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Let X, Y be sets with quasiproximities �X and �Y (where A � B is interpreted as “B is
a neighborhood of A”). Let f , g : X → Y be a pair of functions such that whenever C �Y D ,
then f −1[C] �X g−1[D]. We show that there is then a function h : X → Y such that
whenever C �Y D , then f −1[C]�X h−1[D], h−1[C]�X h−1[D] and h−1[C]�X g−1[D]. Since any
function h that satisfies h−1[C] �X h−1[D] whenever C �Y D , is continuous, many classical
“sandwich” or “insertion” theorems are corollaries of this result. The paper is written to
emphasize the strong similarities between several concepts

• the posets with auxiliary relations studied in domain theory;
• quasiproximities and their simplification, Urysohn relations; and
• the axioms assumed by Katětov and by Lane to originally show some of these results.

Interpolation results are obtained for continuous posets and Scott domains. We also show
that (bi-)topological notions such as normality are captured by these order theoretical
ideas.
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1. Introduction

Results concerning the possibility of finding, given a pair of real-valued functions g,h on a space X , such that g � h,
a continuous function f such that g � f � h, form part of the classical theory of general topology. For example, recall that
a real-valued g is upper semicontinuous (abbreviated USC below) if the sets g−1((−∞, r)) are open in X for each r in R, and
is lower semicontinuous (abbreviated LSC) if the sets g−1((r,∞)) are open in X for each r in R. As early as 1917 Hahn [10]
proved that if X is metrizable, g is USC, and h is LSC, then such an f : X → R exists.

Dieudonné [2] later extended Hahn’s [10] result to paracompact spaces, and also showed that for the property:

(∗) for each g,h : X → R, g USC, h LSC, and g < h (at each point), there is a continuous f : X → R such that g < f < h,

any paracompact space X with (∗) is normal and countably paracompact. In fact, these so called insertion results character-
ize natural and important topological properties, as the following result from [12], Theorem 1, and [21] shows:

Theorem 1 (Katětov, Tong). A space X is normal if and only if for each g,h : X → R, g USC, h LSC, such that g � h (at each point)
there is a continuous f : X → R so that g � f � h.

Many other similar results have been obtained, and are discussed in Section 8. Notice that the above results seem
bitopological, in that they involve two topologies on R, the lower, ω = {(−∞,a): −∞ � a � ∞} and the upper, σ =
{(a,∞): −∞ � a � ∞}.

In fact, a function g : X → R is USC if and only if it is continuous into (R,ω) and is LSC if and only if it is continuous
into (R, σ ) and Theorem 1 is a special case of the corresponding bitopological result Theorem 28(b) below. It turns out,
however, that all of these results are actually consequences of a general principle that holds for quasiproximities, and more
generally for posets with auxiliary relations (defined in Section 3), a basic concept of domain theory. Indeed as Theorem 27
shows, the notion of an auxiliary relation encapsulates both the topology of the space and the idea of Katětov’s proof in [12].

As a special case we obtain:
Suppose (P ,�) is a Scott domain (see [5]) and g : (P ,ω) → (R,ω), h : (P , σ ) → (R, σ ) are continuous and such that

g � h (at each point). Then there is an f : P → R which is continuous from (P ,ω) → (R,ω) and from (P , σ ) → (R, σ ) such
that g � f � h (see Corollary 29(b)).

2. Binary relations and associated orders

In this section we introduce the order-theoretic concepts that we use to formulate our theory. We use the conventions
that for a binary relation ≺ on a set P and any A, B ⊆ P , c ∈ P , A ≺ B means a ≺ b for each a ∈ A and b ∈ B , c ≺ A means
{c} ≺ A and A ≺ c means A ≺ {c}. But note that ≺ can also denote a relation on 2P below; hopefully the use of A ≺ B in
that context will not cause difficulty.

Definition 2. Let ≺ be a binary relation on a set P . Define

↑≺ p = {q: p ≺ q}, ↓≺ p = {q: q ≺ p}.
The associated order, �≺ , on P is defined by p �≺ q if and only if ↓≺ p ⊆ ↓≺ q and ↑≺ p ⊇ ↑≺ q.

Definition 3. A binary relation ≺ on a poset (P ,�), is approximating if and only if p = ∨↓≺ p for all p ∈ P and dually
approximating if and only if p = ∧↑≺ p.

Recall that a preorder on a set is a reflexive, transitive order.

Lemma 4. Let ≺ be a binary relation on P and �≺ be its associated order.

(1) �≺ is a preorder.
(2) �≺ is a partial order if and only if for all p,q ∈ P , p = q whenever both ↑≺ p = ↑≺ q and ↓≺ p = ↓≺ q (that is, p = q if and only

if, p ≺ a ⇔ q ≺ a and b ≺ p ⇔ b ≺ q).
(3) ≺ is transitive if and only if ≺ ⊆ �≺ .
(4) ≺ is reflexive if and only if �≺ ⊆ ≺.
(5) If p �≺ q ≺ r �≺ s then p ≺ s.

Assume also that � is a partial order on P :

(6) � ⊆ �≺ holds if and only if, for each p,q, r, s ∈ P , p � q ≺ r � s ⇒ p ≺ s.
(7) If ≺ is approximating, then �≺ ⊆ �.
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Proof. Clearly (1) and (2) follow from the corresponding properties of ⊆.
For (3), assume first that ≺ is transitive. If q ≺ r and p is any element of ↓≺ q, then p ≺ q ≺ r, so p ∈ ↓≺ r. Hence

↓≺ q ⊆ ↓≺ r. Similarly ↑≺ q ⊇ ↑≺ r, thus q �≺ r. Conversely, suppose that ≺ ⊆ �≺ . If p ≺ q and q ≺ r, then q �≺ r, so
p ∈ ↓≺ q ⊆ ↓≺ r thus p ≺ r.

To see (4), suppose that ≺ is reflexive. If p �≺ q, then p ∈ ↓≺ p ⊆ ↓≺ q. Hence p ≺ q and ≺ ⊇ �≺ . Conversely, if ≺ ⊇ �≺ ,
then reflexivity of �≺ implies the reflexivity of ≺.

For (5), if p �≺ q ≺ r �≺ s then r ∈ ↑≺ q ⊆ ↑≺ p so that p ≺ r, which implies that p ∈ ↓≺ r ⊆ ↓≺ s. Hence p ≺ s.
For (6), assume p � q ≺ r � s ⇒ p ≺ s. If r � s and q ∈ ↓≺ r then q � q ≺ r � s so q ≺ s, thus q ∈ ↓≺ s, showing ↓≺ r ⊆ ↓≺ s;

similarly if t ∈ ↑≺ s then r � s ≺ t � t so t ∈ ↑≺ r, showing ↑≺ s ⊆ ↑≺ r. These two together show r �≺ s. Conversely, if
� ⊆ �≺ and p � q ≺ r � s then p �≺ q ≺ r �≺ s hence p ≺ s.

Finally for (7) assume ≺ is approximating and let a �≺ b. By definition, ↓≺ a ⊆ ↓≺ b, thus since ≺ is approximating,
a = ∨↓≺ a �

∨↓≺ b = b. �
3. Auxiliary relations and the Katětov–Lane Axioms

In this section we compare the order-theoretic notions of Urysohn relation and auxiliary relation with the properties that
Katětov [12] and Lane [17] isolate in considering insertion theorems.

Definition 5 (The Auxiliary Relation Axioms). Let � be a partial order on the set P and let � be a binary relation on P . Then
� is a Urysohn relation on (P ,�) provided:

(ARstr) � is stricter than �: � ⊆ �;
(ARtrn) � is transitive through �: c � d whenever c � a � b � d;

(ARin11) � interpolates between singletons: if a � b then there is some c such that a � c � b.

The Urysohn relation � is said to be an auxiliary relation on (P ,�) if, in addition:

(ARin21) � interpolates between a pair and a singleton: if a,b � c, then a,b � d � c for some d ∈ P .

We say that the auxiliary relation � is dualizable if it also satisfies

(ARin12) � interpolates between a singleton and a pair, i.e. if a � b, c, then a � d � b, c for some d ∈ P .

The following lemma collects together a number of basic facts about the Auxiliary Relation Axioms. Recall that a set
R ⊆ P is directed by the relation � if, for each a,b ∈ R there is some c ∈ R such that a,b � c.

Lemma 6.

(1) (ARin21) implies (ARin11) and (ARin12) implies (ARin11).
(2) If a binary relation � satisfies both (ARstr) and (ARtrn), then it is transitive.
(3) An auxiliary relation � is dualizable if and only if the reverse order �−1 (also denoted at times by �) is an auxiliary relation

on (P ,�).
(4) If � is an auxiliary relation on P , then ↓� a is directed by � for all a ∈ P . If � is dualizable, then ↑� a is directed by �−1 for all a ∈ P .
(5) � satisfies (ARtrn) if and only if � ⊆ �� .
(6) If � is an approximating Urysohn relation, then �� = �.

Proof. (1) and (3) are obvious. (2) holds since if a�b �c, then a � a�b � c by (ARstr) and so a�c by (ARtrn). (4) is immediate
from (ARin21) and (ARin12). (5) follows directly from Lemma 4(6), and then (6) comes from (5) and Lemma 4(7). �

The auxiliary relations that we are interested in here are not always approximating:

Example 7. If X is a normal topological space and P is the power set 2X of X ordered by ⊆, then A �N B if and only
if cl(A) ⊆ int(B) defines an auxiliary relation. But �N need not be approximating; for example, if X = R and a �N b =
(0,1) ∪ {2}, then a ⊆ (0,1) and so b �= ∨↓�N b.

A common assumption is that in (P ,�), if {a,b} is bounded above, then it has a join, a ∨ b; a straightforward induction
then shows that each finite set that is bounded above has a join. In this case we say that (P ,�) has suprema for bounded
pairs, and infima for bounded pairs is similarly defined. If (P ,�) has such suprema and infima, and also has a largest and a
smallest element, then we call (P ,�) a bounded lattice; in bounded lattices each finite set has a supremum and an infimum.
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Lemma 8.

(1) If (P ,�) has suprema for bounded pairs, then each Urysohn relation � on (P ,�) is contained in a smallest auxiliary relation.
(2) If (P ,�), has suprema and infima for bounded pairs, then each Urysohn relation � on (P ,�) is contained in a smallest dualizable

auxiliary relation.
(3) Every Urysohn relation on a lattice (for example, on (2X ,⊆)) is contained in a smallest dualizable auxiliary relation.

Proof. (3) follows from (2). For (1), set �0 = � and, for each n, �n+1 = {(a,b): (∃c,d)(c,d �n b & a � c ∨ d)}. It is easily seen
by induction that if a �n b then a � b: it holds for �0 by (ARstr), and if it holds for �n and a �n+1 b then for some c,d,
c,d �n b & a � c ∨ d, so by induction, c,d � b thus c ∨ d exists and c ∨ d � b; since a � c ∨ d, a � b as required. Then set
A� = ⋃∞

n=0 �n . It is easy to check that each �n is a Urysohn relation and A� is this smallest auxiliary relation.
Similarly, to see (2), set �0 = �, and for each n,�n+1 = {(a,b): (∃c,d)(c,d �n b & a � c ∨d)}∪ {(a,b): (∃c,d)(b �n c,d & c ∧

d � a)}, and D� = ⋃∞
n=0 �n . It is easily seen that each �n is a Urysohn relation and D� is this smallest dualizable auxiliary

relation. �
Essentially Katětov [12] and Lane [17] isolate the following properties in their proof of insertion theorems.

Definition 9 (The Katětov–Lane Axioms). Let (P ,�) be a poset and � a binary relation on P . Let us call the following condi-
tions on P the Katětov–Lane Axioms:

(KLstr) � ⊆ �.
(KLtrn) � ⊆ �� .

(KLinf , f ) If A, B ⊆ P are finite and A � B , then there is some c ∈ P such that A � c � B .
(KLbd) For any finite A ⊆ P there are a,b ∈ P such that:

(a) b �� A �� a,
(b) a � c, whenever A � c, and
(c) c � b, whenever c � A.

(KLinω,ω) If a,b ∈ P , and A and B are countable subsets of P , such that A �� a � B and A � b �� B , then there is c ∈ P such
that A � c � B .

(KLtop) If A � B , then cl(A) ⊆ B and A ⊆ int(B) (in the case that P is the power set of a topological space and � = ⊆).

We say that � is a KL-relation on P if and only if it satisfies (KLstr), (KLtrn) and (KLinf , f ).

(In Katětov [13], (KLbd) is denoted by property (L) and (KLinω,ω) is denoted by property (I).)

Theorem 10. Let (P ,�) be a poset and � be a binary relation on P .

(1) If � is a KL-relation on (P ,�), then it is a dualizable auxiliary relation on (P ,�).
(2) Let (P ,�) have suprema for pairs or have infima for pairs. If � is a dualizable auxiliary relation on (P ,�) then � is a KL-relation

on (P ,�).

Proof. (1) Note first that (KLstr) and (KLtrn) imply that � ⊆ �� , so that � is transitive by Lemma 4. Clearly both (ARin21)

and (ARin12) are special cases of (KLinf , f ), and (ARin11) is a special case of (ARin21). That (ARtrn) follows from (KLtrn) and
Lemma 4(6), for if c � a � b � d, then c �� a � b �� d so that c � d.

(2) (KLstr) = (ARstr), and (KLtrn) follows by Lemma 4(6). To see (KLinf , f ), let A and B be finite subsets of P such that a � b
for each a ∈ A and b ∈ B; then assume that a′ is a �-sup of A. By Lemma 6(4), for b ∈ B , ↓� b is directed by � and since
A ⊆ ↓� b, there is some db � b such that A � db . By (KLstr), A � db so that a′ � db � b �� b. (ARtrn) then implies that a′ � b.
Since ↑� a′ is directed by �−1 and B ⊆ ↑� a′ , there is some c so that a′ � c � B , but A � a′ � c � c so we have A � c � B . If A
has no sup then (2) is shown by a similar proof using an inf of B . �

The next result modifies part of Katětov’s [12] to fit the current setting.

Theorem 11 (Katětov). If � is a dualizable auxiliary relation on a bounded lattice (P ,�), then (P ,�,�) satisfies (KLbd).
If also every countable subset of P has a �-supremum and infimum, then (P ,�,�) satisfies (KLinω,ω).

Proof. By Theorem 10(2), � is a KL-relation on (P ,�). For the property (KLbd), suppose A is a finite subset of P . Let a be a
�-supremum of A and b be a �-infimum of A. Then b � A � a so, by (KLtrn) b �� A �� a. If A � c, then by (KLinf , f ) there is
some d such that A � d � c. Since A � d, A � a � d � c, so that a � c. Similarly, if c � A, then c � b.

For second part of the theorem, suppose every countable subset of P has a �-supremum and infimum and that a,b ∈ P
and A = {an: n ∈ N}, B = {bn: n ∈ N} are subsets of P such that A �� a � B and A � b �� B .
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We want c ∈ P such that an � c � bn for all n ∈ N. We first define inductively {cn: n ∈ N} and {dn: n ∈ N} such that
ai � ci � b, a � d j � b j and ci � d j for all i, j. For this, inductively assume that we have such ci,d j for i, j < n. Since an ��
a � di , for each i < n, Lemma 4(5) implies that an � di . Hence an � {b} ∪ {di: i < n}, so by (KLinf , f ) there is a cn such that
an � cn � {b} ∪ {d j: j < n}. Similarly, since cn � b �� bn , cn � bn . Also ci � bn for i < n, and a � bn . Hence {a} ∪ {ci: i � n} � bn ,
so there is some dn such that {a} ∪ {ci | i � n} � dn � bn .

Let c = supn∈N cn . Then an � cn � c for each n, so A � c. Moreover ci � d j for each i, j ∈ N, so ck � d j . Thus ck � c � d j � b j
for each j ∈ N, from which it follows that c � B . �
4. Topologies, auxiliary relations and (KLtop)

An auxiliary relation on the power set of a set X , ordered by inclusion, naturally gives rise to two topologies on X .
It turns out, in fact, that when considering the insertion of a continuous real-valued function between two semicontinuous
functions, both the topology on the space and the continuity of the functions are inherent in the natural auxiliary relation
on the power set of X . In this section we show that when our order theoretic notions are applied to the poset (2X ,⊆), they
correspond naturally to normal or completely regular (bi-)topologies on the set X .

Definition 12. Let X be a set and � be a binary relation on the power set 2X . The topology arising from �, τ� is the collection
of subsets U of X such that for each x ∈ U there is some finite subset F of 2X such that

⋂
F ⊆ U and {x} � B for each B ∈ F .

We say that a Urysohn relation satisfies ARin1s2 or has (ARin12) for singletons if for each x ∈ X , B, C ⊆ X , {x} � B & {x} � C ⇒
{x} � D for some D ⊆ B, C .

Lemma 13. If � is a Urysohn relation on (2X ,⊆), then τ� is a topology on X. Moreover, if � has (ARin12) for singletons, then T ∈ τ� if
and only if {x} � T for all x ∈ T .

Proof. To show that τ� is a topology, first let S ⊆ τ� and x ∈ ⋃
S . Then for some T ∈ S , x ∈ T , so for some finite set F of

subsets of X , {x} � B for each B ∈ F , and
⋂

F ⊆ T ⊆ ⋃
S ; this shows

⋃
S ∈ τ� (as a special case, ∅ ∈ τ�).

Also, if T , U ∈ τ� and x ∈ T ∩ U , then for some finite sets F , G of subsets of X , {x} � B for each B ∈ F and
⋂

F ⊆ T ,
and {x} � B for each B ∈ G and

⋂
G ⊆ U . Thus {x} � B for each B ∈ F ∪ G , and

⋂
(F ∪ G) = (

⋂
F ) ∩ (

⋂
G) ⊆ T ∩ U , thus

intersections of pairs of open sets are open. Finally, to see that X ∈ τ� , for each x ∈ X let F = ∅; then {x} � B for each B ∈ F
and

⋂
F ⊆ X .

Now suppose further that � satisfies ARin1s2. If x ∈ T ∈ τ� , then for some finite set F of subsets of X , {x} � B for each
B ∈ F and

⋂
F ⊆ T . Thus by induction on axiom ARin1s2, there is a D such that {x} � D and D ⊆ B for each B ∈ F . But

then {x} � D ⊆ ⋂
F ⊆ T , so by (ARtrn), {x} � T . For the reverse implication (in an arbitrary Urysohn relation), suppose

x ∈ T ⇒ {x} � T ; then F = {T } is a finite collection of sets such that {x} � B for each B ∈ F and
⋂

F ⊆ T . Thus T ∈ τ� . �
Since Katětov’s original result, Theorem 1 (from [12]), involves two topologies on the reals, it is not surprising that our

setting naturally gives rise to two topologies on the domain set as well.

Definition 14. Given a Urysohn relation � on (2X ,⊆), the Urysohn dual of � is denoted by �∗ and defined by A �∗ B if and
only if (X − B) � (X − A).

It is simple to see that �∗ is a Urysohn relation when � is one, and an auxiliary relation when � is a dualizable auxiliary
relation. Also, clearly (�∗)∗ = �.

It turns out that the axiom (KLtop) is inherently incorporated into the topology τ� arising from a Urysohn relation � as
the following proposition shows.

Proposition 15. Let � be a Urysohn relation on (2X ,⊆) and let A ⊆ X. Then x ∈ intτ� A if and only if for some finite set F of subsets
of X , {x} � B for each B ∈ F , and

⋂
F ⊆ A.

Moreover, if A � B then A ⊆ intτ� B and clτ�∗ A ⊆ B.

Proof. Let

Ao =
{

x: for some finite F ⊆ 2X ,
⋂

F ⊆ A and, for all B ∈ F , {x} � B
}
.

Certainly Ao ⊆ A, and if x ∈ U ⊆ intτ� A, for some U ∈ τ� , then, by the definition of τ� , x ∈ Ao . Therefore intτ� A ⊆ Ao ⊆ A.
To show intτ� A = Ao , it suffices to show that the latter is open. But if x ∈ Ao , then there is a finite F as above; for each
B ∈ F , there is thus a C B such that {x} � C B � B; now let G = {C B | B ∈ F }; G is finite, and if y ∈ ⋂

G then for each B ∈ F ,
{y} ⊆ C B � B , so {y} � B , and of course,

⋂
F ⊆ A. But this asserts that if y ∈ ⋂

G then y ∈ Ao; as a result, for arbitrary x ∈ Ao

we have found a finite collection G of sets such that for each C ∈ G , {x}� C , and
⋂

G ⊆ Ao; thus Ao ∈ τ� and so Ao = intτ� A.
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Now suppose A � B; then for each x ∈ A, {x} ⊆ A � B so {x} � B , whence x ∈ Bo; this shows A ⊆ Bo = intτ� B . Fur-
ther, X − B �∗ X − A, thus by the previous sentence applied to �∗ , X − B ⊆ intτ�∗ (X − A) = X − clτ�∗ A, so clτ�∗ A ⊆ B ,
as required. �

In fact, Theorems 17 and 18 will show that for a Urysohn relation �, we can say a good deal more about the topology τ�
when we consider the bitopological setting. We start by recalling some key definitions from [14] and (in our notation) [15]:

Definition 16. For a topological space (X, τ ), its (Alexandroff ) specialization order is defined by x �τ y if x ∈ clτ {y}.
A bitopological space is a triple (X, τ , τ ∗) such that X is a set and τ , τ ∗ are topologies on X . Given bitopological spaces

(X, τX , τ ∗
X ) and (Y , τY , τ ∗

Y ) a pairwise continuous map from (X, τX , τ ∗
X ) to (Y , τY , τ ∗

Y ) is a function f : X → Y such that f is
continuous both from (X, τX ) to (Y , τY ) and from (X, τ ∗

X ) to (Y , τ ∗
Y ).

A bitopological space (X, τ , τ ∗) is weakly symmetric if x /∈ clτ {y} ⇒ y /∈ clτ ∗ {x}; it is T1 if weakly symmetric and τ ∨ τ ∗
is T0.

A bitopological space (X, τ , τ ∗) is pseudoHausdorff (pH) if whenever x /∈ clτ {y} then for some T ∈ τ , U ∈ τ ∗ , x ∈ T , y ∈ U ,
and T ∩ U = ∅.

For any property Q of bitopological spaces, (X, τ , τ ∗) is said to be pairwise Q if both (X, τ , τ ∗) and its bitopological dual,
(X, τ ∗, τ ) is Q .

A bitopological space (X, τ , τ ∗) is joincompact it is pairwise pH, and τ ∨ τ ∗ is compact and T0.
A bitopological space (X, τ , τ ∗) is completely regular if whenever x ∈ U ∈ τ , then there is a pairwise continuous f from

(X, τ , τ ∗) to (I, σ ,ω) such that f (x) = 1 and f (y) = 0 whenever y /∈ U .
A bitopological space (X, τ , τ ∗) is normal if whenever C ⊆ U , C is τ ∗-closed and U τ -open, then there is a τ ∗-closed D

and a τ -open V such that C ⊆ V ⊆ D ⊆ U . It is T4 if normal and T1.

Theorem 17. The following are equivalent:

(1) The bitopological space (X, τ , τ ∗) is pairwise completely regular.
(2) There is a Urysohn relation � on 2X such that τ = τ� and τ ∗ = τ�∗ .
(3) There is a dualizable auxiliary relation � on 2X such that τ = τ� and τ ∗ = τ�∗ .

Summary of proof. (1) ⇔ (2) The definition of Urysohn relation is designed so that for each set of functions F from a set
X into [0,1], the relation

A �F B ⇔ (∃r, s ∈ [0,1], f ∈ F
)(

r < s & A ⊆ f −1[[s,1]] & f −1[(r,1]] ⊆ B
)

is a Urysohn relation (the reader can easily check this, or see [15]), and to support the classic proof of the Urysohn Lemma
(also easily checked, or see [15], Lemma 2.8). If each function in F is pairwise continuous from (X, τ , τ ∗) to ([0,1], σ ,ω),
then τ�F ⊆ τ and τ�∗

F
⊆ τ ∗ .

Thus if there is a Urysohn relation � on 2X such that τ = τ� and τ ∗ = τ�∗ , then by Urysohn’s Lemma, for each x ∈
T ∈ τ there is a pairwise continuous f : (X, τ , τ ∗) → ([0,1], σ ,ω), and similar reasoning applies to the dual, (X, τ ∗, τ ), so
(X, τ , τ ∗) is pairwise completely regular. Conversely, if (X, τ , τ ∗) is pairwise completely regular, and F = { f : f is pairwise
continuous from (X, τ , τ ∗) to (I, σ ,ω)}, then by the previous paragraph, �F is a Urysohn relation for which τ�F ⊆ τ and
τ�∗

F
⊆ τ ∗ . But in fact if x ∈ T ∈ τ there is an f ∈ F such that f (x) = 1 and f −1[(0,1]] ⊆ T , so T ∈ τ�F . This shows τ = τ�F

and similarly τ ∗ = τ�∗
F

.

Clearly (3) ⇒ (2), for the converse, if there is a Urysohn relation � on 2X such that τ = τ� and τ ∗ = τ�∗ , then construct
D� as in Lemma 8, and note that for each n, τ�n = τ� and τ�∗

n
= τ�∗ and then that τD� = τ� and τD�∗ = τ�∗ . Thus D� is a

dualizable auxiliary relation that gives rise to the same bitopology as does �. �
In [15], the following is proved:

Theorem 18. The following are equivalent:

(1) The bitopological space (X, τ , τ ∗) is normal.
(2) The binary relation �N on (2X ,⊆) is a dualizable auxiliary relation, where A �N B if and only if clτ ∗ A ⊆ intτ B.

Further, if (X, τ , τ ∗) and (X, τ ∗, τ ) are weakly symmetric, then τ = τ�N and τ ∗ = τ�∗
N

.

Remark. Theorem 17 easily yields the fact that a topological space (X, τ ) is completely regular if and only if there is a
Urysohn relation � on 2X such that � is self-dual (that is, � = �∗). Thus of course, τ = τ� = τ�∗ :

Simply note that (X, τ ) is completely regular if and only if (X, τ , τ ) is pairwise completely regular, and f is pairwise
continuous from (X, τ , τ ) to (I, σ ,ω) if and only if, f is continuous from (X, τ ) to (I, us), where us is the usual topology
on the unit interval.



588 C. Good et al. / Topology and its Applications 158 (2011) 582–593
Then consider �F as defined in the proof of Theorem 17. Note that (�F )d is a proximity in this situation, giving the usual
characterization of complete regularity.

Also, by Theorem 18, a topological space (X, τ ) is T4 if and only if �N is a self-dual Urysohn relation on 2X and τ = τ�N .

5. Auxiliary relations in domain theory

We point out some topological uses of the idea of auxiliary relation in domain theory.

Definition 19. Suppose (P ,�,�) is a poset with Urysohn relation. For A, B ⊆ P , define A ≺� B to mean that for some r, s
in P , A ⊆ ↑� s ⊆ ↑� r ⊆ B and r � s.

Note that A ≺� B ⇔ for some r, s ∈ P , r � s, A ⊆ ↑� s and ↑� r ⊆ B ⇔ for some u, s ∈ P , A ⊆ ↑� s and ↑� u ⊆ B (choose
r � u � s).

It is easily seen that ≺� is a Urysohn relation on (2P ,⊆); indeed each of (ARstr)–(ARin11) for ≺� arises from the corre-
sponding axiom for �. But note that for (ARin12) to hold for ≺� as defined, we need (ARin21) for � and that P have suprema
of pairs: Thus if A ≺� B, C then there are rB , rC , sB , sC ∈ P such that A ⊆ ↑� sB , sC , ↑� rB ⊆ B and ↑� rC ⊆ C . Thus if P has
suprema for pairs, then A ⊆ ↑�(sB ∨ sC ). Also, rB � sB � sB ∨ sC , so rB � sB ∨ sC ; similarly, rC � sB ∨ sC . So if � is an auxiliary
relation, there is a v ∈ P such that rB , rC � v � sB ∨ sC , so ↑� v ⊆ ↑� rB ∩ ↑� rC ⊆ B ∩ C , A ⊆ ↑�(sB ∨ sC ) and v � sB ∨ sC ,
as required. Of course in general, A ≺� is an auxiliary relation, and D ≺� is a dualizable auxiliary relation:

Definition 20. For a poset with auxiliary relation (P ,�,�), its pseudoScott topology, ρ , is the one whose open sets are
generated by all sets of the form ↑� p for p ∈ P , while its lower topology, ω, is the one whose closed sets are generated by
all sets of the form ↑� p for p ∈ P .

Theorem 21. For a poset with auxiliary relation (P ,�,�), the pseudoScott topology is τ≺� . If also � is approximating, the lower is
τ≺�∗ , and further, �τ≺� is � and �τ≺�∗ is �.

Proof. For the first assertion let p ∈ P . If q ∈ ↑� p, then p � q so {q} ⊆ ↑� q ⊆ ↑� p, whence {q} ≺� ↑� p. This shows that
↑� p is open in τ≺� . If also q ∈ T ∈ τ≺� , then by the last assertion of Lemma 13 {q} ≺� T , so for some p, r ∈ P , {q} ⊆ ↑� r ⊆
↑� p ⊆ T , so in particular, q ∈ ↑� p ⊆ T . Thus the ↑� p form an open base for τ≺� , showing that ρ = τ≺� .

If q ∈ T ∈ τ≺�∗ then for some n, s1, . . . , sn, r1, . . . , rn ∈ P , each ri � si and {q} ⊆ ⋂n
1(P \ ↑� ri) ⊆ ⋂n

1(P \ ↑� pi) ⊆ T . In par-
ticular q ∈ ⋂n

1(P \ ↑� pi) ⊆ T , showing that T is an ω neighborhood of q, and so T is an ω neighborhood of each of its
elements q, so it is ω-open. This shows τ≺�∗ ⊆ ω, even without the assumption that � is approximating.

To see that if � is approximating, then the lower is τ≺�∗ let q ∈ P \ ↑� p. Then q � p so there is an r ∈ P such that
q � r and r � p. That is, {q} ⊆ P \ ↑� r ⊆ P \ ↑� p; so each subbasic ω-open P \ ↑� p is a τ≺�∗ neighborhood of each of its
elements q, so it is τ≺�∗ -open. As a result, ω ⊆ τ≺�∗ , so by the last paragraph, τ≺�∗ = ω.

Note that by (ARstr) and (ARtrn), each basic ↑� p, thus each open set, is a �-upper set, so each closed set is a �-lower
set, therefore y � x ⇒ y ∈ clρ({x}), so � ⊆ �τ≺� . If � is approximating and y � x then for some z � y, z �/ x, so ↑� z is a
neighborhood of y not meeting {x}, thus y /∈ clρ({x}), and so � ⊇ �τ≺� . Also in this case (P ,ρ,ω) is pairwise completely
regular, thus �ω = (�ρ)−1 = �. �
Definition 22. A dcpo is a poset in which directed (nonempty) subsets all have suprema, and a dcpo is continuous if each
element is the directed supremum of those way below (compactly below) it:

The way below relationship is defined by declaring p � q if and only if
(

q �
∨

D ⇒ (∃r ∈ D)(p � r)
)

for all directed sets D . Thus a dcpo is continuous if for each p ∈ P , ↓� p is directed and p = ∨↓� p.
A dcpo is bounded complete if each set which is bounded above has a supremum, and a Scott domain is a bounded

complete continuous dcpo.

Note that (I,�,<) is a Scott domain; its upper topology is its Scott topology, a fact we have foreshadowed by using σ
to denote it. Among the good references to domain theory we particularly recommend [5] and [1].

A useful example of a continuous dcpo is the collection of open proper subsets of a locally compact space (X, τ ),
K = (τ \ {X},⊆). Here T � U ⇔ (∃ compact K )(T ⊆ K ⊆ U ). Verification is left to the reader, or can be found in [5].

Theorem 23.

(a) For each continuous dcpo, (P ,�), � is an approximating auxiliary relation on P , and for each Scott domain, (P , σ ,ω) is join-
compact.
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(b) For each continuous dcpo, (P ,�), σ = τ≺� and ω = τ≺(�∗)
.

(c) For each Scott domain (P ,�), the bitopological space (P , σ ,ω) arises from the dualizable auxiliary relation �N .

Proof. Most assertions of (a) are well known (see for example [5]), but we show them here for the convenience of the
reader. Certainly if p � q, since {q} is directed, and q �

∨{q}, p � q, showing (ARstr); it is also clear that if r � p � q � s
and s �

∨
D , D directed, then q �

∨
D , so for some d ∈ D , r � p � d, showing (ARtrn). To see (ARin11), suppose p � q and

consider D = ↓�(↓� q).
Note that D is directed, for if s, t ∈ D then for some s′, t′ ∈ ↓� q, s ∈ ↓� s′ and t ∈ ↓� t′ . Since ↓� q is directed, there

is a u ∈ ↓� q such that s′, t′ � u, and then since ↓� u is directed, there is a v ∈ ↓� u such that s′, t′ � v . Then v ∈ D , and
s � s′ � v , t � t′ � v , so s, t � v .

Since the above p ∈ ↓� q, we have ↓� p ⊆ ↓�(↓� q) = D , so p = ∨↓� p �
∨

D , thus p � t for some t ∈ D; that is, for
some u, p � t � u � q, so p � u � q showing (ARin11). Since each ↓� q is directed, (ARin21) holds as well; thus � is an
auxiliary relation; it is approximating also, since we have required that p = ∨↓� p for all p ∈ P .

For (b), as a special case of Theorem 21, if (P ,�) is a continuous dcpo, then σ is τ≺� and ω is τ≺(�∗)
, so (P , σ ,ω) is

pairwise completely regular; also �σ = �, so σ is T0, thus so is σ ∨ ω, because it is stricter.
For (c), if (P ,�) is a Scott domain, then σ ∨ ω is also compact (see [5]), so (P , σ ,ω) is joincompact. Each joincompact

bitopological space is T4 by reasoning similar to the topological case (see [15], Theorem 3.6). So the theorem results from
these observations as well as Theorems 17 and 18. �
6. Adjoints and interpolating relations on functions

Given two posets with auxiliary relations (P ,�P ,�P ) and (Q ,�Q ,�Q ), one can define a relation on order preserving
functions from P to Q in terms of �P and �Q . To do this, we consider adjoints.

Let P and Q be posets, and f : P → Q , g : Q → P be order preserving maps. Then g is an upper adjoint for f if, for
each p ∈ P and q ∈ Q , p � g(q) ⇔ f (p) � q. In this case, f is a lower adjoint for g . A function from one poset to another
has at most one upper adjoint. We denote this by g = f u and by f = gl .

For the example most familiar to topologists, let f : X → Y be any function and, for A ⊆ X , B ⊆ Y , let f →(A) = { f (x):
x ∈ A} and f ←(B) = {x: f (x) ∈ B}. Then f ← is an upper adjoint to f → between the posets (2X ,⊆) and (2Y ,⊆), since
A ⊆ f ←(B) if and only if f →(A) ⊆ B .

Many useful observations on adjoints are gathered in Section 0.3 of [5]: Each function with an upper adjoint preserves
∨

;
as a partial converse, if the domain is a complete lattice then each function that preserves

∨
has an upper adjoint. Results

on adjoints are easily dualizable, since if g is an upper adjoint for f regarded as a map from (P ,�P ) to (Q ,�Q ) then f is
an upper adjoint for g , seen as a map from (Q ,�−1

Q ) to (P ,�−1
P ).

Definition 24. Let (P ,�P ,�P ) and (Q ,�Q ,�Q ) be posets with Urysohn relations. Let OR(P , Q ) denote the poset of order
preserving maps f : P → Q , with the pointwise order on OR(P , Q ) (that is, f �OR g if, for each p ∈ P , f (p) �Q g(p)), and
let UA(P , Q ) denote the subset of OR(P , Q ), of maps with an upper adjoint; we denote that upper adjoint by f u . Thus
a � f u(b) ⇔ f (a) � b.

Let �OR be the relation on OR(P , Q ) defined by: f �OR g if and only if for each a ∈ P , c ∈ Q , if g(a) �Q c then for some
b ∈ P , a �P b and f (b) �Q c.

Also, for f , g ∈ UA(P , Q ) let �UA be defined by f �UA g if and only if f u(q) �P gu(r) whenever q �Q r.

Here are useful basic facts about the relationship between �OR and �UA , and their connection with continuity:

Theorem 25. Let (P ,�P ,�P ), (Q ,�Q ,�Q ) be posets with auxiliary relations and let f , g ∈ UA(P , Q ).

(a) If f �UA g ⇒ f �OR g, and if �Q is dually approximating, then f �OR g ⇒ f � g.
(b) If f → �UA g→ then g→ �∗

UA f → .
(c) If f → �OR f → then f is continuous from (X, τ�X ) to (Y , τ�Y ). Thus if f → �UA f → then f is pairwise continuous from (X, τ�X , τ�∗

X
)

to (Y , τ�Y , τ�∗
Y
).

Proof. To see (a), suppose f → �UA g→ and let f (a) �Q c. Then for some d ∈ Q , f (a) �Q d �Q c, so a � f u( f (a)) �P gu(d), so
a �P gu(d). Thus there is some b ∈ P so that a �P b �P gu(d); therefore b �P gu(d), so g(b) �Q d �Q c, showing g(b) �Q c.
Thus f �OR g .

If �Q is dually approximating, then g(a) = ∧{c: g(a) �Q c} � { f (b): a �P b and f (b) � c} � f (a).
For (b), let f → �UA g→ . If A �∗

Q B , then (Y − B) �Q (Y − A), so

X − f ←[B] = f ←[Y − B] �P g←[Y − A] = X − g←[A],
thus g←[A] �∗ f ←[B]. Since f ← is an upper adjoint for f → , this shows that g→ �∗ f → .
P UA
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For (c), if f → �OR f → and x ∈ f ←[T ], T ∈ τ�Y then f (x) ∈ T , so for some finite set {B1, . . . , Bn} of subsets of Y ,
{ f (x)} �Q Bi for each i and

⋂n
i=1 Bi ⊆ T . Thus for each i there is a Ci such that {x} � Ci and f →[Ci] ⊆ Bi . But then

f →[⋂n
i=1 Ci] ⊆ ⋂n

i=1 f →[Ci] ⊆ ⋂n
i=1 Bi ⊆ T . By the arbitrary nature of x ∈ f ←[T ], this shows that f ←[T ] ∈ τ�X and there-

fore f is continuous from (X, τ�X ) to (Y , τ�Y ).
Also, if f → �UA f → then f → �∗

UA f → by (a), so f → �∗
OR f → by what we have just shown, so f is also continuous from

(X, τ�∗
X
) to (Y , τ�∗

Y
). Thus f is pairwise continuous from (X, τ�X , τ�∗

X
) to (Y , τ�Y , τ�∗

Y
). �

7. Insertion of functions

The following extends a result of Lane [17]. Below let I = ([0,1],�,<).

Theorem 26 (Lane). Let (P ,�,�) and (Q ,�′,�′) be posets with dualizable auxiliary relations such that (P ,�) is a bounded lattice,
and Q is countable. Let F , G : (Q ,�′) → (P ,�) be order-preserving functions. If F (r) � G(s) whenever r �′ s, then there is an order-
preserving function H ′ : (Q ,�′) → (P ,�) such that F (r) � H ′(s) � H ′(t) � G(u) whenever r �′ s �′ t �′ u.

Moreover, if Q is a countable dense subset of [0,1], and �′ , �′ are the restrictions of the usual �, < on I, then there is an order-
preserving function H : [0,1] → P such that F (r) � H(s) � H(t) � G(u), whenever r < s < t < u, r, u ∈ Q and s, t ∈ [0,1]. Moreover,
H(

∧
D) = ∧

H(D) for any D ⊆ [0,1].

Proof. We define H ′ inductively. Index Q = {tn: n ∈ N}, and suppose that for some n ∈ N, we have defined H ′(tk) for each
k < n, so that whenever t ∈ Q and j,k < n: if t �′ tk then F (t) � H ′(tk), if tk �′ t then H ′(tk) � G(t) and if tk �′ t j then
H ′(tk) � H ′(t j). Now we define:

A = {
H ′(tk): k < n, tk �′ tn

} ∪ {
F (t): t �′ tn

}
, A′ = {

H ′(tk): k < n, tk �′ tn
} ∪ {

F (tn)
}
,

B = {
H ′(tk): k < n, tn �′ tk

} ∪ {
G(t): tn �′ t

}
, B ′ = {

H ′(tk): k < n, tn �′ tk
} ∪ {

G(tn)
}
.

Then A′ and B ′ are finite nonempty sets, A′ is bounded above by each element of B ′ , and B ′ is bounded below by each
element of A′ , so by (KLbd), there are a,b ∈ P so that A′ � a, b � B ′ . Also for each e ∈ Q , a � e whenever A′ � e, and e � b
whenever e � B ′. If d ∈ A, then either d ∈ A′ or d = F (t) � F (tn) ∈ A′; in either case d � a � e, whenever a′ � e. Thus A � a � B;
similarly A � b � B . Hence by (KLinω,ω), there exists c ∈ P such that A � c � B . Let H ′(tn) = c, completing the definition of H ′ .

Suppose that ti �′ t j �′ tk �′ tl , then i, j,k, l < n for some n, and so we have F (ti) � H ′(t j), H ′(t j) � H ′(tk), and H ′(tk) � G(tl)

as required.
If Q is a countable dense subset of [0,1], with �′ its usual order and �′ = <, we define H : [0,1] → P by H(r) =∧{H ′(q): r < q ∈ Q }. Let r < s < t < u where r, u ∈ Q and s, t ∈ [0,1], then there are r′, s′, t′, u′ ∈ Q such that r < r′ < s <

s′ < t′ < t < u′ < u; then

F (r) � H ′(r′) � H(s) � H ′(s′) � H ′(t′) � H(t) � H ′(u′) � G(u),

from which it follows that F (r) � H(s) � H(t) � G(u).
Finally, for a subset D ⊆ [0,1],

H
(∧

D
)

=
∧{

H ′(q)

∣∣∣
∧

D < q ∈ Q
}
.

Also, since {H ′(q) | ∧ D < q ∈ Q } = ⋃
d∈D{H ′(q) | d < q ∈ Q } and

∧
(
⋃

d∈D{H ′(q) | d < q ∈ Q }) = ∧
H(D) we have H(

∧
D) =∧

H(D). �
Of course, by Theorems 10 and 11, the conclusions of Theorem 26 hold for KL-relations satisfying (KLbd). Now we show

that in this situation, �OR is a Urysohn relation on UA(P , I):

Theorem 27.

(a) Let (P ,�,�) be a bounded lattice with dualizable auxiliary relation. If f , g ∈ UA(P , I) and f �UA g, then for some h : P → I,
f �UA h �UA h �UA g.

(b) (ARtrn) holds for �OR and if �Q is dually approximating then (ARstr) holds for �OR as well.

Proof. (a) Given such f , g : P → I, let Q = Q ∩ I and define F , G : (Q ,�) → (P ,�) by F = f u �Q and G = gu �Q . Then, by
Theorem 26, there is an order preserving H : (I,�) → (P ,�) such that, whenever p < u < v < q, p,q ∈ Q and u, v ∈ I, then
F (p) � H(u) � H(v) � G(q). In addition, for each D ⊆ [0,1], H(

∧
D) = ∧

H[D].
By the comments on adjoints, H thus has a lower adjoint, h : (P ,�) → (I,�), so H is the upper adjoint to h, which we

denote H = hu . Thus if u < v then hu(u) = H(u) � H(v) = hu(v), so h �OR h.
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Since f u, gu : I → P preserve order, if u < v , u, v ∈ I, there is some p ∈ Q such that u < p < v and f u(u) � f u(p) =
F (p) � H(v) = hu(v), hence f �OR h. Also, hu(u) = H(u) � G(p) = gu(p) � gu(v), from which it follows that h �OR g . Thus
(ARin11) holds.

(b) To see (ARtrn): if h �OR f �OR g �OR k, then whenever k(p) < b, we have that g(p) < b, so for some c, p � c and
h(c) � f (c) � b so h �OR k. To see (ARstr), assume f �OR g; then if g(p) �Q b, there is a q so that p �P q and f (q) � b. Thus
f (p) �

∧{b: g(p) �Q b} = g(p), so f �OR g . �
Theorem 28.

(a) Suppose � is a Urysohn relation on (2X ,⊆), and let f , g : X → I. If f → �UA(X,I) g→ then there is a pairwise continuous h from
(X, τ�, τ ∗� ) to (I, σ ,ω) such that f � h � g.

(b) Suppose (X, τ , τ ∗) is a pairwise T4 bitopological space, f is continuous from (X, τ ) to (I, σ ), g is continuous from (X, τ ∗) to
(I,ω), and f � g. Then for some pairwise continuous h from (X, τ , τ ∗) to (I, σ ,ω), f � h � g.

Proof. (a) First by Lemma 8, � is contained in a smallest dualizable auxiliary relation, D�. Since f → �UA(X,I) g→ , whenever
r < s we have f ←[↑� s] � g←[↑� r], so f ←[↑� s]D � g←[↑� r], which says that f →D �UA(X,I) g→ .

Since D� is a dualizable auxiliary relation and (2X ,⊆) is a complete lattice, there is by Theorem 27, an H ∈ I2X
so that

f → �UA2X ,I H �UA2X ,I H �UA2X ,I g→ . Let h be the restriction of H to X (formally, h(x) = H({x}) for each x ∈ X ). Then h ∈ IX ,
and for each A ⊆ X , A = ⋃

x∈A{x} = ∨
x∈A{x}, so h→(A) = ∨

x∈A H({x}) = H(A), so h→ = H , and thus f → �UA(X,I) h→ �UA(X,I)

h→ �UA(X,I) g→ . Then by Theorem 27, f � h � g . Finally, h is pairwise continuous by Theorem 25.
For part (b) let � = �N ; then τ = τ� and τ ∗ = τ�∗ . Note that f �IX g , for if A �I B then for some r < s, A ⊆ ↑� s and

↑< r ⊆ B , so clω A ⊆ intσ B (if r = 0 then I = ↑< r). By continuity of f from (X, τ ) to (I,ω) and g from (X, τ ∗) to (I, σ ), we
have that clτ ∗ f ←[A] ⊆ intτ g←[B], which is to say that f ←[A] �N g←[B]. Thus f �OR g , so by Theorem 27 (with P = 2X ),
there is an h : P → [0,1] such that f �OR h �OR h �OR g . Then by Theorem 25, h is pairwise continuous from (X, τ , τ ∗)
to (I, σ ,ω). �

We now have:

Corollary 29.

(a) Let P be a continuous dcpo and f , g : P → I be such that g is continuous from (P , σ ) to (I, σ ), f is continuous from (P ,ω) to
(I,ω), and f ≺� g. Then there is an h : P → I such that f � h � g and h is pairwise continuous from (P , σ ,ω) to (I, σ ,ω).
In particular each f : P → I which is Scott continuous is the directed sup of the h ≺� f which are pairwise continuous from
(P , σ ,ω) to (I, σ ,ω).

(b) Let P be a Scott domain and f , g : P → I be such that f � g, f is continuous from (P ,ω) to (I,ω), and g is continuous from
(P , σ ) to (I, σ ). Then there is an h : P → I such that f � h � g and h is pairwise continuous from (P , σ ,ω) to (I, σ ,ω).
In particular, each f : P → I which is Scott continuous is the directed sup of the h � f which are pairwise continuous from
(P , σ ,ω) to (I, σ ,ω).

Proof. Part (a) results from Theorems 23(a) and 28(a), while (b) comes from Theorems 23(b) and 28(b). �
8. Classical examples

Several classical insertion theorems now follow from the above results. Notice that (by appropriately rescaling or consid-
ering functions with restricted range) we can equally well consider functions from a space X to either R or [0,1]. We state
our theorems using the more convenient range in each case.

The Katětov–Tong [12,21] Insertion Theorem is an immediate consequence of Theorem 28.

Theorem 30 (Katětov–Tong). X is normal if and only if whenever f : X → R is lower semicontinuous, g : X → R is upper semicon-
tinuous and g � f then there is a continuous h : X → R such that g � h � f .

From this one can deduce a number of similar well-known results. For us, the existence of a continuous insertion
f � h � g in Theorem 30 follows from the fact that g � h � h � f ; we cannot directly deduce that g(x) < h(x) < f (x) for any
x ∈ X , so some of our proofs rely on topological facts.

Corollary 31.

(1) The Tietze Extension Theorem: X is normal if and only if every continuous function f : C → [0,1] on a closed set C can be extended
to a continuous function f ′ : X → [0,1].
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(2) Dowker’s Insertion Theorem [3]: X is normal and countably paracompact iff whenever f : X → R is lower semicontinuous,
g : X → R is upper semicontinuous and f < g then there is a continuous h : X → R such that f < h < g.

(3) Michael’s Insertion Theorem [19]: X is perfectly normal iff whenever f : X → R is lower semicontinuous, g : X → R is up-
per semicontinuous and f � g then there is a continuous h : X → R such that f � h � g and f (x) < h(x) < g(x) whenever
f (x) < g(x).

Proof. In each case the converse is standard, so we only prove one direction.
For (1), if C is a closed subset of X and f : C → [0,1] is continuous, let ϕ(x) = ψ(x) = f (x), for all x ∈ C , and define

ϕ(x) = 0 and ψ(x) = 1, for x /∈ C . Then ϕ � ψ , ϕ is usc and ψ is lsc. Theorem 30 provides us with a continuous f ′ which is
equal to f on C .

Simple, geometric proofs of both (2) and (3) given Katětov’s Theorem appear in [8], but here we give more ‘functional’
proofs. A normal space X is countably paracompact (see [3]) if and only for every decreasing sequence of closed sets (Dn)

such that
⋂

n∈N
Dn = ∅ there are open sets Un ⊇ Dn such that

⋂
n∈N

Un = ∅. A normal space X is perfect if and only if
for every closed set D there are open sets Un ⊇ D such that

⋂
n∈N

Un = D . In fact it is easy to prove (see [4] for example)
that X is perfect if and only if for every decreasing sequence of closed sets (Dn), there are open sets Un ⊇ Dn such that⋂

n∈N
Un = ⋂

n∈N
Dn .

For (2), suppose that X is both normal and countably paracompact and that g < f , where g is usc and f is lsc. Let
Dn = {x: f (x) − g(x) � 1/3n+1}; Dn is then closed and

⋂
Dn = ∅. By countable paracompactness, for each n ∈ N, there is

an open Un ⊇ Dn such that
⋂

n∈N
Un = ∅. By (1) we can extend the continuous function taking the value 0 on Dn and 1

on X − Un to a continuous function ϕn : X → [0,1]. Let ϕ = ∑
ϕn/3n so that ϕ : X → [0,1/2] is continuous and ϕ(x) � 1

3n2
for x ∈ Dn . Every x ∈ X is in X − D1 or in Dn − Dn+1, for some n, so that 2ϕ(x) < f (x) − g(x) for all x ∈ X . We can now
apply the Katětov–Tong Theorem to the functions g′ = g + ϕ � f ′ = h − ϕ . The argument for (3) is similar: if g � f , where
g is usc and f is lsc, then defining Dn as above we have

⋂
n∈N

Dn = D = {x: f (x) = g(x)}, so that ϕ(x) = 0 for all x ∈ D .
The rest of the argument is identical. �

A space is monotonically normal [11] if and only if there is an operator H assigning an open set H(C, D) to each pair of
disjoint closed sets such that

(1) C ⊆ H(C, D) ⊆ H(C, D) ⊆ X − D , and
(2) H(C, D) ⊆ H(C ′, D ′), whenever C ⊆ C ′ and D ′ ⊆ D .

For more on the significance of monotonically normal spaces see [9]. It turns out that there is a natural monotone version of
the Katětov–Tong Insertion Theorem due to Kubiak [16] (see also [18]). It is convenient to introduce some notation. Let C(X)

denote the set of all continuous R-valued functions on X and let UL(X) = {(g, f ): g � f , f : X → R lsc, g : X → R usc},
ordered by (g, f ) � (g′, f ′) iff g � g′ and f � f ′ .

Theorem 32 (Kubiak). X is monotonically normal iff there is an order preserving map Φ : UL(X) → C(X) such that g � Φ(g, f ) � f .

Proof. Order the power set of X , P (X) by inclusion. Let P = {ϕ : UL(X) → P (X): ϕ is order reversing}. Let � be the partial
order on P defined by ϕ � ϕ′ iff ϕ(g, f ) ⊆ ϕ′(g, f ) for all (g, f ) ∈ UL(X). Define ϕ � ϕ′ iff ϕ(g, f ) ⊆ ϕ(g, f )◦ .

Clearly (P ,�) has finite sups and infs, for example define (
∨

ϕ∈R ϕ)(g, f ) = ⋃
ϕ∈R(ϕ(g, f )) for any R ⊆ P . And so

(P ,�,�) satisfies (ARstr)–(ARin21). To see (ARin21) (hence (ARin11)), suppose that ϕ,ϕ′ � ψ . Let H be a monotone normality
operator. Define

χ(g, f ) = H
(
ϕ(g, f ),ψ(g, f )◦

) ∪ H
(
ϕ′(g, f ),ψ(g, f )◦

)
.

Then

ϕ(g, f ) ∪ ϕ′(g, f ) ⊆ χ(g, f )◦ = χ(g, f ) ⊆ χ(g, f ) ⊆ ψ(g, f )◦.

Also χ is order reversing since ϕ and ϕ′ are and H is monotone.
Now we can apply Theorem 26 to the functions F , G : Q → P defined by F (r)(g, f ) = {x: f (x) � r} and G(r)(g, f ) =

{x: g(x) < r} so that F � G to get H : Q → P such that F � H � H � G . Defining Φ(g, f )(x) = inf{r: x ∈ H(r)(g, f )} completes
the proof. �

There are natural monotone versions of the Dowker and Michael Insertion Theorems, though both versions turn out to
be equivalent to stratifiability. A space is stratifiable if and only there is an operator U assigning an open set U (n, D) to
every closed set D and n ∈ N such that

⋂
n∈N

U (n, D) = D and U (n, D) ⊆ U (n, D ′) whenever D ⊆ D ′ . The following two
results appear in [7] (see also [6]) and [20] respectively. One can also prove these results from Kubiak’s in exactly the same
way as Dowker’s and Michael’s follow from the Katětov–Tong Theorem so we omit the proofs here.
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Corollary 33.

(1) X is stratifiable iff there is an order preserving map Ψ assigning to each pair (g, f ) ∈ UL(X), with g < f , a continuous function
Ψ (g, f ) such that g < Ψ (g, f ) < f .

(2) X is stratifiable iff there is an order preserving map Θ : UL(X) → C(X) such that g � Θ(g, f ) � f and g(x) < Θ(g, f )(x) <

f (x), whenever g(x) < f (X).

Finally the results of Lane [17] are clearly incorporated in our development. Given a function f , let f∗(x) =
supx∈U open infy∈U∩X f (y) and f ∗(x) = infx∈U open supy∈U∩X f (y). A function is normal lsc if f = ( f ∗)∗ and is normal usc
if f = ( f∗)∗ .

Theorem 34 (Lane).

(1) Suppose disjoint regular closed sets are separated by disjoint open sets. If g � f , g normal usc, f normal lsc then there is contin-
uous h such that g � h � f .

(2) Suppose disjoint closed sets, at least one of which is regular closed, are separated by disjoint open sets. If g � f , and either g usc,
f normal lsc or g normal usc, f lsc, then there is continuous h such that g � h � f .

(3) Suppose X is extremally disconnected. If g � f , g lsc and f usc, then there is a continuous h so that g � h � f .

Proof. (1) follows from Theorem 26 defining � on the power set of X by A � B iff A ⊆ F ⊆ G ⊆ B◦ where F is regular closed
and G is regular open. Then, if f is normal lsc and g is normal usc, {x: f (x) < r} is regular closed and {x: g(x) � r}◦ is
regular open, so {x: f (x) < r} � {x: g(x) � r}.

(2) and (3) follow from Theorem 26 defining A � B iff there is some open G such that A ⊆ G ⊆ G ⊆ B◦ . �
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