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Contaminants are a vast subject area of food safety and quality and can be present in our food
chain from raw materials to finished products. Acrylamide, an a,b-unsaturated (conjugated)
reactive molecule, can be detected as a contaminant in several foodstuffs including baby foods
and infant formulas. It is anticipated that children will generally have intakes that are two to three
times those of adults when expressed on a body-weight basis. Though exposure to acrylamide is
inevitable, it is necessary to protect infant and children from high exposure. The present review
focuses on the several adverse health effects of acrylamide including mutagenicity, genotoxicity,
carcinogenicity, neurotoxicity and reproductive toxicity, and the possible outcomes of childhood
exposure from baby foods and infant formulas.

Acrylamide: Baby food: Infant formulas: Toxicity

Introduction

Safe and adequate nutrition is crucial for the proper
development of children. Other than breast milk, infant
formulas and baby foods are the most important part of a
baby’s diet in the first year of life. Infant formulas, available
in powder, liquid-concentrate and ready-to-feed forms, are
artificial substitutes mimicking human breast milk. They
are based on cows’ milk or soya milk, designed for the
consumption of infants. The medical community considers
infant formulas as nutritionally acceptable for infants under
the age of 1 year when breast-feeding is not possible. Infant
formulas can be modified based on scientific evidence about
the nutrient needs of infants(1,2). Baby food is any food given
to infants, with a soft, liquid texture, or that is chewed, from
the age of 6 months to 2 years(2 – 4). Baby foods are also
consumed for 3 years as a part of the child’s diet(1,2). Baby
foods include several baby purées made from fruits,
vegetables or vegetables plus meat (beef, chicken or fish)
sold commercially.

Formulation, handling and storage of baby foods are
important for the foods’ nutritional quality and physico-
chemical properties(3). There are several nutrients that an
infant formula must contain according to the Food and Drug
Administration through the advice of the American
Academy of Pediatrics; it is also necessary to set upper
limits for a nutrient in the formula(5,6). On the other hand,
infant formulas or baby foods can contain several
contaminants that carry potential risk during the first years
of life. A contaminant is an impurity; any material of an
extraneous nature associated with a chemical, a pharma-
ceutical preparation, a physiological principle, or an

infectious agent. Several contaminants, which can come
from different stages of production and storage, may be
present in infant formulas and baby foods. Food consump-
tion is an important route of human exposure to
contaminants such as acrylamide, pesticides and industrial
pollutants(7,8). As acrylamide is an anticipated contaminant
of baby foods and infant formulas, and as children generally
have acrylamide intakes that are two to three times those of
adults when expressed on a body-weight (BW) basis, we
will focus on acrylamide and its presence in baby foods and
infant formulas in the present review(9).

Properties of acrylamide

Acrylamide (acrylic amide; International Union of Pure and
Applied Chemistry (IUPAC) name 2-propenamide), an a,b-
unsaturated (conjugated) reactive molecule, has the
chemical formula C3H5NO(10,11). It has a high mobility in
soil and groundwater and is biodegradable(12). It is also used
in industry to manufacture polyacrylamide or its co-
polymers(12,13).

Acrylamide is inadvertently found in starchy foods such
as crisps, chips and bread(14). Its discovery in heated foods
has received a high level of attention from the public and the
medical community. Acrylamide in fried and baked foods is
produced by the reaction between asparagines and reducing
sugars (fructose, glucose) or reactive carbonyls(15,16).
Coffee drinking and smoking are other major sources
apart from the human diet(17,18). Boiling does not produce
acrylamide, but baking, frying, deep-frying, over-cooking
and microwaving produce large amounts of acrylamide in
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foodstuffs(14). On the other hand, water is one of the major
sources of exposure, as polyacrylamide is used mainly for
the purification of drinking water as a flocculating
agent(12,13).

Acrylamide is classified as ‘probably carcinogenic to
humans (group 2A)’ by the International Agency for
Research on Cancer. There is inadequate evidence in
humans for the carcinogenicity of acrylamide(10).

Biotransformation of acrylamide

Absorption

According to data derived from animal studies, acrylamide
is quickly absorbed by the skin and by the mucosa if inhaled.
If taken by the oral route, it can diffuse evenly in the body
because of its hydrosolubility(11).

Distribution

Tissue distribution is not significantly affected by dose or
route of administration. The highest concentrations are
found in erythrocytes. Despite the prominence of neuro-
logical effects, acrylamide is not concentrated in nervous
system tissues(19). Acrylamide readily crosses the
placenta(20).

Metabolism

In blood, acrylamide has a half-life of approximately 2 h. In
tissues, total acrylamide (parent compound and metabolites)
exhibits biphasic elimination with an initial half-life of
approximately 5 h and a terminal half-life of 8 d.
Acrylamide does not accumulate in the body(14,20,21).

At low doses 50 % of acrylamide is oxidised to a DNA-
reactive epoxide, glycidamide, by cytochrome 2E1
(CYP2E1). CYP2E1 polymorphisms in mice can cause
different amounts of glycidamide to be formed. Wild-type
mice have been found to metabolise 50 % of the
administered dose of acrylamide to glycidamide; however,
CYP2E1-null mice could not metabolise acrylamide to
glycidamide(22). Glycidamide can be metabolised by
epoxide hydrolase or can undergo conjugation with
glutathione (GSH)(12,21,23 – 25).

Excretion

The major pathway of metabolism for acrylamide is its
conjugation with reduced GSH by glutathione S-transferase.
Conditions such as malnutrition, oxidative stress and liver
disease (alcoholic hepatitis, cirrhosis, and other malignant
liver disorders) can decrease the GSH content of liver. Since
a child’s liver cannot carry as high a burden as an adult liver,
especially under such conditions, a higher toxicity of
acrylamide might be anticipated in children. Elimination
occurs mainly in the urine as mercapturic acid conjugates.
Greater than 90 % of absorbed acrylamide is excreted in the
urine as metabolites. Less than 2 % is excreted as unchanged
acrylamide. Smaller amounts are excreted in the bile and
faeces. Approximately 60 % of an administered dose
appears in the urine within 24 h(14). Biotransformation of
acrylamide is summarised in Fig. 1.

Toxicity of acrylamide

There are several health risks caused by the intake of
acrylamide from several routes. Smoking by the mother is a
major way by which the neonate is exposed to
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Fig. 1. Biotransformation mechanism of acrylamide. CYP2E1, cytochrome 2E1; GST, glutathione S-transferase.
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acrylamide(26). In addition, contaminated foodstuffs and
drinking water are two other main ways to expose the baby
or child to acrylamide. As children, especially those under
the age of 2 years, are the most sensitive population,
acrylamide intake levels must be monitored particularly in
infant formulas and baby foods. On the other hand, mothers
should be attentive while choosing the water with which
they prepare food for their child. The health risks of
acrylamide can be classified as follows.

Mutagenic, genotoxic and carcinogenic properties
of acrylamide

The genotoxic, mutagenic and carcinogenic potentials of
acrylamide have been studied extensively. Acrylamide itself
reacts rapidly with thiol (ZSH) and amino groups; this
explains why its primary targets are proteins(25). Acrylamide
has been shown to bind DNA by a Michael-type process
in vitro with low activity(21,25). Nevertheless, there is
sufficient evidence in the literature that both acrylamide and
its metabolite glycidamide are mutagenic and clastogenic in
mammalian cells(19,22). Data suggest that mice are more
vulnerable to acrylamide tumorigenicity. The metabolic
activation of acrylamide is more efficient and the
detoxification process is poorer in mice than rats, since
mice have higher levels of glycidamide and lower levels of
GSH–glycidamide conjugates(27).

Acrylamide causes induction of the following genotoxic
effects(28,29):

(a) gene mutations and chromosomal aberrations in germ
cells of mice in vivo;

(b) chromosomal aberrations in germ cells of rats in vivo;
(c) chromosomal aberrations in somatic cells of rodents

in vivo;
(d) gene mutations and chromosomal aberrations in

cultured cells in vitro;
(e) cell transformation in mouse cell lines;
(f) somatic mutation in the spot test in vivo;
(g) heritable translocation and specific locus mutations in

mice and dominant lethal mutations in both mice and rats;
(h) unscheduled DNA synthesis in rat spermatocytes

in vivo; but not in rat hepatocytes. However, glycidamide
induces unscheduled DNA synthesis in rat hepatocytes.

The studies on mutagenic, genotoxic and carcinogenic
properties of acrylamide and glycidamide are summarised
in Table 1(29 – 43).

Adduct formation with Hb

Acrylamide forms different protein adducts, the most
important of which are Hb adducts extensively formed at
ZSH groups and on the amino groups of the N-terminal
valines in erythrocytes. The measurement of Hb adducts can
give an integrated measure of the exposure in the previous
3–4 months, since the lifespan of erythrocytes is about
4 months(25,44).

Adduct formation with acrylamide shows a linear dose–
response relationship and glycidamide adducts generate a
concave curve. This shows that the percentage of

acrylamide metabolised to glycidamide is inversely
proportional to the administered dose of acrylamide(45,46).

Neurotoxic effects of acrylamide

Early morphological studies suggested that neurological
defects caused by acrylamide intoxication are mediated
through distal axonal degeneration (also known as ‘dying-
back’ neuropathy) in the peripheral nervous system and
central peripheral nervous system(47,48). Later studies
showed that nerve terminals and Purkinje neurons are the
targets of acrylamide(49). Nowadays, there are two
important hypotheses regarding acrylamide neurotoxicity:
(a) inhibition of kinesin-based fast axonal transport;
(b) direct inhibition of neurotransmission(50,51).

Acrylamide, the parent compound, is a soft electrophilic
neurotoxicant, reacting on thiol groups of proteins (cysteine,
homocysteine) and GSH as well as protein-bound ZSH
groups (kinesin, dynein), whereas the metabolite glycida-
mide is a harder electrophilic compound, reacting with
nucleophilic centres of adenine and guanine in the
DNA(37 – 41). It has been shown that acrylamide inhibits
the action of brain glutathione S-transferase and reduces the
levels of brain GSH(52). It has also been suggested that
acrylamide neurotoxicity is caused by its effects on heavy-
and medium-weight neurofilaments, the change it causes on
neurotransmitter receptor expression and through inhibition
of neurotransmission(43 – 45). Electrophilic neurotoxins,
including acrylamide, may cause protein structure and
function changes by oxidation and this may lead to
pathway failure and finally nerve cell damage. Therefore
such chemicals at low doses and long-term exposure
might be a cause of neurodegenerative diseases such as
Alzheimer’s disease(12,35,53,54). The studies on neurotoxic
effects of acrylamide and glycidamide are summarised in
Table 1(29,35,55 – 57).

Reproductive and developmental toxicity of acrylamide

Reproductive toxicity has also been observed in laboratory
animals exposed to high levels of acrylamide(55). Several
studies have been conducted on reproductive toxicity; these
are presented in Table 1(58 – 62).

There seems to be a relationship between the neurotoxi-
city and reproductive toxicity of acrylamide(56,62 – 65). One
theory is that reproductive toxicity is related to neurotoxi-
city, as neurotoxicity influences mating behaviour. Several
studies have clarified that some of the neurotoxic effects of
acrylamide in rats are a weakness of the hind-limbs, reduced
hind-limb grip strength, and increased foot splay(62,63,65).
This reduced hind-limb function could cause impairment in
mounting responses, copulatory behaviour, and intromission
(entry)(58). Dysfunctional intromission could also have an
impact on the proper deposition of sperm in the vagina and
uterus and subsequent hormonal events that cause the
stimulation of reproductive hormones and implantation. In
addition, erectile function could be decreased due to nerve
damage in the penis(66). Another theory is that both types of
toxicity are mediated through effects on the kinesin motor
proteins(62). These kinesin proteins are found in the flagella
of sperm as well as the nervous system and other tissues(65).
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Table 1. Summary of literature on mutagenicity, genotoxicity, carcinogenicity, neurotoxicity, reproductive and developmental toxicity of acrylamide

Study Study design Results

Mutagenic, genotoxic and carcinogenic properties of acrylamide
Hashimoto & Tanii

(1985)(29)
Mutagenicity testing of acrylamide and glycidamide on Salmonella

strains
Acrylamide was not mutagenic in Ames’ test, in the presence of the S9

fraction; however, glycidamide was shown to be mutagenic in some of the
strains of Salmonella, with or without the S9 mix

National Toxicology
Program (1989)(30)

Acrylamide was administered to F344/N rats and B6C3F1 mice by
oral administration

Acrylamide showed organ-specific and species-specific tumorigenicity in
rodents. Application of acrylamide through different routes (topically,
orally, systemically) increased the risk of carcinomas and lung and skin
adenomas in mice and induced thyroid adenomas/adenocarcinomas,
uterine adenocarcinomas, clitoral adenomas, oral papillomas and
mammary gland tumours in rats

Russell et al. (1991)(31) Induction of specific-locus mutations in male germ cells of the mouse Significantly increased the specific-locus mutation rate in certain post-
stem-cell stages of spermatogenesis, but not in spermatogonial stem cells

Hoorn et al. (1993)(32) A transgenic mouse strain with a high copy number of rescuable lacZ
sequences was evaluated for its effectiveness in detecting lacZ
mutations

Acrylamide was found to increase the frequency of lacZ mutations in bone
marrow about 1·8-fold over background

Dearfield et al. (1995)(33) Hypoxanthine-guanine phosphoribosyl transferase locus in cultured
CHO cells

Acrylamide has shown to be mutagenic at the hypoxanthine-guanine
phosphoribosyl transferase locus in cultured CHO cells with or without
exogenous activation system

Segerbäck et al.
(1995)(34)

Testing DNA damage potential of acrylamide and glycidamide on rats
and mice

Glycidamide was found to induce N-7-(2-carbamoyl-2-hydroxy-ethyl)gua-
nine

Fu et al. (2000)(35) Neonatal mouse tumorigenicity bioassay Glycidamide showed 5- to 7-fold higher DNA adduct levels than when
treated with acrylamide, indicating lower levels of CYP450 enzymes in
immature tissues

Gamboa de Costa et al.
(2003)(36)

Induction of DNA adduct formation of acrylamide and glycidamide in
adult and neonatal mice

Both acrylamide and glycidamide caused DNA adduct formation; however,
adduct levels formed by glycidamide were modestly higher

Ma et al. (2008)(37) Comet assay on lung, liver, spleen, kidney, testicle, bone marrow and
peripheral lymphocytes of mice

Acrylamide caused DNA damage to multiple organs of mice

Cao et al. (2008)(38) Comet assay on HepG2 cells Acrylamide caused DNA damage
Zhang et al. (2008)(39) Micronucleus assay on HepG2 cells Acrylamide increased micronucleus frequencies
Baum et al. (2008)(40) Comet assay on V79 cells and in human lymphocytes Glycidamide caused DNA damage
Wolf et al. (2008)(41) Micronucleus assay on hens’ eggs Acrylamide increased micronucleus frequencies
Recio et al. (2010)(42) Micronucleus/comet assays on rats and mice Acrylamide was found to induce micronucleated reticulocytes in rats
Mei et al. (2010)(43) Micronucleus and Hprt assays on rats Neither acrylamide nor glycidamide increased the frequency of micro-

nucleated reticulocytes. In contrast, both compounds produced small
(approximately 2- to 3-fold above background) but significant increases in
lymphocyte Hprt mutant frequency

Neurotoxic effects of acrylamide
Burek et al. (1980)(55) Male and female Fischer 344 rats were administered acrylamide in their

drinking water at 0, 0·05, 0·2, 1, 5, or 20 mg/kg per d for up to 93 d.
Following the administration of acrylamide in the drinking water, male
rats from each dose level were held for up to 144 d of recovery

Nerve degeneration was observed; however, after 144 d, the lesions were
partially or fully recovered
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Chapin et al. (1995)(56) Male and female Swiss CD-1 mice received acrylamide in drinking water
(3, 10, 30 ppm) for 14 weeks

Neurotoxicity was assessed at several times in both F0 and F1
generations by measuring forelimb and hindlimb grip strength

Presence of only minor effects on grip strength and without detectable neural
histopathology. Female reproduction was not significantly affected by
these compounds at the doses used. Thus, these data confirm the male
as the affected sex and that reproductive toxicity was greater than motor
neuron toxicity when measured as grip strength
In the F0 generation, acrylamide caused an 11 % decrease in pup number
without measurable neurotoxicity; female fertility was not affected.
Although both generations consumed the same amount of acrylamide,
there were larger changes in the fertility-related endpoints in the F1 mice
than in the F0 mice, with no concomitant change in organ weights or
sperm parameters

Ghanayem et al.
(2010)(57)

5- to 30-week-old intact male C57Bl/6J mice fed with low- and
high-energy diets

Acrylamide potentiated the repoductive toxicity induced by obesity
in obese rats

Reproductive toxicity of acrylamide
Zenick et al. (1986)(58) Male rats received acrylamide in drinking water (50, 100, or 200 ppm) for

up to 10 weeks. Copulatory behaviour, semen, and (for controls and
100 ppm only) fertility and fetal outcomes were evaluated. Females
received acrylamide (25, 50, 100 ppm) for 2 weeks before initiation of
breeding and then throughout gestation and lactation

Disruptions in mating performance, a decrease in pregnancy rate, an
increase in post-implantation loss, and hindlimb splaying appeared in the
females; a decrease in pup body weight at birth, decreases in weight gain
during lactation, and a delay in vaginal patency were also observed

Sublet et al. (1989)(59) Males were orally administered with 0, 5, 15, 30, 45, or 60 mg/kg
acrylamide for 5 d and then mated serially to naive females

Acrylamide treatment reduced fertility and increased pre- and post-
implantation loss, primarily over the first 3 weeks post-treatment.
However, the effects were transient

Wise et al. (1995)(60) Acrylamide at 0, 5, 10, 15, or 20 mg/kg per d were administered at 5 ml/kg
by oral administration from GD 6 to lactational day 10 to groups of
twelve mated females each

Significantly increased pup mortality and characteristic hindlimb splaying;
significant decreases in average horizontal motor activity and auditory
startle response were observed only in weanlings of the 15 mg/kg per d
group

Field et al. (1990)(61) Sprague–Dawley rats received acrylamide at 0, 2·5, 7·5, and 15 mg/kg
body weight per d on GD 6–20. Swiss CD-1 mice received acrylamide
at 0, 3, 15, and 45 mg/kg body weight per d on GD 6–17

Maternal and fetal weight decreases and extra rips were observed in a dose-
dependent manner

Tyl et al. (2000)(62) 160 Male, 160 female virgin rats; 0, 5, 15, 30, 45, or 60 mg/kg per d for 5 d At 15 to 60 mg/kg per d, males exhibited significantly reduced weight gain
and reduced mating. Females showed a decrease in pregnancy rate.
Also, increased post-implantation losses were observed at the 60 mg/kg
per d dose

CHO, Chinese hamster ovary; CYP450, cytochrome 450; ppm, parts per million; GD, gestation day.
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Interference with these proteins could reduce sperm motility
and fertilisation events(62,66,67 – 70).

Other mechanisms of acrylamide on reproduction in
rodents could be from the alkylation of sulfhydryl groups on
unique proteins, such as protamine, in the sperm head and
tail(22,71,72). This could affect sperm penetration and induce
the pre-implantation losses seen in some dominant lethal
studies(62,73).

No human data are present regarding the reproductive and
developmental toxicity of acrylamide. However, data are
sufficient to conclude that acrylamide is a reproductive and
developmental toxicant in rodents.

Dose–response and dose–effect relationships
of acrylamide

Numerous investigators have looked at dose–response and
dose–effect relationships in a variety of animal models.
There do not appear to be significant differences between
the mammalian species studied. The lethal dose, 50 %
(LD50) levels of acrylamide through various routes in
different rodents are given in Table 2(74).

The WHO states that acrylamide belongs to the group of
chemicals thought to have no reliably identifiable
‘threshold’ of effects, meaning that very low concentrations
will also result in very low risks, but not in zero risk: some
risk is always present when the chemical is ingested.
However, for carcinogens such as acrylamide, risk is
thought to increase with increasing exposure(75).

In June 2002, the FAO of the UN and the WHO issued a
report about the health implications of acrylamide in food.
The Consultation concluded that the no observed adverse
effect level (NOAEL) for acrylamide neuropathy is
0·5 mg/kg BW per d and the NOAEL for fertility changes
is four times higher than for peripheral neuropathy and
2000-fold greater than estimated dietary exposures(24,76,77).
The NOAEL for reproductive toxicity was estimated to be
2–5 mg/kg BW per d depending on the endpoint of fertility
or embryonic death(77). No reproductive toxicities have been
reported in humans. Therefore, it is highly unlikely that any
reproductive toxicity in humans would result from dietary
exposure to acrylamide, although concerns about the
cumulative effects of low-level chronic exposure are
increasing.

Evidence of neurological effects has been observed
following single oral doses of 126 mg/kg in rats and rabbits
and 100 mg/kg in dogs(78,79). Using chronic dosing
schedules, it has been observed that cumulative oral doses
of 500–600 mg/kg using daily doses of 25–50 mg/kg per d
are required to produce ataxia in rats, dogs and

baboons(78,80,81). Smaller daily doses do not produce a
clinical effect until a larger cumulative dose is attained. It
has been found that the administration of acrylamide at daily
doses of 6 to 9 mg/kg does not produce evidence of
neurotoxicity in rats until a cumulative dose of 1200 to
1800 mg/kg is attained, and that doses of up to 3 mg/kg per d
for 90 d administered to rats do not result in adverse
effects(78,82). Spencer et al. (83) reported that Rhesus
monkeys fed up to 2 mg/kg per d did not show any adverse
clinical effects at 325 d.

Acrylamide appears to be a multi-organ carcinogen in
rodents. This is consistent with its distribution throughout
the whole body. However, it is noteworthy that there are no
corresponding target organs in mice and rats. Rat thyroid
follicular cell tumours and mammary tumours from two
studies are considered of possible relevance for human
health. Modelling of these data has allowed the determi-
nation of benchmark doses and benchmark dose lower
confidence limits(84,85). For a 10 % CI, the results were in the
range of 300–1100mg/kg per d for the mammary tumours
and between 630 and 930 for the thyroid tumours using the
Environmental Protection Agency’s dose–response model-
ling for determination of a point of departure for a risk of
10 % lower exposure dose (LED10)(86,87). Relating the
combined tumour data to Hb adduct data of acrylamide and
glycidamide the doses 440 or 950mg/kg per d were
determined, respectively, which are close to the benchmark
dose lower confidence limits(86 – 88).

The estimated average chronic human dietary intake was
calculated crudely as 0·3–0·7mg/kg BW per d in 2002.
However, the Food and Drug Administration calculated the
exact intake as 0·4mg/kg BW per d in 2003 and this value
remained the same when the Food and Drug Administration
updated this subject in 2004(89). This increase of acrylamide
intake by age seems to reflect the increased consumption of
fast food together with potato crisps or French fries.

As the NOAEL for neuropathy is given as 0·5 mg/kg BW
per d, a woman weighing 132 lb (60 kg) could safely
consume 30 mg acrylamide daily; a man weighing 180 lb
(82 kg) could consume about 41 mg(90). On the other hand, if
the same calculation is applied to the daily intake of a child,
a child weighing 20 lb (9 kg) can consume food including
4·5 mg acrylamide. Whether it is appropriate to judge the
daily intake of a child with the same calculation is a matter
of debate considering that the susceptibility of a child
towards several chemicals is much higher than that of an
adult. It is anticipated that children will generally have
intakes that are two to three times those of adults when
expressed on a BW basis.

Studies on acrylamide contamination in baby foods and
infant formulas and estimated daily exposures of acrylamide
are given in Table 3(26,91 – 94).

Determination of acrylamide and limits in foods

Potentially toxic acrylamide is largely derived from heat-
induced reactions between the amino group of the free
amino acid asparagine and carbonyl groups of glucose and
fructose in cereals, potatoes, and other plant-derived
foods(95). Several methods have been described that
determine acrylamide in several foodstuffs and water.

Table 2. Lethal dose, 50 % (LD50) levels of acrylamide through
different routes in different rodents

Species Route
LD50

(mg/kg body weight)

Rat Oral 107–251
Rat Dermal 400
Rat Intraperitoneal 90–120
Mouse Oral 107–170
Guinea-pig Oral 150–180
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The first reported data on acrylamide in foods available on
the market were developed by the Swedish National Food
Administration using liquid chromatography/tandem mass
spectroscopy (LC/MS/MS)(96). Since then, several analyti-
cal procedures have been developed, including LC/MS/MS
and GC/MS with different sensitivity, cost, speed and
applicability(90).

There are a limited number of studies concerning the daily
intake of acrylamide from foodstuffs. In the year 2002, the
Swedish National Food Agency showed that certain fried,
baked and deep-fried foods and coffee had high concen-
trations of acrylamide(96). In a Norwegian study, acrylamide
exposure from foods and coffee was estimated to be 0·49 and
0·46mg/kg BW in males and females, respectively(97). The
New Zealand National Nutrition Survey showed that with a
typical Western diet, including hot chips (French fries) and
potato crisps, the calculated daily intake of acrylamide is
0·3mg/kg BW, which is below the NOAEL(98).

On the other hand, as babies and children are a more
sensitive population than adults, their consumption of

foods including acrylamide must be limited. The studies
calculating the daily intake of acrylamide of children
in several European countries are summarised in
Table 4(11,90,99 – 103).

The European Union gives high importance to acrylamide
contamination in food. After the Commission Recommen-
dation 2007/331/EC, twenty-one member states of the
European Union presented the results of acrylamide in
several foodstuffs (presented under the titles of ‘French
fries’, ‘potato crisps’, ‘potato products for home cooking’,
‘bread’, ‘breakfast cereals’, ‘biscuits’, ‘roasted coffee’,
‘jarred baby foods’, ‘processed cereal-based baby foods’
and ‘other products’) to the European Food Safety Authority
in 2007. There were 2715 results reported for foods sampled
in 2007, with a minimum of seventy-six reported for
‘processed cereal-based baby foods’ and a maximum of 854
reported for ‘other products’. The arithmetic mean
acrylamide content ranged from 44mg/kg for ‘jarred baby
foods’ to 628mg/kg for ‘potato crisps’, with the equivalent
geometric means of 31 and 366mg/kg. The 2007 results

Table 3. The daily intake of acrylamide of children in several European countries

Study Data Age
Acrylamide intake
(mg/kg BW per d)

Alexy et al. (DONALD Study),
(2002)(91), daily intake
calculated in Hilbig et al. (2004)(26)

Calculation over the total food intake
(diet records) of 3387 children

,1 year
1–7 years
7–19 years

0·21
0·43
0·30

Wilhelm et al. (RUB Study),
(2002)(92), daily intake calculated
in Hilbig et al. (2004)(26)

Calculation over the total food intake
(diet records) of 119 children

1– , 7 years 0·61

Scientific Committee of the Norwegian
Food Control Authority (2002)(93)

Data on consumption of cereal based
baby food and analysed acrylamide
concentrations, no further details available

Boys (6 months)
Girls (6 months)
Boys (12 months)
Girls (12 months)

0·29
0·31
0·33
0·36

European Commission, Health and
Consumer Protection Directorate
(French Food Safety Agency)
(2003)(94)

National food consumption data and
analysed acrylamide concentrations
presented by SCF; no further details
available

2–14 years
Mean
95th percentile

1·4
2·9

BW, body weight; SCF, Scientific Committee on Food.

Table 4. Studies on acrylamide contamination in baby foods and infant formulas and estimated daily exposures of acrylamide

Study Food type Analysis method Estimated daily exposure

Rosén & Hellenäs (2002)(90) Canned baby food LC/MS/MS 7·8mg/kg
Jiao et al. (2005)(99) Infant powdered milk and baby foods LC/MS Ranging between 3·01

and 9·06mg/kg for infant
powdered milk and
between 6·80 and
124·93mg/kg for baby
foods

Şenyuva & Gökmen (2005)(100) Baby foods LC/MS 149 (SD 14 ·7)mg/kg
Fohgelberg et al. (2005)(11) Canned baby food LC/MS 7·8mg/kg
Scientific and Technological Research

Council of Turkey (2006)(101)
Baby biscuits LC/MS 150–610mg/kg

European Food Safety Authority
Scientific Report (2009)(102)

Jarred baby foods LC/MS Ranging between 44 and
628mg/kg

Bundesamt für Verbraucherschutz
und Lebensmittelsicherheit
(Federal Office for the Protection
of the Consumer and Food Safety,
Germany) (2003)(103)

Baby foods (infant formulas and follow-on
formulas, commercial cereal-based food,
commercial menus for infants and young
children, commercial vegetable or fruit
preparations)
Commercial cereal-basedfood
Cakes for infants and young children

LC/MS Maximum 131mg/kg
Mean 13, maximum

633mg/kg

LC/MS/MS, liquid chromatography/tandem mass spectroscopy.
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were compared with results collected by the European
Commission Joint Research Centre’s Institute for Reference
Materials and Measurements in the years 2003 to 2006.
There were 9311 results reported for foods sampled in the
4 years; however, there were only eight results reported for
the food category ‘jarred baby foods’ and they were not
included in the comparison. The arithmetic mean of
acrylamide content ranged from 55mg/kg for ‘cereal-
based baby foods’ to 678mg/kg for ‘potato crisps’, with the
equivalent geometric means of 35 and 514mg/kg. The
highest 95th percentile value was reported for ‘potato crisps’
at 1718mg/kg and the highest maximum for ‘other products’
at 7834mg/kg(102).

Conclusion

Infants and children are susceptible towards the effects of
several xenobiotics. The knowledge of all factors that affect
the formation of glycidamide is important with respect to
estimating risk from this known carcinogen. It is known that
the metabolism and clearance of drugs are higher in children
because of the larger liver:BW ratio and the higher blood
flow through the liver compared with those of older
adults(104). As the major metabolite of acrylamide,
glycidamide, is formed through biotransformation, it is
likely that glycidamide can be formed at an higher rate than
adults in children. In addition, the detoxification pathway
through conjugation with GSH may be less functional due to
low levels of GSH in a child’s liver. Therefore, it is possible
that the toxicity of acrylamide might be higher in children.

Children and adolescents should eat a balanced and
assorted diet, which includes plenty of fruit and vegetables
but also cereals. Also, parents should moderate their
children’s consumption of fried and fatty foods. Such a diet
would also reduce the risk of high exposures to acrylamide,
since acrylamide has not been determined in unheated or
boiled foods(105). Acrylamide presumably will also be
present in low levels in a nutritionally balanced diet;
however, it is in the power of parents to feed their children
with more healthy foods. On the other hand, for small
children who are merely fed with infant formula and baby
food, it is obligatory for governments to take serious
measures to monitor contaminants(89).

Taking into account all the knowledge given above, baby
food and infant formulas should be routinely tested before
use for the detection of acrylamide using improved
techniques. Strict law enforcement should be undertaken
regarding the detection of all the contaminants in infant
formulas and baby foods. Furthermore, producers should be
warned by regulatory authorities regarding good manufac-
turing practices to decrease the levels of contaminants,
particularly acrylamide.
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