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Abstract
This study examines the effect of differential item functioning (DIF) items on test equating through multilevel 
item response models (MIRMs) and traditional IRMs. The performances of three different equating models were 
investigated under 24 different simulation conditions, and the variables whose effects were examined included 
sample size, test length, DIF magnitude, and the test type. The MIRMs, in which the DIF factors were added as 
parameters, were compared with the Stocking–Lord (SL) method (one of the IRM-based calibration methods) 
and concurrent calibration method. According to the results, differences were found in the performances of the 
methods under the analyzed conditions. More specifically, the MIRMs were able to identify the DIF items, carry 
out the equating processes, and eliminate the biases caused by DIF in only one analysis. However, this does not 
indicate that using MIRMs is the best approach since the increase in sample size and test length generally had a 
positive effect on IRM-based equating, whereas MIRMs were less affected by these two conditions. Considering 
the IRM-based methods, it was found that separate calibration methods were more affected by the presence of 
DIF items compared to concurrent calibration. Moreover, this effect becomes most significant when DIF items 
are in common test and the magnitude of DIF is C.

Keywords: Test equating • Differential item functioning • Equating error • Equating bias • Multilevel item 
response models • Hierarchical Rasch Model
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To ensure security in large-scale and central exams, 
different questions are presented to students in each 
term or year. A lot of forms are developed for the 
tests applied to this end. Although the security of 
questions is protected by this application, problems 
of equality and fairness of tests emerge. More 
specifically, although the tests are similar in terms 
of content, it is possible that some individuals can 
take a simpler or more reliable test and become 
advantageous compared to others (Cook & 
Eignor, 1991). For example, the Foreign Language 
Exam (YDS) and the Academic Personnel and 
Postgraduate Education Entrance Exam (ALES) 
are held twice a year, and their scores are used 
for entrance to educational institutions. The same 
scores from different periods are considered equal 
without any regard to test equality, which, in turn, 
can lead to errors when making decisions about 
the students’ capabilities. Thus, such exams that are 
repeated at regular intervals and conducted for the 
same purpose should be equated.

Another issue that should be considered in national 
and international tests is the effect of being a 
member of different demographic groups with 
the same ability levels on measurement results. In 
some cases, other variables can be included into 
the characteristics of individuals that we would 
like to measure. The effect of these variables on test 
scores can threaten the validity of the results and 
cause test score bias. In this case, measurement 
bias means systematic error against a particular 
group on measurement scores and differential 
item functioning (DIF) is an index of bias (Camili 
& Shephard, 1994). The reasons of DIF in national 
tests includes variables such as sex and school 
type (Bakan Kalaycıoğlu & Kelecioğlu, 2011; 
Gök, Kelecioğlu, & Doğan, 2010), whereas that in 
international tests includes translation problems, 
cultural differences, and differences in education 
programs (Le, 2009; Yıldırım & Berberoğlu, 2006).

DIF items not only act biased toward groups or 
individuals with certain qualities, but they may 
increase equating errors as well as parameter 
estimation errors. When DIF parameters exist, it 
can cause undesirable results, one of which is the 
error in ability parameter estimation. In addition, 
DIF can affect ability parameter estimation in two 
ways. First, DIF directly affects such estimation; 
second, the equating coefficients are indirectly 
affected because item parameter estimation is 
affected by DIF. Therefore, when there is DIF in 
test items, parameter estimation and test equating 
should be performed by considering both the 

direct and indirect effects of DIF (Han, 2008). 
Furthermore, it is important to identify DIF items 
and exclude these items from the test before test 
equating and parameter estimation are performed. 
However, many test equating studies have indicated 
that all items did not show DIF without conducting 
any type of DIF analysis (Chu, 2002).

Investigating DIF only through quantitative 
methods does not provide enough information 
about the quality and functionality of the test items. 
In addition, when DIF is detected in the test item 
with a quantitative method, an expert opinion is 
required to decide whether this item should remain 
in the test. According to Crocker and Algina 
(1986), if the expert decides that the item is biased, 
it is excluded from the test. Conversely, excluding 
an item from a test is undesirable since it adversely 
affects construct and content validity. There are 
findings in the literature which show that excluding 
DIF items from a test can result in (1) reduced 
construct validity; (2) reduced precision of ability 
parameter estimation; and/or (3) increased cost of 
test development (Chu, 2002). Thus, deleting DIF 
items is ideal to prevent biases in tests, and this 
process is not only relatively simple but also less 
controversial than using the information obtained 
from DIF items. However, if a test contains a large 
number of DIF items, eliminating such items 
can reduce both test validity and the precision of 
parameter estimations. For the aforementioned 
reasons, it is important to determine DIF items 
during the equating procedure as well as develop 
and employ methods that can minimize the effect of 
these items on the equating coefficients (Hidalgo-
Montesinos & Lopez-Pina, 2002).

Within the scope of the present study, how test 
equating and parameter estimation are affected in 
tests containing DIF items was examined through 
multilevel item response models (MIRMs) and 
traditional IRMs. Current IRMs do not have the 
flexibility to control external variables such as being 
a member of a group in item parameter estimation 
(Turhan, 2006). MIRMs, also known as hierarchical 
models, offer opportunities to examine the effects of 
various variables on parameter estimation such as 
membership in a school, region, or group. Therefore, 
MIRMs can help control DIF effects and eliminate 
any biases that might result from DIF during test 
equating. Thus, the present study compares MIRMs 
with IRMs to determine the extent to which MIRMs 
can control the biases that result from DIF during 
item and ability parameter estimations.
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Item Response Theory

Item response theory (IRT) applications are commonly 
used for various purposes similar to classical test 
theory (CTT) applications. The main purposes 
include test development, test equating, determining 
item bias, and scaling. Contrary to CTT, IRT 
mathematically models the relationship between an 
individual’s ability and his/her opportunity to provide 
the correct answer to an item (Cook & Eignor, 1991). 
One of the most important properties of IRT is that 
ability and item difficulty are in the same scale, which 
ensures the invariance of item and ability parameters. 
In this regard, the invariance of item parameters 
refers to the independence of the parameters from 
the calibration group (Lord, 1980). In other words, 
item parameters do not change depending on the 
group that was used for their calibration. On the other 
hand, the invariance of ability parameters means 
that the items that are administered to an examinee 
to estimate his/her ability do not matter because the 
administration of different item sets will estimate the 
same ability scores.

IRT models used for two-category item responses 
include one-, two-, and three-parameter logistic 
models. In all three models, there is an item 
difficulty parameter (b) being the location of the 
logistic curve along the ability scale (θ). In the 
one- or two-parameter logistic models, this point 
(bi) shows that an examiner has a 50% chance of 
correctly responding to an item (Hambleton & 
Swaminathan, 1985). Theoretically, parameter 
b can take values between −∞ and +∞. However, 
practically, it generally takes a value between −3 and 
+3 because the  scale is scaled with 0 mean value and 
1 standard deviation. A high b value indicates that 
the item is difficult, whereas a low b value indicates 
that it is easy (Harris, 1989). In the present study, 
the one-parameter logistic model, also known as 
the Rasch (1966) model, was employed.

In this model, all items are assumed to have equal 
discrimination, and the guessing behaviors of the 
examinees are not parameterized (Crocker & Algina, 
1986). In the model, the probability of a randomly 
selected examinee (with ability level  θ) giving a 
correct answer for item i can be expressed as follows:

𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 = 1 �𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖� =
exp�𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 −  𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖�

1 + exp�𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 −  𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖�

where θj is examinee j’s ability level, bi is the difficulty of 
item i, and Pij (yi =1|θj) is the probability that examinee j 
(with ability level θ) answers item i correctly.

Multilevel Item Response Models 

MIRMs merge hierarchical linear models 
(Raudenbush & Bryk, 2002) with IRMs. The interest 
toward multilevel models increased with the Rasch 
model, which was reformulated by Kamata (1998; 
2001). The main advantage of MIRMs is their 
ability to arrange hierarchical data structures. 
Such models are especially effective in educational 
measurements because of the nested data structure. 
For example, the students are nested in classrooms, 
the classrooms are nested in schools, the schools 
are nested in cities, the cities are nested in regions, 
the regions are nested in countries, and so on. In 
this regard, the application of one-level models 
to multilevel data leads to both statistical and 
conceptual problems (Kreft & Leeuw, 1998 as cited 
in Pastor, 2003). Another advantage of MIRMs is 
their ability to add external variables (e.g., sex, level, 
and so on) into the applications and offer a more 
flexible and comprehensible model that explains 
the relationship between the probability of giving 
a correct answer to an item for an individual and 
individual’s ability. Thus, MIRMs can estimate item 
and ability parameters in a similar manner to IRMs. 
In addition, MIRMs can examine the effects of 
external variables in parameter estimation (Turhan, 
2006), and concurrent estimations made by these 
models (in a single calibration) can remove errors 
that might result from separate estimations. 

Kamata (1998) evaluated the hierarchical Rasch 
model and found that it was sufficiently sensitive to 
detect DIF. Following this study, MIRMs were used in 
DIF studies (Atar, 2007; Binici, 2007; Cho & Cohen, 
2010; Luppescu, 2002); test equating (Chu, 2002; 
Chu & Kamata, 2000, 2005; Park, Kang, & Wollack, 
2007), and determining dimensionality (Beretvas & 
Williams, 2002). Chu and Kamata (2000) investigated 
the equating property of the hierarchical Rasch model 
in common-item non-equivalent group design and 
found that the model performed similarly to single-
group concurrent equating. This similar performance 
of the hierarchical Rasch model supported the 
development of hierarchical Rasch equating models. 
Their study revealed that MIRMs can be considered as 
a usable method to explore possible problems of large-
scale assessment programs and external variables 
related to academic success (Turhan, 2006).

Kamata’s Hierarchical Model: 1PL-IRM

Kamata (1998) suggested the multiple-group 
model through hierarchical linear models (Bryk 
& Raudenbush, 1992). This reformulated model 
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was a special form of one-parameter hierarchical 
generalized linear model (Chu, 2002) that merged 
logistic regression with multilevel data structures 
using Bernoulli sampling and linking function. In 
this model, items are considered as Level-1 units, 
whereas examinees are Level-2 units (Kamata, 1998). 
The model also uses the following logit link function 
that connects probabilities among latent variables:

where ηij is the Level-1 structural model and pij is 
the probability of answering item i correctly by 
examinee j. When the probability of answering item 
i correctly by examinee j is equal to 0.5, the logit is 
zero. In addition, when this probability is less than 
0.5, the logit is a negative value, whereas when it is 
larger than 0.5, the logit is a positive value.

The Level-1 structural model is the item-level 
model, which is formulated as

where β0j is the intercept term in the model and Xqij 

is the q. dummy variable of item i for examinee j 
(when q = i, the value is 1, and when q ≠ i, the value 
is 0). Dummy variable coding results in a design 
matrix, in which all diagonal elements are equal 
to 1. The unit matrix is obtained by the exclusion 
of the final item in dummy coding. In this case, β0j 
is interpreted as the difficulty of the reference item 
excluded from the model or the average effect of all 
items for examinee j. βqj is the coefficient Xqij from 
i = 1 to (k − 1); when q = i, it is interpreted as the 
effect of item i. As a result, the Level-1 (item-level) 
model can be written as follows:

Because the Level-1 model is a structural model, 
there is no error term. In this case, the coefficients 
in the Level-1 model offer a better understanding 
of those in the Level-2 (person-level) model. The 
person-level equations are as follows:

β0j (intercept coefficient) is assumed to be a random 
effect across persons. β0j is the intercept coefficient 
consists of one fixed component and one random 
component. The random component γ00 is the 
average value of the overall item effect across all 
examinees in the sample. The random component 
u0j is interpreted as the ability of examinee j and is 
assumed to be distributed normally with a mean of 
zero and variance of τ.

When Level-1 and Level-2 models are combined, 
the probability of answering item i correctly is as 
follows. Where i = q for examinee j and item i,

Kamata (1998) showed that this model is equivalent 
to the Rasch (1966) model as follows: 

In this equation, the ability of a person θj is equivalent 
to uoj, whereas item difficulty parameter bi is equivalent 
to (γq0 - γ00).

Differential Item Functioning

To detect bias in an item, initially, the item must 
contain DIF, which refers to differentiations 
between the correct answering probabilities of 
examinees in different groups to the related item 
in a comparison to be made on ability level which 
the item intended to measure (Zumbo, 1999). In 
general, two types of DIF can occur: uniform and 
non-uniform DIF. Uniform DIF emerges when 
there is no interaction between ability level and 
group membership during item performance. This 
is when an item containing DIF favors a group 
in all ability levels, and only the item difficulty 
parameter differs among the group. Non-uniform 
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DIF emerges when there is an interaction between 
ability level and group membership during item 
performance (Camili & Shephard, 1994).

The selection of proper statistics is extremely 
important in the analysis of nested data in 
educational measurements. When the data includes 
a nested or clustered structure, the results will 
contain errors because the hypothesis regarding 
the independence of observations has been 
violated using a classical linear model. Bryk and 
Raudenbush (1992) emphasized that MIRMs have 
less measurement errors compared with traditional 
models for nested data. This feature makes MIRMs 
advantageous compared with traditional methods 
of DIF detection. For example, if the source of DIF 
is both region and sex, then MIRMs can determine 
sex on the person level and region on the group 
level. Another advantage of MIRMs is their ability 
to simultaneously determine different DIF factors 
in different magnitudes. For example, when the 
1st and 2nd items contain sex DIF, the 3rd and 4th 
items may include race DIF or the same item may 
contain both DIF factors. DIF magnitudes in these 
four items can differ from one another. In sum, 
there are no limitations of DIF factors that can be 
added to the model in MIRMs (Chu, 2002).

1PL-MIRM and DIF (Kamata’s Hierarchical 
Rasch DIF Model)

Kamata (1998) developed a DIF model by adding 
group indicator variables into the Level-2 1PL-MIRM 
and showed that the model was sufficiently sensitive 
to detect DIF. The equations of this Level-2 model to 
which DIF parameters were added are as follows: 

Gj is the group indicator for two-category items, and 
the values from γ11 to γ(k-1) are the DIF magnitude 
of corresponding items. In this case, the group 
indicator can be coded as “1” for the focal group and 
“0” for the reference group or vice versa. Significant  

shows that being a member of a distinctive group 
affects the probability of a correct response for item 
1. In this model, equality of item difficulty for the 
focal group, in other words; uniform DIF is tested.

Luppescu (2002) compared Karmata’s hierarchical 
Rasch DIF model and the classical b parameter 
difference method for DIF detection. It was 
found that in general, lower root mean square 
error (RMSE) values were obtained in Kamata’s 
hierarchical Rasch model. The reasons of this 
case were found as the fact that classical method 
required two different calibrations. In addition, the 
hierarchical method required only one calibration 
with less estimated parameters. 

Test Equating

Generally, in large-scale exams, different test forms 
that are similar in terms of content and difficulty 
levels are used. However, these forms are not entirely 
equivalent regardless of such similarities. The 
statistical method used to place two or more tests 
into a common scale is referred to as “test equating,” 
and the results can be used interchangeably (Kolen 
& Brennan, 2004). Following a successful test 
equating procedure, examinees are expected to 
obtain the same scores regardless of the test form 
that was applied (Holland & Dorans, 2006; Kolen 
& Brennan, 2004).

Equating methods are most commonly classified 
as CTT- and IRT-based equating models. The 
first procedure in IRT-based equating is to ensure 
model–data fit, after which a suitable equating 
design is selected. Thereafter, the equating method 
is selected, and the item and ability parameters are 
estimated. In the third stage, the item and ability 
parameters are placed on a common scale. In 
equating designs (single and random groups) in 
which parameter estimation is performed with a 
single calibration, the parameters automatically 
take place on the same scale. Thus, the third stage is 
not required, and the scale to report the test scores 
is selected in the fourth stage. 

There are generally three types of data collection 
designs used in IRT-based equating: single group, 
random group, and common item. In the common-
item design (which is used in the present study), 
there are two test forms and two different groups. 
Although there are two test forms, both forms 
include a number of common items that are used 
to reveal the equating relationship between the 
two groups by comparing their performances. 
When common items are appropriately selected, 
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problems in the single group and equivalent group 
design are alleviated. In other words, neither the 
examinees are required to take both test forms, 
nor the examinee groups are to be equivalent 
(Hambleton, Swaminathan, & Rogers, 1991; 
Holland & Dorans, 2006). In this design, common 
items play a significant role in determining the 
equating function. In this regard, properties of 
common items should be considered in equating 
studies. Angoff (1971) suggested that all common 
items should be a mini version (representative) 
of the entire test in terms of construct, item type, 
content, and so on. Both properties and the number 
of common items are important for common-
item design. Hambleton et al. (1991) stated that 
the number of items required for common items 
must be 20%–25% of the item numbers in the test. 
Finally, research has shown that the increase in 
common-item numbers actually decreases equating 
errors (Kolen & Brennan, 2004).

IRT-based Equating Methods

In IRT-based equating, the ability levels of the 
examinees are not affected by the items, and 
item parameters are not affected by the group of 
examinees (Hambleton et al., 1991). The parameter 
invariance property of IRT models is one of the 
main advantages of this model. In addition, having 
item and ability parameters on the same scale across 
test forms provides score comparability. However, 
in practice, these parameters are estimated through 
various techniques because true parameters are 
unknown. Many computer programs used to 
estimate item and ability parameters standardize 
examinees’ ability distribution to a mean of 
zero and unit variance by default (Baker & Al-
Karni, 1991). Thus, item and ability parameters 
estimated from different tests may not be on the 
same metric because the standardization of ability 
distribution will also affect parameter estimation. 
For this reason, estimations on one test form must 
be transformed into estimations on another test 
form. As discussed in the following sections, there 
are two approaches to transform item parameters 
(estimated from different groups) into the same 
scale: separate and concurrent calibrations (Kolen 
& Brennan, 1995, 2004). 

Separate Calibration IRM-SC: When equating is 
performed through the single group or equivalent 
group design, extra scaling is not required because 
test forms are already on the same scale. In an 
equating method based on common-item design, 
parameters’ estimates from different test forms may 

not be on the same scale because the groups are 
different. Therefore, linear transformation should be 
performed to place the two test forms on the same 
scale (Kolen & Brennan, 2004). This transformation 
includes three steps: (1) estimate item parameters on 
scale X (test form X) and scale Y (test form Y); (2) 
determine equating slope (A) and equating intercept 
(B); and (3) transform the ability estimates (based on 
the A and B equating coefficients) from scale X to 
scale Y (Kolen & Brennan, 1995, 2004).

The relationships between the estimated abilities 
from the two different test forms can be defined as

where A and B represent the equating coefficients and 
θXi and θYi represent the ability estimation of person 
i. Similarly, the item parameters of the two tests are 
transformed, and their relationships are as follows:

where bYj, aYj, and cYj are the item parameters of item 
j on form Y, whereas bXj, aXj, and cXj represent item 
parameters of item j on form X (Kolen & Brennan, 
1995).

In separate calibration, one of the mean–mean, 
mean–sigma, and characteristic curve transformation 
methods is used. Mean–mean and mean–sigma 
methods are based on the transformation of item 
and ability parameters using common items, whereas 
characteristic curve methods are based on reducing 
the gap between the item or test characteristic 
curves of common items. Research has revealed that 
characteristic curve methods are better than mean–
mean and mean–sigma methods and tend to produce 
more stable results (Baker & Al-Karni, 1991; Gök, 
2012; Stocking & Lord, 1983).

Moreover, mean–mean and mean–sigma methods 
can cause erroneous results for items that include 
similar item characteristic curves but different 
parameters. In addition, because A and B equating 
coefficients are calculated using descriptive statistics 
of b parameter (or both a and b parameters) in mean–
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mean and mean–sigma methods, the use of three-
parameter data causes problems (Han, 2008). As a 
solution to this problem, Haebara (1980) suggested 
a method that considers all item parameters at the 
same time. Thereafter, Stocking and Lord (1983) 
developed another characteristic curve method that 
calculates the lost function as follows:

The lost function used by Stocking and Lord 
(1983) is the square of the total difference between 
the item characteristic curves of each item for 
examinees at certain ability level. Characteristic 
curve transformation methods developed to reduce 
the difference between items or test characteristic 
curves of common items generally offer similar 
estimations and provide better results compared 
with separate calibration methods, especially in the 
transformation of item discrimination parameters. 
Research conducted in this field revealed that 
characteristic curve methods are better than mean-
mean and mean-sigma methods and they tend to 
produce more stable results (Baker & Al-Karni, 
1991; Gök, 2012; Stocking & Lord, 1983). 

Concurrent Calibration IRM-CC: Another 
method used to place items on the same scale is 
concurrent calibration. Concurrent calibration 
simultaneously estimates item parameters for two 
test forms. It is assumed that common items have the 
same item parameters in both test forms. Because 
differences in ability distribution are considered, the 
estimated item parameters take place on the same 
scale (Turhan, 2006). Thus, an extra transformation 
is not required to obtain A and B constants. Hanson 
and Beguin (2002) revealed that concurrent 
calibration provides more accurate results than 
separate calibration based on the condition that 
parametric model assumptions are met.

The Hierarchical Rasch Model as a Concurrent 
Equating Model: The addition of individual 
variables into the hierarchical Rasch model allows 
the model to have two levels while the addition 
of group variables makes it have three levels. The 
two-level hierarchical Rasch model containing 
individual variables is used for horizontal equating, 
whereas the three-level model containing group 
variables are used for vertical equating. In the two-
level hierarchical Rasch model, The Level-1 model 

(item-level model) is as follows:

In this study, person-level DIF was assumed as the 
focal and reference group and was added into the 
Level-2 model. When it is assumed that first and 
second items have DIF in the focal group and the other 
items do not, the Level-2 equations are as follows:

In equations,  γ00 to γ(k-1) are the intercept coefficients 
of the terms from β0j to β(k-1)j. In addition, γ11 and γ21 
are the focal group coefficients for Item 1 and Item 
2. The items without DIF only include intercept 
(γi0) since the item effect is constant across persons. 
The DIF variable was added into Item 1 and Item 2 
to adjust for focal group effects. In this study, the 
reference group was coded as 0, and the focal group 
was coded as 1. Substituting Level-2 γ parameters 
to βij provides the following equations: 

or
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The first two equations are for the items without 
DIF and thus, they do not have the term −γi1. The 
last two equations are for DIF items. The error 
term of β0j, μ0j is the random error for person j. In 
the hierarchical Rasch model, this random effect 
is treated as ability parameter estimates and can be 
seen in the aforementioned equations. Item difficulty 
is −(γ00 + γi0) and DIF effect size is −γi1. For the DIF 
items in the reference group, item difficulty is −(γ00 
+ γi0) since -γi1 = 0. For the DIF items in the focal 
group, item difficulty is [−(γ00 + γi0) − γi1]. As stated 
earlier, the last item was used as the reference item. 
Therefore, item parameters from 1 to (k − 1) need 
to be adjusted by the reference item parameter, γ00 
(Chu, 2002).

Level-1 coefficients with  j are the subscripts of persons 
from β0j to β(k-1)j. Here, j indicates that different persons 
are associated with different item-level parameters. 
When βij’ s are substituted in a higher level, the subscript 
j is dropped and the item parameters remain constant 
across persons (Chu, 2002). 

The Aim and Significance of the Research

Measurement results obtained through applications 
ranging from intra-class tests to international 
large-scale assessments have significant important 
for students, teachers, families, and politicians. 
In addition, they provide important information 
through which countries can develop their respective 
education systems. Especially, educational studies, 
such as those by the Program for International 
Student Assessment (PISA), the Progress in 
International Reading Literacy Study (PIRLS), the 
Trends in International Mathematics and Science 
Study (TIMSS), allow countries to not only monitor 
their own education systems year-by-year, but they 
can also compare their systems with other countries. 
Therefore, the accuracy of the information obtained 
from these studies will have an effect on subsequent 
decisions related to testing and assessments. 

The proliferation of large-scale assessments has led 
to the use of different test forms for individuals in 
the same levels and the application of similar tests 
for groups with different features. Therefore, it is 
important to determine the relationship between 
the scores obtained from different test forms and 
to make transformations based on the findings. The 
statistical process that determines this relationship is 
test equating. However, the test equating process is 
affected by several factors, one of which being that, 
if the items show DIF, then it will adversely affect 
parameter estimation and the test equating process.

In this study, one of the goals was to use the 2 level 1PL-
IRM with DIF knowledge for parameter estimation 
and equating and compare this method with the 
traditional 1PL-IRM. MIRMs can eliminate the bias 
resulting from DIF by functioning as model parameters 
against DIF factors. This can also improve test equating 
and parameter estimation performances (Chu, 2002; 
Kamata, 2000; Turhan, 2006). Moreover, this study 
investigates the results of test equating and parameter 
estimation using MIRMs and IRMs in case of DIF. 

There have been numerous studies on DIF and test 
equating in the literature. However, the number 
of studies that have investigated both issues is 
extremely limited (Chu, 2002; Chu & Kamata, 2005; 
Han, 2008; Turhan, 2006). Upon closer examination 
of the existing studies, it was found that the time-
consuming MIRM process does not consider 
different simulation conditions such as large 
samples, different test lengths, etc. In addition, the 
considered simulation conditions were used with a 
limited number of replications (between 5 and 20). 
Unlike other studies, the present study considers 
large samples and different test lengths as well as 
performs 50 replications. Furthermore, it was found 
that no comparison was made with MIRMs during 
test equating in the presence of DIF items, based 
on the fact that the separate calibration method 
does not provide better results than the concurrent 
calibration method. Therefore, Stocking–Lord (SL) 
method, which is one of the separate calibration 
characteristic curve methods, was used in the 
present study within the analyzed conditions. 

Finally, this study compares IRMs and MIRMs 
in which DIF items are included in the test forms 
under different conditions. Since MIRMs are 
relatively new and developing, it is believed that 
revealing their strengths and weaknesses through 
simulation studies is important. In addition, 
multilevel modeling applications in educational 
tests are expected to improve and resolve problems 
related to test development (DIF, test equating, etc.), 
despite the fact that the number of applications 
related to multilevel models is limited. Therefore, 
the present study, it is believed that the present 
study can be a guide about the use of MIRMs being 
an alternative to traditional IRMs and this model 
can be an alternative to current equating methods.

Method

Type of Research

This study compares the efficiency of equating 
methods in the presence of DIF under different 
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conditions. To this end, data containing DIF 
items was generated under certain conditions to 
determine the method that causes the least errors. 
Moreover, under different conditions, equating 
methods were compared with simulation data 
under controlled conditions. In this sense, this 
study contributes to the theory and serves as 
fundamental research (Karasar, 2009).

Simulation Conditions

This study examined the effects of the following 
conditions on equating errors: sample size, test 
length, DIF magnitude, and test type containing 
DIF items. Common-item design in equivalent 
groups was used to equate the simulated data.

Sample Size: For each test form (with the goal of 500 
examinees for a small sample and 2,000 examinees 
for a large sample), two different sample sizes 
containing a total of 1,000 and 4,000 examinees, 
respectively, were analyzed in this study. Although it 
has been reported that a minimum sample size of 500 
is required for successful equating (Spence, 1996), it 
has been shown that methods provide better results 
if the sample size is 1,000 or larger (Han, 2008). 

Test Length: In this study, the item number of the 
test was considered on two levels: 20 for a short test 
and 40 for a long test. The common-item number was 
determined to be 25% for both conditions. Angoff 
(1971) suggested that a minimum of 20% of the item 
number of the whole test should be common item.

DIF Magnitude: Since DIF creates a variance in 
parameter estimation, as DIF magnitude increases, 
the stability of ability estimation and equating 
decreases (Chu, 2002). In the present study, DIF 
magnitude was analyzed on two levels (B and C), 
and the difference between the parameters for 
magnitude B was determined as 0.6 while it was 
determined as 1 for magnitude C.

Test Type containing DIF Items: DIF items were 
placed in the test in the following three ways to 
investigate the effect of their placement on equating: 
(1) DIF on a common test; (2) DIF on a non-
common test; and (3) DIF on both types of tests.

The four simulation factors examined in this study 
and the 24 conditions of these factors are presented 
in Table 1.

Table 1
Conditions Considered in Equating

Equating Conditions
Test 

Length
Test Type 

containing 
DIF Items

Sample Size
500-500 2000-2000

DIF Magnitude
B C B C

NCT S1 S4 S13 S16
20 BT S2 S5 S14 S17

CT S3 S6 S15 S18
NCT S7 S10 S19 S22

40 BT S8 S11 S20 S23
CT S9 S12 S21 S24

*S: Simulation; NCT: Non-common test; BT: Both tests; CT: 
Common test.

Data Generation

The two-category item responses in the study were 
generated using WinGen 3.0 software (Han, 2007). 
The data generation procedure was conducted by 
the following three steps:

1. Ability Parameters: Ability distribution was 
sampled from standard normal distribution (θ 
~N (0,1)) for each group. A total of four sets of 
ability parameters were generated for the focal 
and reference groups under the conditions of both 
sample sizes. The sizes of the focal and reference 
groups were equally formed.

2. Item Parameters: Two test forms were generated 
for equating. Both tests contained specific items 
and common items, and three item sets were 
generated. Zimowski, Muraki, Mislevy and Bock 
(1999) suggested that common items should have 
high discrimination and medium difficulty. Thus, 
b parameters of common items were selected 
between −1 and +1. The variance of item difficulty 
among test forms can affect DIF. For this reason, 
similar item difficulties were selected for both test 
forms, and the item difficulties in non-common 
items differed between −2.5 and +2.5. 

Table 2
Numbers of DIF Items

Location of 
DIF Items 

Simulation 
Conditions

Item Number

NCT N = 20 S1, S4, S13, S16 19, 20
N = 40 S7, S10, S19, S22 37, 38, 39, 40

BT N = 20 S2, S5, S14, S17 1, 20
N = 40 S8, S11, S20, S23 1, 2, 39, 40

CT N = 20 S3, S6, S15, S18 1, 2
N = 40 S9, S12, S21, S24 1, 2, 3, 4

*S: Simulation; NCT: Non-common test; BT: Both tests; CT: 
Common test.
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In this study, b parameters were created to favor 
the focal group during the generation of DIF item 
parameters in Form X. The numbers of DIF items 
are shown in Table 2.

The item parameters of the three item sets (Form X, 
Form Y, and common test) are presented in Table 3 
and Table 4 for the 20-item form and the 40-item 
form, respectively.

3. Generation of Item Responses: This analysis 
required two different tests for equating design 
and different groups for taking the same test. Thus, 
two different tests with common items (Form X 
and Form Y) were administered to the focal and 
reference groups. The data was arranged so that half 
of the focal group had Form X and the other half 
had Form Y. For the reference group, half had Form 
X and the other half had Form Y.

Both groups had the same ability level and 
normal distribution. Group level (Level-3) was 
not considered since the groups were at the same 
ability level. The focal and reference groups were 
selected as the person-level variables. The item 
parameters were determined for each form while 
the ability parameters were determined for each 
group. Afterwards, the data generation procedure 
was conducted according to the 1PL model. 

Implementation of Equating Procedure

In this study, the performances of three different 
equating methods were investigated under 24 
different simulation conditions (two different 
sample sizes, two different test lengths, three 
different tests containing DIF items, and two 
different DIF magnitudes). To understand the 
potential of MIRMs in which DIF factors were 
added into the model as parameters, the MIRM 
was compared with the IRM-based concurrent 
calibration and the SL method, which is one of the 
separate calibration methods. 

To conduct estimations, the following programs 
were employed: HLM for Windows 6.8 for the 
MIRM (Raudenbush, Bryk, Cheong, & Congdon, 
2005); BILOG-MG for concurrent equating 
(Zimowski, Muraki, Mislevy, & Bock, 2003); and 
PARSCALE 4.1 for the SL method (Muraki & Bock, 
2003). Then, the IRTEQ (Han, 2009) program 
was used to place them on the same scale. In this 
study, to analyze all 50 datasets generated for each 
condition, these four programs were operated using 
R software with batch files.

Evaluation Criteria and Data Analysis

Two different equating errors were calculated for 
item and ability parameters across replications 
for the purpose of investigating the stability of 

Table 3
Item Difficulties for the 20-Item Form
Item No.* Common Test Item No. Form X Form Y Item No. Form X Form Y Item No. Form X Form Y

1 0 6 −2.5 −2.45 11 −1 −1.05 16 −1.5 −1.55
2 0.5 7 2 2.05 12 2.5 2.45 17 0.75 0.8
3 −1 8 −0.75 −0.8 13 −0.25 −0.3 18 −0.5 −0.55
4 −0.5 9 1 1.05 14 1.5 1.55 19 0 0.05
5 1 10 −2 −2.05 15 0.5 0.55 20 0.25 0.3

*1–5 numbered items are common item.

Table 4
Item Difficulties for the 40-Item Form
Item No.* Common test Item No. Form X Form Y Item No. Form X Form  Y Item No. Form X Form Y

1 −0.3 11 −0.3 −0.35 21 0.6 0.65 31 −1.9 −1.95
2 −0.15 12 0.4 0.45 22 0.9 0.95 32 0.8 0.85
3 0.15 13 1.6 1.65 23 1.9 1.95 33 1.3 1.35
4 0.3 14 −0.9 −0.95 24 −1.3 −1.35 34 1 1.05
5 −1 15 2.5 2.55 25 −1 −1.05 35 −0.7 −0.75
6 −0.5 16 2.2 2.25 26 −0.6 −0.65 36 −2.5 −2.55
7 0.7 17 −0.8 −0.85 27 0.5 0.55 37 −0.2 −0.25
8 0.5 18 −1.6 −1.65 28 0.7 0.75 38 −0.1 −0.15
9 1 19 −0.4 −0.45 29 0.3 0.35 39 0.1 0.15

10 −0.7 20 −2.2 −2.25 30 −0.5 −0.55 40 0.2 0.25
*1–10 numbered items are common item.
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parameter estimation: RMSE (equating error) and 
BIAS (equating bias). In this study, the square of 
BIAS was calculated to prevent any confusion that 
may arise from the interpretation of negative and 
positive BIAS.

First, RMSE and BIAS values in all item and ability 
parameters were computed for each simulation 
condition through the following formulas (only the 
means of RMSE and BIAS were reported to obtain 
brief conclusions from the obtained values):

where τj is the true value of parameter j, τjr is the 
estimate value of parameter j among replications (r 
= 1, 2, …R), and R is the number of replications.  

The mean RMSE for the estimation of ability parameter 
is XRMSE = ∑J

j=1 XRMSE(θj)
1
J , where J is the total number 

of examinees. The mean RMSE for the estimation of 
item parameter is XRMSE=  ∑J

j=1 XRMSE(bj)
1
J , where J is 

the total number of items. The mean BIAS values were 
computed similarly. 

In this study, first the RMSE calculated for each 
parameter value was translated into graphics by 
selecting an example among the different sample 
sizes and test lengths. Furthermore, the RMSE 
and BIAS values of the mean item and ability 
parameters were presented in graphics for each 
condition. In these graphics, the Level-2 1PL-IRM 
was used with the MIRM; traditional single-group 
concurrent equating was used with the IRM-CC, 
and the SL was used with IRM-SC abbreviations.

Variance analysis was conducted to test the effects 
of the conditions analyzed in this study (i.e., sample 
size, test length, test type containing DIF, and DIF 
magnitude) on the equating methods. In this case, 
when a model was built with conditions and all related 
interactions, analysis could not be performed since 
the error degrees of freedom was zero. Therefore, 
only the main effects were examined through 
two-way interactions. In addition, since too many 
significance tests were performed, the Bonferroni 
correction was used to control the error (significance 
level .002). Furthermore, the eta-squared value was 
reported to illustrate the effects of the variables on 
the methods, and post-hoc analyses were conducted 
to test the significant ANOVA results.

Figure 1: Equating errors of b parameter values in S1, S7, S13, and S19 conditions.
*DM: DIF Magnitude; DIF: 1; DIF items are in the non-common test.



E d u c a t i o n a l  S c i e n c e s :  T h e o r y  &  P r a c t i c e

1240

Findings

When tests containing DIF items were equated with 
the MIRM, IRM-CC, and IRM-SC methods, the 
error values of b parameters were calculated. Figure 
1 presents the RMSE values of the small sample 
short test (S1), the small sample long test (S7), the 
large sample short test (S13), and the large sample 
long test (S19).

When the equating errors of the item parameters 
in Figure 1 were broadly examined, it was found 
that errors increased in extreme values of the b 
parameter for all three methods, and the method 
that was least affected by the extreme values was 
the IRM-SC. According to the graphics of the four 
conditions, as sample size and test length increased, 
whereas the errors in extreme values of the b 
parameter in the IRM-based methods decreased. 
Meanwhile, the MIRM was not affected by these 
conditions. 

In Figure 1, to compare the equating errors of the 
items with and without DIF, items having the same 
item parameter in both item types are compared. 
Since DIF items have medium difficulty, a sudden 
increase in the graphics of the item parameters with 
medium difficulty indicates DIF items. The lack 
of this increase in the MIRM and its presence in 
IRM-based methods is an indicator that the MIRM 
method is not affected by DIF items. In addition, 
the MIRM decreased equating bias and standard 
error by eliminating DIF variance and as a result, 
total error also decreased in the RMSE. This finding 
is consistent with the results obtained from the 
research conducted by Chu (2002).

When the tests containing DIF items were 
equated through the MIRM, IRM-CC, and IRM-
SC methods, the mean values of the errors in the 
b parameter were calculated. Variance analyses 
were conducted separately for each of the two 
error values to determine the effects of the item 
parameters on equating errors. Significant ANOVA 
results for error values of the item parameters 
are presented in Table 5. To obtain a clearer 
understanding about how significant conditions 
obtained from the ANOVA results change, graphics 
of the mean values of errors for the small sample 
and the large sample are presented in Figure 2 and 
Figure 3, respectively.

Based on the findings regarding RSME in Table 5, 
it can be inferred that the main effects of sample 
size and test length were significant in each of 
three methods. However, the effects of test type 
containing DIF and DIF magnitudes were only 
significant in the IRM-based methods, while no 
difference was found in the MIRM. Regarding the 
interaction effects, sample size and test length were 
significant in the IRM-CC, while sample size and 
DIF magnitude interaction of test type containing 
DIF were significant in the IRM-SC method. 

According to the results concerning BIAS in Table 
5, the main effects of sample size and test length 
were significant in the MIRM and the IRM-based 
concurrent equating methods, whereas they were non-
significant in the IRM-SC method. In addition, the 
effects of test type containing DIF and DIF magnitude 
were significant in the IRM-based methods, and non-
significant in the MIRM. Regarding the interaction 
effects, sample size and test length were significant 

Table 5
Significant ANOVA Results for Error Values of the Item Parameters

Methods
IRM-CC IRM-SC MIRM

Errors Effects df F η2 F η2 F η2

RMSE

Sample Size (SS) 1 4705.02* .99 2151.21* .99 381.403* .98
Test Length (TL) 1 4645.33* .99 53.122* .85 515.521* .98

Test Type containing DIF Items (TT) 2 19.190* .81 1650.31* .99 - -
DIF Magnitude (DM) 1 99.307* .92 1606.93* .99 - -

TT * DM 2 - - 304.704* .98 - -
SS * TT 2 - - 15.606* .78 - -
SS * TL 1 23.751* .73 - - - -

BIAS

Sample Size (SS) 1 1188.37* .99 - - 586.973* .98
Test Length (TL) 1 3565.51* .99 - - 553.438* .98

Test Type containing DIF Items (TT) 2 59.968* .93 175.727* .97 - -
DIF Magnitude (DM) 1 175.168* .95 657.468* .99 - -

TT * DM 2 - - 56.922* .93 - -
SS * TL 1 266.116* .97 - - - -

*p < .002.



Atalay Kabasakal, Kelecioğlu / Effect of Differential Item Functioning on Test Equating

1241

in the IRM-CC while the interaction between 
DIF magnitude and test type containing DIF was 
significant in the IRM-SC method.

In regard to the effect of sample size on the error, a 
comparison of the graphics in Figure 2 and Figure 
3 shows that an increase in the sample size in the 
MIRM led to a 0.10 decrease in RMSE values and 
a 0.10 increase in BIAS values. Conversely, in the 
IRM-CC method, both error types apparently 
decreased when sample size increased. In the IRM-
SC method, while the increase in sample size led 
to a decrease in RMSE values, it did not change 
the BIAS values. These results presented in Figure 
2 and Figure 3 are parallel to the ANOVA results. 
Thus, it is clear that the interaction effect of sample 
size and test length was significant in the IRM-CC 
method. It is clearly seen in the graphics that the 
interaction effect of sample size and test length 
found significant in IRM-CC method in ANOVA is 
the method in which the error reduced the most as 
the sample size and test length increased.

After comparing the 20-item and 40-item 
conditions in Figure 2 and Figure 3, it is shown that 
the increase in item number leads to a small decline 
in MIRM values for each of the two error values. In 
addition, the second method that was least affected 
from the increase in item number was the IRM-

SC method. Furthermore, the BIAS value was not 
affected by test length in the IRM-SC method, the 
method in which errors decreased the most as item 
number increased was the IRM-CC. 

The mean RMSE and BIAS values were investigated 
to understand how the error affected the test 
type containing DIF and DIF magnitude under 
the conditions given in Figure 2 and Figure 3. 
Accordingly, the MIRM method was not affected 
from either of the two conditions. Meanwhile, in 
the IRM-based methods, errors increased as DIF 
magnitude increased and this increase was greater 
in the IRM-SC. Moreover, as long as the DIF items 
took place in the common test, errors decreased in 
the IRM-CC, whereas they increased in the IRM-SC. 

The differences among the four main effects given 
in Figure 2 and Figure 3 were also examined. The 
interaction of the test type containing DIF and DIF 
magnitude was significant in the IRM-SC method in 
ANOVA results. This case attracts attention with a 
sudden increase in RMSE and BIAS values under S6, 
S12, S18, and S24 conditions in which DIF took place 
in the common test and DIF magnitude was Type C.

According to the graphics in Figure 2 and Figure 
3, the MIRM had the highest RMSE and BIAS 
values under all conditions, except for the 20-item 
conditions in the small sample size. 

Figure 2: Mean of the item parameters’ errors in the small sample.
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When the tests containing DIF items were equated 
with the MIRM, IRM-CC, and IRM-SC methods, 
the means of the errors of ability parameters were 
calculated. Variance analyses were conducted for 
each of the two error values to determine the effects 
of the item parameters (i.e., sample size, test length, 
test type containing DIF, and DIF magnitude) on 
equating errors. Effect sizes and F values of the effects 
according to the methods are presented in Table 6. 
To determine how significant conditions obtained 
from the ANOVA results change, the graphics of the 
means of the errors are presented in Figure 4 for the 
small samples and in Figure 5 for the large samples. 

Based on the ANOVA results of the two error types 
in the ability parameters given in Table 6, it was 

found that only the main effects of sample size and 
test length were significant in all three methods. 
Moreover, the RMSE values of the test type 
containing DIF was only significant in the IRM-SC 
method. Furthermore, according to the ANOVA 
results of the BIAS values in Table 6, the interaction 
of the test type containing DIF and DIF magnitude 
was significant in all three methods, while the 
interaction of sampling size and test length was 
only significant in the IRM-CC method.

After investigating the RMSEs of ability parameters, 
as presented in Figure 4 and Figure 5, it was found 
that the MIRM and the IRM-CC produced similar 
results under the 20-item conditions and these two 
methods produced a higher RMSE than the IRM-

Figure 3: Means of the item parameters’ errors in large sample.

Table 6
Significant ANOVA Results for Error Values of Ability Parameters

Methods
IRM-CC IRM-SC MIRM

Errors Effects Df F η2 F η2 F η2

RMSE
Test Length (TL) 1 14075.27* 1 1298.19* .99 8842.11* 1

Test Type containing DIF Items (TT) 2 - - 125.763* .96 - -

BIAS
Test Length (TL) 1 57.712* .98 879.585* .99 254.522* .99

TT * DM 2 17.063* .79 72.289* .94 35.449* 0.89
SS * TL 1 75.000* .89 - - - -

*p < .002.
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SC. This finding is consistent with the results of Chu 
and Kamata (2000). Under the 40-item conditions, 

all three methods produced similar RMSE values. 
Moreover, the BIAS values were found to be higher 

Figure 4: Means of ability parameters’ errors in small samples.

Figure 5: M”ean values of the errors of item parameters in the large samples.
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in the IRM-SC method compared to concurrent 
equating methods. 

A comparison of the 20-item and 40-item conditions 
in Figure 4 and Figure 5 shows that the increase in 
item number led to a decline in error values in each 
of two error types, and the method in which the error 
decreased the most by the increase in item number 
was the IRM-SC, especially in the BIAS values. 

The mean RMSE values were investigated to 
understand how the error affected the test type 
containing DIF and DIF effect size, as presented in 
Figure 4 and Figure 5. Accordingly, it was found that 
the values were not affected from the aforementioned 
conditions in any of the three methods, and the BIAS 
values increased in the IRM-SC method as long as 
the DIF item took place in the common test and the 
DIF effect size increased.

The main effect of test length was significant in the 
ANOVA results was revealed by the differences as 
presented in Figure 4 and Figure 5. In addition, 
the interaction of the test type containing DIF and 
DIF magnitude was significant in the BIAS values 
of all three methods in ANOVA results can be 
seen the most clearly in the IRM-SC. This finding 
is especially important due to the sudden increase 
in the BIAS values under S6, S12, S18, and S24 
conditions where the DIF magnitude is Type C and 
DIF items took place in the common test.

After investigating the effect of sample size on 
equating errors, as presented in Figure 4 and Figure 
5, no effect was found in any of the three methods. 
Kolen and Brennan (2004) reported that sample 
size has no effect on bias and the increase in sample 
size has no effect on reducing bias. The interaction 
effects of sample size and test length were significant 
for the BIAS values in the IRM-CC method. 

Finally, the graphics in Figure 4 and Figure 5 show 
that the highest equating bias values were obtained 
from the IRM-SC method. Studies have shown that 
concurrent calibration provides better results than 
separate calibration (Hanson & Beguin, 1999a; Kim 
& Cohen, 2002). 

Discussion

In this study, three different equating methods 
were used to equate item and ability parameters. 
The findings show that the performances of the 
methods differed by the analyzed conditions. For 
example, the MIRM detected DIF items, conducted 
the equating process, and eliminated the bias derived 
from DIF through a single analysis. In the MIRM-

based equations, the lack of the effect of the test 
type containing DIF items and DIF magnitude on 
error types was due to the fact that DIF items can be 
determined in the model. However, this does indicate 
that the MIRM is the best equating method since an 
increase in sample size and test length generally has 
a positive effect on IRM-based equating. In addition, 
the MIRM was less affected by these two conditions 
compared to the IRM. Furthermore, the MIRM 
analysis became more time consuming as the model 
became more complicated and the test length and 
sample size increased. 

Previous studies have revealed that the MIRMs 
produce smaller or similar errors compared to IRM-
based methods (Chu, 2002; Chu & Kamata, 2000, 
2005; Luppescu; 2002). Consistent with previous 
studies, the present study also revealed that MIRMs 
produce smaller errors in small sample sizes and 
short test lengths. Low error values produced by 
MIRMs under these conditions are consistent with 
the results of other studies. However, the difference 
in the results of this study was due to its inclusion of 
large sample sizes and longer test conditions. 

It was found that error values increased in extreme 
values of the b parameter for all three methods. In 
addition, it was shown that the increase in sample 
size and test length led to a decline in error in 
extreme values of the b parameter in IRM-based 
methods and it had no effect in the MIRM. In the 
MIRM, the increase in sample size and test length 
decreased error estimation in medium-difficult 
item parameters, whereas extreme values were not 
affected by these conditions. Thus, it was concluded 
that this case did not reduce means of error in the 
MIRM. After comparing the IRM-based methods, 
it was found that the increase in sample size and test 
length decreased errors in concurrent calibration 
more than separate calibration.

Finally, the results show that errors did not differ 
by sample size in any of three equating methods, 
and errors decreased as the test length increased. 
This finding is consistent with the results of Gök 
(2012), which showed that sample size had no 
positive effect on methods, while test length had 
a positive effect. In addition, studies have shown 
that equating performance is in accordance with 
equating steps and therefore, a one-step process is 
better than a two-step process (Chu, 2002; Hanson 
& Beguin, 1999b; Kim & Cohen, 1998). Consistent 
with other studies, the present study found the 
highest bias value in the IRM-SC.
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Recommendations

The findings of this study can help test developing 
experts determine how test equating processes are 
affected in the presence of DIF. In addition, it is 
recommended that MIRMs be used in future test 
equating studies, especially those that focus on 
small samples, since such models can control DIF 
items and prevent incorrect decisions. For large 
samples, the IRM-CC can be used for equating, 
but DIF items should be determined and extra 
precautions should be taken so that the equating 
results are not affected.

In this study, a total of 24 conditions, as two 
different sample sizes, two different test lengths, 
three different test types containing DIF, and two 
different DIF magnitudes, were analyzed. Although 
the rate of DIF items was fixed in this study (10%), 
future studies should increase this rate. 

Since the common test design was used in equivalent 
groups in this study, the equating process was 
conducted through a Level-2 IRM. For future 
studies, it can be recommended that a Level-3 IRM 
be applied in non-equivalent groups and Level-3 DIF 
factors can be added into the model. In addition, 

since one-parameter MIRMs were used in this 
study, only uniform DIF was included in the process. 
Thus, it is recommended that future studies use two-
parameter MIRMs and include both uniform and 
non-uniform DIF in the process. 

In this study, two different sample sizes, consisting 
of 1,000 and 4,000 examinees, respectively, 
were analyzed. For future equating studies, it is 
recommended that larger samples be employed. 
In addition, this study was based on data scored 
dichotomously. Therefore, equating errors of similar 
conditions should be researched by studying on 
the data scored as polytomously based and/or the 
data with mixed scoring. In other words, different 
conditions than those investigated in this study should 
be investigated to compare overall performance.

Finally, simulation data was used to compare equating 
methods in the presence of DIF items. If real data was 
used in this study, then it would have been difficult to 
determine and compare the accuracy of the methods. 
When real data is used, it is possible to determine the 
differences between the employed methods. However, 
similar studies should be conducted using real data 
along with simulation data so that the results from the 
two data sets can be compared.
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