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1. Introduction

Textures and ditopological texture spaces were first introduced by L.M. Brown as a point-based setting for the study of
fuzzy topology. However, the development of the theory has proceeded largely independently of this context. In particu-
lar this is true of the work on di-uniformities [8] which gives the foundations for a theory of uniformities in a textural
setting, and provides a more unified setting for the study of quasi uniformities and uniformities than does the classical
approach.

In [10] the authors investigated the effect of a complementation on a direlational uniformity and showed that although
a direlational uniformity on a discrete texture corresponds to a quasi uniformity, a complemented di-uniformity corresponds
to a uniformity.

Since covers cannot be used to define a quasi uniformity, T.E. Garnter and R.G. Steinlage [6] introduced the notion of
pairs of covers having a common index. In the meantime L.M. Brown [1] introduced independently the notion of dual cover,
and S. Romaguera and J. Marin [12] the closely related notion of a pair open cover of a quasi uniform space.

The notion of quasi di-uniformity was introduced by the author in [11] by removing the symmetry condition in the
definition of a direlational uniformity, and instead of dicovers, which are the textural analogue of dual covers, dual dicovers
were used to characterize quasi di-uniformities. In [7] J. Marin and S. Romaguera introduce a notion of Lebesgue quasi
uniformity in terms of pair open covers.
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In this paper we will introduce the notions of Lebesgue di-uniformity and co-Lebesgue di-uniformity, and since di-
uniformities on discrete textures correspond to quasi uniformities we will investigate the relationship between a Lebesgue
quasi uniformity on X and the corresponding Lebesgue di-uniformity on the discrete texture (X, P(X)).

We conclude this paper by defining dual dicovering Lebesgue quasi di-uniformities, which are the textural analogue of
pair Lebesgue quasi uniformities in the sense of ]J. Marin and S. Romaguera.

This section concludes with some basic definitions from the theory, and the reader is referred to [3,4,8-10] for more
background material.

Texture. ([3]) Let S be a nonempty set. We recall that a texturing on 8 is a point-separating, complete, completely distribu-
tive lattice S of subsets of S with respect to inclusion, which contains S and ¢, and for which arbitrary meet /\ coincides
with intersection (1) and finite joins \/ with unions (. The pair (S, 8) is called a texture. For s € S the sets

Ps=()AeS|scA} and Q;=\/{AeS8|s¢A}=\/{Pulues, s¢Py)

are called respectively, the p-sets and g-sets of (S, 8). These sets are used in the definition of many textural concepts. We
note in particular that S>={se S| S ¢ Qs} is called the core of S. In general, sP¢s.

In general, a texturing of S need not be closed under set complementation, but sometimes we have a notion of comple-
mentation.

Complementation. ([3]) A mapping o : S — § satisfying c(0c(A)) =A, VA€S and ACB=0(B) Co(A), VA,Be S is
called a complementation on (S, 8) and (S, 8, o) is then said to be a complemented texture.

Example 1.1.

(1) For any set X, (X,P(X),mx), mx(Y)=X\Y for Y C X, is the complemented discrete texture representing the usual set
structure of X. Clearly, Px = {x} and Qx = X\ {x} for all x € X.

(2) For I=[0, 1] define J={[0,t] |t € [0, 1]} U{[0,t) | t € [0, 1]}, ¢([0,t]) =[0,1 —t) and ¢([0,t)) =[0,1 —¢t], t € [0, 1]. Then
T, J,1) is a complemented texture, which we will refer to as the unit interval texture. Here P, =[0,t] and Q; =[O0, t) for
alltel.

Ditopology. A dichotomous topology on (S, 8) or ditopology for short, is a pair (t, k) of subsets of 8, where the set of open
sets T satisfies

(1) S,0er,
(2) G1,Gpet=G1NGy et and
(3) Giet,iel=>\,;Gier,

and the set of closed sets k satisfies

(1) S,0ex,
(2) K1,K2 ek = K1 UK, €k and
(3) Kiek,iel=>Kick.

If (T, k) is a ditopology on a complemented texture (S, 8, o) we say (7, k) is complemented if k = o [T].

Let (S, S), (T, T) be textures. In the following definition we consider P(S) ® T. To avoid confusion F(s.n, a(s,t) are used
to denote the p-sets and g-sets for (S x T, P(S) ® 7). Hence (see [4]) we have I_’(s,t) ={s} x P; and G(S,t) =[(S\{s}) x T]U
[S x Q¢]. Now let us recall

Direlations. ([4]) Let (S, S), (T, T) be textures.

(1) reP(S) ® T is called a relation from (S, 8) to (T, T) if it satisfies
Rl r SZ Qs.hy, Py SZ Qs=r SZ Q.-
R2 r¢ Qs = 35’ € S such that Ps € Qg and r € Q (s ).
(2) Re P(S)®T is called a co-relation from (S, 8) to (T, 7T) if it satisfies
CR1 Psp Q R, Ps Q Qy =Py Q R.
CR2 P(sp) ¢ R=3s' €S such that Py ¢ Qs and Py r)  R.

A pair (r, R) consisting of a relation r and co-relation R is now called a direlation. We will denote by DR the family of
all direlations on a given texture.
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Direlations are ordered by (r1, R1) C (r2, R2) <& 1 €1y and Ry C R;.
For a general texture (S, 8) we define

i= is = \/{F(s,s) |S € S} and = 15 = m{a(&s) | Se S}.
We refer to (i, I) as the identity direlation on (S, 8).

A direlation (r, R) on (S, 8) (that is, on (S, 8) to (S, 8)) is reflexive if r and R are reflexive, that is if (i, I) C (r, R). We
will denote by RDR the family of reflexive direlations on a given texture.

Inverse of a direlation. ([4]) The inverse of (r, R) from (S, 8) to (T, 7) is the direlation (r, R) = (R,r<) from (T, 7T) to
(S, 8) given by

r = Qus ITZ€ s}, RT=\/{Ps | Py L R).

A-section of r. ([4]) Let (S, 8) and (T, T) be texture spaces and (r, R) a direlation from (S, 8) to (T, 7). The A-section of r is
the element r— A of T defined by

r7A={{Qc|Vs, 1€ Q= A Qs).

A-section of R. A-section of R is the element R~ A of T defined by

R™A=\/{P:|Vs. Pisp) & R= Ps C A},

Complement of a direlation. ([4]) Let (r, R) be a direlation between the complemented textures (S, 8,o0) and (T, T, ).

(1) The complement r’ of the relation r is the co-relation

= ﬂ{@m | Ju, v withr € Qu,v), 0(Qs) € Quand P, Z 6(Py)}.
(2) The complement R’ of the co-relation R is the relation

R'=\/{Pss | Ju.vwith Poy vy £ R, Py & o (Ps)and 0(Q0) £ Qv}.
(3) The complement (r, R)’ of the direlation (r, R) is the direlation

(r,R)Y =(R,7).

A direlation (r, R) on (S, 8) is said to be complemented if (r, R)’ = (r, R).

Direlational uniformity. ([8]) Let (S, 8) be a texture and U a family of direlations from (S, 8) to (S, 8). If U satisfies the
conditions

(1) (i, & (d, D) for all (d, D) € U. That is, U C RDR.

(2) d,D)eU, (e,E) e DR and (d, D) C (e, E) implies (e, E) € U.

(3) (d, D), (e, E) € U implies (d, D) (e, E) € U.

(4) Given (d, D) € U there exists (e, E) € U satisfying (e, E) o (e, E) C (d, D).
(5) Given (d, D) € U there exists (c, C) € U satisfying (c, )< C (d, D).

Then U is called a direlational uniformity on (S, 8), and (S, 8, U) is known as a direlational uniform texture space.

For a given direlational uniformity U on (S, 8, o) the direlational uniformity W = {(d, D)" | (d, D) € U} is called the
complement of U. The di-uniformity U is said to be complemented if U = U.

Example 1.2. ([8]) Let (I,J) be the unit interval texture and for € > 0 define de = {(r,5) |r,s€l, s<r+ €}, De =
{(r,s)|r,sel, s<r—e€}. Clearly (d¢, D¢) is a reflexive, symmetric direlation on (I, J) and

Uy ={(d, D) | (d, D) € DR and 3¢ > 0 with (de, D¢) C (d, D)}

is a direlational uniformity on (I, J). We will call Uy the usual direlational uniformity on (I, J).
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Dicovers. A difamily C = {(A;, Bj) | j € J} of elements of § x § which satisfies ﬂjeh B; c \/jej2 Aj for all partitions (J1, J2)
of J, including the trivial partitions, is called a dicover of (S, 8). If D is a dicover we often write LDM in place of (L, M) € D.
We recall the following notions for dicovers.

C is a refinement of D if given j e ] we have LDM so that Aj CL and M C B;. In this case we write € < D.

Let (d, D) be a reflexive direlation on (S, 8) and for s € S let d[s]=d~ Ps; and D[s] = D~ Qs. Then

y(d, D) = {(d[s], D[s]) | s € "}

is an anchored dicover of (S, 8). In this way we may obtain a dicovering uniformity corresponding to a direlational unifor-
mity. The term di-uniformity applies to both direlational and dicovering uniformities.

Uniform ditopology. ([10]) Just as a uniformity in the classical sense determines a topology called the uniform topology, so
a di-uniformity determines a ditopology called the uniform ditopology. Let (S, 8,U) be a direlational uniform texture space
with uniform ditopology (T, k().

(i) Ge Ty ¢ (G Z Qs = 3(d, D) € U with d[s] C G).
(i) K € kyy < (Ps ¢ K = 3(d, D) € U with K C D[s]).

2. Lebesgue di-uniformities

In this section we introduce the notion of Lebesgue di-uniformity and co-Lebesgue di-uniformity. We will also investigate
the effect of a complementation on a direlational uniformity and see the relation between Lebesgue di-uniformities and co-
Lebesgue di-uniformities.

We recall [5] that a quasi uniformity U on a set X is a Lebesgue quasi uniformity provided that for each t(U)-open cover
G of X there is U € U such that the cover {U(x): x € X} refines G. The pair (X, U) is then called a Lebesgue quasi uniform
space.

Let (7, k) be a ditopology on the texture space (S, 8). The family {G; | i € I} is said to be an open cover [2] of S if GjeT
for all i € I and S =\/;.; G;. Dually we may speak of a closed cocover of ¢, namely a family {F; | i € I} with F; €  for all
i € I satisfying ();; Fi =¥. For the cocovers we need a notion of dual refinement.

Definition 2.1. Let X, X, be cocovers. Then K will be called a dual refinement of X,, and write X1 < X, if for a given
K, € X, there exists K; € K7 such that Ky C Kj.

Definition 2.2. A di-uniformity U on a texture space (S, 8) is called

(1) A Lebesgue direlational uniformity provided that for each cover C of S which is open for the uniform ditopology there is
a direlation (r, R) € U such that {r[s]|s € S"} is a refinement of C.

(2) A co-Lebesgue direlational uniformity provided that for each cocover X of # which is closed for the uniform ditopology
there is a direlation (r, R) € U such that X is a dual refinement of {R[s]|s € S°}.

By identifying direlational uniformities on the discrete texture (X, P(X),mwx), wx(Y) = X \ Y, with diagonal quasi-
uniformities on X, as is done on [5], we now show that the above definitions do indeed generalize the classical ones.

Let d C X x X be a point relation. Recall [5] that u(d) = (d,d*") is a direlation on (X, P(X)) and if Q is a diagonal quasi
uniformity on X then the family

u(Q)={(e,E) |3d € Qand u(d) C (e, )}

is a direlational uniformity on the discrete texture (X, P(X)). Indeed, u sets up a bijection between the diagonal quasi-
uniformities on S and the direlational uniformities on (X, P(X)) since it is a bijection between the binary point relations
on X and the symmetric direlations on (X, P(X)).

If Q be a quasi-uniformity on X then Q~' = {d~!|d € Q} is also a quasi-uniformity on X, called the conjugate of Q. Note
that a quasi-uniformity Q on X gives rise to a bitopological space (X, Tq, Tg-1), where Tg is the topology generated by Q
and T-1 that generated by Q~1. As shown in [10] it follows that (Tg, ’ICQfl), ‘Icgfl =mx[Tg-1], is the uniform ditopology
of u(Q).

Now we have the following theorems.

Theorem 2.3. Let Q be a Lebesgue quasi uniformity on X. Then the corresponding di-uniformity u(Q) on (X, P(X), rx) is a Lebesgue
direlational uniformity.
Conversely if U is a Lebesgue direlational uniformity on (X, P(X), 7x) then u=1(U) is a Lebesgue quasi uniformity on X.
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Proof. Since Q is a quasi uniformity on X, u(Q) is a di-uniformity on (X, P(X),wx) by [10, Theorem 3.3]. Let C be an
open cover of X. Since Q is a Lebesgue quasi uniformity there exists r € Q such that {r(x) |[x€ X} < C. If r e P(X x X) is
regarded as a relation then r~ Py =r[x] =r(x) by [10, Lemma 3.1] and u(r) = (r,r<") is a direlation on (X, P(X),x) by
[10, Definition 3.2] so it follows that {r[x] | x € X} refines C.

Conversely, the proof of u~1(U) is a Lebesgue quasi uniformity on X when U is a Lebesgue direlational uniformity is
dual to above and is omitted. O

Proposition 2.4. ([10, Proposition 3.4]) Let Q be a quasi-uniformity on X and Q= its conjugate. Then the direlational uniformity on
(X, P(X), x) corresponding to Q™! is the complement of the direlational uniformity corresponding to Q. That is,

u(@ N =u.

Theorem 2.5. Let Q be Lebesgue quasi uniformity on X. Then the complement of the direlational uniformity corresponding to Q, that
is u(Q)’, is a co-Lebesgue direlational uniformity on (X, P(X), wx).
Conversely, if U is the co-Lebesgue direlational uniformity corresponding to Q~', then u=1 (W) is a Lebesgue quasi uniformity on X.

Proof. To show u(Q)’ is a co-Lebesgue direlational uniformity on (X, P(X), wx) it will suffice to show that u(Q~1!) is a
co-Lebesgue direlational uniformity since u(Q~1) =u(Q)’ by [10, Proposition 3.4].

Let F={F; |i< I} be a family of closed sets with ();.; ¥ =. For F; € Kyg-1) we have X\ Fi € 7,g1y and §={X\ Fi |
i €I} is an open cover of (X, Tg-1) since

\V5=VX\Filieh=X\(){Filiel}=X\0=X.

If Q is a Lebesgue quasi uniformity there exists r € Q such that r[x] € X \ F; for x€ X and i € I. We also have r~1 e Q!
such that u(r—1) = (—1, '_1)<) is a direlation by [10, Definition 3.2]. Hence

FicX\rix1= (") [«

which shows u(Q~1) is a co-Lebesgue direlational uniformity on (X, P(X), x).

Conversely let {G; | i € I} be an open cover of X such that G; € 7,-1(, and (JUGi = X. Then {X\ G; |ie I} is a family
of closed sets satisfying ((X \ Gij) =% and X\ G; € Ky-1quy- Since U = u(Q~1) = u(Q) is a co-Lebesgue direlational uni-
formity on X there exists (r, R) € U such that X \ G; € R[x] for x € X. Since (r, R) € u(Q~!) we have d~! € Q7! satisfying
(d=1,(d~1H*“)C (r, R). Hence we have

dix] =X\ (d~") TIx1 S X\ RIx] S G,

which shows u~1(W) is a Lebesgue quasi uniformity on X. O

Proposition 2.6. Let (S, 8) be a texture.

(1) If Wis a direlational uniformity on (S, 8) for which ty is compact then U is a Lebesgue direlational uniformity on (S, 3).
(2) If Wis a direlational uniformity on (S, 8) such that ky co-compact then U is a co-Lebesque direlational uniformity on (S, 8).

Proof. (1) Let C be an open cover of (S, 8, Ty). For s € S* there exists Cs € € with Cs ¢ Qs, and since Cs € Ty there exists
(ds, Ds) € U with ds[s] € Cs. We may choose (es, E5) € U with (e, Es)2 C (ds, Ds). By the proof of [8, Proposition 2.7] we
have Pg C leg[s][, where for A € 8§, ]A[ denotes the interior of A, so {Jes[s][|s € S”} is an open cover of (S, 8, Ty). By
compactness we have s1,sz, ..., sp € S* for which S = Ji_;les, [sk]l = Uk s [Sk]-

Define (e, E) = ]_[Z:](es,(, Es) € U. For s e S we have k, 1 <k <n with es [sk] € Qs. We will complete the proof
by showing e[s] C ds,[sk] S Cs, € €, whence {e[s] | s € $°} < €. Hence, suppose that e[s] ¢ dg,[sk] and take u € S with
e[s1Z Qu and Py, ¢ dg,[si]. Since e = ]_[’,7:1 es, we have e C e, whence e[s] C e, [s] and we have es, [s] € Q. Hence I_J(sk,u) -
efk Cd,.

From e [sy] = e, Ps, € Qs we deduce es, ¢ Q(s,.5), and from eg, [s] € Q, we deduce es, € Q (s,u)- On the other hand

Py € ds,[sk] = d;; Ps, gives Py ¢ Qu and

dsk ,g a(v,u’) = Psk - Qv- (1)
From P, ) Cds, and Py, ¢ Q. we have dg, ¢ a;sk‘u), and since ds, is a relation we have s, € S with Pg, ¢ Qs with
ds, ¢ 6/(5, ) by R2. Applying the implication (1) with v =s, we deduce Py, < Qs;(, which is a contradiction.
"
(2) The proof is dual to (1) and is omitted. O
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Example 2.7. Consider the texture (I, J) of Example 1.1 with the natural ditopology

u={0,n|relju{ll, «r={[0r]|rel}u{s}.

The dicovering uniformity vy corresponding to the direlational uniformity Uy of (see [10, Example 3.3]) has a base consisting
of the dicovers D¢, € > 0, where

De ={([0,r+€),[0,r—€]) [rel},

and [0, + €) is understood to be [0, 1] when r+€ >1 and [0,r — €] is @ if r — € < 0. Since Ty, is compact (I,J, Uyp) is a
Lebesgue direlational uniform texture space. Similarly since «y; is co-compact it is co-Lebesgue direlational uniform texture
space.

We recall that [8] we may associate a dicovering uniformity with a given direlational uniformity. Let us recall the equiv-
alence of these two concepts.

Theorem 2.8. ([8]) Let (S, 8) be a texture.

(1) To each direlational uniformity U on (S, 8) we may associate a dicovering uniformity v = I'(U) = {€C € DC | (¢, C) €
U with y(c,C) < C}.

(2) To each dicovering uniformity v on (S, S) we may associate a direlational uniformity U = A(v) = {(d, D) € RDR | 3C €
v with§(C) C (d, D)}.

(3) A(I"'(W)) = U for every direlational uniformity U on (S, 8).

(4) '(A(v)) = v for every dicovering uniformity v on (S, 8).

Proposition 2.9.

(1) Let U be a Lebesgue direlational uniformity on (S, 8) and v = I"'(Ul) the dicovering uniformity corresponding to U. Then v has
the property that for a given open cover C there exists D € v such that dom D < C.

(2) Let v be a dicovering uniformity on (S, 8) satisfying for a given open cover C there exists D € v such that domD < C. Then the
corresponding di-uniformity A(v) = U is a Lebesgue direlational uniformity.

Proof. (1) Let C be an open cover of S. Since U is a Lebesgue direlational uniformity there exists a direlation (r, R) € U such
that {r[s] | s € S} is a refinement of €. Since y (r, R) € v there exists (c, C) € U with y(c,C) < ¥ (r, R). Now let y(c,C) =D
so we have domD < C.

(2) Let C be an open cover of S satisfying for C there exists a dicover {(Lj,M;) | j € J} =D € v such that domD < C.
Since v is a dicovering uniformity there exists (c, C) € U with y (¢, C) < D. For LDM we have c[s] € L =domD < € which
means U is a Lebesgue direlational uniformity. O

The above proposition justifies the following definition.

Definition 2.10. A dicovering uniformity v on a texture space (S, 8) is called a Lebesgue dicovering uniformity provided that
for a given open cover € there exists D € v such that domD < C.

Proposition 2.11.

(1) Let U be a co-Lebesgue direlational uniformity on (S, 8) and v = I" (L) the dicovering uniformity corresponding to U. Then v has
the property that for a given closed cocover C there exists D € v such that C <t ranD.

(2) Let v be a dicovering uniformity on (S, S) satisfying for a given closed cocover C there exists D € v such that C < ranD. Then the
corresponding di-uniformity A(v) = U is a co-Lebesgue direlational uniformity.

Proof. (1) Let C be a closed cocover of S. Since U is a co-Lebesgue direlational uniformity there exists a direlation (r, R) € U
such that € is a dual refinement of {R[s] | s € S”}. Since y(r, R) € v there exists (c,C) € U with y(c,C) < y(r, R). Now let
y(c,C) =D so we have C <ranD.

(2) The proof is similar to (1) and is omitted. O

Definition 2.12. A dicovering uniformity v on a texture space (S, 8) is called a co-Lebesgue dicovering uniformity provided
that a given closed cocover C there exists D € v such that ¢ <ranD.

The term Lebesgue di-uniformity (co-Lebesgue di-uniformity) will be used to denote both Lebesgue direlational unifor-
mity and Lebesgue dicovering uniformity (co-Lebesgue direlational uniformity and co-Lebesgue dicovering uniformity).
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To conclude this section we consider a complemented di-uniformity on a complemented texture space (S, 8, o). We
recall [10] that if v is a dicovering uniformity on (S, 8, o) with uniform ditopology (t, «) then the uniform ditopology of
the conjugate dicovering uniformity (v)’ is (o (k), o (T)).

Theorem 2.13. Let v be Lebesgue dicovering uniformity on (S, 8, o) with uniform ditopology (t, k). Then (v) is a co-Lebesgue
dicovering uniformity on (S, 8, o).

Proof. Let ¥ ={0(G;) | G; € o(t)} be a o(t) closed cocover of S then G ={G;|ie€ I} is a T-open cover of S. Since v is
Lebesgue dicovering uniformity there exists D € v such that domD < G. This implies F < ran(D)’, and we see that (v)’ is

a co-Lebesgue dicovering uniformity on (S,8,0). O

Corollary 2.14. Let v be a complemented dicovering uniformity on (S, 8, o). Then v is a Lebesgue dicovering uniformity if and only if
v is a co-Lebesgue dicovering uniformity on (S, S, o).

Proof. Clear. O

The previous theorem shows that the notions of Lebesgue di-uniformity and co-Lebesgue di-uniformity coincide for a
complemented di-uniformity. We recall [10] that on the discrete texture (X, P(X),wx) a complemented di-uniformity is
just a uniformity on X hence these concepts coincide also for uniformities.

3. Lebesgue quasi di-uniform spaces
The notion of quasi di-uniformity was introduced in [11] by removing the symmetry condition in the definition of dire-
lational uniformity. Equivalently using the dual dicovers the notion of dual dicovering quasi uniformity was also introduced.
We may now give
Definition 3.1. A quasi di-uniformity U9 on a texture space (S, 8) is a Lebesque quasi di-uniformity provided that for each

(Tya, kya) open co-closed dicover C of (S, 8) there is a direlation (r, R) € U9 such that the dicover y (r, R) = {(r[s], R[s]) |
s € S} refines € and (S, 8, U9) is called a Lebesgue quasi di-uniform texture space.

In order to define dual dicovering Lebesgue quasi uniformity it will be necessary to recall the definition of a dual dicover.
Definition 3.2. ([11]) A dual difamily
€ ={((Cj".Cj). (.5 i< T}
of elements of (8 x 8) x (8 x §) is called a dual dicover of (S, §) if
{(citncit, ci?uct?) | jel)

is a dicover of (S, 8). Clearly a dual dicover €4 satisfying (C}J, C}’z) € (tya, kya) and (Cjzfl, Cjz-’z) € (Tuay=, Kuay<) is called
open co-closed.

Proposition 3.3. ([11]) Let (r, R) be a reflexive direlation on (S, 8) with r[s] =1~ Ps; R[s] = R~ Qs and r<[s] = (r*)~ Qs;
R<[s] = (R<) ™ Ps. The family

yir R ={(y(r.R).y(r.R)<) |s €S},

where y (r, R) = {(r[s], R[s]) | s€ S} and y (r, R)~ ={(R“[s],r[s]) | s € S} is an anchored dual dicover.

Definition 3.4. ([11]) Let Gy = {((C}'1,C}’2), (CJZ.’1, Cjz.'z)) | j€ J} and Dy be dual dicovers. Then Cg4 is a refinement of Dy,
written G4 < Dy, if given j € J we have (D1, D12), (D*1, D%2)) € D, so that

21 ¢22)c (p21, p2?)

’1,C}’2); D", D'?) and (C] I
1

Now we introduce the notion of a dual dicovering Lebesgue quasi di-uniformity.
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Definition 3.5. Let (S, 8, U?) be a quasi di-uniform space. U9 is a dual dicovering Lebesgue quasi uniformity if for each open
co-closed dual dicover

€ ={((c;".c;?). (c51.c;%) lie )

of (S, 8,U%) there is a direlation (r, R) € U9 such that y9(r, R) refines Cq.

Proposition 3.6. Let (S, 8, U%) be a dual dicovering Lebesgue quasi uniform space. Then U7 and (U9)* are Lebesgue quasi di-
uniformities.

Proof. Let C = {(C}‘l,C}’z) | j € J} be a (tye, kys) open co-closed dicover. For each je€ J let (C?'l,C?’z) = (8,9) then
Cq = {((C}‘l,C}‘Z), (Cjz.‘l,Cjzﬂz)) | j € J} is an open co-closed dual dicover. Since U? is a dual dicovering Lebesgue quasi
uniformity there exists (r, R) € W9 such that y9(r, R) refines Cq4. Since (r[s], R[s]) C (C}’l, C]].’z) we conclude that y(r, R)
refines (le.’l, C}’Z) which gives U9 is a Lebesgue quasi di-uniformity.

The proof of (U%) < is a Lebesgue quasi di-uniformity can be done similarly. O

We recall [11] that the direlational uniformity with subbase U7 U (U7)< is called the direlational uniformity associated
with U9 and is denoted by U% v (U9)*< then

W v (W) ={d,D)|3(r,R) € U such that ((r, R) " (r, R)") E (d, D)}

is a direlational uniformity on (S, §).

Theorem 3.7. Let U9 be a dual dicovering Lebesgue quasi uniformity on (S, 8). Then (S, 8, U7 v (U)*) is a Lebesgue di-uniform
texture space.

Proof. Let {U; | i € I} be a Tyav ua)«-open cover of (S, 8). Let U; = G; N H; with G; € Tye and H; € tyay«. Then for G; ;t_ Qs
there exists (d, D) € U9 satisfying d[s] C G;. Similarly for H; ¢ Q; there exists (d, D) € (U9)*< with D*"[s] C H;. It is easy
to verify that Cy = {((Gi, @), (H;,®?)) | i € I} is an open co-closed dual dicover. Now since U? is a dual dicovering Lebesgue
quasi uniformity there exists (f, F) € U9 such that y9(f, F) < {((G;, ), (H;,?)) | i € I}. Hence for ig € I we have f[s] C Gj,
and F<[s] € Hj, by [11, Proposition 3.10]. Thus we obtain f[s] N F[s] € G; N H; which gives (5,8, U v (UH)*) is a
Lebesgue di-uniform texture space. O

Theorem 3.8. Let U? be a dual dicovering Lebesgue quasi uniformity on (S, 8). Then (S, 8, U9 v (U9) <) is a co-Lebesgue di-uniform
texture space.

Proof. Let {F; |i eI} be a kyavua« closed-cocover of (S,8). Let F; = M; U K; with M; € kye and K; € k(a)<. Then
M; Cd[s] and K; € d* [s]. Now C4 = {((S, Mj), (S, K;)) | i € I} is an open co-closed dual dicover. Since U7 is a dual dicovering
Lebesgue quasi uniformity there exists (v, V) € U9 such that y9(f, F) < G4 the we obtain M; U K; € V[s]U v [s] which
establish that (S, 8, U9 v (U9)<") is a co-Lebesgue di-uniform texture space. O
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