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A b s t r a c t - - B y  using averaging functions, new interval oscillation criteria are established for the 
second-order functional differential equation, 

(r(t)l~'(t)l~-l~'(t))'+t,~(t,~(t),~(~-(t)),~'(t),~'(,-(t)))=o, t>to, 

that  are different from most known ones in the sense that  they are based on information only on a 
sequence of subintervals of [to, oo), rather than on the whole half-line. Our results can be applied to 
three cases: ordinary, delay, and advance differential equations. In the case of half-linear functional 
differential equations, our criteria implies that  the T(t) < t delay and v(t) >__ t advance cases do not 
affect the oscillation. In particular, several examples are given to illustrate the importance of our 
results. (~) 2005 Elsevier Ltd. All rights reserved. 

K e y w o r d s - - Q u a s i l i n e a r  differential equation, Oscillation, Interval criteria, Generalized Riecati 
technique, Integral averaging method. 

1. I N T R O D U C T I O N  A N D  P R E L I M I N A R I E S  

This paper  is concerned with the problem of oscillation of second-order functional differential 
equations, 

(,'(t) lx' (t)l~-lx' (t))' + F (t,x (t) ,x (~'(t)l ,x' (t) ,x' (, (tl)) =0, (1.11 

for t > to > 0, where 

(i) a > 0 is a constant; 
(i i)  F : [to, co) x R × R × R × R - ,  R is a continuous function; 

(iii) r : [to, c~) -~ (0, c~) is a continuous function; 
(iv) r : [to, c~) -~ (0, co) is a continuous function and l i m t _ ~  r ( t )  = oc. 

The authors thank the referees for their valuable suggestions and useful comments. 
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We restrict our attention to those solutions x(t)  of (1.1) which exist on [to, c~) and satisfy 
sup{Ix(t)l : t _> tx} > 0, for any t~ _> to. By a solution of (1.1), we mean a function x (t) : 
[t~, c~) --* R which is continuously differentiable on [t~, co) together with r ( t ) Ix ' ( t ) l~- lx ' ( t )  and 
satisfies (1.1) at every point of [t~, e¢). A solution is said to be oscillatory if it has a sequence of 
zeros clustering at oc and nonoscillatory otherwise. 

The oscillation problem for equation (1.1) and for less general equations has been studied by 
numerous authors. For recent contributions, we refer the reader to [1-15] and references therein. 
In all of these works, the conditions in terms of the coefficients involving integral averages over 
the whole half-line [to, co) are used. 

As pointed out in earlier works [16,17], oscillation is an interval property, that is, it is more 
reasonable to investigate solutions on an infinite set of bounded intervals. Therefore, the problem 
is to find oscillation criteria which use only the information about the involved functions on these 
intervals; outside of these intervals the behavior of the functions is irrelevant. Such type of 
oscillation criteria are referred to as interval oscillation criteria, see [16-27]. The first attempt in 
this direction was due to E1-Sayed [16], who investigated the linear case of (1.1). 

In [8], Mahfoud considered the Euler differential equation with constant delay of the form, 
r(t)  = t - o, that is, 

z" (t) + ~ z  (t - o) = 0, t > to > > O, (1.2) 

and conclude that the delay does not effect the oscillation. In other words, this equation oscillates 
if and only if the corresponding equation without delay, 

x" (t) + t ~  (t) = 0, t _> to, (1 D3~ 

oscillates, that is, if and only if 
1 # > - .  
4 

Li and Yah [28,29] proved further that r(t)  = t + a in equation (1.2) does not effect the 
oscillation, where a is a positive constant. For other related results, refer to [30]. 

On the other hand, in 1973 and 1984, Erbe [31] and Ohriska [10] addressed the oscillatory 
behavior of the second-order linear functional differential equation, 

• " (t) + p (t) z (~ (t)) = 0. 

In [5, Chapter 4], Ladde, Lakshmikantham and Zhang considered the second-order nonlinear 
functional differential equation, 

(r (t) x' (t))' + f (t, x (t) ,x (~- (t)), x' (t), x' (h (t))) = O, 

where r, h E C[R+, R], T(t) < t, l i m t - ~  T(t) = C~, f e C[R+ x R 4, R], and u f ( t ,  u, v, w, z) > O, 
for uv > O, t > to, and obtained several interesting oscillatory criteria. 

In 1997, under certain assumptions on f ,  % and a, Wang [32] studied the oscillatory and 
nonoscillatory behavior of quasilinear functional differential equations of the type, 

(Ix' (t) t ~-I  x' (t))'  + f (t, x (~- (t))) = 0. 

Agarwal et al. [1] investigated the following retarded differential equation, 

where c~ and fl are positive constants, and p, T, r E C([t0, ca), R) satisfy some suitable conditions. 
Their results generalize those of Erbe, Ohriska and Lakshmikantham. 
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PROOF. 
we have 

Recently, Li [22] obtained some new oscillation criteria for the case of half-linear functional 
differential equation of the special form, 

( r  (t)Ix' (t)l a-1 x' ( t )) '  -F p (t)Ix (T (t))l ~-1 x ('r (t)) = 0, (1.4) 

where p (t) is a positive continuous function on [to, co), r(t) is an eventually positive function; 
7(t) is a positive continuously differentiable function on [to, oo), such that T~(t) > 0, for t _~ to 
and limt-~oo T(t) = co. Li showed that his results imply that the delay v(t) = t ± a does not 
affect the oscillation and can be applied to extreme case such as ft~ ° p(s)ds -- - co .  However, 
because of the sign condition on p(t) and the proof of his main theorem, the above extreme case 
and the T(t) ~_ t advance case are impossible. 

Motivated by the ideas in [5,7,17,22], by employing the Riccati technique and the integral 
averaging method, we shall establish several new interval criteria for oscillation of equation (1.1), 
that is, criteria given by the behavior of equation (1.1) (or r, p, and a) only on a sequence of 
subintervals of [to, oo). In fact, by choosing appropriate functions H and p, we shall present several 
easily verifiable oscillation criteria. Our conditions do not require the sign of p'(t) and ~-'(t). For 
the equation (1.4), our results imply that the v(t) <_ t delay and T(t) >_ t advance cases do not 
effect the oscillation, and improve and extend the results of [4,11,17,28,29,33], and can be applied 
to extreme cases such as ft°~ p(s)ds -=- - o o  for ordinary differential equations. Finally, several 
interesting examples that point out the importance of our results are included. 

We begin with a preparatory lemma which we will heavily rely on in the proofs of our theorems. 
First, we recall a class of functions defined on D -- {(t, s) : t ~_ s ~_ to}. A function H E C(D, R) 
is said to belong to the class 7 ) if 

(Hi) H(t, t) = 0, for t _> to and H(t, s) > 0, when t ~ s; 
(H2) H(t, s) has partial derivatives on D, such that 

OH (t, s_______~) _ hi (t, s) ~ (t, s), OH (t, s_______~) _ h2 (t, s) ~ (t, s), 
Ot Os 

for some locally integrable functions hi and h2. 

LEMMA 1.1. Let Ao, A1, A2 E C([to, oo), R) with A2 > O, and w E Cl([to, co), R). / / ' there exist 
(a, b) c [to, o¢) ~n~ c e (a, b), such tb~t 

w' <_ -Ao  (s) + A1 (s) w - A2 (s)Iwl ( " ÷ 1 ) / ~  , s e (a, b), (1.5) 

then 

jfaC[ a~ '¢ l (s 'a) '~+l  ds 1 H (s, a) Ao (s) - (a + 1) ~+1 (A2 (s)) ~ H (c, a) 

~ I¢: (b, s)l "+~ (1.6) 1//[ 
+H(b,c------~ H(b,s)Ao(s)- (~+1).÷~ (A2(s)/~ ds<__0 

for every H E 7), where 

h~ (s, ~) v ~  (s, ~) + A~ (s) H (~, a), (s, a) 

-h2  (b, s) ~ + A1 (s) H (b, s) 
¢2 (b, s) = (H (b, s)) ~/("+1) 

Multiplying (1.5) by H(s,t) and integrating with respect to s from t to c for t E (a,c], 

S c H (s, t) Ao (s) ds < - H (s, t) w' (s) ds + H (s, t) A1 (s) w (s) ds 

f - H(s , t )  A2(s)lw(s)l  (~+1)/~ ds. 
(i.7) 
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In view of (H1) and (H2), we see that 

H (s, t) w' (s) ds = H (c, t) w (c) - hi (s, t) Hv/-H-~,t)w (s) ds. 

Using (1.8) in (1.7) leads to 

j c t) < (c, t) w (c) H (s, Ao (s) ds ~ H 

+ A1 (s) H (s, t)) w (s) ds 

- g ( s , t ) A 2 ( s ) l w ( s ) ]  (~÷~)/~ ds 

<_ - H  (~, t) w (~) 

-l-Jc[ hl(s , t )  v ~ ( s , t ) + A l ( s ) H ( s , t  ) [w(s)[ 

H (s,t) A2 (s)tw (s)[ (a+l)/~] ds. 

For given t and s (t not equal s), set 

F1 (u) := hlv/-H + A1H u - A2Hu (~+1)/~, u > O. 

F1 (u) attains its maximum at 

a )~  h lv / -H+A1H~ 

u := ~ (A2H)~ 

and 
~ + 1  

as hl~/H + A1H 
F1 (U) ~ Flmax - (a + 1) ~+1 (A2H) ~ 

Then, by using (1.10) in (1.9), we get 

j c H (s, t) Ao (s) ds <_ - H  (c, t) w (c) 

(1.8) 

(1.9) 

(1.10) 

as / c  hl(S,t)  V / - ~ ( s , t ) + A z ( s ) H ( s , t  ) ds (1.11) 

+ ( a +  1) ~+1 (A2 (s) H (s, t)) ~ 

O~a / c  [¢1 (8, t)[ a+l ds. 
= - H  (c, t) w (c) + (a + 1) ~+1 (A2 (s)) ~ 

Similarly, if (1.5) is multiplied by H(t, s) and then integrated from c to t for t E [c, b), then one 
gets 

H (t, s) Ao (s) ds < H (t, c) w (c) + [ - h2 (t, s) 

+ A ~ ( s ) g ( t , s ) ] w ( s ) d s -  H(t ,s)A2(s) l~v(s) l  (~+~)/~ ds 
(1.12) 

< H (t, ~) ~ (~) + [ -h2 (t, ~) ~ s) + A~ (s) H it, s) 1~ (s)l 

- H  (t, s) A2 (s)]w (s)l (~+1)/~] ds. 
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For given t and s (t not equal s), set 

F2 (u) := -h2v/-H + A I H  u - A2Hu (~+1)/°, 

F2 (u) attains its maximum at 

and 

/;'2 (u) __/;'2 max = 

Then, by using (1.13) in (1.12), we get 

u > 0 .  

ao - h 2 v / H +  A I H  °+1 

(o~ + 1) °+1 (A2H) ° 

f [  ~" f [  1¢~ (t, s)l "+1 H (t, s) Ao (s) ds <_ H (t, c) w (c) + (a + 1) "+1 (A2 (s))" 

(1.13) 

ds. (1.14) 

Letting t ~ a + in (1.11) and t ~ b- in (1.14) and adding the resulting inequalities, we have 
equation (1.6). 

2. M A I N  R E S U L T S  

We are now able to state the main results. 

THEOREM 2.1. Suppose that Conditions (i)-(iv) are satis~ed. Suppose also that there exists an 
interval (a,b) C [to, c¢) and there exist c e (a,b), p c C([to, CC)), H 6 P, p e Cl([to,c¢)), such 
that p(t) > O, 

(v) F( t , x , u , v ,w) / l x [ " - l x  > p(t) holds, for t > to and x # O, u, v, w C R, 

and 

where 

1/:[ 
H (c, a) p (s) H (s, a) p (s) 

H (b, c) p (s) H (b, s) p (s) 

1 ] 
(c~ + 1) °+1 r (s)1¢1 (s, a)] °+1 

1 ] 
(o~ + 1) ~+1 r (s)1¢2 (b, s)l "+1 ds 

¢1 (s, a) = hi (s, a) Hx/-ff ~ ,  a) + (p' (s) /p (s)) H (s, a), 
(H (s, a)) °/(~+1) 

-h2 (b, s) ~ (b, s) + (p' (s) IP (s)) H (b, s) 
¢2 (b, s) = 

(H(b,s)) ~/(~+1) 

Then every solution of (1.1) has a zero in (a,b). 

PROOF. Otherwise, x(t) :~ O, for all t C (a, b). Define 

w (t) = p (t) r ( t)Ix'  (t)[ "-1  x' (t) 
Ix (t)[ ° - 1  x (t) ' 

t E (a, b). 

Differentiating (2.3) and making use of (1.1) and Condition (v), it follows that 

/ (t) p (t) F (t, x (t) x (7 ( t ) ) ,  ~' ( t ) ,  ~' (7 (t)))  
w' (t) = 7 ~ - f f w  (t) - Ix (t)L ~-1  x (t) 

p' (t) a I~ (t)l ("+1)/° 
__< - - p  ( t )  p ( t )  -~ p--~-~'W (t)  --  (7" ( t )  p ( t ) )  1/c~ " 

d8 

(2.1) 

> O, 

(2.2) 

(2.3) 

~p  (t) ~ (t)I~'  (t)l ~+1 
I~ (t)7 +1 

(2.4) 
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Comparing inequalities (1.5) and (2.4), we identify that  

Cg 
p' (t) and A2 (t) = (r (t) p (t)) 1/~" A0 (t) = p(t)  p ( t ) ,  A1 (t) - P ( t ) '  

Applying Lemma 1.1 to (2.4), we see that  inequality (2.1) fails to hold. 

If the conditions of Theorem 2.1 hold for a sequence {(a~, bn)} of intervals, such that  

l i m  a n  -~ (x) ,  
n---+oo 

then we may conclude tha t  (1.1) is oscillatory. That  is, we have the following corollary. 

COROLLARY 2.1. If [or a given T >_ to there exists an interval (a, b) C IT, c~) t'or which the 
conditions of Theorem 2.1 are satisfied, then (1.1) is oscillatory. 

The following theorem is also a consequence of Theorem 2.1. 

THEOREM 2.2. Let Conditions (i)-(v) hold. Suppose that there exist H 6 7 ) and p E C~([t0, oo)), 
such that p(t) > O, 

and 

limsupt__.oo ., f t p ( s )  [H (s,l)p(s) 

limt__,oosup .,/t P (s) [H (t, s) p (s) 

1 r(s) I¢1 (s,Z)l 
+ 1) 

1 ] 
+ 1) .+ 1 r (s)1¢2 (t, s)[ °+I 

ds > o, 

ds > O, (2.6) 

[or each 1 > to, where q~l and ¢2 are as in (2.2). Then, (1.1) is oscillatory. 

PROOF. Suppose that  x(t) # 0, for a l l t  E [tl, oo), for some tl > to. Set / = a_> tl in (2.5). 
Clearly, we see from (2.5) that  there exists c > a, such that  

; [  1 ] 
p(s) g ( s , a ) p ( s )  (a+l )~+lr (s ) l¢ l ( s ,a )]  ~+1 ds>O. (2.7) 

Similarly, setting l = c > t l  in (2.6), it follows that  there exists b > c, such that  

~b 1 r(s)[¢2(b,s)]a+l] ds>O. (2.8) p(s) H(b,s)p(s)  (a + 1)~+1 

Prom (2.7) and (2.8), we see that  (2.1) is satisfied. Therefore, in view of Corollary 2.1, we may 
conclude that  (1.1) is oscillatory. | 

THEOREM 2.3. Suppose that  (i)-(iv) are satisfied. Further, 

(vi) sgn F (t, x, u, v, w) = sgn x t'or each t > to and x, u, v, w C R; 
(vii) r (t) is a nondecreasing, differentiabIe function, and satisfies f°~(ds/rl/~(s) ) = oo. 

Suppose also that there exists (a, b) C [to, co) and there exist c 6 (a, b), p E C([t0, (x~)), H 6 7), 
p 6 Cl([t0, oo)), such that p(t) > O, 

(viii) F(t ,x ,  u, v, w)/[ula-lu >_ p(t), t'or t > to, x • O, u # O, v, w E R, 

and 

p(s) H(s ,a)p(s )  - ( a+  l)~+lr(s)l¢l(s,a)[a+l ds 
(2.9) 

p(s) H(b,s)p(s)  ( a +  l)~+lr(s)[¢2(b,s)l ~+1 ds >O, 
+ H (b,c------) 
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where k is a constant, k • (0, 1), T.(t) = min{t,r(t)}, and 61 and ¢2 are as in (2.2). Then, every 
solutions of (1.1) has a zero in (a, b). 

PROOF. Let x(t) be a nonoscillatory solution of equation (1.1). Without loss of generality, we 
may assume that re(t) > 0 and x(r(t))  > 0, for t >__ To >__ to. Because, from equation (1.1) and 
Condition (vi), a similar analysis holds for x(t) < 0 and x(r(t)) < 0. Using Conditions (iii), (vi), 
and (vii), from equation (1.1), it is easy to prove that xn(t) < 0 and x'(t) > 0, for t _> T1 ~ To. 
Hence, by Lemma 2.1 in [10], for any k • (0, 1), there exists a T2 _> T1, such that 

(~- (t)) > k~-, (t) x (t) ,  for ~ll t > T~, 
- -  t 

where "r.(t) = min{t, r(t)}. Let us define w(t) again by (2.3). Then, we may obtain 

p'(t) p ( t )F( t ,x ( t ) ,x ( ' r ( t ) ) ,x ' ( t )  , ~ ' ( , - ( t ) ) )  _ ~ l ~ ( t ) l  (~+~)/'~ 
w' (t) = 9 - ( ~  (t) - (~ (t)) ~ (~ (t) p (t)) 1/~ 

- P' ( t )w (t) - p (t) F (t, x ( t ) , x  (T (t)) ,  X' (t) ,  X' (T (t))) ( X  (T( t ) )~  ~ 
p(t) ~ - ( i ~ i  ~ \ x(t) ] 

Iw (t)l (~+1)/~ 

(~ (t)p (t)) ~/~ 

[ ~ ] ' ~  P'(t) w alw(t)l (~+w~ 
<__-p(t)p(t) + ~ - ~  ( t ) -  ( r ( t )p ( t ) ) l /~  . 

The rest of the proof is similar to that of Theorem 2.1, hence, is omitted. | 

COROLLARY 2.2. If  for a given T > to there exists an interval (a,b) C [T,c~) for which the 
conditions of above theorem are satisfied, then (1.1) is oscillatory. 

The following theorem is also a consequence of Theorem 2.3. 

THEOREM 2.4. Let Conditions (i)-(iv) and (vi)-(viii) hold. Suppose that there exist H • 7 ) and 
p • C 1([tO, OO)), such that p(t) > O, 

limsuPt__,~ p(s) H ( s , l ) p ( s )  (a ÷ 1)~+lr (s) [¢1 (s, 1)[ ds > O, 

and 

 im up t---*~ Jz ( a +  1) ~+lr(s)  1¢2 (t,s)t "+' 

for each 1 >__ to, where k is a constant, k c (0,1), ~-.(t) = min{t,~-(t)}, and ¢1 and ¢2 are as in 
equation (2.2). Then, equation (1.1) is oscillatory. 

PROOF. The proof of this theorem is similar to the proof of Theorem 2.2. | 

The above theorems are presented in the form of a high degree of generality and deriving 
different explicit oscillation criteria for (1.1) with appropriate choices of H (t, s) and p (s). For 
the case where H :-- H (t - s) • P, we have that hi (t - s) = h2 (t - s) and denote them by 
h (t - s). The subclass of P containing such H (t - s) is denoted by 7)0. Applying Corollary 2.1 
and 2.2, we obtain the following results, respectively. 



1494 A. TIP~YAKI et al. 

THEOREM 2.5. Suppose that (i)-(v) hold. f f  for each T >_ to, there exist H E P, p E C 1 [to,¢¢) 
and a, e E R, such that T <_ a < c, p (t) > 0 and 

f c _ (p (~) p (~) + p (2~ - ~) p (2~ - ~)) H (, a) ds 

1 f c  (r(s) p(s) h(s-a)  v /~-a)+(p ' ( s ) /p ( s ) )H(s -a)=+1 > ds 
( a +  1) ~+~ ~ (H(s -a)) ~ (2.10) \ 

r (2c - s)  p (2c - s) - h  (s  - a) ~ + (p' (2c - s)/p (2c - s))  H (s - a) a + l  

+ (H (s - a)) ~ ) ds, 

then equation (1.1) is oscillatory. 

THEOREM 2.6. Suppose tha t  Conditions (i)-(iv) and (vi)-(viii) hold. I f  for each T > to, there 
exist H E T ), p 6 C 1 [to, c~) and a, c E R, such tha t  T < a < c, p(t) > O, and 

° ° (2e-  ° )  
+ , ( 2 e - , ) , ( 2 e - s )  L ds 

1 c ( r ( s ) p ( s )  h ( s - a )  x / ~ ( s - a ) + ( p ' ( s ) / p ( s ) ) H ( s - a  ) ~+~ 

~+1 

r ( 2 c -  s) p ( 2 c -  s) - h  ( s - a )  v /H ( s - a )  + (P' ( 2 c -  s) / p ( 2 c -  s) ) g g ( s - a )  ) ~ ) ds, 

where k is a constant, k E (0, 1), and T.(t) = rain{t, T(t)}. Then, equation (1.1) is oscillatory. 

Next,  we define f' R(t) = r-1/~(s) ds, t > l >_ to, (2.11) 

and let 
H (t, s) = [R (t) - R (s)] :~ , t > s > to, (2.12) 

where A > max{ l ,  a}  is a constant. By Theorems 2.2 and 2.4 for p(t) = 1, respectively, we have 
the following oscillation criteria. 

THEOREM 2.7. Let Conditions (i)-(v) hold. Assume that limt...o~ R(t) = oz. Then, equa- 
tion (1.1) is oscillatory provided that for each l >_ to and, for some A > max{ l ,  a},  the following 
two inequalities hold, 

lim sup 1 ~t ~ - ~  R ~-~  (t) [R (s) - R (1)] ~ p (s) ds > 
A~+I 

(a + 1) "+ l  (X - a) 
(2.13) 

and 

If, lim sup R~_= [R(t)  - R(s)]~p(s)ds  > (t) 
A~+I 

(a  + 1) ~ + l ( A - a ) "  
(2.14) 

THEOREM 2.8. Let Conditions (i)-(iv) and (vi)-(viii) hold, and assume tha t  l i m t ~  R(t) = oo. 
Then, equation (1.1) is oscillatory provided that for each l >_ to and for some A > max{l, a}, the 
following two inequalities hold, 

l imsup RA_~ [R(s)  - R(1)]~p(s) ds > (t) 
Aa+l 

(c~ + 1) ~+1 (A - a )  
(2.15) 
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l imsup R~_~ JR(t) - R(s)]Xp(s) ds > ,_~ (t) 

where ~-. (t) = min {t, ~- (t)}. 

~a+l 

( ~ + 1 ) a + 1 ( ~ - - ~ ) '  (2.16) 

REMARK 2.1. In the case when F (t, x, u, v,w) = p (t)Ix[ a-1 x, Theorems 2.1, 2.2, 2.5, and 2.7 
reduce to corresponding all theorems given in [34]. 

REMARK 2.2. In the case when F (t, x, u, v, w) = p (t)]ul ~-1 u, our results are bet ter  than cor- 
responding results of [22], since our conditions do not require the existence of p' (t) > 0 and 
~' (t) > o. 
REMARK 2.3. Let  F(t, x, u, v, w) = p(t)x. If we take p(t) ---- 1, a = 1, and r(t) -= 1, Theorem 2.7 
(or Theorem 2.8 with T(t) _ t) reduces to the part  of Theorem 2.3 in [17]. 

REMARK 2.4. Taking F( t ,  x, u, v, w) = (#/t2)u, p(t) =_ 1, a = 1, r(t) ~ 1, and ~-(t) = t =t: a, then 
equation (1.1) reduces to the Euler equation, 

x" (t) + ~ x  (t + ~) = 0. (2.17) 

It is well known tha t  [26,28,29] equation (2.17) is oscillatory if # > 1/4 and nonoscillatory if 
# < 1/4. Applying Theorem 2.8 to equation (2.17), we also see that  equation (2.17) is oscillatory 
if/z > 1/4 (see Examples 3.2 and 3.3 in Section 3). This implies tha t  our results are sharp. 

3. E X A M P L E S  

In this section, we will show the application of our oscillation criteria in three examples. 

EXAMPLE 3.1. Let r(t) E C([0, ec), (0, 1]) and 

r / ( t - 3 k ) ,  3 k < t < 3 k + l ,  

p ( t ) =  r / ( - t  + 3k + 2),  3 k + l < t < < _ 3 k + 2 ,  

p0 (t) ,  3k + 2 < t <_ 3k + 3, 

for k E {1, 2 , . . .  } where P0 is any continuous function which makes p a continuous function, and 

()~ -~- 2) )~¢xq-1 
7 >  

(A - a)  (a  + 1) ~+1 

is a constant for fixed )~ > max{l ,  a}. Consider the equation, 

(r( t)  l x ' ( t ) l ~ - l x ' ( t ) ) ' + p ( t ) l x ( t ) l ~ - l x ( t ) = o ,  t > O ,  (3.1) 

with a > 0 a constant.  Let  a = 3k, e = 3k + 1, H(t,s)  = ( t -  s) ~, and p(t) - 1. Note that  for 
h(t, s) = A(t - s) (x-2)/2, 

(~-~)~[p(~)+p(2~-~)] d~ (~+i).+~ p (~)+~(2e-~) ] (~ - . )  ~-("+1) d~ 

[~k+l ~.+1 F k + ,  _ 
> 7/(s 3k) TM ds 2(s 3k) z-(~+l)  ds - 2 j 3 k  -- (a q- 1) ~+1 a3k 

2r/ 2A ~+1 
--  A +-----2 ( a  + 1) ~+1 (A - a )  > 0, 

i.e., (2.10) holds. Thus, equation (3.1) is oscillatory by Theorem 2.5. It is worth mentioning that  
by a suitable choice of P0 (t) (for example, P0 (t) = - k  sin zrt), we can make f t~ P (s)ds = -oo,  
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meaning that  the results of this paper are applicable for such extreme cases. In this case, the 
known results such as in [2,9,13,15] fail to apply to this equation. 

Now, we shall construct two examples including the Euler equations (1.2) and (1.3) as special 
cases. 

EXAMPLE 3.2. Consider the second-order differential equation, 

~,,-(i/~) (t) I= (~ (t))l ~-~ x (?- (t)) = o, (r( t)  l x ' ( t ) [~- Ix ' ( t ) )  ' +  R~+l ( t  ) " a > 0, (3.2) 

for t ~ to > 0, where # > 0 and a > 0 are constants, ~- E C ([t0, oo),(0, ce)), T(t) :> t, 
limt--+oo~'(t) ---- co, R(t) is defined as in (2.11) and limt-~ooR(t) = oo. Let s0 := max{1,a} .  
Then, we can verify tha t  equation (3.2) is oscillatory for # > a~+~ / ( a  ÷ 1) ~+~ by Theorem 2.8. 
In ordinary case, tha t  is ~-(t) - t, this example examined in [34]. 

Let H(t,  s) -- [R(t) - R(s)] ~, A > s0 >_ 1, and p(t) - 1, for t > to. As also given in [34], we 
have 

[R (s) - R (/)]~ > R ~ (s) - AR (1) R ~-1 (s) ,  for s > 1 > to. (3.3) 

It follows from R' (t) = r -~/~ (t) and T. (t) = t that ,  for each l > to 

t-+~ R A-~ (t) R ~+1 (s) ds 

> ~ m R ~ l " ( t )  [R~(~)-~R(1)R~-~(~)] R"+~(~) ~ -~"  

For any # > a $ + l / ( a  + 1) ~+1, there exists A > c~0, such that  

(3.4) 

- - >  

- ~  (~+1) "+1(~-~)"  

This means that  (2.15) holds. 

Next, we will prove tha t  

j f t  r -1/'~ (s) ds. t r -1/~ (s) ds >_ [R (s) - R (l)]~ R~+I (s) [R (t) - n (s)] ~ R~+I (s) 

Let 

£ F(t) := {JR(t)- R(s)] ~ - I n ( s ) -  n(Z)] ~} r- l / -  (s)ao+l (~) d~ 

Then, F (1) = 0, and for t > l, 

(3.5) 

j(l t F '  (t) ---- A [R (t) - R (s)] "x-1 R' (t) r-1/~ (s) . r -1/a (t) 
-R-y~-(~ds - [R(t) - R(/)]  a R~+I (t) 

R' (t) f~ R~+l( t  ) A [ R ( t ) - R ( s ) ] ~ - l r - 1 / a ( s ) d s - [ R ( t ) - R ( l ) ]  x r -1 /~( t )  - 0 .  > 
- R~+I (t) 

Hence, F(t )  > F ( t )  = 0 for t > l, i.e., (3.5) holds. By (3.4) and (3.5), condition (2.16) 
holds for the same A. Applying Theorem 2.8, we find tha t  equation (3.2) is oscillatory if # > 
~ + 1 /  (O~ q:- 1) a+l .  

Taking p(t) ~ 1, a = 1, r(t) - 1, and ~-(t) = t + a, then equation (3.2) reduces to the 
Euler equation (2.17). It is well known that  [28,29] equation (2.17) is oscillatory if # > 1/4 and 
nonoscillatory if p < 1/4. Since s0 = a = 1, we also see that  equation (2.17) is oscillatory 
if # > 1/4. 
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When r (t) = 1, for t _> to, r (t) = t and a = 1, then equation (3.2) reduces to equation (1.3). 
In this case, a ~ + l / ( a  + 1)~+1 = 1/4 and Example 3.2 is consistent with the well known result 
of (1.3) tha t  equation (1.3) is oscillatory if # > 1/4 and to a certain extent  it also reveals the 
construction of the Euler equation (1.3). 

EXAMPLE 3.3. Consider the differential equation, 

' 1~ I x ( t - a ) l ~ - I x ( t - a ) = o ,  t > t 0 > 0 ,  (3.6) (Iz' (t)l~-Xz' (t)) +t--g-4- f 
where t > a and a, /z and c~ are constants. Let a0 := m a x { 1 , a } .  Then, we can see that  
equation (3.6) is oscillatory for tz > c ~ + 1 / ( a  + 1) ~+l by Theorem 2.8. 

Let  A > s0 _> 1 and p( t )  = 1 for t > to. It follows from R ( t )  = ft t  ds  = t - l and T . ( t )  = t -- a 

that ,  for each l > to, 

lim sup 1 ~ t [ _ ~ ] a  t-+~ R x-~ (t) [R (s) - R (/)l ~ p (s)  ds  

= t--+o~lim (t  - l )X_ ~ (s  - l) ~ ds  

= lira ( t - 1 ) ~  (~_~__a)~ #z = /~ 
( t -  l) t 

(3.7) 

On the other hand, from (3.3), we have 

l imsup R~_~ JR(t) - R(s)]  ~ p ( s )  ds  (t) 

= lim sup # t ~  (t  - l) ~ - ~  (t  - s )  ~ ds  for ~ e (l, t ) ,  

// > lim /z _ _  t--,c¢ ( t  l) ~ - ~  (tA -- X s t A - 1 )  1 ds  = ~ "  
-- _ S~+ 1 

(3.8) 

By (3.7) and (3.8), for any # > cr~+ll(c~ + 1) ~+1 there exists A > a0, such tha t  

~>{ A ]~+1 1 

Then, applying Theorem 2.8, we find that  (3.6) is oscillatory for # > a ~ + l / ( a  + 1) a+l.  In 
particular, i f a  = 1, then equation (3.6) reduces to the Euler equation (1.2) and a ~ + l / ( a + l )  ~+1 = 

1/4. It  is well known that  equation (1.2) is oscillatory if # > 1/4. 
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