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Abstract 

A medical diagnosis system (DRCAD), which consists of two sub-modules Bayesian and rule-based inference 
models, is presented in this study. Three types of tests are conducted to assess the performances of the models 
producing synthetic data based on the ALARM network. The results indicate that the linear combination of the 
aforementioned models leads to a 5% and a 30% improvement in medical diagnosis when compared to the “Rule 
Based Method” and the “Bayesian Network Based Method”, respectively. 
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1.  Introduction 

A Decision Support System (DSS) is a computer-based 
information system that supports organizational and 
business decision-making activities. Medical Decision 
Support Systems, which are variants of decision support 
systems, are intelligent software systems that are 
designed to improve clinical diagnosis system and to 
support the healthcare personnel in their decision. 
Intelligent decision support systems use artificial 
intelligence system techniques to support the healthcare 
personnel for selecting the best method for both 
diagnosis and also for treatment especially when the 
information about the treatment is incomplete or 
uncertain. These systems can work in both active and 
passive modes. When they are in passive mode, they 
will be used only when they are required. When they are 
in active mode, they will be making recommendations 
as well. When we look at the approaches of the 
inference mechanisms, which constitute the most 
important part of the medical decision support systems, 
these approaches can be divided into two parts such as 
rule-based systems and data-driven systems.  

Rule-based systems are constructed on the 
knowledge base, which are formed by if-then structures. 
In this structure, the information base is formed by the 
rules. The operation logic of the system is to find 
relevant rules on the basis of the available information 
operate them and continue to search for a rule until a 
result has been obtained. Those rule-based systems have 
some strong features as well as some disadvantages. For 
example, the performance of the system decreases and 
the maintenance of the system becomes difficult in case 
of the number of the rules are large enough. Examples 
of the medical decision support systems are MYCIN1,2,  
TRAUMAID3, and RO2SE4. Data-driven systems, on 
the other hand, operate in large data stacks and support 
the decision-making process using data mining 
methods. Several studies can be found in the related 
literature about data-driven systems. Some of these 
studies can be referred to Bayesian networks5, Rough 
sets6 and artificial neural networks7. Data-driven 
systems are more flexible compared to the rule-based 
systems and they have the ability to learn by 
themselves.  
 

The aim of this paper is to evaluate the performance 
of the Bayesian and rule-based inference models on 
medical data using a medical diagnosis system called as 
DRCAD. In this study, three types of tests are 
conducted to assess the standalone performances of the 
Bayesian model, the rule-based model, and the linear 
combination of these two separate methods.    For these 
evaluations, synthetic data have been produced based on 
the probabilities on the ALARM (A Logical Alarm 
Reduction Mechanism) network - a structure prepared 
by using real patient information for many variables 
showing the probabilities derived from the real life 
circumstances. Performance evaluation is repeated for 
100, 1.000 and 2.000 batches of data sets to validate the 
accuracy of the results. This paper also contributes to 
the relevant literature by presenting a medical decision 
support system called DRCAD system with two sub-
modules comprised of Bayesian and rule-based 
inference models.  

The rest of this paper is organized as follows. 
Section 2 provides an overview of decision support 
systems. In Section 3, Bayesian networks are explained 
briefly. In Section 4, the ALARM Network structure is 
described. In Section 5 and 6, the Rule Based Method 
and the Bayesian Network Method Testing Scenarios 
are explained, respectively. Section 7 presents the 
experimental results of DRCAD Medical Diagnosis 
Software. Finally, Section 8 concludes. 

2. Decision support systems 

DSSs are interactive computer-based systems or 
subsystems that are designed to help decision makers to 
decide and complete the decision process operations and 
also to determine and solve problems using 
communication technologies, information, documents 
and models. They provide data storage and retrieval but 
enhance the traditional information access and retrieval 
functions with support for model building and model-
based reasoning. They support framing, modeling and 
problem solving. Typical application areas of DSSs are 
healthcare, management and planning in business, the 
military and any area in which management will 
encounter complex decision situations. DSSs are 
typically used for strategic and tactical decisions faced 
by upper-level management -decisions with a 
reasonably low frequency and high potential 
consequences- in which the time taken for thinking 
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have been composed for all variables by utilizing the 
network structure. In the phase of generating rules, the 
ALARM network, which is a Bayesian tool, the 
structure of the network has been screened by using the 
Netica 3.18 Software and thus related rules have been 
generated for each variable from the related image 
presentations. One of the rules to be generated by 
utilizing the table shown in the Figure 4 is like this; 
IF (InsuffAnesth=True and SaO2=Low and TPR=Low 
and ArtCO2= Low) THEN Catechol= High 
 
The display of this rule through RuleML is as follows:  

<?xml version="1.0" encoding="utf-8"?> 
<RuleML 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
xmlns="http://www.ruleml.org/0.9/xsd" 
xsi:schemaLocation="http://www.ruleml.org/0.9/xsd 
http://www.ruleml.org/0.9/xsd/datalog.xsd"> 
<Assert> 
<formula> 
 <Implies> 
  <head> 
   <Atom> 
    <op> 
    
 <Rel>Catechol is High</Rel> 
    </op> 
                                              <Degree> 
                                               <Data>0.70</Data> 
                                              </Degree> 
   </Atom> 
  </head> 
  <body> 
   <And> 
    <formula> 
     <Atom> 
     
 <op> 
      
 <Rel>InsuffAnesth is True</Rel> 
     
 </op> 
     </Atom> 
    </formula> 
    <formula> 
     <Atom> 
     
 <op> 
      
 <Rel>SaO2 is Low</Rel> 

     
 </op> 
     </Atom> 
    </formula> 
                                                                <formula> 
     <Atom> 
     
 <op> 
      
 <Rel>TPR is Low</Rel> 
     
 </op> 
     </Atom> 
    </formula> 
                                                                <formula> 
     <Atom> 
     
 <op> 
      
 <Rel>ArtCo2 is Low </Rel> 
     
 </op> 
                                                              <Ind>True</Ind> 
     </Atom> 
    </formula> 
                                 </And> 
  </body> 
 </Implies 
</formula> 
</Assert> 
</RuleML> 

 
The rules generated by utilizing the topological 

structure of the network can be considered and 
classified under two headings: “The rules which 
generate the intermediate results and additional 
diagnosis” and “The rules which generate the target 
diagnosis”. 

The rules in the first group are the auxiliary ones 
which are utilized in order to reach the target results. 
Some supplementary and additional diagnosis can also 
be generated by making use of these auxiliary rules. The 
conditions of the rules should be affirmed in order to 
reach the target results within the pool of the rules to be 
used. In those cases when the data provided by the user 
to be utilized to affirm conditions of the rules are 
insufficient, those rules which are expected to affirm the 
conditions are examined thoroughly. These rules can 
also be defined as those rules which are in charge of 
generating intermediate results. Those rules in the 
second group are the sort of rules which are utilized in 
order to reach the target conclusions. If necessary, it is 
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In the functional architecture, the first part is the 
interface which enables us to obtain the information 
about the patient in question. This section, which is 
transformed into practice, is not the only part that can be 
utilized to support the decision support system, but it 
can also support more than one decision support system 
to be used.  

Obtaining information about a patient means 
introducing the facts to the system by means of which 
the machine will make inferences about the patient. 
Inferences are made by utilizing these facts and some 
new facts are obtained. There may be some information 
regarding the case of the disease, the differences accrue 
as a result of the application of the treatment or 
information on the results of the tests performed for the 
patient among the facts obtained.  The information in 
the system must be in the form which will enable us to 
process all the information regarding the patient even if 
this information comes from other systems which use 
different software. It has been decided that the bridge to 
be built between other decision support systems should 
be XML (EXtensible Markup Language) which has 
been developed in order to make it possible to operate 
such various systems together in cooperation with each 
other compatibly. The usage of XML is a standard 
which is benefitted from when it is intended to 
exchange information among those platforms which 
utilize different systems for their operations. The 
function of the bridge is to send the questioning 
information taken from the users and transfer them to 
lower/bottom layers, that is, it transfers the information 
into forms which are possible for the bottom decision 
systems to process and send them into other layers by 
modifying them depending on their kinds and origins 
according to the purpose of the usage.  
RuleML rule markup language is used in order to 
convey the meanings of the rules and facts utilized 
within the developed medical decision support system. 
Thus, it has been possible to exchange XML based 
information between the bottom systems and the bridge 
system stated above by utilizing this language.  
The information is provided to the developed system in 
the form of XML based RuleML documents. A sample 
for the patient information utilized during the test phase 
of the developed system has been provided below: 
  
 FiO2 is Normal 
 Intubation is Normal 

 Hypovolemia is False 
 Anaphylaxis is False. 
 

The FiO2 value and the Hypovolemia state of the 
patient given as a sample above are stated as in follows 
in the RuleML markup language;  

The display of the patient’s “FiO2 value is normal” 
for RuleML:   
<?xml version="1.0"?> 
<RuleML 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
xmlns="http://www.ruleml.org/0.9/xsd" 
xsi:schemaLocation="http://www.ruleml.org/0.9/xsd 
http://www.ruleml.org/0.9/xsd/datalog.xsd"> 
  <Assert>  
    <formula> 
      <Atom> 
        <degree> 
          <Data>0.99</Data> 
        </degree> 
        <op> 
          <Rel>FiO2 is Normal</Rel> 
        </op> 
      </Atom> 
    </formula> 
  </Assert> 
</RuleML> 
The display of “Hypovolemia is false” for RuleML:  

<?xml version="1.0"?> 
<RuleML 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
xmlns="http://www.ruleml.org/0.9/xsd" 
xsi:schemaLocation="http://www.ruleml.org/0.9/xsd 
http://www.ruleml.org/0.9/xsd/datalog.xsd"> 
  <Assert> 
    <formula> 
      <Atom> 
        <degree> 
          <Data>0.8</Data> 
        </degree> 
        <op> 
          <Rel>Hypovolemia is False</Rel> 
        </op> 
      </Atom> 
    </formula> 
  </Assert> 
</RuleML> 
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(c) And if there is an unprocessed condition, then 
choose the next condition and go back to the 
first step. 

(d) If none of the conditions are verified and there 
aren’t any variables in the conclusion sentence, 
then add the result obtained into the memory.  

 
Thanks to this solution applied that there has been a 

solution differentiation or distinction between those 
rules composed of “and” and those rules composed of 
“or”. This solution has been transferred into practice 
through advanced forward chaining and backward 
chaining method so that the method can comply with 
the structure of operation of the system. The other 
modifications applied to the inference machines are to 
generate results with the confidence degree which is 
presented in the structure as a solution to the problem 
examined. The confidence degree shows the possibility 
of the correctness of a result which is generated. 
According to this assumption, their degree of 
confidence will exist in those results obtained as a result 
of the inference operations carried out in the inference 
machine if all those rules and/or the facts are defined in 
it. Thanks to this, in accordance with the facts utilized 
within the system and the results obtained in line with 
the rules on which some comments can also be made 
saying that they should also be correct and valid. The 
confidence degrees are the values which may change 
between 0 and 1. The method concerning this 
confidence degree of the calculations made during the 
inference operations can be explained as follows: 

 
(i) While making conclusions from the rules,   

(a) If the rule is a sentence constructed by using the 
word “and” for each verified condition, the 
confidence of the rule is calculated by using this 
formula;  min (rule confidence,  the condition 
confidence at that moment).  

(b) If the sentence of the rule constructed by using 
“or” for each validated condition, the 
confidence of the rule is calculated by using this 
formula: max (the confidence of the rule, the 
confidence of the condition at that moment).  

(c) If all of the conditions of the rule are provided 
and if a confidence is acquired as a result of 
justifying these rules;  
 If there isn’t a reliable value in the 

conclusion section of the rule, the validity 
acquired from the concluding conditions is 
added together to the memory.  

 If there is a confidence value in the 
conclusion section of the rule, the 
conclusion is added to the memory 
according to this formula: confidence = 
(confidence of the conditions * confidence 
of the result). 

 
In the approach mentioned here, it is stated that the 

confidence of a rule depends on the confidence of the 
conditions. In cases where there isn’t any confidence in 
the conditions of a rule, the conclusion is added to the 
memory together with the confidence degree of the rule. 
The confidence of operations in the system composed is 
created to be taken into account in cases where there is 
confidence.  

Some special cases exist in confidence operations. 
These cases are as follows;  

 
(ii) If a condition can be verified depending on one of 

the current facts, 
(a) If a confidence degree isn’t determined in a 

condition and the fact owns a confidence 
degree; the confidence degree of the condition 
is equalized to the value of the fact and the 
calculation of the confidence degree of the rule 
is performed by making use of this value.  
 

(b) If there is a confidence degree in the condition 
and if there is also a confidence degree in the 
fact; the confidence degree of the condition is 
calculated by using this formula: confidence = 
(confidence of the condition* confidence of the 
fact) and the confidence degree of the rule is 
calculated by using this value.  
 

(iii) If a conclusion generated by a rule exists in the 
memory,  

(a) If there isn’t a  confidence degree of a generated 
conclusion and if there is the confidence degree 
of fact in the memory, in such cases  no 
operation or calculation is performed 

(b) If there a confidence degree in the generated 
conclusion and there isn’t any confidence in the 
fact within the memory, the confidence degree 
of fact in the memory is equalized to the 
confidence degree of the generated conclusion.   

(c) If there is confidence degree in both generated 
result and in the fact in the memory, then the 
confidence degree of the fact in the memory 
(the confidence degree of the condition to be 
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and compared to the individual ones. Each record 
composed on these data shows the values belonging to 
37 variables registered on the network. There are 12 
input and 11 output variables on each record and the 
records of all the intermediate values are also saved and 
kept for further use. Those tests which are actualized 
send the input variables for each record to the inference 
engine and it saves the files of the lists created 
following each of the inference operation. The 
correctness of the inference results are decided by 
comparing the records of the related variables of the 
recorded test data. 11 probable results are obtained for 
each record. The tests are composed of the application 
of the “Rule Based Method” and “Bayesian Network 
Based Method” on the synthetic data set and 
additionally the linear combination of results of these 
two methods. The test results obtained according to this 
schedule are shown in Table 2. 

Table 2.The results for the DRCAD inference methods 

Synthetic Dataset with 100 Records 

Method 

Number of  

Correct 

Diagnosis 

Number of 

Total 

Diagnosis 

Accuracy 

Rule-Based 856 1100 77.82% 

Bayesian  576 1100 52.36% 

Linearly Combined  896 1100 81.46% 

 

Synthetic Dataset with 1000 Records 

Method 

Number of  

Correct 

Diagnosis 

Number of 

Total 

Diagnosis 

Accuracy 

Rule-Based 8341 11000 75.83% 

Bayesian  5550 11000 50.46% 

Linearly Combined  8908 11000 80.98% 

 

Synthetic Dataset with 2000 Records 

Method 

Number of  

Correct 

Diagnosis 

Number of 

Total 

Diagnosis 

Accuracy 

Rule- Based 16783 22000 76.29% 

Bayesian  11118 22000 50.54% 

Linearly Combined  17810 22000 80.96% 

The first column in this table shows the method by 
means of which the inference is performed, the second 
column shows the number of correct decisions 
generated by the DRCAD Inference Engine, the third 
column shows the number cases examined and finally in 
the last column the percentages of the accuracy rate of 
the decisions taken are shown.  When the conclusions 
are examined, it can be seen that the Rule Based 
Method is more successful in the rate of 25% than the 
“Bayesian Network Based” method in all dimensions of 
the data sets.  Besides, when both of these methods are 
combined and utilized together the success rate rises to 
80% much higher rates are acquired in comparison to 
the values obtained by applying these methods 
individually. In other words, the method in which the 
conclusions are combined in a linear manner are 5% 
more successful than the “Rule Based Method when 
applied individually and 30% more successful than the 
cases where the “Bayesian Network Based” method is 
utilized.  

In summary, “Bayesian Network Based” method 
captures causal dependencies using the conditional 
probabilities based on the relationships between each 
node on the ALARM network. On the other hand, the 
“Rule Based” method allows for a direct construction of 
classification relations by capturing the knowledge 
retrieved from the data. In this study, the performance 
of the “Rule Based” method shows better results than 
those of the “Bayesian Network Based” method since 
the rules extracted by using data mining techniques 
describe the complicated relations between the variables 
better for the generated data sets. However, adding the 
rules extracted by the “Bayesian Network Based” 
method to the rule base increases the accuracy rate of 
the medical diagnosis since the structural information of 
the Bayesian network is reflected to the rule base. So, it 
is concluded that two methods’ results complement each 
other and provide higher accuracy rates for medical 
diagnosis.   

8. Conclusion 

In cases of uncertainty and the lack of information, the 
most important part of the decision support systems 
which supports decision-making process is the inference 
mechanism. There are data mining methods such as 
Support Vector Machine, Multilayer Perceptron, 
Decision Trees, and so forth that are available in 
inference mechanism. Those methods can be used 
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separately in an inference mechanism or also as a hybrid 
system, which consists of a combination of those 
methods. In this study, for the generated synthetic data, 
ALARM network structure which is widely used in 
scientific studies has been used. This network structure 
is a structure that has been prepared using real patient 
information for many variables and shows the 
possibilities derived from real-life circumstances. When 
the results are examined, it can be seen that the Rule 
Based Method is more successful in the rate of 25% 
than the “Bayesian Network Based” method in all 
dimensions of the data sets.  Besides, when both of 
these methods are combined and utilized together the 
success rate rises to 80%, i.e., much higher rates are 
acquired in comparison to the values obtained by 
applying these methods individually. In other words, the 
method in which the conclusions are combined in a 
linear manner are 5% more successful than the “Rule 
Based Method when applied individually and 30% more 
successful than the cases where the “Bayesian Network 
Based Method is utilized. Finally, DRCAD system is 
more innovative and interesting than the classical 
diagnosis support systems by collecting possible 
diagnosis of the patients from two sub modules. In 
future, different methods should be combined within 
this framework and their performances should be 
compared. 
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