D, P,C, 6, L), we let PT be an array of decision variables indexed from 0 to N — 1 representing
the space of all possible policy trees. The domains of these variables are defined as follows:

e D(PTIil) = D(x1), i € My = {0},
e D(PTli)=D(x2),ie My ={1,...,]|s1]},
e D(PTIil) = D(x3), i € M3 ={(1 +[s1]), ..., (Is1] - [s2| + [s1 D},
o ...
e D(PTIil) =D(xm), i € Mm = {(1 +[s1] - Is2| ... - [sm—2D)s .-, (s1] - [s2l - .. - Sm—1| + Is1] - [s2] - .. . - [Sm—2])},
where M; represents the set of indexes — in our node labeling — that appear at depth j in the policy tree, j=({1,...,m}.

This array of decision variables is shared among the constraints in the model similarly to what happens with decision
variables in classic CSPs.

Definition 2. Given a chance constraint h € C and a policy tree decision variable array P7, a value v in the domain of
PTTi] is consistent with respect to h iff there exists an assignment of values to variables in P77 that is a satisfying policy
with respect to h, in which PT[i]=v.

Definition 3. A chance constraint h € C is generalized arc-consistent iff every value in the domain of every variable in P7T
is consistent with respect to h.

Definition 4. An SCSP is generalized arc-consistent iff every chance constraint is generalized arc-consistent.

Maintaining GAC on an SCSP is NP-hard in general as solving an SCSP is PSPACE in general. In what follows, we show
that maintaining GAC on a global chance constraint can be intractable even when maintaining GAC on the corresponding
deterministic version of that constraint is tractable. In particular, we show that maintaining GAC on the alldiff global chance
constraint is NP-hard while maintaining GAC on the deterministic alldiff constraint is polynomial [20].

We show a reduction from the problem TwoAlIIDiff of finding a solution to two alldiff constraints which is NP-hard [14]
to an SCSP:

alldiff(x1, ..., X, ..., xp) Aalldiff(xi, ..., Xn, ..., Xm).

Assume without loss of generality that i — 1 =m —n. We can always add dummy variables to the alldiff constraint with less
number of variables.

Given an instance for the TwoAlIDiff problem, we construct an instance of a two-stage SCSP as follows. We introduce
n + m decision variables and one stochastic variable r whose domain is composed of only two values and the probability
of each is % The decision variables are divided into two groups. In the first group, which is decided at the first stage, we
introduce a decision variable z; whose domain is the same as x; for all j € {i,...,n}. In the second group, we introduce
i —1 second stage y; variables where the domain of y; is the union of the domain of x; and xj,, for all je{1,...,i—1}.
We introduce three chance constraints. The first chance constraint is the global alldiff chance constraint which constrains
all the decision variables. The other two chance constraints restrict the domains of the second stage variables as follows.
If we are in the first scenario, the second stage variable’s domains are restricted to take the same domain as the non-
overlapping variables in the first alldiff constraint whereas if we are in the second scenario, the second stage variable
domains are restricted to take the same domain as the non-overlapping variables in the second alldiff constraint. Fig. 3
shows the complete SCSP.

Theorem 1. TwoAIlIDiff has a solution iff the two stage SCSP in Fig. 3 has a satisfying policy tree.

Proof (sketch). The deterministic equivalent CSP for the two stage SCSP in Fig. 3 generated using a scenario-based ap-

proach is indeed equivalent to the TwoAlIDiff up to variable renaming and is shown in Fig. 4. Indeed, the z;,...,z,
correspond to Xj, ..., X,, respectively. The y},...,y}_l correspond to Xi,...,Xj_1, respectively. Finally, y%,...,yiz_1 corre-
spond to Xp41, ..., Xm, respectively. Note that the unary constraints in the two-stage SCSP are absorbed into the domains. O

A satisfying policy tree of the two-stage SCSP in Fig. 3 corresponds to a solution to TwoAlIDiff as follows. The assignment
to the first stage variables z;, ..., z; correspond to an assignment to x;, ..., Xp, respectively. The assignment of the second

74 B. Hnich et al. / Artificial Intelligence 189 (2012) 69-94

Constraints:
alldiff(z;, .. ., Zn, Y15+ - - Yi-1)
r=1-y;eDk;) Vjiel,...,i—1
rn=2—>yjeDXjy) Vjel,...,i—1
Decision variables:
zj € D(x;) Vjei,...,n
yie€eDXj)UDXjn) Vjel,...,i—1
Random variables:
r €{1,2}
Stage structure:
Vi={zi,z2,.... 20} Va={y1,y2,....¥i-1}
S1={r} S2=1{}

L=[(V1, 51), (V2, S2)]

Fig. 3. A two-stage SCSP.

Constraints:
(1) alldiff(z;, ..., zp, y1,.... ¥1)
(2) alldiff(z;, ..., za, ¥2. ..., y2 ;)
Decision variables:
zj € D(xj) Vjeli,...,n}
y}eD(xj) Vie{l,...,i—1)}
Y2 eD®jpm) Vie{l,...,i—1}

Fig. 4. Deterministic equivalent CSP of the SCSP of Fig. 3.

stage variables under the first scenario (r = 1) correspond to an assignment to the remaining variables of the first alldiff
constraint whereas the assignment of the second stage variables under the second scenario (r =2) correspond to an assign-
ment to the remaining variables of the second alldiff constraint. Since finding a satisfying policy tree to the SCSP in Fig. 3
is NP-hard, then achieving GAC is also NP-hard [4].

Finally, it is straightforward to prove that GAC on the SCSP in Fig. 3 is equivalent to GAC on the alldiff global chance
constraint as the other two chance constraints only restrict the domains on the second stage variables in the policy tree.
Therefore, maintaining GAC on the alldiff global chance constraint is NP-hard as well.

We can easily also show that maintaining bounds consistency (BC), a weaker consistency than GAC, on the alldiff global
chance constraint is NP-hard. We consider the ThreeAllDiff problem in which we want to achieve BC. It is shown in [9]
that this problem is intractable when we have more than two overlapping alldiff constraints. We can easily generalize the
previous reduction in a straightforward manner to also show that maintaining BC on the alldiff global chance constraint is
NP-hard. Any instance of the ThreeAllDiff problem in which we want to achieve BC can be transformed into an instance of
a two-stage SCP very similar to the one in Fig. 3. We, however, need to have three values in the domain of the stochastic
variable instead of two, each with probability % Furthermore, the first stage decision variables will correspond to the
overlapping variables in the ThreeAllDiff like in the previous reduction. The second stage decision variables will be used
to represent the non-overlapping variables in the same way as we did in the previous reduction where each scenario will
correspond to one alldiff constraint.

For convenience, given a chance constraint h € C, we redefine h, as the deterministic constraint obtained by substituting
every decision variable x; in h with decision variable P7[k] — where (x;, —, k) is an element in nodes(p) — and every
stochastic variable s; with the corresponding value (5;) assigned to s; in arcs(p). Note that the deterministic constraint h,
is a classical constraint, so a value v in the domain of any decision variable is consistent iff there exist compatible values for
all other variables such that h, is satisfied, otherwise v is inconsistent. Denote by hl‘; constraint h, in which decision

variable PTTi] is set to v. hi; is consistent if value v in D(PTTi]) is consistent w.r.t. hp.

Example 1a. Let h be chance constraint ¢y and p be path p; in Example 1. Let i = 2; according to our labeling P71(2] = x;

and D(PT[2]) ={3,...,6}. Let v =4; then from the solution previously presented it is clear that hl’; is consistent since
value 4 in D(PT[2]) is consistent W.r.t. hp.

Let ¥; = {p € ¥|hp constrains PT[i]}. We introduce f[i, v, h] as follows:

fli,v,hl= Z Pr{arcs(p)},

pev;: h’il‘; is consistent

B. Hnich et al. / Artificial Intelligence 189 (2012) 69-94 75

Algorithm 1: Generic non-incremental filtering algorithm.

input : h; PT; A.
output: Filtered P77 with respect to h.

1 begin

for eachi€ {0,..., N —1} do

for each v € D(PTIi]) do
| flivl<o;

- w N

5 for each p € ¥ do

6 Create a copy ¢ of h;, and of the decision variables it constrains;
7 Enforce GAC on c using A;

8 for each index i of the variables in ¢ do

9 L for each v in domain of the copy of PT[i] do

0

1 | fli. vl < fli. v] + Priarcs(p)};

11 | delete ¢ and the respective copies of the decision variables;
12 for eachie {0,..., N -1} do

13 max[i] < 0;

14 for each v € D(PTIi]) do

15 |_ max[i] < max(max[i], f[i, v]);

16 for eachke{1,..., m} do

17 glk] < 0;

18 for eachi e My do

19 |_ g[k] < g[k] + max[i];

20 for eachk e {1,..., m} do

21 for eachi e My do

22 for each v e PTi] do

23 if g[k] — max[i] + f[i, v] < 6, then
24 |_ prune value v from D(PTTi]);
25 end

where f[i, v, h] is the sum of the probabilities of the scenarios in which value v in the domain of P7Ti] is consistent. To
keep notation as compact as possible, since we always refer to a “generic” constraint h, in what follows we write ¥; in
place of ¥; ;, and f[i, v] in place of f[i, v,h]. As the next proposition shows, one can exploit f[i, v] to identify a subset of
the inconsistent values.

Proposition 1. For any i € My, and value v € D(PTi)), if

fli,vI+)" max(j) < 6,
JeMy, j#i

then v is inconsistent with respect to h; where max(j) = max{f[j, vl| v € D(PT[jD}.

Proof (sketch). The assignment P7[i] = v is consistent w.r.t. h iff the satisfaction probability of h is greater or equal to 6.
From the definition of f[i, v] and of max(j) it follows that if f[i, v]+ Zje,wk_#i max(j) < 6p, when PT[i] = v, the satis-
faction probability of h is less than 6, even if we choose the best possible value for all the other variables in M. O

6. Generic filtering algorithms

We now describe our generic filtering strategy for chance constraints. We distinguish between two cases: the case when
6h <1 and the case where 6, = 1. In the first case, we design a specialized filtering algorithm whereas for the second
case we provide a reformulation approach that is more efficient. Both methods, however, are parameterized with a filtering
algorithm A for the deterministic constraints hy, for all p € ¥ that maintains GAC (or any other level of consistency). This
allows us to reuse existing filtering algorithms in current constraint solvers and makes our filtering algorithms generic and
suitable for any global chance constraint.

6.1. Case1(6p<1)
Algorithm 1 takes as input chance constraint h, P7, and a propagator .A. It filters from P7 inconsistent values with

respect to h. For each decision variable and each value in its domain, we initialize f[i,v] to O (line 2). At line 5, we
iterate through the scenarios in ¥. For each scenario, we create a copy ¢ of constraint h;, and of the decision variables

76 B. Hnich et al. / Artificial Intelligence 189 (2012) 69-94

Table 1

Example of inconsistent values gone undetected in Example 2.
PTI0] flo,v] PTI] fl1,v] PTI2] f12,v]
1 0.75 1 0.25 3 0.5
2 0.25 2 0.25

it constrains. Then we enforce GAC on c using .A. For each i such that PTTi] is constrained by h,,, we iterate through
the domain of the copy of the decision variable and, if a given value v has support, we add the probability associated
with the current scenario to the respective f[i,v] (line 10). It should be noted that, for each scenario, constraint c is
dynamically generated every time the filtering algorithm runs, and also that these constraints are never posted into the
model. They are only used to reduce the domains of the copies of the associated decision variables. At line 12, for each
variable i € {0, ..., N — 1} we compute the maximum support probability f[i, v] provided by a value v in the domain of
PTTIi], and we store it at max[i]. At line 16, for each stage k € {1,...,m}, we store in g[k] the sum of the max[i] of all
variables i € My. Finally (line 20), at stage k we prune from D(P7[i]) any value v that makes g[k] strictly smaller than 6y
when we replace max[i] in g[k] with f[i, v].

Theorem 2. Algorithm 1 is a sound filtering algorithm.

Proof (sketch). Soundness. When a value v is pruned by Algorithm 1 at line 24, g[k] becomes strictly smaller than 6, when
we replace max[i] in g[k] with f[i, v]. Indeed g[k] is thus equal to f[i, v]+ ZjeMk’#i max(j) which makes Proposition 1
true. Thus, any pruned value v is inconsistent. 0O

Algorithm 1 fails to prune some inconsistent values because such values are supported by values that may become
inconsistent at a later stage of the algorithm. We illustrate these situations with an example.

Example 2. Consider a 2-stage SCSP in which Vi = {x1}, where x; € {1, 2}, S1 = {s1}, where s1 € {a, b}, V, = {x2}, where
x2 €{1,2,3}, and S, = {sy}, where s; € {a, b}. Let Pr{s; = j} = 0.5 for all i € {1,2} and j € {a, b}. Let h(x1, X2, S1, S2) be the
chance constraint with 6, = 0.75. In this constraint, for the first scenario (s; =a and s, = a) the only consistent values
for PT7T[0] and PT[1] are 1 and 2 respectively. For the second scenario (s =a and s; = b) the only consistent values
for P7[0] and PT[1] are 2 and 1 respectively. For the third scenario (s; = b and s, = a) the only consistent values
for PT7[0] and P7[2] are 1 and 3 respectively. For the fourth scenario (s; = b and s; = b) the only consistent values
for PT71[0] and P7T[2] are 1 and 3 respectively. That is, the set of allowed tuples for the deterministic version of h is
{(1,2,a,a),(2,1,b,a), (1,3,b,a),(1,3,b,b)}. Our algorithm originally introduces three decision variables P77[0] € {1, 2},
PTI11€{1,2,3}, and PT[2] € {1,2,3}. Assume that at some stage during search, the domains become P7I0] € {1, 2},
PTI1] €{1,2}, and PT[2] € {3}. In Table 1, the values that are not pruned by Algorithm 1 when 6 =0.75 are underlined.
Only value 2 in the domain of P7[0] is pruned. But value 2 was providing support to value 1 in the domain of P7[1]. This
goes undetected by the algorithm and value 1 for P7[1] no longer provides f[1, 1] = 0.25 satisfaction, but 0. Thus, there
exists no satisfying policy in which PT7[1]=1.

We can easily remedy this problem by repeatedly calling Algorithm 1 until we reach a fixed-point and no further pruning
is done. For the rest of the paper, we refer to this modified algorithm as Algorithm 1 as well.

Theorem 3. Algorithm 1 runs in 0(|£2| - a - N? - d?) time and in O (N - d 4 p) space where a is the time complexity of A, p is its
space complexity, and d is the maximum domain size.

Proof (sketch). Time complexity. In the worst case, Algorithm 1 needs to be called A -d times in order to prune at each
iteration just one inconsistent value. At each of these iterations, the time complexity is dominated by complexity of line 7
assuming that |£2| > |V|. Enforcing GAC on each of the |£2| constraints runs in a time using algorithm A. In the worst case,
we need to repeat this whole process A -d times in order to prune at each iteration just one inconsistent value. Thus the
time complexity of this step is in |2|-a- A -d. The overall time complexity is therefore in 0(|§2|-a-A? -d?) time.

Space complexity. The space complexity is dominated by the size of P7 and by the space complexity of .A. PT requires
N -d space whereas A requires p space. Therefore, the modified algorithm runs in O (N -d + p) space. O

In Table 2 we report the pruned values for Example 1 achieved by Algorithm 1. The values that are not pruned are
underlined. Note that if we propagate the constraints in the model generated according to the approach described in [26]
and shown in Fig. 2, no value is pruned at all.

Even though Algorithm 1 is a sound filtering algorithm, it is unfortunately still incomplete as maintaining GAC on h is
intractable in general.

B. Hnich et al. / Artificial Intelligence 189 (2012) 69-94 77

Table 2
Pruning for Example 1 after calling Algorithm 1.
PTI0] f10,v] PTI1] fl1,v] PTI2] fl2,v]
1 0.0 3 0.25 3 0.0
2 0.5 4 0.5 4 0.25
3 1.0 5 0.5 5 0.5
4 1.0 6 0.5 6 0.5
Table 3
Filtered domains in Example 3.
PTI0] f10,v] PTI fl1,v] PTI2] f12,v]
1 1 1 0.5 1 0.5
2 1 2 0.5 2 0.5

Theorem 4. The level of consistency achieved by Algorithm 1 on global chance constraint h is weaker than GAC on h.

Proof (Example 3). Consider a 2-stage SCSP where V1 = {x1} where x; € {1, 2}, S; = {s1} where sq € {a, b}, V2 = {x2} where
x2 €{1,2}, and S, = {s2} where s, € {a, b}. Let Pr{s; = j} =0.5 for all i € {1,2} and j € {a, b}. Let h(x1,x2, 51, S2) be the
chance constraint with 6, = 0.75. Furthermore, for the first scenario (s; = a and s, = a) the consistent tuples for xq
and x; are in {(1,1)(2,1)(2,2)}. For the second scenario (s; =a and s, = b) the consistent tuples for x; and x; are in
{(1,2)(2,1)(2, 2)}. For the third scenario (s; =b and s; = a) the consistent tuples for x; and x; are in {(1,1)(2,1)(2,2)}.
For the fourth scenario (s;1 = b and sy = b) the consistent tuples for x; and x, are in {(1,2)(2,1)(2,2)}. That is the set of
allowed tuples for the deterministic equivalent constraint of h is

{(1,1,a,0), (2,1,0,0),(2,2,a,0),(1,2,a,b), (2,1,a,b),(2,2,a,b),
(1,1,b,a),(2,1,b,a), (2,2,b,0a), (1,2,b,b), (2,1,b,b), (2,2,b,b)}.

Algorithm 1 introduces three decision variables P7[i] € {1, 2} for all i € {0, 1, 2}. Table 3 shows the result of Algorithm 1.
None of the values is pruned, but there exists no satisfying policy in which P7[0]=1. O

6.2. Case2(6hp=1)

When 6, =1 the global chance constraint h can be reformulated as

hyp, Vpew.

If all deterministic constraints are simultaneously GAC, then this reformulation is equivalent to Algorithm 1. Nevertheless,
even in this special case, we still lose in terms of pruning.

Theorem 5. GAC on h is stronger than GAC on the reformulation.

Proof (sketch). We consider the same example as in the previous proof but with 6, = 1 instead. All deterministic constraints
are simultaneously GAC, but P7T[i] =1 cannot be extended to any satisfying policy. O

7. Incremental filtering algorithm

Filtering Algorithm 1 can be made incremental by introducing backtrackable objects that keep track of the scenarios for
which a domain wipeout has already been detected or in which a given value has been already pruned at some earlier
branching point during search. It is clear that tracking information at scenario level leads to a “lightweight” incremental al-
gorithm while tracking information at value level leads to a more “memory intensive” algorithm. In Section 7.1 we introduce
a lightweight incremental extension to Algorithm 1. A memory-intensive one is introduced in Section 7.2.

7.1. Lightweight incremental algorithm

Let BS denote a stored bit set of size |§2]|. A stored bit set is an array of bits that is automatically restored to its previous
state at each backtrack during search. Each bit BS[p] is uniquely associated with path p € ¥ and it can be either set to 1
or 0. BS is created when the global chance constraint is initialized. Upon creation, every bit in BS is set to 1. Let

Pr{BS} = Z Pr{arcs(p)}.

pev: BS[pl=1

78 B. Hnich et al. / Artificial Intelligence 189 (2012) 69-94

Algorithm 2: Generic lightweight incremental filtering algorithm.

input : h; PT; A; BS.
output: Filtered P77 with respect to h.

1 begin
2 for eachi€ {0,..., N —1} do
3 for each v € D(PTIi]) do
4 fli,v] < 0;
5 L dli, v] < 0;
6 for each p € ¥ do
7 if BS[p]=1 then
8 Create a copy ¢ of h}, and of the decision variables it constrains;
9 Enforce GAC on ¢ using A;
10 if c is inconsistent then
1 BS[p]=0;
12 if Pr{BS} < 6, then
13 | backtrack;
14 else
15 for each index i of the variables in ¢ do
16 for each v in domain of the copy of PT[i] do
17 | fli, vl < fli, v]+ Pr{arcs(p)};
18 for each v pruned from domain of the copy of PT[i] do
19 d[i, v] < d[i, v] + Pr{arcs(p)};
20 if Pr{BS} — d[i, v] < 6, then
21 L prune value v from D(PTIi]);
22 delete ¢ and the respective copies of the decision variables;

23 for eachic {0,...,N — 1} do

24 max[i] < 0;

25 for each v € D(PTIi]) do

26 |_ max[i] < max(max[i], f[i, v]);

27 for eachke{1,..., m} do

28 glk] < 0;

29 for eachi € My do

30 |_ g[k] < g[k] + max[i];

31 for eachke{1,..., m} do

32 for eachi e My do

33 for each v € PTi] do

34 if g[k] — max[i] + f[i, v] < 6, then
35 |_ prune value v from D(PTi]);

36 end

As in the previous case, our algorithm is parameterized with a filtering algorithm A for the deterministic constraint h .

Algorithm 2 takes as input chance constraint h, P7, a propagator A, and a stored bit set BS. It filters from P7T
inconsistent values with respect to h. For each decision variable and each value in its domain, we initialize f[i, v] and
d[i, v] to O (line 2); d[i, v] is an auxiliary accumulator that tracks the total probability associated with scenarios in which
value v in D(PTTi]) does not have support. At line 6, we iterate through the scenarios in ¥. For each scenario p € ¥, at
line 7 if h, has been already detected to be inconsistent at earlier branches in the search tree (BS[p] =0) we do nothing,
otherwise (BS[p] = 1) we create a copy c of constraint h, and of the decision variables it constrains. Then we enforce GAC
on c using A (line 9). Recall that h, is a classical constraint, so we can enforce consistency by using standard propagation
techniques. At line 10, if GAC produces a domain wipeout in c at line 9, we set the bit BS[p] to 0 and, at line 12, we
check if the remaining scenarios can provide an overall probability that exceeds 6. If they cannot, we backtrack. On the
other hand, if GAC does not produce a domain wipeout in c at line 9, at line 14 for each i such that P7Ti] is constrained
by h,p, we iterate through the domain of the copy of the decision variable and, if a given value v has support — i.e. it has
not been pruned when we enforced GAC on c at line 9 — we add the probability associated with the current scenario to
the respective f[i, v] (line 17); conversely, if a value v does not have support — i.e. it has been pruned when we enforced
GAC on c at line 9 — we add the probability associated with the current scenario to the respective d[i, v] (line 19) and we
immediately check if it is possible to prune such a value (line 20). The remaining lines of the algorithm are identical to
those described in Algorithm 1.

To summarize, in Algorithm 2 backtrack may occur at line 13, informally speaking if in “too many” scenarios we have
observed a domain wipeout — that is if we cannot possibly achieve the prescribed satisfaction probability with the remain-

B. Hnich et al. / Artificial Intelligence 189 (2012) 69-94 79

ing scenarios. Furthermore, backtrack may occur if we observe a domain wipeout after pruning value v from D(P7TTi]) at
lines 21 and 35.

Theorem 6. Algorithm 2 is a sound filtering algorithm.

Proof (sketch). Soundness. A value is either pruned at line 35 or/and line 20 or backtracking occurs at line 12. The pruning
that happens at line 35 is similar to the one that happens in the non-incremental algorithm. g[k] becomes strictly smaller
than 6, when we replace max[i] in g[k] with f[i, v]. Indeed g[k] is thus equal to f[i, v]+ Zje,v,k’#i max(j) which makes
Proposition 1 true. The pruned value v is inconsistent. The eager pruning at line 20 is a weakened reformulation of the
condition verified at line 35. When backtracking occurs at line 12, the probability associated with scenarios for which an
inconsistency has been detected amounts to a value greater than 1 — 6. Therefore there exists no policy tree 7 for which

Z Pr{arcs(p)} > 6,. O

pew: hypehy,

There are two key differences between Algorithms 1 and 2: the eager pruning at line 20, which is a weakened refor-
mulation of the condition verified at line 35; and the backtracking at line 12. As previously remarked, Algorithm 1 fails to
prune some inconsistent values because such values are supported by values that may become inconsistent at a later stage
of the algorithm. Eager pruning tries to partially overcome this issue by proactively removing inconsistent values. This, in
turn, may affect the assessment carried out on subsequent scenarios. Eventually, eager pruning may reduce the number of
calls required to reach a fixed point.

As in the previous case, we can call Algorithm 2 until we reach a fixed-point and no further pruning is done. We denote
as Algorithm 2 this modified algorithm as well.

Theorem 7. Algorithm 2 runs in 0(|$2| -a - N% - d?) time and in O (N -d + p + |§2|) space where a is the time complexity of A, p is
its space complexity, and d is the maximum domain size.

Proof (sketch). Time complexity. The proof is identical to that provided for Algorithm 1.

Space complexity. The space complexity is now dominated by the size of BS, of P7T and by the space complexity of A.
BS has size |£2], in fact we store one bit per scenario. P7T requires N -d space whereas A requires p space. Therefore, the
algorithm runs in O(N -d + p + |£2|) space. O

7.2. Memory-intensive incremental algorithm

The approach discussed in Section 7.1 keeps track, during search, of the scenarios which have already generated a domain
wipeout. In contrast to the naive filtering presented in Algorithm 1, this enhanced algorithm therefore avoids propagating
again over a scenario p € ¥ for which h, is disentailed. The filtering effectiveness, i.e. the number of values pruned from
decision variable domains, is not affected, while the filtering efficiency is clearly improved since a number of unnecessary
runs for algorithm .A are avoided when possible. This approach has memory requirements that are comparable to those of
Algorithm 1, in fact this enhanced algorithm simply requires a backtrackable stored bit set of size |£2| in order to memorize
which scenarios have already generated a domain wipeout. In this section, we introduce an alternative memory intensive
strategy that keeps track during search of which values in decision variable domains have already been pruned for each
possible scenario.

Similarly to the approach discussed in Section 7.1, we introduce a stored bit set 5S, in which each bit BS[p] is uniquely
associated with path p € ¥ and it can be either set to 1 or 0. BS keeps track, during search, of which scenarios have
already generated a domain wipeout. BS is created when the global chance constraint is initialized. Upon creation, every
bit in BS is set to 1. We recall that

Pr{BS} = Z Pr{arcs(p)}.

pev: BS[pl=1

In contrast to the approach discussed in Section 7.1, in this case we also associate a stored bit set of size |¥;|
with each value v € D(PTIi]), for i =0,...,N' — 1. Let us denote this backtrackable object as VBS[v, PTIil, pl,
where p € ¥ denotes a scenario in which h, constrains P7Ti]. For each scenario p € ¥;, decision variable P7Ti]
and value v, VBS[v,PTli],p] =1 if the value has not been already pruned from D(PTTi]) in scenario p, otherwise
VBS[v, PTlil,p] = 0. Also VS is created when the global chance constraint is initialized. Upon creation, every bit in
VBS is set to 1.

It is clear that f[i, v], which in the previous algorithms denoted a value recomputed from scratch at each propagation
run, is now functionally dependent on V3S and BS. We can therefore write

fli,vl= Z Pr{arcs(p)} - BS[p]- VBS[v, PTIil. p]. (1)
peY;

80 B. Hnich et al. / Artificial Intelligence 189 (2012) 69-94

Algorithm 3: Generic memory-intensive incremental filtering algorithm.

input : h; PT; A; BS; VBS; PTItl.
output: Filtered P77 with respect to h.

1 begin

2 for each p € ¥; do

3 if BS[p]=1 then

4 Create a copy c of hy, and of the decision variables it constrains;

exclude, for any given decision variable d in c¢ every value v for which VBS[v,d, p] =0;
5 Enforce GAC on c using .A;
6 if c is inconsistent then

7 BS[pl=0;

8 if Pr{BS} < 6, then

9 | backtrack;

10 else

11 for each index i of the variables in c do

12 for each v pruned from domain of the copy of P T [i] do
13 | VBSIv,PTlil, pl =0;

14 L delete ¢ and the respective copies of the decision variables;

15 for eachi€ {0,..., N —1} do

16 max[i] < 0;
17 for each v € D(PTIi]) do
18 |_ max[i] < max(max[i], f[i, v]);

19 for eachk e {1,..., m} do

20 glk] < 0;

21 for eachi € My do

22 | glkl < glk]+ max]il;

23 for eachk € {1,...,m} do

24 for eachi € My do

25 for each v e PTi] do

26 if g[k] — max[i] + f[i, v] < 6, then
27 |_ prune value v from D(PT[i]);
28 end

This is simply the sum of the probabilities of those scenarios in which P7Ti] is constrained by h, and in which neither
the whole constraint h, is disentailed nor value v is inconsistent.

As in the previous cases, our algorithm is parameterized with a filtering algorithm A for the deterministic con-
straints hy,. Due to the increasing granularity at which we track inconsistency, it is relevant in this case to identify which
decision variable originated the event that triggered the current propagation run, let this decision variable be P7Tt].

Algorithm 3 takes as input chance constraint h, P7, a propagator A, stored bit sets BS and VBS, and the source
of the propagation event, decision variable P7[t]. It filters from 77 inconsistent values with respect to h. At line 2, we
iterate through the scenarios in ¥;. Recall that these are all the scenarios p € ¥ in which the decision variable P7[t] that
triggered the propagation is constrained by h . For each scenario p € ¥, at line 3, if h, has been already detected to be
inconsistent at earlier branches in the search tree (BS[p] = 0) we do nothing, otherwise (BS[p] = 1) we create a copy ¢ of
constraint h, and of the decision variables it constrains. Then we enforce GAC on c using A (line 5). Recall that hy, is a
classical constraint, so we can enforce consistency by using standard propagation techniques. At line 6, if GAC produces a
domain wipeout in c at line 5, we set the bit BS[p] to 0 and, at line 8, we check if the remaining scenarios can provide
an overall probability that exceeds 6. If they cannot, we backtrack. On the other hand, if GAC does not produces a domain
wipeout in c¢ at line 5, at line 10 for each i such that P7Ti] is constrained by h,,, we iterate through the domain of the
copy of the decision variable. For each value v that has been pruned when we enforced GAC on c at line 5, we set the
respective bit VBS[v, PT(i], p] to zero (line 10). The remaining lines of the algorithm are identical to those described in
Algorithms 1 and 2.

To summarize, in Algorithm 3 backtrack may occur at line 9, informally speaking if in “too many” scenarios we have
observed a domain wipeout, or at line 27, if we observe a domain wipeout after pruning value v from D(P7[i]).

Theorem 8. Algorithm 3 is a sound filtering algorithm.

Proof (sketch). Soundness. A value is either pruned at line 27 or backtracking occurs at line 8. The pruning that happens
at line 27 is similar to the one that happens in the non-incremental algorithm. g[k] becomes strictly smaller than 6, when
we replace max[i] in g[k] with f[i, v]. Indeed g[k] is thus equal to f[i, v]+ Z]-E,V,k,#i max(j) which makes Proposition 1

B. Hnich et al. / Artificial Intelligence 189 (2012) 69-94 81

true. The pruned value v is inconsistent. Due to the identity introduced in Eq. (1), when backtracking occurs (at line 8) the
probability associated with scenarios for which an inconsistency has been detected amounts to a value greater than 1 — 6.
Therefore there exists no policy tree 7 for which

Z Pr{arcs(p)} > 6h. O
pew: hypehy,

As in the previous case, we can call Algorithm 3 until we reach a fixed-point and no further pruning is done. We also
denote as Algorithm 3 this modified algorithm.

Theorem 9. Algorithm 3 runs in 0(|£2| -a- N3 -d®) time and in O (p + N - d - |£2|) space where a is the time complexity of A, p is
its space complexity, and d is the maximum domain size.

Proof (sketch). Time complexity. The proof is identical to that provided for Algorithm 1 except for the fact that now f[i, v]
is functionally dependent on BS and VIBS. Therefore, every time f[i, v] is used, its computation requires at worst |§2|
iterations. Since we compute f[i, v] for each value v in the domain of each decision variable P7Ti] (line 15), the overall
time complexity is now in 0(|§2|-a- N3 .d?) time.

Space complexity. As in Algorithm 2, the space complexity is dominated by the size of BS, of P7 and by the space
complexity of A. BS has size |£2|, in fact we store one bit per scenario. Nevertheless, now we also store a bit set of size
|§2| for each value v in the domain of each decision variable P7T[i]. PT requires N -d space whereas A requires p space.
Therefore, the algorithm runs in O(p + (N -d + 1) -|£2]) space. O

8. Benchmark problems

In this section we introduce a number of benchmark problems used in our experiments. For each problem we provide
the problem definition, a set of instances that will be used in our computational experiments and some considerations on
the advantages brought by our novel approach in terms of modeling expressiveness.

8.1. Random stochastic CSPs (RSCSP)
We introduce a number of randomly generated SCSPs.

8.1.1. Problem definition

The SCSPs considered feature five chance constraints over 4 integer decision variables, x1,...,X4 and 8 stochastic vari-
ables, s1,..., sg.

There are five chance constraints in the model, the first embeds an equality,

c1: Pr{x1s1 + X282 + X353 + x454 =80} > «,

the second and the third embed inequalities,

00} > B,

¢y Pr{x1S5 + X256 + X357 + X453 < 1
c3: Pr{x1S5 + X256 + X357 + X453 > 60} > B.

The fourth chance constraint embeds again an inequality, but in this case the constraint is defined over a subset of all the
decision and random variables in the model:

cq: Pr{x1s2 4+ x356 > 30} > 0.7.

Finally, the fifth chance constraint embeds an equality also defined over a subset of all the decision and random variables
in the model:

c5: Pr{xys4 + x4 = 20} > 0.05.

We considered 3 possible stage structures. In the first stage structure we have only one stage, (V1,S1), where V; =
{x1,...,x4} and S; = {s1,...,sg}. In the second stage structure we have two stages, (V1,S1) and (V3, S3), where V; =
{x1,%2}, S1 =1{s1, S2, S5, S6}, V2 = {x3, x4}, and Sy = {s3, S4, S7, Sg}. In the third stage structure we have four stages, (V1, S1),
(V2,82), (V3,S3), and (Vy4, S4), where Vi = {x1}, S1 = {s1,85}, V2 = {x2}, S2 = {52, 86}, V3 ={x3}, S3={s3,87}, and V4 =
{x4}, S4={s4,ss}.

82 B. Hnich et al. / Artificial Intelligence 189 (2012) 69-94

Constraints:
(1) Pr{alldiff(y1, y2, - - -, y8)} =0
Q)yi=xi+d; Viel,..., 8
Decision variables:
xi€{1,3,5,7,11,13,15} Viel,..., 4
xi €{2,4,6,8,10,12,14} Vie4,..., 3
yie{l,..., 15} Viel,..., 8
Random variables:
d; — delay of planei Viel,..., k
Stage structure:
Vi ={x1,X2,X3, X4}
Va2 ={y1, Y2, Y3, Y4, X5, X6, X7, X5}
V3 ={ys, Y6, ¥7, 8}
S1=1{d1,d3,d3,ds}
Sz ={ds, dg, d7,ds}
S3={}
L=[{V1,51),(V2, 52), (V3, S3)]

Fig. 5. A three-stage SCSP for the chance-constrained plane landing scheduling.

8.1.2. Instance generation

The decision variable domains are: D(x1) ={5,...,10}, D(x2) ={4,...,10}, D(x3) ={3,...,10}, and D(x4) = {6, ..., 10}.
The domains of stochastic variables s1, s3, S5, 7 comprise 2 integer values each. The domains of stochastic variables s;, s4,
sg, Sg comprise 3 integer values each. The values in these domains have been randomly generated as uniformly distributed
in {1, ..., 5}. Each value appearing in the domains of random variables s1, s3, S5, s7 is assigned a realization probability of %
Each value appearing in the domains of random variables s3, s4, Sg, Sg is assigned a realization probability of % Parameters
o and B take values in {0.005, 0.01, 0.03, 0.05,0.07,0.1} and {0.6, 0.7, 0.8}, respectively. In total, we therefore consider 18
different possible configurations for the parameters o and B. For each of these configurations, we generate 15 different
probability distributions — i.e. sets of values in the domains — for the random variables in our model. These probability
distributions were divided in three groups and employed to generate 5 single-stage problems, 5 two-stage problems and 5
four-stage problems. Therefore the test bed comprised, in total, 270 instances.

8.1.3. Modeling expressiveness

It should be noted that the approach discussed in [26], i.e. SBA, requires several auxiliary constraints and decision vari-
ables to model the problems above. In contrast, by using our novel modeling approach, we obtain significantly more compact
formulations. More specifically, the single-stage problem is modeled, in [26], using 6484 decision variables and 6485 con-
straints, while GCC — our approach — requires only 4 decision variables and 5 chance constraints; this is mainly due to
the fact that, in addition to the 4 decision variables required to build the policy tree, SBA introduces 1296 binary decision
variables for each of the 5 chance constraints in the model; furthermore, SBA also introduces 1297 reification constraints for
each chance constraint in the model, similarly to what is shown in Example 1 (Fig. 2). The two-stage problem is modeled
by SBA using 6554 decision variables (74 for the policy tree and 6480 binary decision variables) and 6485 constraints, while
GCC requires only 74 decision variables and 5 chance constraints; finally, the four-stage problem is modeled by SBA using
6739 decision variables and 6485 constraints, while GCC requires only 259 decision variables and 5 chance constraints.

8.2. Plane Landing Scheduling Problem (PLSP)

Our second benchmark problem is the SCSP in Fig. 5. This model is fairly simple, still it captures an important practical
problem: the control of landing conflicts for P planes on a single runway under stochastic arrival delays.

8.2.1. Problem definition

Consider a set of L; available landing slots for plane i. Decision variable x; represents the landing slot — for instance a
15 minutes time interval — assigned to plane i, the random variable d; represents the random delay of plane i. Decision
variables x1, x2, ..., Xg are partitioned in two stages, V1 = {x1,x2,...,X4} and V, = {X5, X2, ..., Xg}. Similarly, the respective
random delays d; are also partitioned in two decision stages. This means that once the delays of the first 4 planes have
been observed it is possible to act consequently and choose the most appropriate recourse action that is available in the
policy tree.

Enforcing constraint (1), under the stage structure described in Fig. 5 means ensuring that the probability of observing a
landing conflict — i.e. two planes that land within the same time slot — remains below the specified threshold 1 —6 = 0.05
(i.e. =0.95). More specifically x; denotes the “planned” landing slot, while y; represents the “realized” arrival time. x; is
decided at stage 1 (for i=1,...,4) or at stage 2 (for i =5,...,8), before the actual delay of plane i, d;, is observed.
Conversely, y; represents the realized landing time, which is equal to the planned arrival time x; plus the realized delay d;.
Decision variables y; are fixed only after the realized delays are known. The domain of y; ranges over the total number T
of available landing slots, for instance this may be a whole 8-hour working day planning horizon.

B. Hnich et al. / Artificial Intelligence 189 (2012) 69-94 83

In every possible scenario @ € 2 of the policy tree associated with the SCSP in Fig. 5 a delay c_il?” is associated with
each plane i. If for two planes i and j the “realized” delays in scenario @ are such that x; +d® = x; + t_ij?, that is y” = y?,
then we have a landing conflict in scenario w. A feasible landing plan is therefore a satisfying policy tree that guarantees a
probability of conflict lower than 1 — «.

The reader should be aware of the limitations of this simple example. For instance, in a satisfying policy tree for our
model some planes in V{ may be scheduled at a time that comes after the scheduled time for planes in V. A realistic
model should prevent these situations by forcing planes in V; to be scheduled at earlier time slots. Furthermore, the model
presented can be made more realistic by adding more runways, slots and airports, by modeling the connection times and
by therefore providing a full schedule that guarantees a given service level. Discussing the complete problem is out of the
scope of this work, since our objective here is to demonstrate a practical application area for the stochastic alldiff constraint
and to investigate the filtering effectiveness of our strategies in a proof-of-concept model. However, the simple model we
presented already gives a clear idea of how relevant a constraint such as the stochastic alldiff is for practical applications.
We leave the investigation of a complete model for plane landing scheduling as a possible direction for future research.

8.2.2. Instance generation

We consider 6 € {0.95,0.90,0.85,0.80,0.75,0.70} and 5 sets of different probability distributions for each random vari-
able dj, these distributions have been randomly generated by selecting two possible integer delays uniformly distributed in
{1,...,4} to each of which a realization probability equal to 0.5 is then assigned. The available landing slots (decision vari-
able domains) go from 1 to 15, the maximum landing time T =19, in fact the maximum observable delay is 4. Note that,
as shown in Fig. 5, we consider domains with holes for each decision variables in order to let the GAC algorithm exploit the
structure of the problem. In total, we therefore generated 30 different instances.

8.2.3. Modeling expressiveness

The policy tree for the model in Fig. 5 comprises 2116 decision variables: 4 at the root node (x;, i € {1, ..., 4}), 64 at the
first stage (x;j, i € {5,...,8}) and 2048 at the third stage (y;, i € {1, ..., 8}).

The reader should be aware that bidirectional implications such as

s =1 < alldiff(x, y,)

involving global constraints are not allowed in most constraint solvers; for instance Choco [15] does not support this con-
struct. One of the solvers that effectively supports this construct is Minion [10]. In this solver, an SBA model would require
256 auxiliary binary variables for encoding chance constraint (1).

For those solvers that do not support the above construct, in order to model the SCSP in Fig. 5 by using the approach in
[26], it is often possible to adopt a decomposition for the alldiff constraint. However, the associated model is clearly not only
unreadable, but also extremely inefficient in terms of propagation effectiveness, in fact the structure of the problem is totally
lost and a significant number of auxiliary binary variables have to be employed in the scenario-based model to decompose
the alldiff constraint in each scenario. These variables add up to the 256 required to encode the chance constraint.

We observe again that, by using our novel modeling approach, we obtain significantly more compact model formulations
than the state-of-the-art approach in [26].

8.3. Stochastic Knapsack Problem (SKP)

Our last benchmark problem is the stochastic knapsack problem [12] — a known problem in stochastic constraint opti-
mization.

8.3.1. Problem definition

A subset of k items must be chosen, given a knapsack of size ¢ into which to fit the items. Each item i, if included in
the knapsack, brings a stochastic profit r;. Also the size w; of each item is stochastic and it is not known at the time the
decision has to be made. Nevertheless, we assume that the decision maker knows the probability mass functions PMF(w;)
and PMF(r;) [13], for each i =1, ..., k. The probability of the plan not exceeding the capacity C of the knapsack should be
greater than or equal to a given threshold 6. The objective is to find the knapsack that maximizes the expected profit.

We consider both the single and the multi-stage formulation of the problem. In the single-stage formulation, objects
are selected before any of the respective profits or weights have been observed. In the multi-stage formulation, items are
considered sequentially, starting from item 1 up to item k. In other words, first we take the decision of inserting or not
a given object into the knapsack, then we immediately observe its weight, which is a random variable, before any further
item is taken into account.

In Fig. 6 we provide a stochastic constraint programming formulation for the SKP exploiting global chance constraints.
In this model, the objective function maximizes z, that is the expected total profit brought by the objects selected in the
knapsack — those for which the binary decision variable x; is set to 1. This expectation is computed in chance constraint (1).
Chance constraint (2) ensures that the capacity C is not exceeded with a probability of at least 6. The model in Fig. 7 is a
single-stage model in which we first select all the objects we want to include in the knapsack and then we observe their
weights and profits.

84 B. Hnich et al. / Artificial Intelligence 189 (2012) 69-94

Objective:
maxz
Subject to:
(1) z=E[X}_, rixi]
(2) Pr{Yf_; wixi <€) >0

Decision variables:
xi€{0,1} Viel,...,k
zeR
Random variables:
w; — item i weight Vie1l,...,k

r; — item i profit Viel,..., k
Stage structure:

Vi={x1,X2,..., %, 2}
S1={r1,r2,..., 1k, 01,02, ..., W}
L=[(Vy,51)]

Fig. 6. Stochastic constraint programming formulation for the single-stage SKP.

Stage structure:
Vi={x1,z} Viel,...,k
Vi={xj}Vie2,...,k
S,-:{ri,w,-} Viel,.‘.,k
L=[(V1,51), (V2,52), ..., (Vk, Si)]

Fig. 7. Stage structure for the multi-stage SKP.

In Fig. 7 we provide an alternative stage structure, that can be used in place of the stage structure in Fig. 6 to formulate
the multi-stage SKP. The model now comprises, in the stage structure L, multiple decision stages that alternate decisions
and observations according to the arrival sequence of the objects. In practice, in an optimal policy for the multi-stage SKP
an object may be selected or not, depending on the realized weights for previous objects.

Please note that Choco [15], the underlying solver we adopt for our algorithms, provides native support for real valued
decision variables (object RealVar), therefore it is straightforward to define and handle variable z during search and
propagation. Furthermore, IEI[ZL1 rix;] is an expression involving expected values. These expressions can in principle be
handled using a generic reformulation as follows. Let E[(exp)] denote the expected value of (exp). Recall that ¥ denote the
set of all distinct paths of a policy tree in the SCSP of interest. Since we assume that the support of random variables is
finite, it follows that the expected value can be easily reduced to a fully deterministic expression

E[(exp)] = Z (exp)yp - Pr{arcs(p)},

p: pe¥

where (exp),, is the deterministic expression obtained by replacing every random variable in (exp) with the respective
deterministic value this variable takes in scenario arcs(p) and every decision variable in (exp) with the respective copy
PTLi] associated with path p. Note, however, that Choco [15] does not allow expressions of mixed types, i.e., float and
integer types. Therefore, we implement a simple filtering algorithm that handles expected values expression which should
compute a real value, but the expression involves some integer values as well. This filtering algorithm is discussed in
Appendix A.

8.3.2. Instance generation

We consider a number of randomly generated instances for the single and multi-stage SKP. The SCSPs considered feature
a single chance constraints over 4 integer decision variables, x1, ..., X4, and 4 stochastic variables, wq, ..., w4, represent-
ing object weights. The decision variable domains are: D(x1) = D(x2) = D(x3) = D(x4) = {0, 1}. The domains of stochastic
variables w1, ..., w4 comprise 2 integer values each. The values in these domains have been randomly generated as uni-
formly distributed in {1, ..., 100}. Furthermore, the model also comprises 4 stochastic variables, r1, ..., r4 representing the
random profit brought by a given object, once it has been selected in a knapsack. Also the domains of stochastic vari-
ables rq,...,r4 comprise 2 integer values each randomly generated as uniformly distributed in {1,...,100}. Each value
appearing in the domains of random variables is assigned a realization probability of % We generated 5 different ran-
dom instances, then for each of these instances we consider 6 ranging in {0.95, 0.90, 0.85,0.80,0.75} and C ranging in
{300, 250, 200, 150, 100}. This produced a test bed of 125 instances. We consider 2 possible stage structures: in the first we
have only one stage, (V1, S1), where V{ ={z,x1,...,x4} and S; ={r1,...,74, 1, ..., w4}; in the second we have two stages,
(V1,S1) and (V5, Sa), where V1 ={z,x1,x2}, S1 ={r1,1r2, w1, w2}, Vo = {x3, x4}, and S, = {r3,r4, w3, w4}. The complete test
bed therefore comprises 250 instances.

B. Hnich et al. / Artificial Intelligence 189 (2012) 69-94 85

8.3.3. Modeling expressiveness

It is clear that, under the first stage structure, the policy tree comprises only 4 binary decision variables and the real
valued variable z; under the second stage structure, it comprises 34 binary decision variables and the real valued variable z.
Of course, as discussed in the previous sections, the SBA model requires a much larger number of variables to encode the
chance constraints in the model. Roughly, the additional number of binary variables required by SBA is proportional to the
number of scenarios and of chance constraints in the model, regardless of the stage structure. In this case, since we have
8 binary discrete random variables, the number of scenarios amounts to 28. Therefore the SBA model includes at least 256
auxiliary binary variables for the chance constraint enforcing the capacity restriction, and 256 auxiliary integer variables for
computing the expected cost. A comparable number of auxiliary constraints is also introduced. We stress once more that
by using our novel modeling approach we obtain significantly more compact model formulations than the state-of-the-art
approach in [26].

9. Computational experience
In this section we discuss our computational experience aimed at answering the following questions:

(1) Does the new approach based on the proposed filtering algorithms bring any benefit in terms of pruning compared to
the state-of-the-art approach?

(2) Does the new approach based on the proposed filtering algorithms bring any benefit in terms of search efficiency
compared to the state-of-the-art approach?

(3) What effect can we observe when we vary the level of consistency of algorithm .A?

(4) Is the new approach based on the proposed filtering algorithms more scalable?

All the experiments were performed on an Intel Core 2 Duo 1.86 GHz with 2 GB RAM. The solver used for our test is
Choco 1.2 [15], a Java open source CP solver. Variable and value selection heuristics were selected empirically among the
following ones made available in Choco [15] (“min domain”, “dom over den degree”, “dom over degree”, “most constrained”).
The combination adopted for RSCSP and SKP is the one that gave better results for SBA. For SPLSP, since we do not compare
against SBA, we arbitrarily selected a “min domain” heuristic for variable selection and then we analyzed the impact of

different value selection heuristics on search performances.
9.1. Pruning effectiveness

Consider the RSCSPs introduced in Section 8. We compare the effectiveness of the filtering performed by SBA and GCC
(Algorithm 1).

The propagation strategy discussed in Section 6 requires an existing propagator A for the deterministic constraints.
Since the only constraints appearing in the RSCSPs above are linear (in)equalities, we employ a simple bounds consistency
procedure for linear (in)equalities implemented in Choco 1.2 [15].

In this experiment, we only consider 90 two-stage feasible instances of the 270 instances of RSCSPs randomly generated
according to the strategy discussed in Section 8 (5 different probability distributions for the random variables and 18
different configurations for parameters o and B). We generate a solution for each of these instances. Then we randomly
pick subsets of the decision variables in the problem, we assign them to the value they take in this solution, we propagate
according to SBA and GCC, respectively, and we compare the percentage of values pruned by each of these two approaches.

In Fig. 8 we show the results of this comparison, which is performed for a number of decision variables assigned that
ranges from 0% — this corresponds to a root node propagation — to 90% of the decision variables that appear in the policy
tree.

In the graph, for each percentage of decision variables assigned, we report — in percentage on the total amount of values
in the initial decision variable domains — the minimum, the maximum, and the average number of values pruned from the
domains. As it appears from the graph, if we consider the minimum percentage of values pruned by the two approaches,
GCC always achieves a stronger pruning than SBA in the worst case. Furthermore, as the maximum percentage of values
pruned reported in the graph witnesses, GCC is able to achieve a much stronger pruning than SBA in the best case. On
average, GCC always outperforms SBA, by filtering up to 8.64% more values when 60% of the decision variables are assigned
and at least 3.11% more values at the root node.

The reader should note that the filtering effectiveness for a given algorithm A does not vary for Algorithms 1, 2 and 3.
Therefore only the computational efficiency (i.e. number of calls to algorithm .A) changes. We will investigate this further
in the next section.

9.2. Search efficiency
In the experiments presented so far, by using our novel approach, we outperform the state-of-the-art approach in [26] in

terms of pruning. We now investigate if this is reflected in gains in terms of search efficiency. We consider two benchmark
problem: a feasibility problem (RSCSPs) and an optimization problem (SKP). Both these problems have been introduced in

86 B. Hnich et al. / Artificial Intelligence 189 (2012) 69-94

Domain Reduction

Fe T O O T T T =T W
: b b - - b ol | : booox] GCC +--x--+
B 1R
80 bl T
3 | | | | |
(9] ! T X | 1
c | | | |
2 ‘ 1 i | | | 3
@ 60 i : ! ! pioid
3 ! | | | | ‘
=) 3 | ‘ i X !
®© | | ! ! ! !
> i | w i nl i
k] . | | . i ; |
o P 1 1 : x : 1
S . 1 | | ! | tl
£ 40 ! ! 1 ! .
[0] ! | | ! |
o | ! ! X | -
© ! | | Pl |
o ! i i ! B
B IEREINEE
20 ! : !
IEEMIIRE
Pk S Do Do Do Do Do Do -
ol—p 0)
0 10 20 30 40 50 60 70 80 90
Percentage of decision variables assigned
Fig. 8. Effectiveness of the filtering performed by SBA and GCC (Algorithm 1).
Explored Nodes
P LR g ot el N B
10° = ° hJ =
: 2 X3, :
10* = ¢ e =
- °
spa 107 E
~ . . ® ’ -
10% = - E
0 o0
19 00 o _
10 o8° -
100L .‘ vl \‘ ol ' ol ' ol ' ol ;
10° 10 10? 103 10* 10°
GCC

Fig. 9. The graph compares SBA and GCC (Algorithm 1) in terms of explored nodes for the 270 instances in our test bed. Axes are in logarithmic scale.

Section 8. We now show that, by using our novel modeling approach (GCC) in concert with the non-incremental propagation
strategy in Algorithm 1, we outperform the state-of-the-art modeling approach in [26] (SBA) in terms of runtimes and
explored nodes. Furthermore, we show that incremental filtering (Algorithms 2 and 3) is computationally more efficiency
than non-incremental filtering (Algorithm 1). These gains in efficiency also increase as we increase the number of stages.

9.2.1. RSCSPs

In order to assess search efficiency, we compared our approach (GCC) — which models the discussed SCSPs using five
global chance constraints, one for each chance constraint in the model — against the deterministic equivalent CSPs generated
using the state-of-the-art scenario-based approach in [26] (SBA).

In our comparative study we consider the 270 instances of RSCSPs discussed in Section 8. The variable selection heuristic
used during the search is the domain over dynamic degree strategy, while the value selection heuristic selects values from
decision variable domains in increasing order. To each instance we assign a time limit of 240 seconds for running the search.
The computational performances of Algorithm 1 and SBA are compared in Figs. 9 and 10. Runtimes for Algorithms 1 and 2

B. Hnich et al. / Artificial Intelligence 189 (2012) 69-94 87

Run Times
o o | eEnED @@e® ¢ o . ® o
2 _
10 : o -
- L]
10t - =
SBA . ® -
1078 w o W & f 4 -
! ey o
1{ L] .'.' ®)
10— = =
E ' ol | ' ol ' ' il i ' ol B
107t 10° 10* 102

GCC

Fig. 10. The graph compares the run time performance of SBA and GCC (Algorithm 1) for the 270 instances in our test bed. Axes are in logarithmic scale.

Run Times
- v ! N T o e e
102 - : . =
, e . -
B} ° g
10' - ® =
, » . 0” R
Gee : ”* : =
100 - ‘ E
) « ot :
107! - |} ' :) -
. it :
[]
o o o o N
107! 10° 10! 10?

Incremental GCC

Fig. 11. The graph compares the run time performance of non-incremental GCC (Algorithm 1) and incremental GCC (Algorithm 2) for the 270 instances in
our test bed. Axes are in logarithmic scale.

are compared in Fig. 11. A more detailed overview on our computational experience is given in Fig. 12, which presents a
comprehensive set of boxplots® for our experiments.

The results show that GCC (Algorithm 1) solved all the instances that SBA could solve within the time limit. In contrast,
SBA was often not able to solve — within the given time limit — instances that GCC could solve in a few seconds. More
specifically, both GCC and SBA could solve 90 of 90 1-stage instances; on average GCC explored roughly 5 times less nodes
and was about 3.34 times faster than SBA for these instances. GCC could solve 45 of 90 2-stage instances, while SBA could
only solve 18 of them; on average GCC explored roughly 36 times less nodes and was about 15 times faster than SBA for
these instances. Finally, GCC could solve 31 of 90 4-stage instances, while SBA could only solve 10 of them; on average
GCC explored roughly 35 times less nodes and was about 20 times faster than SBA for these instances. Incremental GCC
(Algorithm 2) could solve: 90 of 90 1-stage instances, on average it was about 3.90 times faster than SBA and 1.16 times
faster than GCC for these instances; 45 of 90 2-stage instances, on average it was about 58 times faster than SBA and 3.87
times faster than GCC for these instances; and 32 — therefore one instance more than GCC — of 90 4-stage instances, on
average it was about 29 times faster than SBA and 2.70 times faster than GCC for these instances.

9.2.2. SKP

We consider the 250 instances of SKP generated as discussed in Section 8. Since the only constraint appearing in the
SKP is, once more, a linear inequality, we employ also in this case the simple bounds consistency procedure for linear
(in)equalities implemented in Choco 1.2 [15] as existing propagator .A. The variable selection heuristic used during the
search is the min domain strategy, while the value selection heuristic selects values from decision variable domains in
decreasing order.

We compare the computational performances of the incremental versions of the filtering algorithms (Algorithms 2 and 3)
and SBA. Note that non-incremental version of the filtering algorithms (Algorithm 1) is not included in the experiments as it
is always outperformed by the incremental versions. Limits were imposed, during search, for run time and explored nodes.
More specifically, since SKP is an optimization problem and the solution time per instance tends to be higher than the one
observed for RSCSP, we limited the run time to 4000 seconds and the search space to 10,000,000 nodes.

3 A box plot [27,17] is a convenient way of graphically depicting groups of numerical data through their five-number summaries: the smallest observation,
lower quartile, median, upper quartile, and largest observation. A boxplot also indicates which observations might be considered outliers.

1-stage problems

0.50
1

0.20
L

c® o

runtime (sec)
0.10
1

0.05
1

0.02
1

T
Algorithm 2

T
Algorithm 1

1-stage problems

T
SBA

explored nodes
5
1
o

- - R S

T
GCC

Fig. 12. Randomly generated SCSPs. Boxplots for run time (in seconds) and explored nodes in the test bed considered. For the 2-stage and 4-stage instances the boxplots only refer to the subset of instances that
could be solved by GCC. The y-axis is displayed in logarithmic scale.

T
SBA

runtime (sec)
0.5 1.0 20 5.0 10.0 20.0 50.0 100.0

1

explored nodes

5000 50000

500

50 100

2-stage problems

1

}_

T T
Algorithm 2 Algorithm 1

T
SBA

2-stage problems
|
GCC SBA

runtime (sec)

explored nodes

500 1000

05 1.0 20 50 10.020.0 50.0 100.0 200.0

20000 50000

5000

200

4-stage problems

1

1

1

1

1

L

o
° 8
o
° ———
6
Ll
—
T T T
Algorithm 2 Algorithm 1 SBA
4-stage problems
o
o
o
e —
T T
GCC SBA

88

#6-69 (Z10Z) 681 douasijjoau] [pYILY /b 32 Yy g

B. Hnich et al. / Artificial Intelligence 189 (2012) 69-94 89

1-stage problems 2-stage problems
’ 8 8
e :
s 8
2
o
~ 2 -
g 1]
X} ° | 2z
[} ' o)
E 8] : E o
g o ° ; g 24
2 : 3 -
o
(= '
2 .
S 4
T T T d T T T
Algorithm 3 Algorithm 2 SBA Algorithm 3 Algorithm 2 SBA
1-stage problems 2-stage problems
8 8
w | H
N
o
& 8
n @ oS |
S 0] 5 8
o - S =
c c
el el
2 3 o
S o] o
g~ : g
> 3 8]
e
®
o
T T - T T
GCC SBA GCC SBA

Fig. 13. Stochastic knapsack problem. Boxplots for run time (in seconds) and explored nodes in the test bed considered. For the 2-stage instances the
percentiles only refer to the 116 instances that could be solved by GCC. The y-axis is displayed in logarithmic scale.

The runtimes obtained by Algorithm 2 are comparable to those obtained by Algorithm 3. This ought to be expected, in
fact the model comprises only a chance constraint embedding a linear inequality; this implies that bounds consistency is
sufficient for guaranteeing GAC in each scenario; therefore tracking disentailment at value level cannot bring any benefit.
Nevertheless, it is interesting to note that the memory requirements of Algorithm 3 does not significantly impact computa-
tional performances.

In the test bed considered, the incremental algorithms and SBA could solve, within the given time and node limits, 125
of 125 1-stage instances; on average both the incremental algorithms explored 2.4 times less nodes and were about 10
times faster than SBA for these instances. The incremental algorithms could solve 116 of 125 2-stage instances; of these
116 instances, SBA only solved 84. On average, both incremental algorithms explored at least 3.86 times less nodes — the
“at least” refers to the fact that SBA hit the time and node limits imposed for some instances — and were at least about 7
times faster than SBA for these instances. None of the remaining 9 instances that the incremental algorithms could not solve
was solved by SBA within the allocated time and node limits. Over the set of 116 2-stage instances that the incremental
algorithms could solve to optimality, SBA hit the imposed run time limit for about 33% of the instances. In Fig. 13 we report
boxplots for run times and explored nodes over the test bed considered. The above experiments show that our incremental
filtering strategies are computationally more efficient than the state-of-the-art approach in [26].

9.3. Comparing the incremental algorithms

The previous experiments show that both incremental algorithms have similar performances for the SKP. We now inves-
tigate further the relative performance of the incremental algorithms.

We analyzed the incremental filtering algorithms when different degrees of consistency — namely, BC and GAC — are
enforced by the parameterizing algorithm .4 in Algorithms 2 and 3. We use the PLSP as our benchmark problem.

The experiments show that these two algorithms are in general incomparable, and that their effectiveness depends upon
the consistency level achieved by algorithm A that is used, on the heuristics and, clearly, on the problem being investigated.

We consider the 30 instances of PLSP generated as discussed in Section 8. We computed a solution for each of these
instances and we analyzed the impact of the pruning when a given percentage of the decision variables in the model have
been assigned to their value in the solution computed. The results are shown in Fig. 14.

90 B. Hnich et al. / Artificial Intelligence 189 (2012) 69-94
Domain Reduction

L T e T T BC ——
: Lo Do Do - Lo - Do Do : : GAC ---x

80 |-

e Y m e

60 |-

e

e

40

[|
A

Percentage of values pruned

[S
A

20 |

K-—
H

P AV SIS SIS 0 B SN O SRS SIS O NP SN S O
0 10 20 30 40 50 60 70 80 90
Percentage of decision variables assigned

Fig. 14. Effectiveness of the filtering when different degrees of consistency are enforced by the parameterizing algorithm .A: GAC vs BC for stochastic alldiff.

In the graph, for each percentage of decision variables assigned, we report — as a percentage of the total number of
values in the initial decision variable domains — the minimum, the maximum, and the average number of values pruned
from the domains over the 30 instances considered. As is apparent from the graph and as expected, if we consider the
minimum percentage of values pruned by the two approaches, an algorithm enforcing GAC always achieves a stronger
pruning than one enforcing BC in the worst case. Furthermore, as the maximum percentage of values pruned reported in
the graph witnesses, an algorithm enforcing GAC is able to achieve a much stronger pruning than one enforcing BC in the
best case. On average, the former always outperforms the latter, by filtering on average up to 4.66% more values when 70%
of the decision variables are assigned.

Although it is clear, from our previous discussion, that an algorithm .4 enforcing a stronger level of consistency leads
to more pruning in Algorithms 2 and 3, it is not immediately seen if this brings an effective benefit in terms of runtimes.
Indeed, we can have four possible combinations: a lightweight filtering algorithm, i.e. Algorithm 2, combined with algorithm
A enforcing a weak consistency, such as BC; or a memory intensive filtering algorithm, i.e. Algorithm 3, combined with a
GAC propagator .A; or the two possible intermediate options, that is Algorithm 3 in combination with BC and Algorithm 2
in combination with GAC. We will now investigate this issue.

In what follows, once more we consider the PLSP problem in Fig. 5. Nevertheless, we now fix 6 to 0.95 and we generate
50 sets of probability distributions random variables d;; this is done according to the same strategy previously discussed. We
solve each of these 50 instances by using two possible filtering algorithms for the alldiff constraint: the algorithm enforcing
GAC in [20] and the algorithm enforcing bound consistency (BC) in [16]; each of these algorithms is used in concert with
Algorithms 2 and 3. The variable selection heuristic is the min domain strategy, the value selection heuristic selects values
from decision variable domains in increasing order.

Our computational experience is shown in Fig. 15. According to these results, it is not straightforward to decide which
consistency level should be used in concert with one of the algorithms we proposed. When we consider an algorithm A
enforcing GAC, Algorithm 3 generally provides better performances than Algorithm 2 over the test bed presented. Conversely,
when we consider an algorithm .4 enforcing BC, Algorithm 2 generally provides better performances than Algorithm 3. In
fact, Algorithm 2 in concert with BC seems to provide the best performances; nevertheless, it fails to solve 3 over 50
instances in the given limit of 1000 explored nodes. Conversely, if a GAC propagator is employed, both Algorithms 2 and 3
fail to solve only 2 instances, but the runtime spent on each instance grows visibly.

In our experiments, we also considered a different value selection heuristic, which selects values from decision variable
domains in decreasing order. Under this new heuristic strategy, computational times are sensibly impacted, especially for the
case in which A enforces BC in both Algorithms 2 and 3. Furthermore, if a BC propagator is employed, both Algorithms 2

B. Hnich et al. / Artificial Intelligence 189 (2012) 69-94 91

value selection heuristic selects values in increasing order value selection heuristic selects values in decreasing order
_ ° o
o - o o
8 b=4 o
51 g1 °
o wn
o o
(=3
g 8 ° o
) — ° o o o o o o
@ 2 .
£ § . o £ o °
~ ® o o ~ 2 o o
[) _ [} _ 3 o
£ : £ :
£ = E | B3
' o ——
2 g — s 2
8 _— s —_—
: — 2 =
s | —_— <] |
8] o g ° — T
o H 0 - H
=3 . —_— —_— —_—

T T T T T T T T
Algorithm 2 (GAC) Algorithm 2 (BC) Algorithm 3 (GAC) Algorithm 3 (BC) Algorithm 2 (GAC) ~ Algorithm 2 (BC) ~ Algorithm 3 (GAC) Algorithm 3 (BC)

value selection heuristic selects values in increasing order value selection heuristic selects values in decreasing order

o o — o o

1000
1
1000

500
1
500

explored nodes
200
1
explored nodes

100
1

8) .
o - —
° B 8
T T T T
GAC BC GAC BC

50
1

50
1

Fig. 15. Plane landing scheduling problem. Comparison between Algorithms 2 and 3 when different degrees of consistency (GAC & BC) are enforced. Boxplots
for runtimes and explored nodes over the 50 instances considered in our test bed. Runtimes are in milliseconds, the limit for explored nodes is set to 1000.
Two value selection heuristics are considered: increasing and decreasing order. The y-axis is displayed in logarithmic scale.

and 3 fail to solve 6 instances. Conversely, if a GAC propagator is employed, both Algorithms 2 and 3 fail to solve 4 instances.
This shows the importance of the use of an adequate heuristic strategy.

Our limited experience revealed that a more lightweight consistency (BC) may payoff, if used in concert with Algorithm 2.
Nevertheless, there is the risk of observing high run times for “hard” instances. To overcome this issue, it seems a viable
strategy to use a GAC propagator in concert with Algorithm 3.

As a takeaway message, we aim to emphasize that Algorithm 3 tends to use a significant amount of memory, if the num-
ber of scenarios is large; in such cases it should be avoided. On the other hand it is the ideal choice for highly combinatorial
problems involving a small number of scenarios. Algorithm 2 has low memory requirements and provides competitive per-
formances when used in concert with a BC propagator and a good value and variable selection heuristics.

9.4. Scalability

We finally conducted further experiments on a single-stage SKP comprising 10 objects. 125 instances have been gener-
ated for this problem by using the same strategy discussed in Section 8; that is by generating uniformly distributed random
values for the probability mass functions of the random profits, weights, and by varying 6 and C as discussed. Since each of
the 10 objects has 2 possible profits and 2 possible weights, the total number of scenarios is 229, Choco could not build the
scenario based model for any of the 125 instances due to out-of-memory exceptions. The total amount of memory assigned
to the VM was the default value for Java 1.6, i.e. a minimum of 2 MB and a maximum of 64 MB. The reader should also
be aware that it does not make sense to use Algorithm 3 when the number of scenarios is large; for this reason we did
not conduct experiments involving this algorithm. In contrast, Algorithm 2 managed to solve 115 of the 125 instances. The

92 B. Hnich et al. / Artificial Intelligence 189 (2012) 69-94

mean solution time was 51 minutes, the max solution time was 3.24 hours, the median time to solution was 19 minutes.
The mean number of explored nodes was 28.5, the max number of explored nodes was 140, the median number of explored
nodes was 14. These latter experiments demonstrate the scalability of our approach in the number of scenarios.

10. Related works

A thorough review on hybrid CP/AI/OR approach for decision making under uncertainty is given in [12]. Closely related
to our approach are [23,25,24,22]. In these works ad-hoc filtering strategies for handling specific chance constraints are
proposed. However, the filtering algorithms presented in both these works are special purpose, incomplete, and do not
reuse classical propagators for conventional constraints. Other search and consistency strategies, namely a backtracking al-
gorithm, a forward checking procedure [28] and an arc-consistency [1] algorithm have been proposed for SCSPs. But these
present several limitations and cannot be directly employed to solve multi-stage SCSPs as they do not explicitly feature a
policy tree representation for the solution of an SCSP. Further extensions to cope with problems involving branching and
with multi-objective decision making were discussed in [6]. These extensions only require a minor modification of the
original framework. Finally, efforts that try to extend the classical CSP framework to incorporate uncertainty have been
influenced by works that originated in different fields, namely chance-constrained programming [7] and stochastic program-
ming [5]. The Probabilistic CSP [8] represents the first attempt to include random variables, and thus uncertainty, within
the CP framework. To the best of our knowledge the first work that tries to create a bridge between Stochastic Program-
ming and Constraint Programming is by Benoist et al. [3]. The idea of employing a scenario-based approach for building up
constraint programming models of SCSPs is not novel, since Tarim et al. [26] have already used this technique to develop a
fully featured language — Stochastic OPL — for modeling SCSPs. Nevertheless, unlike our approach, the technique in [26], as
well as the existing scenario-based reformulation techniques in stochastic programming [5], introduce a significant number
of auxiliary binary variables that hinder the search process and that impact the space requirements for both constraint and
mathematical programming solvers, respectively. Our work proposes an orthogonal approach to solving SCSPs that do not
rely on binary variables and that can easily be integrated with the compilation approach of [26] and with the cost-based fil-
tering techniques in [25] to improve performances. In real-world SCSPs, domains of random variables are typically large and
the policy tree tends to explode. We believe that for these problems one has to either: develop a special purpose filtering
techniques, if optimality is of concern (see e.g. [23,24]); or adopt some scenario reduction method such as those discussed
in [26] (i.e. Latin Hypercube Sampling, Dupacova reduction, etc.) to limit the size of the policy tree in the respective SCSP.
In [21], we proposed two novel tools — “Sampled SCSP” and (c, ©¥)-solutions — that allow a decision maker to enforce
likelihood guarantees on the quality of the solution obtained when a scenario reduction technique is applied to bound the
size of the policy tree. These scenario reduction approaches can be used in problems featuring non-independent random
variables and can be applied in synergy with the filtering algorithms discussed in our paper. Alternatively, one may apply
the heuristic approach discussed in [18,19], which is based on evolutionary search.

11. Conclusions

We proposed a generic filtering algorithm (Algorithm 1) for global chance constraints. This algorithm is parameterized
with conventional propagators for the corresponding deterministic version of the global chance constraint. By using our
novel modeling approach, we obtain significantly more compact model formulations than the state-of-the-art approach
in [26].

We extended the generic filtering algorithm in two ways in order to obtain two incremental variations: a lightweight
version (Algorithm 2) as well as a memory-intensive one (Algorithm 3). We performed an extensive experimental study
on three benchmark problems: two stochastic constraint satisfaction problems and a stochastic constraint optimization one.
This experimental study revealed that:

e by using the non-incremental filtering we outperform the state-of-the-art approach in [26] in terms of pruning and
runtimes;

e the incremental versions of the filtering algorithm are computationally more efficient than the non-incremental filtering;

e Algorithms 2 and 3 are in principle incomparable with each other, since the efficiency of both is strictly influenced by
the consistency level enforced by algorithm .A; and

e when the number of scenarios grows, the proposed approach is more scalable than the state-of-the-art approach in [26].

Future work may investigate opportunities offered by the integration of cost-based filtering techniques for solving
stochastic constraint optimization problems such as the stochastic knapsack (see e.g. [25]). Another important future di-
rection is the investigation of how sampling techniques may improve scalability and efficiency of our approach.

Appendix A

We discuss a filtering strategy for handling constraint expressions involving expected values (Section 8.3.1).

B. Hnich et al. / Artificial Intelligence 189 (2012) 69-94 93

Algorithm 4: Filtering expected values.

input : (exp); PT; x.
output: Bound consistent x.

1 begin
UB < 0;
LB < 0;
for each p € ¥ do
UB < UB + Sup((exp)p) - Pr{arcs(p)};
\\ LB < LB + Inf({exp)) - Pr{arcs(p)};

Sup(x) < UB;
Inf(x) < LB;
end

© N ooUubhWwWN

Consider a constraint x = E[(exp)], where x is a real valued decision variable, whose domain is stored as an interval
with real valued upper and lower bounds. Techniques for handling propagation and search involving real valued decision
variables are discussed in [2]. A filtering algorithm that enforces bounds consistency on this constraint is shown in Fig. 4.
The algorithm simply evaluates two values: UB and LB. UB denotes an upper bound for the expected value of (exp), LB
denotes a lower bound for the expected value of (exp). It should be noted that the algorithm operates by exploiting the
structure ¥ of the policy tree. Therefore it takes implicitly into account the stage structure of the problem while computing
the expected value of a given expression. For this reason, the algorithm will correctly evaluate expected values both in a
single or multi-stage case. Furthermore, more complex objective functions can be easily implemented by incorporating the
required expression (exp) — for instance max(Z{f:1 wiX; — ¢,0) in the case of penalty costs for buying additional capacity
— in the filtering strategy discussed in Fig. 4.

References

[1] T. Balafoutis, K. Stergiou, Algorithms for stochastic CSPs, in: F. Benhamou (Ed.), Principles and Practice of Constraint Programming - CP 2006, Proceed-
ings of the 12th International Conference, CP 2006, Nantes, France, September 25-29, 2006, in: Lecture Notes in Computer Science, vol. 4204, Springer,
Berlin/Heidelberg, 2006, pp. 44-58.

[2] E. Benhamou, L. Granvilliers, Continuous and interval constraints, in: F. Rossi, P. van Beek, T. Walsh (Eds.), Handbook of Constraint Programming,
Elsevier, 2006 (Ch. 16).

[3] T. Benoist, E. Bourreau, Y. Caseau, B. Rottembourg, Towards stochastic constraint programming: A study of online multi-choice knapsack with deadlines,
in: T. Walsh (Ed.), Principles and Practice of Constraint Programming - CP 2001, Proceedings of the 7th International Conference, CP 2001, Paphos,
Cyprus, November 26-December 1, 2001, in: LNCS, vol. 2239, Springer, 2001, pp. 61-76.

[4] C. Bessiere, E. Hebrard, B. Hnich, T. Walsh, The complexity of reasoning with global constraints, Constraints 12 (2) (2007) 239-259.

[5] J.R. Birge, F. Louveaux, Introduction to Stochastic Programming, Springer Verlag, New York, 1997.

[6] L. Bordeaux, H. Samulowitz, On the stochastic constraint satisfaction framework, in: Y. Cho, R.L. Wainwright, H. Haddad, S.Y. Shin, Y.W. Koo (Eds.),
Proceedings of the 2007 ACM Symposium on Applied Computing (SAC), Seoul, Korea, March 11-15, 2007, ACM, 2007, pp. 316-320.

[7] A. Charnes, W.W. Cooper, Deterministic equivalents for optimizing and satisficing under chance constraints, Operations Research 11 (1) (1963) 18-39.

[8] H. Fargier,]. Lang, R. Martin-Clouaire, T. Schiex, A constraint satisfaction framework for decision under uncertainty, in: P. Besnard, S. Hanks (Eds.), UAI
'95: Proceedings of the Eleventh Annual Conference on Uncertainty in Artificial Intelligence, August 18-20, 1995, Montreal, Quebec, Canada, Morgan
Kaufmann, 1995, pp. 167-174.

[9] MR. Fellows, T. Friedrich, D. Hermelin, N. Narodytska, F.A. Rosamond, Constraint satisfaction problems: Convexity makes alldifferent constraints
tractable, in: T. Walsh (Ed.), [JCAI 2011, Proceedings of the 22nd International Joint Conference on Artificial Intelligence, Barcelona, Catalonia, Spain,
July 16-22, 2011, IJCAI/AAA], 2011, pp. 522-527.

[10] LP. Gent, C. Jefferson, I. Miguel Minion, A fast scalable constraint solver, in: G. Brewka, S. Coradeschi, A. Perini, P. Traverso (Eds.), ECAI 2006, Proceedings
of the 17th European Conference on Artificial Intelligence, August 29-September 1, 2006, Riva del Garda, Italy, Including Prestigious Applications of
Intelligent Systems (PAIS 2006), in: Frontiers in Artificial Intelligence and Applications, vol. 141, I0S Press, 2006, pp. 98-102.

[11] B. Hnich, R. Rossi, S.A. Tarim, S.D. Prestwich, Synthesizing filtering algorithms for global chance-constraints, in: LP. Gent (Ed.), Principles and Practice of
Constraint Programming - CP 2009, Proceedings of the 15th International Conference, CP 2009, Lisbon, Portugal, September 20-24, 2009, in: Lecture
Notes in Computer Science, vol. 5732, Springer, 2009, pp. 439-453.

[12] B. Hnich, R. Rossi, S.A. Tarim, S.D. Prestwich, A survey on CP-AI-OR hybrids for decision making under uncertainty, in: M. Milano, P. Van Hentenryck
(Eds.), Hybrid Optimization: The 10 Years of CP-AI-OR, in: Springer Optimization and Its Applications, vol. 45, Springer, 2011, pp. 227-270.

[13] H. Jeffreys, Theory of Probability, Clarendon Press, Oxford, UK, 1961.

[14] M. Kutz, K. Elbassioni, I. Katriel, M. Mahajan, Simultaneous matchings: Hardness and approximations, Journal of Computer and System Sciences 74 (5)
(2008) 884-897.

[15] F. Laburthe, Choco: Implementing a CP kernel, in: N. Beldiceanu, W. Harvey, M. Henz, F. Laburthe, E. Monfroy, T. Miiller, L. Perron, C. Schulte (Eds.),
Proceedings of TRICS: Techniques for Implementing Constraint Programming Systems, a Post-Conference Workshop of CP 2000, Singapore, September
18-21, 2000, pp. 71-85.

[16] A. Lépez-Ortiz, C.-G. Quimper,]. Tromp, P. van Beek, A fast and simple algorithm for bounds consistency of the alldifferent constraint, in: G. Gottlob,
T. Walsh (Eds.), [JCAI-03, Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence, Acapulco, Mexico, August 9-15, 2003,
Morgan Kaufmann, 2003, pp. 245-250.

[17] R. McGill,].W. Tukey, W.A. Larsen, Variations of box plots, The American Statistician 32 (1) (1978) 12-16.

[18] S.D. Prestwich, S.A. Tarim, R. Rossi, B. Hnich, Evolving parameterised policies for stochastic constraint programming, in: LP. Gent (Ed.), Principles and
Practice of Constraint Programming — CP 2009, Proceedings of the 15th International Conference, CP 2009, Lisbon, Portugal, September 20-24, 2009,
in: Lecture Notes in Computer Science, vol. 5732, Springer, 2009, pp. 684-691.

[19] S.D. Prestwich, S.A. Tarim, R. Rossi, B. Hnich, Stochastic constraint programming by neuroevolution with filtering, in: A. Lodi, M. Milano, P. Toth
(Eds.), Integration of Al and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, Proceedings of the 7th International
Conference, CPAIOR 2010, Bologna, Italy, June 14-18, 2010, in: Lecture Notes in Computer Science, vol. 6140, Springer, 2010, pp. 282-286.

94 B. Hnich et al. / Artificial Intelligence 189 (2012) 69-94

[20] J.-C. Régin,].-F. Puget, A filtering algorithm for global sequencing constraints, in: G. Smolka (Ed.), Principles and Practice of Constraint Programming -
CP97, Proceedings of the Third International Conference, Linz, Austria, October 29-November 1, 1997, in: Lecture Notes in Computer Science, vol. 1330,
Springer, 1997, pp. 32-46.

[21] R. Rossi, B. Hnich, S.A. Tarim, S. Prestwich, Finding (¢, ¥)-solutions via sampled SCSP, in: T. Walsh (Ed.), IJCAI 2011, Proceedings of the 22nd Interna-
tional Joint Conference on Artificial Intelligence, Barcelona, Catalonia, Spain, July 16-22, 2011, IJCAI/AAAI, 2011, pp. 2172-2177.

[22] R. Rossi, S.A. Tarim, R. Bollapragada, Constraint-based local search for computing non-stationary replenishment cycle policy under stochastic lead-times,
INFORMS Journal on Computing 24 (1) (2012) 66-80.

[23] R. Rossi, S.A. Tarim, B. Hnich, S. Prestwich, A global chance-constraint for stochastic inventory systems under service level constraints, Constraints 13 (4)
(2008) 490-517.

[24] R. Rossi, S.A. Tarim, B. Hnich, S. Prestwich, Computing replenishment cycle policy under non-stationary stochastic lead time, International Journal of
Production Economics 127 (1) (2010) 180-189.

[25] R. Rossi, S.A. Tarim, B. Hnich, S.D. Prestwich, Cost-based domain filtering for stochastic constraint programming, in: PJ. Stuckey (Ed.), Principles and
Practice of Constraint Programming, Proceedings of the 14th International Conference, CP 2008, Sydney, Australia, September 14-18, 2008, in: Lecture
Notes in Computer Science, vol. 5202, Springer, 2008, pp. 235-250.

[26] S.A. Tarim, S. Manandhar, T. Walsh, Stochastic constraint programming: A scenario-based approach, Constraints 11 (1) (2006) 53-80.

[27] J.W. Tukey, Exploratory Data Analysis, 1st edition, Addison Wesley, 1977.

[28] T. Walsh, Stochastic constraint programming, in: F. van Harmelen (Ed.), Proceedings of the 15th European Conference on Artificial Intelligence,
ECAI'2002, Lyon, France, July 2002, 10S Press, 2002, pp. 111-115.

	Filtering algorithms for global chance constraints
	1 Introduction
	2 Formal background
	3 Satisfying policy trees
	4 Scenario-based approach to solve SCSPs
	5 Formal background
	6 Generic ﬁltering algorithms
	6.1 Case 1 (θh < 1)
	6.2 Case 2 (θh = 1)

	7 Incremental ﬁltering algorithm
	7.1 Lightweight incremental algorithm
	7.2 Memory-intensive incremental algorithm

	8 Benchmark problems
	8.1 Random stochastic CSPs (RSCSP)
	8.1.1 Problem deﬁnition
	8.1.2 Instance generation
	8.1.3 Modeling expressiveness

	8.2 Plane Landing Scheduling Problem (PLSP)
	8.2.1 Problem deﬁnition
	8.2.2 Instance generation
	8.2.3 Modeling expressiveness

	8.3 Stochastic Knapsack Problem (SKP)
	8.3.1 Problem deﬁnition
	8.3.2 Instance generation
	8.3.3 Modeling expressiveness

	9 Computational experience
	9.1 Pruning effectiveness
	9.2 Search efﬁciency
	9.2.1 RSCSPs
	9.2.2 SKP

	9.3 Comparing the incremental algorithms
	9.4 Scalability

	10 Related works
	11 Conclusions
	References

