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1. Introduction

Textures and ditopological texture spaces were first introduced by L.M. Brown as a point-based setting for the study of
fuzzy topology. However, the development of the theory has proceeded largely independently of this context. In particu-
lar this is true of the work on di-uniformities [8] which gives the foundations for a theory of uniformities in a textural
setting, and provides a more unified setting for the study of quasi uniformities and uniformities than does the classical
approach.

In [10] the authors investigated the effect of a complementation on a direlational uniformity and showed that although
a direlational uniformity on a discrete texture corresponds to a quasi uniformity, a complemented di-uniformity corresponds
to a uniformity.

Since covers cannot be used to define a quasi uniformity, T.E. Garnter and R.G. Steinlage [6] introduced the notion of
pairs of covers having a common index. In the meantime L.M. Brown [1] introduced independently the notion of dual cover,
and S. Romaguera and J. Marin [12] the closely related notion of a pair open cover of a quasi uniform space.

The notion of quasi di-uniformity was introduced by the author in [11] by removing the symmetry condition in the
definition of a direlational uniformity, and instead of dicovers, which are the textural analogue of dual covers, dual dicovers
were used to characterize quasi di-uniformities. In [7] J. Marin and S. Romaguera introduce a notion of Lebesgue quasi
uniformity in terms of pair open covers.
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In this paper we will introduce the notions of Lebesgue di-uniformity and co-Lebesgue di-uniformity, and since di-
uniformities on discrete textures correspond to quasi uniformities we will investigate the relationship between a Lebesgue
quasi uniformity on X and the corresponding Lebesgue di-uniformity on the discrete texture (X,P(X)).

We conclude this paper by defining dual dicovering Lebesgue quasi di-uniformities, which are the textural analogue of
pair Lebesgue quasi uniformities in the sense of J. Marin and S. Romaguera.

This section concludes with some basic definitions from the theory, and the reader is referred to [3,4,8–10] for more
background material.

Texture. ([3]) Let S be a nonempty set. We recall that a texturing on S is a point-separating, complete, completely distribu-
tive lattice S of subsets of S with respect to inclusion, which contains S and ∅, and for which arbitrary meet

∧
coincides

with intersection
⋂

and finite joins
∨

with unions
⋃

. The pair (S,S) is called a texture. For s ∈ S the sets

P s =
⋂

{A ∈ S | s ∈ A} and Q s =
∨

{A ∈ S | s /∈ A} =
∨

{Pu | u ∈ S, s /∈ Pu}
are called respectively, the p-sets and q-sets of (S,S). These sets are used in the definition of many textural concepts. We
note in particular that S� = {s ∈ S | S � Q s} is called the core of S . In general, S� /∈ S.

In general, a texturing of S need not be closed under set complementation, but sometimes we have a notion of comple-
mentation.

Complementation. ([3]) A mapping σ : S → S satisfying σ(σ (A)) = A, ∀A ∈ S and A ⊆ B ⇒ σ(B) ⊆ σ(A), ∀A, B ∈ S is
called a complementation on (S,S) and (S,S, σ ) is then said to be a complemented texture.

Example 1.1.

(1) For any set X , (X,P(X),πX ), πX (Y ) = X \ Y for Y ⊆ X , is the complemented discrete texture representing the usual set
structure of X . Clearly, Px = {x} and Q x = X \ {x} for all x ∈ X .

(2) For I = [0,1] define I = {[0, t] | t ∈ [0,1]} ∪ {[0, t) | t ∈ [0,1]}, ι([0, t]) = [0,1 − t) and ι([0, t)) = [0,1 − t], t ∈ [0,1]. Then
(I, I, ι) is a complemented texture, which we will refer to as the unit interval texture. Here Pt = [0, t] and Q t = [0, t) for
all t ∈ I .

Ditopology. A dichotomous topology on (S,S) or ditopology for short, is a pair (τ , κ) of subsets of S, where the set of open
sets τ satisfies

(1) S,∅ ∈ τ ,
(2) G1, G2 ∈ τ ⇒ G1 ∩ G2 ∈ τ and
(3) Gi ∈ τ , i ∈ I ⇒ ∨

i Gi ∈ τ ,

and the set of closed sets κ satisfies

(1) S,∅ ∈ κ ,
(2) K1, K2 ∈ κ ⇒ K1 ∪ K2 ∈ κ and
(3) Ki ∈ κ , i ∈ I ⇒ ⋂

Ki ∈ κ .

If (τ , κ) is a ditopology on a complemented texture (S,S, σ ) we say (τ , κ) is complemented if κ = σ [τ ].

Let (S,S), (T ,T) be textures. In the following definition we consider P(S) ⊗ T. To avoid confusion P (s,t) , Q (s,t) are used
to denote the p-sets and q-sets for (S × T ,P(S) ⊗ T). Hence (see [4]) we have P (s,t) = {s} × Pt and Q (s,t) = [(S \ {s}) × T ] ∪
[S × Q t]. Now let us recall

Direlations. ([4]) Let (S,S), (T ,T) be textures.

(1) r ∈ P(S) ⊗ T is called a relation from (S,S) to (T ,T) if it satisfies
R1 r � Q (s,t), P s′ � Q s ⇒ r � Q (s′,t) .
R2 r � Q (s,t) ⇒ ∃s′ ∈ S such that P s � Q s′ and r � Q (s′,t) .

(2) R ∈ P(S) ⊗ T is called a co-relation from (S,S) to (T ,T) if it satisfies
CR1 P (s,t) � R, P s � Q s′ ⇒ P (s′,t) � R .
CR2 P (s,t) � R ⇒ ∃s′ ∈ S such that P s′ � Q s and P (s′,t) � R .

A pair (r, R) consisting of a relation r and co-relation R is now called a direlation. We will denote by DR the family of
all direlations on a given texture.
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Direlations are ordered by (r1, R1) 
 (r2, R2) ⇔ r1 ⊆ r2 and R2 ⊆ R1.
For a general texture (S,S) we define

i = i S =
∨

{P (s,s) | s ∈ S} and I = I S =
⋂

{Q (s,s) | s ∈ S}.
We refer to (i, I) as the identity direlation on (S,S).

A direlation (r, R) on (S,S) (that is, on (S,S) to (S,S)) is reflexive if r and R are reflexive, that is if (i, I) 
 (r, R). We
will denote by RDR the family of reflexive direlations on a given texture.

Inverse of a direlation. ([4]) The inverse of (r, R) from (S,S) to (T ,T) is the direlation (r, R)← = (R←, r←) from (T ,T) to
(S,S) given by

r← =
⋂

{Q (t,s) | r � Q (s,t)}, R← =
∨

{P (t,s) | P (s,t) � R}.

A-section of r. ([4]) Let (S,S) and (T ,T) be texture spaces and (r, R) a direlation from (S,S) to (T ,T). The A-section of r is
the element r→ A of T defined by

r→ A =
⋂

{Q t | ∀s, r � Q (s,t) ⇒ A ⊆ Q s}.

A-section of R . A-section of R is the element R→ A of T defined by

R→ A =
∨

{Pt | ∀s, P (s,t) � R ⇒ P s ⊆ A}.

Complement of a direlation. ([4]) Let (r, R) be a direlation between the complemented textures (S,S, σ ) and (T ,T, θ).

(1) The complement r′ of the relation r is the co-relation

r′ =
⋂{

Q (s,t)
∣∣ ∃u, v with r � Q (u,v), σ (Q s) � Q u and P v � θ(Pt)

}
.

(2) The complement R ′ of the co-relation R is the relation

R ′ =
∨{

P (s,t)
∣∣ ∃u, v with P (u,v) � R, Pu � σ(P s) and θ(Q t) � Q v

}
.

(3) The complement (r, R)′ of the direlation (r, R) is the direlation

(r, R)′ = (R ′, r′).

A direlation (r, R) on (S,S) is said to be complemented if (r, R)′ = (r, R).

Direlational uniformity. ([8]) Let (S,S) be a texture and U a family of direlations from (S,S) to (S,S). If U satisfies the
conditions

(1) (i, I) 
 (d, D) for all (d, D) ∈ U. That is, U ⊆ RDR.
(2) (d, D) ∈ U, (e, E) ∈ DR and (d, D) 
 (e, E) implies (e, E) ∈ U.
(3) (d, D), (e, E) ∈ U implies (d, D) � (e, E) ∈ U.
(4) Given (d, D) ∈ U there exists (e, E) ∈ U satisfying (e, E) ◦ (e, E) 
 (d, D).
(5) Given (d, D) ∈ U there exists (c, C) ∈ U satisfying (c, C)← 
 (d, D).

Then U is called a direlational uniformity on (S,S), and (S,S,U) is known as a direlational uniform texture space.

For a given direlational uniformity U on (S,S, σ ) the direlational uniformity U′ = {(d, D)′ | (d, D) ∈ U} is called the
complement of U. The di-uniformity U is said to be complemented if U′ = U.

Example 1.2. ([8]) Let (I, I) be the unit interval texture and for ε > 0 define dε = {(r, s) | r, s ∈ I, s < r + ε}, Dε =
{(r, s) | r, s ∈ I, s � r − ε}. Clearly (dε , Dε) is a reflexive, symmetric direlation on (I, I) and

UI = {
(d, D)

∣∣ (d, D) ∈ DR and ∃ε > 0 with (dε, Dε) 
 (d, D)
}

is a direlational uniformity on (I, I). We will call UI the usual direlational uniformity on (I, I).
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Dicovers. A difamily C = {(A j, B j) | j ∈ J } of elements of S×S which satisfies
⋂

j∈ J1
B j ⊆ ∨

j∈ J2
A j for all partitions ( J1, J2)

of J , including the trivial partitions, is called a dicover of (S,S). If D is a dicover we often write LDM in place of (L, M) ∈ D.
We recall the following notions for dicovers.

C is a refinement of D if given j ∈ J we have LDM so that A j ⊆ L and M ⊆ B j . In this case we write C ≺ D.
Let (d, D) be a reflexive direlation on (S,S) and for s ∈ S let d[s] = d→ P s and D[s] = D→ Q s . Then

γ (d, D) = {(
d[s], D[s]) ∣∣ s ∈ S�

}

is an anchored dicover of (S,S). In this way we may obtain a dicovering uniformity corresponding to a direlational unifor-
mity. The term di-uniformity applies to both direlational and dicovering uniformities.

Uniform ditopology. ([10]) Just as a uniformity in the classical sense determines a topology called the uniform topology, so
a di-uniformity determines a ditopology called the uniform ditopology. Let (S,S,U) be a direlational uniform texture space
with uniform ditopology (τU, κU).

(i) G ∈ τU ⇔ (G � Q s ⇒ ∃(d, D) ∈ U with d[s] ⊆ G).
(ii) K ∈ κU ⇔ (P s � K ⇒ ∃(d, D) ∈ U with K ⊆ D[s]).

2. Lebesgue di-uniformities

In this section we introduce the notion of Lebesgue di-uniformity and co-Lebesgue di-uniformity. We will also investigate
the effect of a complementation on a direlational uniformity and see the relation between Lebesgue di-uniformities and co-
Lebesgue di-uniformities.

We recall [5] that a quasi uniformity U on a set X is a Lebesgue quasi uniformity provided that for each τ (U)-open cover
G of X there is U ∈ U such that the cover {U (x): x ∈ X} refines G. The pair (X,U) is then called a Lebesgue quasi uniform
space.

Let (τ , κ) be a ditopology on the texture space (S,S). The family {Gi | i ∈ I} is said to be an open cover [2] of S if Gi ∈ τ
for all i ∈ I and S = ∨

i∈I Gi . Dually we may speak of a closed cocover of ∅, namely a family {Fi | i ∈ I} with Fi ∈ κ for all
i ∈ I satisfying

⋂
i∈I F i = ∅. For the cocovers we need a notion of dual refinement.

Definition 2.1. Let K1,K2 be cocovers. Then K1 will be called a dual refinement of K2, and write K1 � K2 if for a given
K2 ∈ K2 there exists K1 ∈ K1 such that K1 ⊆ K2.

Definition 2.2. A di-uniformity U on a texture space (S,S) is called

(1) A Lebesgue direlational uniformity provided that for each cover C of S which is open for the uniform ditopology there is
a direlation (r, R) ∈ U such that {r[s] | s ∈ S�} is a refinement of C.

(2) A co-Lebesgue direlational uniformity provided that for each cocover K of ∅ which is closed for the uniform ditopology
there is a direlation (r, R) ∈ U such that K is a dual refinement of {R[s] | s ∈ S�}.

By identifying direlational uniformities on the discrete texture (X,P(X),πX ), πX (Y ) = X \ Y , with diagonal quasi-
uniformities on X , as is done on [5], we now show that the above definitions do indeed generalize the classical ones.

Let d ⊆ X × X be a point relation. Recall [5] that u(d) = (d,d←) is a direlation on (X,P(X)) and if Q is a diagonal quasi
uniformity on X then the family

u(Q) = {
(e, E)

∣∣ ∃d ∈ Q and u(d) 
 (e, E)
}

is a direlational uniformity on the discrete texture (X,P(X)). Indeed, u sets up a bijection between the diagonal quasi-
uniformities on S and the direlational uniformities on (X,P(X)) since it is a bijection between the binary point relations
on X and the symmetric direlations on (X,P(X)).

If Q be a quasi-uniformity on X then Q−1 = {d−1 | d ∈ Q} is also a quasi-uniformity on X , called the conjugate of Q. Note
that a quasi-uniformity Q on X gives rise to a bitopological space (X,TQ,TQ−1 ), where TQ is the topology generated by Q

and TQ−1 that generated by Q−1. As shown in [10] it follows that (TQ,Tc
Q−1 ), Tc

Q−1 = πX [TQ−1 ], is the uniform ditopology
of u(Q).

Now we have the following theorems.

Theorem 2.3. Let Q be a Lebesgue quasi uniformity on X. Then the corresponding di-uniformity u(Q) on (X,P(X),πX ) is a Lebesgue
direlational uniformity.

Conversely if U is a Lebesgue direlational uniformity on (X,P(X),πX ) then u−1(U) is a Lebesgue quasi uniformity on X.
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Proof. Since Q is a quasi uniformity on X , u(Q) is a di-uniformity on (X,P(X),πX ) by [10, Theorem 3.3]. Let C be an
open cover of X . Since Q is a Lebesgue quasi uniformity there exists r ∈ Q such that {r(x) | x ∈ X} ≺ C. If r ∈ P(X × X) is
regarded as a relation then r→ Px = r[x] = r(x) by [10, Lemma 3.1] and u(r) = (r, r←) is a direlation on (X,P(X),πX ) by
[10, Definition 3.2] so it follows that {r[x] | x ∈ X} refines C.

Conversely, the proof of u−1(U) is a Lebesgue quasi uniformity on X when U is a Lebesgue direlational uniformity is
dual to above and is omitted. �
Proposition 2.4. ([10, Proposition 3.4]) Let Q be a quasi-uniformity on X and Q−1 its conjugate. Then the direlational uniformity on
(X,P(X),πX ) corresponding to Q−1 is the complement of the direlational uniformity corresponding to Q. That is,

u
(
Q−1) = u(Q)′.

Theorem 2.5. Let Q be Lebesgue quasi uniformity on X. Then the complement of the direlational uniformity corresponding to Q, that
is u(Q)′ , is a co-Lebesgue direlational uniformity on (X,P(X),πX ).

Conversely, if U is the co-Lebesgue direlational uniformity corresponding to Q−1 , then u−1(U′) is a Lebesgue quasi uniformity on X.

Proof. To show u(Q)′ is a co-Lebesgue direlational uniformity on (X,P(X),πX ) it will suffice to show that u(Q−1) is a
co-Lebesgue direlational uniformity since u(Q−1) = u(Q)′ by [10, Proposition 3.4].

Let F = {Fi | i ∈ I} be a family of closed sets with
⋂

i∈I F = ∅. For Fi ∈ κu(Q−1) we have X \ Fi ∈ τu(Q−1) and G = {X \ Fi |
i ∈ I} is an open cover of (X, τQ−1 ) since

∨
G =

∨
{X \ Fi | i ∈ I} = X \

⋂
{Fi | i ∈ I} = X \ ∅ = X .

If Q is a Lebesgue quasi uniformity there exists r ∈ Q such that r[x] ⊆ X \ Fi for x ∈ X and i ∈ I . We also have r−1 ∈ Q −1

such that u(r−1) = (r−1, (r−1)←) is a direlation by [10, Definition 3.2]. Hence

Fi ⊆ X \ r[x] = (
r−1)←[x]

which shows u(Q−1) is a co-Lebesgue direlational uniformity on (X,P(X),πX ).
Conversely let {Gi | i ∈ I} be an open cover of X such that Gi ∈ τu−1(U′) and

⋃
Gi = X . Then {X \ Gi | i ∈ I} is a family

of closed sets satisfying
⋂

(X \ Gi) = ∅ and X \ Gi ∈ κu−1(U′) . Since U = u(Q−1) = u(Q)′ is a co-Lebesgue direlational uni-
formity on X there exists (r, R) ∈ U such that X \ Gi ⊆ R[x] for x ∈ X . Since (r, R) ∈ u(Q−1) we have d−1 ∈ Q−1 satisfying
(d−1, (d−1)←) 
 (r, R). Hence we have

d[x] = X \ (
d−1)←[x] ⊆ X \ R[x] ⊆ Gi,

which shows u−1(U′) is a Lebesgue quasi uniformity on X . �
Proposition 2.6. Let (S,S) be a texture.

(1) If U is a direlational uniformity on (S,S) for which τU is compact then U is a Lebesgue direlational uniformity on (S,S).
(2) If U is a direlational uniformity on (S,S) such that κU co-compact then U is a co-Lebesque direlational uniformity on (S,S).

Proof. (1) Let C be an open cover of (S,S, τU). For s ∈ S� there exists Cs ∈ C with Cs � Q s , and since Cs ∈ τU there exists
(ds, Ds) ∈ U with ds[s] ⊆ Cs . We may choose (es, Es) ∈ U with (es, Es)

2 
 (ds, Ds). By the proof of [8, Proposition 2.7] we
have P s ⊆ ]es[s][, where for A ∈ S, ]A[ denotes the interior of A, so {]es[s][ | s ∈ S�} is an open cover of (S,S, τU). By
compactness we have s1, s2, . . . , sn ∈ S� for which S = ⋃n

k=1]esk [sk][ = ⋃n
k=1 esk [sk].

Define (e, E) = ∏n
k=1(esk , Esk ) ∈ U. For s ∈ S� we have k, 1 � k � n with esk [sk] � Q s . We will complete the proof

by showing e[s] ⊆ dsk [sk] ⊆ Csk ∈ C, whence {e[s] | s ∈ S�} ≺ C. Hence, suppose that e[s] � dsk [sk] and take u ∈ S with
e[s] � Q u and Pu � dsk [sk]. Since e = ∏n

i=1 esi we have e ⊆ esk , whence e[s] ⊆ esk [s] and we have esk [s] � Q u . Hence P (sk,u) ⊆
e2

sk
⊆ dsk .

From esk [sk] = e→
sk

P sk � Q s we deduce eSk � Q (sk,s) , and from esk [s] � Q u we deduce esk � Q (s,u) . On the other hand
Pu � dsk [sk] = d→

sk
P sk gives Pu � Q u′ and

dsk � Q (v,u′) ⇒ P sk ⊆ Q v . (1)

From P (sk,u) ⊆ dsk and Pu � Q u′ we have dsk � Q ′
(sk,u) , and since dsk is a relation we have s′

k ∈ S with P sk � Q s′k with

dsk � Q ′
(s′k,u)

by R2. Applying the implication (1) with v = s′
k we deduce P sk ⊆ Q s′k , which is a contradiction.

(2) The proof is dual to (1) and is omitted. �
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Example 2.7. Consider the texture (I, I) of Example 1.1 with the natural ditopology

τI = {[0, r)
∣∣ r ∈ I

} ∪ {I}, κI = {[0, r] ∣∣ r ∈ I
} ∪ {∅}.

The dicovering uniformity υI corresponding to the direlational uniformity UI of (see [10, Example 3.3]) has a base consisting
of the dicovers Dε , ε > 0, where

Dε = {([0, r + ε), [0, r − ε]) ∣∣ r ∈ I
}
,

and [0, r + ε) is understood to be [0,1] when r + ε > 1 and [0, r − ε] is ∅ if r − ε < 0. Since τUI
is compact (I, I,UI) is a

Lebesgue direlational uniform texture space. Similarly since κUI
is co-compact it is co-Lebesgue direlational uniform texture

space.

We recall that [8] we may associate a dicovering uniformity with a given direlational uniformity. Let us recall the equiv-
alence of these two concepts.

Theorem 2.8. ([8]) Let (S,S) be a texture.

(1) To each direlational uniformity U on (S,S) we may associate a dicovering uniformity υ = Γ (U) = {C ∈ DC | ∃(c, C) ∈
U with γ (c, C) ≺ C}.

(2) To each dicovering uniformity υ on (S,S) we may associate a direlational uniformity U = 
(υ) = {(d, D) ∈ RDR | ∃C ∈
υ with δ(C) 
 (d, D)}.

(3) 
(Γ (U)) = U for every direlational uniformity U on (S,S).
(4) Γ (
(υ)) = υ for every dicovering uniformity υ on (S,S).

Proposition 2.9.

(1) Let U be a Lebesgue direlational uniformity on (S,S) and υ = Γ (U) the dicovering uniformity corresponding to U. Then υ has
the property that for a given open cover C there exists D ∈ υ such that dom D ≺ C.

(2) Let υ be a dicovering uniformity on (S,S) satisfying for a given open cover C there exists D ∈ υ such that domD ≺ C. Then the
corresponding di-uniformity 
(υ) = U is a Lebesgue direlational uniformity.

Proof. (1) Let C be an open cover of S . Since U is a Lebesgue direlational uniformity there exists a direlation (r, R) ∈ U such
that {r[s] | s ∈ S�} is a refinement of C. Since γ (r, R) ∈ υ there exists (c, C) ∈ U with γ (c, C) ≺ γ (r, R). Now let γ (c, C) = D

so we have dom D ≺ C.
(2) Let C be an open cover of S satisfying for C there exists a dicover {(L j, M j) | j ∈ J } = D ∈ υ such that dom D ≺ C.

Since υ is a dicovering uniformity there exists (c, C) ∈ U with γ (c, C) ≺ D. For LDM we have c[s] ⊆ L = dom D ≺ C which
means U is a Lebesgue direlational uniformity. �

The above proposition justifies the following definition.

Definition 2.10. A dicovering uniformity υ on a texture space (S,S) is called a Lebesgue dicovering uniformity provided that
for a given open cover C there exists D ∈ υ such that dom D ≺ C.

Proposition 2.11.

(1) Let U be a co-Lebesgue direlational uniformity on (S,S) and υ = Γ (U) the dicovering uniformity corresponding to U. Then υ has
the property that for a given closed cocover C there exists D ∈ υ such that C � ran D.

(2) Let υ be a dicovering uniformity on (S,S) satisfying for a given closed cocover C there exists D ∈ υ such that C � ran D. Then the
corresponding di-uniformity 
(υ) = U is a co-Lebesgue direlational uniformity.

Proof. (1) Let C be a closed cocover of S . Since U is a co-Lebesgue direlational uniformity there exists a direlation (r, R) ∈ U

such that C is a dual refinement of {R[s] | s ∈ S�}. Since γ (r, R) ∈ υ there exists (c, C) ∈ U with γ (c, C) ≺ γ (r, R). Now let
γ (c, C) = D so we have C � ran D.

(2) The proof is similar to (1) and is omitted. �
Definition 2.12. A dicovering uniformity υ on a texture space (S,S) is called a co-Lebesgue dicovering uniformity provided
that a given closed cocover C there exists D ∈ υ such that C � ran D.

The term Lebesgue di-uniformity (co-Lebesgue di-uniformity) will be used to denote both Lebesgue direlational unifor-
mity and Lebesgue dicovering uniformity (co-Lebesgue direlational uniformity and co-Lebesgue dicovering uniformity).
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To conclude this section we consider a complemented di-uniformity on a complemented texture space (S,S, σ ). We
recall [10] that if υ is a dicovering uniformity on (S,S, σ ) with uniform ditopology (τ , κ) then the uniform ditopology of
the conjugate dicovering uniformity (υ)′ is (σ (κ),σ (τ )).

Theorem 2.13. Let υ be Lebesgue dicovering uniformity on (S,S, σ ) with uniform ditopology (τ , κ). Then (υ)′ is a co-Lebesgue
dicovering uniformity on (S,S, σ ).

Proof. Let F = {σ(Gi) | Gi ∈ σ(τ )} be a σ(τ ) closed cocover of S then G = {Gi | i ∈ I} is a τ -open cover of S . Since υ is
Lebesgue dicovering uniformity there exists D ∈ υ such that dom D ≺ G. This implies F � ran(D)′ , and we see that (υ)′ is
a co-Lebesgue dicovering uniformity on (S,S, σ ). �
Corollary 2.14. Let υ be a complemented dicovering uniformity on (S,S, σ ). Then υ is a Lebesgue dicovering uniformity if and only if
υ is a co-Lebesgue dicovering uniformity on (S,S, σ ).

Proof. Clear. �
The previous theorem shows that the notions of Lebesgue di-uniformity and co-Lebesgue di-uniformity coincide for a

complemented di-uniformity. We recall [10] that on the discrete texture (X,P(X),πX ) a complemented di-uniformity is
just a uniformity on X hence these concepts coincide also for uniformities.

3. Lebesgue quasi di-uniform spaces

The notion of quasi di-uniformity was introduced in [11] by removing the symmetry condition in the definition of dire-
lational uniformity. Equivalently using the dual dicovers the notion of dual dicovering quasi uniformity was also introduced.

We may now give

Definition 3.1. A quasi di-uniformity Uq on a texture space (S,S) is a Lebesque quasi di-uniformity provided that for each
(τUq , κUq ) open co-closed dicover C of (S,S) there is a direlation (r, R) ∈ Uq such that the dicover γ (r, R) = {(r[s], R[s]) |
s ∈ S} refines C and (S,S,Uq) is called a Lebesgue quasi di-uniform texture space.

In order to define dual dicovering Lebesgue quasi uniformity it will be necessary to recall the definition of a dual dicover.

Definition 3.2. ([11]) A dual difamily

Cd = {((
C1,1

j , C1,2
j

)
,

(
C2,1

j , C2,2
j

)) ∣∣ j ∈ J
}

of elements of (S × S) × (S × S) is called a dual dicover of (S,S) if

{(
C1,1

j ∩ C2,1
j , C1,2

j ∪ C2,2
j

) ∣∣ j ∈ J
}

is a dicover of (S,S). Clearly a dual dicover Cd satisfying (C1,1
j , C1,2

j ) ∈ (τUq , κUq ) and (C2,1
j , C2,2

j ) ∈ (τ(Uq)← , κ(Uq)← ) is called
open co-closed.

Proposition 3.3. ([11]) Let (r, R) be a reflexive direlation on (S,S) with r[s] = r→ P s; R[s] = R→ Q s and r←[s] = (r←)→ Q s;
R←[s] = (R←)→ P s. The family

γ q(r, R) = {(
γ (r, R), γ (r, R)←

) ∣∣ s ∈ S
}
,

where γ (r, R) = {(r[s], R[s]) | s ∈ S} and γ (r, R)← = {(R←[s], r←[s]) | s ∈ S} is an anchored dual dicover.

Definition 3.4. ([11]) Let Cd = {((C1,1
j , C1,2

j ), (C2,1
j , C2,2

j )) | j ∈ J } and Dd be dual dicovers. Then Cd is a refinement of Dd ,

written Cd ≺ Dd , if given j ∈ J we have ((D1,1, D1,2), (D2,1, D2,2)) ∈ Dd so that

(
C1,1

j , C1,2
j

) 
 (
D1,1, D1,2) and

(
C2,1

j , C2,2
j

) 
 (
D2,1, D2,2)

⇔ C1,1
j ⊆ D1,1; D1,2 ⊆ C1,2

j and C2,1
j ⊆ D2,1; D2,2 ⊆ C2,2

j .

Now we introduce the notion of a dual dicovering Lebesgue quasi di-uniformity.
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Definition 3.5. Let (S,S,Uq) be a quasi di-uniform space. Uq is a dual dicovering Lebesgue quasi uniformity if for each open
co-closed dual dicover

Cd = {((
C1,1

j , C1,2
j

)
,

(
C2,1

j , C2,2
j

)) ∣∣ j ∈ J
}

of (S,S,Uq) there is a direlation (r, R) ∈ Uq such that γ q(r, R) refines Cd .

Proposition 3.6. Let (S,S,Uq) be a dual dicovering Lebesgue quasi uniform space. Then Uq and (Uq)← are Lebesgue quasi di-
uniformities.

Proof. Let C = {(C1,1
j , C1,2

j ) | j ∈ J } be a (τUq , κUq ) open co-closed dicover. For each j ∈ J let (C2,1
j , C2,2

j ) = (S,∅) then

Cd = {((C1,1
j , C1,2

j ), (C2,1
j , C2,2

j )) | j ∈ J } is an open co-closed dual dicover. Since Uq is a dual dicovering Lebesgue quasi

uniformity there exists (r, R) ∈ Uq such that γ q(r, R) refines Cd . Since (r[s], R[s]) 
 (C1,1
j , C1,2

j ) we conclude that γ (r, R)

refines (C1,1
j , C1,2

j ) which gives Uq is a Lebesgue quasi di-uniformity.
The proof of (Uq)← is a Lebesgue quasi di-uniformity can be done similarly. �
We recall [11] that the direlational uniformity with subbase Uq ∪ (Uq)← is called the direlational uniformity associated

with Uq and is denoted by Uq ∨ (Uq)← then

Uq ∨ (
Uq)← = {

(d, D)
∣∣ ∃(r, R) ∈ Uq such that

(
(r, R) � (r, R)←

) 
 (d, D)
}

is a direlational uniformity on (S,S).

Theorem 3.7. Let Uq be a dual dicovering Lebesgue quasi uniformity on (S,S). Then (S,S,Uq ∨ (Uq)←) is a Lebesgue di-uniform
texture space.

Proof. Let {Ui | i ∈ I} be a τUq∨(Uq)← -open cover of (S,S). Let Ui = Gi ∩ Hi with Gi ∈ τUq and Hi ∈ τ(Uq)← . Then for Gi � Q s

there exists (d, D) ∈ Uq satisfying d[s] ⊆ Gi . Similarly for Hi � Q s there exists (d, D)← ∈ (Uq)← with D←[s] ⊆ Hi . It is easy
to verify that Cd = {((Gi,∅), (Hi,∅)) | i ∈ I} is an open co-closed dual dicover. Now since Uq is a dual dicovering Lebesgue
quasi uniformity there exists ( f , F ) ∈ Uq such that γ q( f , F ) ≺ {((Gi,∅), (Hi,∅)) | i ∈ I}. Hence for i0 ∈ I we have f [s] ⊆ Gi0

and F ←[s] ⊆ Hi0 by [11, Proposition 3.10]. Thus we obtain f [s] ∩ F ←[s] ⊆ Gi ∩ Hi which gives (S,S,Uq ∨ (Uq)←) is a
Lebesgue di-uniform texture space. �
Theorem 3.8. Let Uq be a dual dicovering Lebesgue quasi uniformity on (S,S). Then (S,S,Uq ∨ (Uq)←) is a co-Lebesgue di-uniform
texture space.

Proof. Let {Fi | i ∈ I} be a κUq∨(Uq)← closed-cocover of (S,S). Let Fi = Mi ∪ Ki with Mi ∈ κUq and Ki ∈ κ(Uq)← . Then
Mi ⊆ d[s] and Ki ⊆ d←[s]. Now Cd = {((S, Mi), (S, Ki)) | i ∈ I} is an open co-closed dual dicover. Since Uq is a dual dicovering
Lebesgue quasi uniformity there exists (v, V ) ∈ Uq such that γ q( f , F ) ≺ Cd the we obtain Mi ∪ Ki ⊆ V [s] ∪ v←[s] which
establish that (S,S,Uq ∨ (Uq)←) is a co-Lebesgue di-uniform texture space. �
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