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Abstract. In this paper, a weakly non-linear stability analysis is pursued to explore
the effects of suction and blowing on a compressible mode of instability of the three-
dimensional boundary layer flow induced by a rotating disk. The main thrust of the
research is to extend the stationary work of Seddougui and Bassom (1996) to cover for
the non-stationary mode so that it is targeted to determine whether the major role in
finite amplitude destabilization of the boundary layer is played by the stationary mode
of Seddougui and Bassom (1996) or the non-stationary mode as calculated from the
present study. Within this perspective, the basic compressible flow obtained in the large
Reynolds number limit, together with a suction parameter entering into the wall with
normal velocity at the wall, is perturbed by disturbances which are constituted as the
non-linear interaction of fundamental modes and harmonics. The effects of non-linearity
are then explored by deriving a finite amplitude equation governing the evolution of the
non-linear lower branch modes and also allowing the finite amplitude growth of a distur-
bance close to the neutral location determined from a prior stability analysis. Although
the form of the amplitude equation is not at all surprising (given a similar result for the
stationary vortices in Seddougui and Bassom (1996)), the dependence of the coefficients
of the Landau-type modulated vortex amplitude equation on the frequency parameter
is established here. A close examination of the coefficients of this evolution equation
indicates strongly that the non-linearity has a destabilizing effect for both suction and
blowing through the surface of the disk, the effect of which is much more stronger for a
suction. Also the impact of non-linearity is higher for the non-stationary compressible
modes than for the stationary waves of Seddougui (1990) and Seddougui and Bassom
(1996). Moreover, in the case of suction, there occurs a regime of non-stationary modes
that cover not only the positive frequency waves, but also waves having negative fre-
quencies, and these modes are always unstable no matter whether the wall is insulated
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or isothermal. The solution of the asymptotic amplitude equation further demonstrates
that as the local Mach number increases, compressibility has the influence of stabilization
by requiring smaller initial amplitude of the disturbance for the laminar rotating disk
boundary layer flow to become unstable whenever fluid injection is applied. Unlike this,
suction makes the underlying flow more convectively unstable as far as the compressibil-
ity is concerned, particulary for the modes generated as a consequence of an isothermal
wall. Both for the suction and injection cases, disturbances having positive frequency are
always shown to cause an instantaneous non-linear amplification prior to the negative
frequency waves.

1. Introduction. In the present study, we consider the compressible boundary layer
flow on a rotating disk and its non-linear instability owing to the existence of three-
dimensional crossflow vortices pertaining to this flow. The subject is of great significance
in order to know the precise effects of heating/cooling of the wall together with suc-
tion/blowing through the surface of the wall, due to the reason that these may enable
us to keep the flow over aeronautical vehicles laminar or at least to delay the occur-
rence of turbulence. Among the many instability mechanisms taking place over two- and
three-dimensional boundary layer flows, crossflow instability has received a great deal of
attention. The crossflow-type instability is mainly attributed to the inflectional nature of
the steady mean flow profile known as the Von Karman’s exact similarity solution in the
case of incompressible rotating-disk flow. This instability is known to give rise to linear as
well as to the finite amplitude destabilization of the three-dimensional boundary layers.
Therefore, the interest in the instability investigations of rotating disk boundary layer
flow has increased outstandingly both in terms of experimental and theoretical means.

The research conducted so far on the flow due to a rotating disk hints that the un-
derlying crossflow vortex instability is a result of either absolute instability or convective
types of instability. The absolute instability is a linear one studied first in [3] and [4].
These studies, together with later investigations in [5, 6] and [7, 8, 9, 10], have proven
that the infinite growth of the unstable disturbances in the radial directions may be a
reason for transition in rotating disk flow. On the other hand, the surface coating sug-
gested in [11] or the suction through the wall as applied in [12] and [13] may effectively
delay the occurrence of absolute instability.

The early research conducted in [14] shows that the crossflow instability manifests
itself in the form of a viscous lower branch or an inviscid upper branch. The fundamental
features of these modes were enlightened both experimentally and theoretically by many
researchers; among them include [7], [15, 16, 17], [18], [19, 20], [21], [22], [23], [24]. These
investigations clearly showed that the inviscid instability is characterized by the form of
a stationary pattern due to the superposition of modes of zero-frequency spiral vortices,
which aligned themselves at an inclination angle of almost 13◦ normal to the radius vector.
Numerical evaluations predict a critical Reynolds number of about 300 for the onset
of amplification through the inviscid instability. Moreover, investigations also showed
the existence of viscous instability that occurred with a much lower critical transition
Reynolds number, readily depending on the frequency, than the inviscid stationary mode.
This instability, which was also observed experimentally in [23], manifests itself as a wave
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pattern of spiral vortices inclined at a higher angle, of about 20◦, to the radius vector
with a lower wavenumber than that corresponding to the inviscid instability of [14].

Both the absolute instability and convective instability results from the references
cited above were based on the linear stability theory together with a classical parallel
flow approximation employed to simplify the governing stability equations. Later inves-
tigations were based on a more rational approach accounting for the non-linearity and
non-parallelism of the basic flow, with a large Reynolds number asymptotic approxima-
tion. This method is known as the triple deck theory, which was first used within the
context of predicting the stability features of Blasius boundary layer flow in [29] and
[30]. See [25, 26], [27] and [28] for the description and its applications. This strategy
was first applied to the rotating disk flow in [31] in which both upper branch and lower
branch stationary neutral modes and their asymptotic structures were obtained within
the framework of asymptotic expansion at large Reynolds numbers. It was shown that
the lower branch corresponds to an effective velocity profile having zero shear stress at
the surface of the disk. Making use of the asymptotic triple deck theory, the linear and
non-linear evolution of upper branch modes of the rotating disk boundary layer flow,
as far as the orientation of the non-stationary waves are concerned, were examined in
[32] and [33]. These modes are the ones naturally observed in the experiments of [14],
[20] and [34, 35]. However, as first detected in the experiment of [23], there exists lower
branch modes corresponding to a lower Reynolds number. [36] investigated, making use
of the theory set up in [31], the non-linear stability properties of lower branch stationary
modes. [36] found that non-linearity destabilizes these modes which are also shown to
be amenable to subcritical instability, and for these unstable modes to be seen exper-
imentally, the system must be strongly forced; otherwise the dominant inviscid modes
of [14] would be normally observed. The existence of a subcritical instability was also
confirmed by the experimental results given in [37, 38].

The non-linear incompressible work of [36] was extended in [2] to incorporate the
effects of compressibility on the stationary modes. [2] found that the lower branch modes
could only be possible for a finite range of Mach numbers, and the threshold amplitude
beyond which the instability may persist is significantly reduced when the surface of the
disk is highly cooled. A further extension of [36] to include the non-stationary lower
branch modes has been recently implemented in [39], in which the compressibility effects
on the evolution of linear modes were investigated. Non-linearity has been taken into
account in [40], and it was shown that a smaller initial finite amplitude of the disturbance
with a positive frequency is sufficient to give rise to an exponential growth of the lower
branch non-stationary modes, which would then cause the transition to turbulence in the
rotating disk boundary layer flow, of course in the absence of other dominant instability
mechanisms. The impacts of applying suction or injection through the disk surface were
discussed for the absolute instability in the work of [13] and for the convective instability
in the works of [12] and [1], but these were limited to the case of the incompressible Von
Karman’s boundary layer flow. Motivated by the latter works, we in the present study
aim to study the influences of not only the compressibility but also the mass transfer
on the lower branch non-stationary neutral modes as studied in the case of zero-suction
in [39]. Thus, a comparison between the stationary modes of [1] and the non-stationary
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modes as calculated here can be done to understand the importance. However, the
present work is more involved due to the fact that applying suction/injection on the wall
couples the basic velocity profiles to the energy equation through a wall temperature
parameter, which is neither the case for the incompressible flow with suction as in [12]
nor the case for the compressible zero-suction as in [39]. An amplitude equation has
been obtained, whose coefficients imply that the non-linearity has a finite amplitude
destabilization on the lower branch modes for both suction and blowing applied at the
disk. The modes under compressible effects with suction are more subjected to instability.
Regardless of whether the adiabatic or isothermal wall conditions are considered, there
exists a region of positive frequencies (and also negative frequencies for the modes under
strong wall cooling with suction) that are always unstable. Moreover, much less initial
amplitude disturbance is sufficient than for that of the stationary modes determined in
[2] and [1], if the perturbations have positive frequencies, an outcome that is also in line
with that of [40]. In addition to this, the appearance of double modes for the lower branch
curves having positive frequencies as encountered in the numerical stability solution of
non-stationary incompressible flow in [24] is clarified here, whose interval of occurrence
is particularly increased in the case of suction but reduced in the presence of wall cooling
together with injection.

The following strategy is adopted for the rest of the paper. In §2.1 the non-linear par-
tial differential equations governing the stability of the compressible boundary layer flow
over a rotating disk are given together with the generalized basic Von Karman’s steady
flow including the suction/blowing on the disk surface. §3 involves the construction of
a triple-deck structure of the disturbed flow. The significant terms in the wall layer re-
gion are derived, and using a solvability condition on the linear lower-deck problem, an
eigenrelation is generated among the effective wavenumber, wave angle and frequency.
Perturbing the solution near the neutral location, an equation for the disturbance am-
plitude is obtained that presents the finite amplitude effects due to the non-linear terms.
The impacts of mass transfer on the linear results are first briefly discussed in §4.1,
followed by the weakly non-linear finite amplitude discussions in §4.2. Conclusions are
finally drawn in §5.

2. Problem formulation.
2.1. Governing equations. We are concerned here with the unsteady flow of a com-

pressible viscous fluid over an infinite disk rotating with constant angular velocity Ωa

about the axial axis z. Having suitably non-dimensionalized the flow variables in the
rotating frame in terms of cylindrical polar coordinates (r, θ, z) possessing an orthonor-
mal unit base (r̂, θ̂, k̂), the non-dimensional velocities u = (u, v, w), the pressure p, the
density ρ, and the temperature T are governed by the following continuity, momentum,
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state, and energy equations:

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.1)

ρ
[∂u

∂t
+ (u · ∇)u + 2(k̂ × u) − rr̂

]
= −∇p +

1
R

[
∇(λ∇ · u) + ∇(µeij)

]
, (2.2)

ΓM2
∞p = ρT, (2.3)

ρ
[

∂T
∂t + (u · ∇)T

]
= M2

∞(Γ − 1)
[

∂p
∂t + (u · ∇)p

]
+ 1

R∇ · (k∇T )

+Γ−1
R M2

∞
[

1
2µΨ2 + λ(∇ · u)2

]
.

(2.4)

Here, eij denote the strain tensors, and µ and λ are the shear and bulk viscosities of
the fluid, respectively. Moreover, R defines the characteristic Reynolds number given by
R = Ωal2 ρ∞

µ∞
, in which l is some reference length, for instance the local radius of the

disc, and ρ∞ and µ∞ are the free-stream values of the density and shear viscosity of
the fluid, respectively, which were used to make the flow variables non-dimensional. The
equation of state (2.3) shows that the fluid considered is a perfect gas, whose ratio of
the specific heat is represented by Γ = cp/cv, where cp is the specific heat at constant
pressure and cv is the specific heat at constant volume. The free-stream Mach number
is given by M∞ = Ωal√

Γ�T∞
, where T∞ is the free-stream temperature and � is the gas

constant, which can be expressed as the difference of cp and cv. Further, the parameter
k appearing in equation (2.4) is the coefficient of thermal diffusivity that is related to
the Prandtl number σ by σ = µ

k . Finally, Ψ is a dissipation function associated with the
strain tensors and is given, for instance, in [39], but the details of this quantity as well
as the second coefficient of viscosity λ are not required for the following analysis.

2.2. The basic flow. To obtain the steady compressible flow equations of motion, which
are known as the Von Karman’s similarity solution in the case of incompressible zero-
suction, equations (2.1–2.4) must be supplemented with the no-slip boundary conditions
on the wall except with suction/injection permitted on the wall with normal velocity
through a scaled parameter s̄ such that s̄ > 0 is to denote the suction and s̄ < 0 denotes
the blowing applied to the flow at the surface of the disk. Additionally, no motion far
away from the disk should be allowed. Furthermore, we have a freedom on the choice of
the boundary condition for the temperature at the disk surface. Either the disk can be
considered as thermally insulated (adiabatic surface), that is,

∂T

∂z
= 0 at z = 0,

or we have a prescribed value of temperature at the wall (isothermal wall), that is,

T = Tw at z = 0.

The density and temperature approach their free-stream values of unity as z → ∞.
In what follows, the Reynolds number will be taken to be large, and since the boundary

layer thickness is O(R−1/2), the steady compressible boundary layer flow over a rotating-
disk evolves along a boundary layer coordinate of order unity, defined by Ȳ = R1/2z. In
order to remove the basic density term ρ̄ from the equations of motion, the Dorodnitsyn-
Howarth transformation (see for example [41]) is made with the introduction of a new
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coordinate y =
∫ Ȳ

0
ρ̄dȲ . In turn, the idealized Chapman’s viscosity law is assumed so

that µ = CT , for which C is taken to be unity. Accounting for all of these, the basic
velocity profile is represented by

uB = (rū(y), rv̄(y), R−1/2T̄ (y)w̄(y)), (2.5)

where, for large R, the functions ū, v̄, and w̄ in (2.5) satisfy

ψ′2 − (v̄ + 1)2 − 2ψψ′′ − ψ′′′ = 0,

2ψ′(v̄ + 1) − 2ψv̄′ − v̄′′ = 0,
(2.6)

for an appropriately defined stream function variable ψ given as ū = ψ′ and w̄ = −2ψ.
Equations (2.6) are to be solved subject to

ψ = s̄
2Tw

, ψ′ = 0, v̄ = 0, at y = 0,

ψ′ = 0, v̄ = −1, as y → ∞.
(2.7)

Within the transformations specified above, it is an easy matter to show that the solu-
tion to the energy equation can be written as a linear combination of a heat conduction
term f and a viscous dissipation term q (see for instance [42]), such that

T̄ = 1
ρ̄ = 1 + (Γ−1)

4 M2f + (Tw − 1)q, (2.8)

in which Γ is assigned to a value of 1.4 for air, M = rM∞ is the local Mach number, and
functions f and q satisfy the ordinary differential equations

q′′ + 2σψq = 0,

f ′′ + 2σψf ′ − 2σψ′f = −4σ(ψ′′2 + v̄′2).
(2.9)

It should be remarked here that due to the imposition of suction or blowing, the
compressible flow equations (2.6) are coupled to the energy equation (2.8–2.9) through the
boundary condition (2.7), which is in direct contrast to the case of either a zero-suction
or a corresponding incompressible case; see, for example, [39] and [2]. For the particular
case of a model fluid with σ = 1, exact solutions for f and q can be obtained under the
boundary conditions on the flow temperature; see, for instance, [7]. However, we shall
concentrate on a more ideal fluid here and use σ = 0.72 throughout in the subsequent
analysis. Despite the fact that the selection of the Prandtl number has an influence on
the linear and viscous absolutely unstable modes (see for instance [43]), the use of 0.72
as opposed to 1 is believed to have little quantitative effect on our high Reynolds number
convective instability results. Two more points are worthy of consideration here. First,
if a thermally insulated disk is taken into account, then (2.6–2.9) must be provided with
the boundary conditions

f ′(0) = q′(0) = 0, f(∞) = q(∞) = 0, (2.10)

as a consequence of which, the wall temperature from (2.8) is found to be Tw = 1+ 1
4 (Γ−

1)M2f(0), indicating that the basic flow variables ū, v̄, w̄, and f are coupled with a strict
dependence on the value of Mach number M . Second, if however an isothermal disk is
accounted for, the dependence of the basic velocities on the Mach number is avoided,
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but equations (2.6–2.7) and (2.8) are still coupled through the suction parameter s̄ and
Tw. The boundary conditions on (2.10) in this case become

f(0) = q(0) − 1 = 0, f(∞) = q(∞) = 0. (2.11)

The first equation in (2.9) can be straightforwardly integrated to get a solution for q.
The ensuing analysis requires the values for ū′(0), v̄′(0), and f(0) for the adiabatic wall
conditions and, additionally, f ′(0) and q′(0) for heat transfer applied at the surface of
the disk, which are numerically calculated and discussed in Section 4.

3. The stability analysis. The mean flow determined from (2.5–2.7) is next per-
turbed with infinitesimally small disturbances of the form

lΩa(Ũ(r, θ, z, t), Ṽ (r, θ, z, t), W̃ (r, θ, z, t), P̃ (r, θ, z, t), ρ̃(r, θ, z, t), T̃ (r, θ, z, t)). (3.1)

Having substituted the mean flow (2.5) together with the disturbances (3.1) into the
governing equations (2.1–2.4) and subtracting out the basic field, the evolution of the
compressible disturbed flow will be governed by a set of non-linear equations which are
given in [39] for the linearized case. We are then interested in the asymptotic solutions of
the disturbances (3.1) having triple-deck structure and also based on the small parameter
ε defined by ε = R− 1

16 in the limit of a large Reynolds number. It should be warned that
with such a small parameter there is a danger of hitting the absolutely unstable regime,
which is avoided here by assuming only the presence of convectively unstable modes.
The structure for the stationary lower branch viscous incompressible modes was first
described in [31] and [36], which was later extended in [2] to cover for the compressibility
effects. The linear asymptotic results incorporating the non-stationary disturbances have
been recently presented in [39]. Therefore, in what follows, we omit most of the linear
results and focus on the non-linear evolution of the perturbations that evolve under the
influence of a suction parameter s̄.

The asymptotic three-dimensional solutions of the non-stationary modes of instability
in the triple-deck regions, namely upper, main, and lower decks, will be sought propor-
tional to

E = e(i/ε4)(
∫

r α(r)dr+βθ−ε2ωt), (3.2)

and the wavenumbers (α, β) and the frequency ω expand for convenience in terms of the
small parameter ε as

α = α0 + ε2α1 + · · · ,

β = β0 + ε2β1 + · · · ,

ω = εω0 + ε3ω1 + · · · .

(3.3)

The forms of the expansions of the disturbance will be essentially found by balancing
the convection and viscous terms in (2.2). Also, the perturbation terms will be in the
form of fundamental terms plus harmonic terms arising from the non-linear nature of the
governing equations (2.1–2.4). Here, we search for the local wavenumber and frequency
components that contribute to the neutrally stable flow initially at a radial location
r. Afterwards, the finite amplitude non-linear solutions close to the location of neutral
stability will be considered. Next, following closely the study of [2], the wavenumbers and
frequency as given in (3.3) and the disturbances proportional to (3.2) will be substituted
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into the Navier-Stokes equations (2.1–2.4), and the solutions to the expansions of the
flow quantities will be sought separately in each asymptotic triple-deck region. In fact,
to be concise, solutions to the disturbance quantities are first obtained in the upper
deck having a thickness of ε4, which are then matched with the solutions of the main
deck having a thickness of ε8. Solutions in the main deck are also enforced to satisfy
the vanishing effective wall shear at the leading order. Up to now, the expansions and
solutions are similar to those obtained in [2]. However, differences arise in the lower deck
which are required to reduce the slip velocities to zero at the surface of the disk. Thus,
we concentrate on the lower-deck region.

In the lower deck, in the large Reynolds number limit, the thickness of the viscous
sublayer is given by

ζ = ε−9z = O(1).

The expansion of the basic flow quantities (2.5) in terms of the lower-deck scaling will
lead to

ρ̄ = Rw + ερ̄0ζ + · · · ,

T̄ = Tw + εT̄0ζ + · · · ,

ū = ε ū0
Tw

ζ + ε2 ū1
T 2

w
ζ2 + · · · ,

v̄ = ε v̄0
Tw

ζ + ε2 v̄1
T 2

w
ζ2 + · · · ,

w̄ = − s̄
Tw

− ε2ū0ζ
2 − 2

3ε3 ū1
Tw

ζ3 + · · · ,

(3.4)

where the coefficients depend on r and come from the Taylor expansion at the wall.
Moreover, the condition of zero wall shear can be written as

α0rū0 + β0v̄0 = 0. (3.5)

It should be remarked here that equation (3.5) relies heavily on the suction parameter s̄,
in contrast to the corresponding constant value of 1.207 for the zero-suction compressible
flow case.

In order for the solutions to match with those in the main deck as ζ → ∞, the radial
velocity disturbance must have the form

Ũ = ε−1[rA1( ū0
Tw

+ 2ε ū1
T 2

w
ζ + · · · ) + (U−1 + εU0 + · · · )]δE

+δ2ε−4{[r A2
2 ( ū0

Tw
+ 2ε ū1

T 2
w

ζ + · · · ) + (U20 + εU21 + · · · )]E2 + ε(Um0 + εUm1 + · · · )}
+ε−7[r A3

3 ( ū0
Tw

+ 2ε ū1
T 2

w
ζ + · · · ) + (U30 + εU31 + · · · )]δ3E3

+ε−7[rA4( ū0
Tw

+ 2ε ū1
T 2

w
ζ + · · · ) + (U10 + εU11 + · · · )]δ3E + O(δ4) + c.c.,

(3.6)

together with a similar expression for the azimuthal velocity, density, and temperature
perturbations, while the normal velocity perturbation W̃ expands as

W̃ = ε5{−iA1[(rα0
ū1
T 2

w
+ β0

v̄1
T 2

w
)ζ2 + ε(rα0

ū2
T 3

w
+ β0

v̄2
T 3

w
)ζ3 + · · · ] + (εW0 + · · · )}δE

+δ2ε2{[−iA2[(rα0
ū1
T 2

w
+ β0

v̄1
T 2

w
)ζ2 + ε(rα0

ū2
T 3

w
+ β0

v̄2
T 3

w
)ζ3 + · · · ] + (εW20 + · · · )]E2

+ε4(Wm0 + εWm1 + · · · )}
+{−iA3ε

−1[(rα0
ū1
T 2

w
+ β0

v̄1
T 2

w
)ζ2 + ε(rα0

ū2
T 3

w
+ β0

v̄2
T 3

w
)ζ3 + · · · ] + (W30 + · · · )}δ3E3

+{−iA4ε
−1[(rα0

ū1
T 2

w
+ β0

v̄1
T 2

w
)ζ2 + ε(rα0

ū2
T 3

w
+ β0

v̄2
T 3

w
)ζ3 + · · · ] + (W10 + · · · )}δ3E

+O(δ4) + c.c.,

(3.7)
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and P̃ expands as

P̃ = ε3(P0 + εP1 + · · · )δE + δ2[(P20 + εP21 + · · · )E2 + ε10(Pm0 + εPm1 + · · · )]
+ε−3(P30 + εP31 + · · · )δ3E3 + ε−3(P10 + εP11 + · · · )δ3E + O(δ4) + c.c.,

(3.8)

where c.c denotes the complex conjugate of a quantity, Ai = γCi

β2
0

, i = 1, 2, 3, 4, and the
flow quantities in this region depend on r and ζ. The leading-order effective wavenumber
γ is found to be in the upper deck as γ2 = γ2

0 − β2
0M2

∞ with γ2
0 = α2

0 + β2
0

r2 . It is
worthy of mentioning here that the compressible non-stationary neutral lower branch
disturbances are not confined within specified local Mach numbers as in the zero-suction
case (0 ≤ M ≤ 1.56; see [2]), but the interval of existence of the modes depends upon
the consideration of suction or blowing; see [1].

After substituting expressions (3.4–3.8) into the non-linear disturbance equations ob-
tained by perturbing (2.1–2.4), equating the same order ε terms from the terms propor-
tional to δE, and also following the arguments given in [2], we obtain the leading-order
normal wall velocity disturbance W0 as

W0 = −iA1
U10
Tw

∆−1/4s + iA1ω0F1(s) + { γ2
0

Tw
CF2(s) + 2

T 3
w

iβ0A1[1 + v̄2
0

ū2
0
] ū0
Uc(0,0)F3(s)

−6A1∆ TwT̄0
Uc(0,0)F4(s) + A1(σ − 1)∆ T 3

w ρ̄0
Uc(0,0)F5(s)}∆−3/4 + k1s

2,
(3.9)

where s = ∆1/4ζ, Uij = (rαiūj + βiv̄j), ∆ = i
T 4

w
U01, and k1 is an arbitrary constant

to be found by matching the solution (3.9) to the main-deck solution. The particular
solutions F1, F2, F3, F4, and F5 in (3.9) satisfy Weber-like (see [44]) differential equations
and boundary conditions as also given in [39]. It can also be directly computed from a
suitable contour integration that

I1 = F ′
1(0) = 1.3520,

I2 = F ′
2(0) = 1

2Uc(0,0)

∫ ∞
0

θUc(0, θ)dθ = 0.5990,

I3 = 2 F ′
3(0)

Uc(0,0) = 1
U2

c (0,0)

∫ ∞
0

θU2
c (0, θ)dθ = 0.4570,

I4 = F ′
4(0) = 0.0192,

I5 = F ′
5(0) = 1.6972,

(3.10)

with Uc denoting the parabolic cylinder function; see, for instance, [44]. And finally
imposing the condition W ′

0(0) = 0 as a result of the continuity equation, we generate the
ultimate eigenrelation

iA1∆1/2 U10
Tw

= iA1∆3/4ω0I1 + γ2
0

Tw
CI2 + i β0

T 3
w

A1[1 + v̄2
0

ū2
0
]ū0I3

−6A1∆ TwT̄0
Uc(0,0)I4 + A1(σ − 1)∆ T 3

w ρ̄0
Uc(0,0)I5.

(3.11)

It is easy to notice that the above relation differs from the one obtained before in [31]
and [36] for the incompressible flow and in [2] for the compressible flow through the
frequency term ω0 entering in (3.11). Some manipulation of equation (3.11) results
in the subsequent eigenrelation for the effective scaled wavenumber γ and scaled wave
frequency ω

a2Ω + b2γ
1/4 − γ9/4 = 0, (3.12)

where the coefficients are presented in [39]. It can be immediately deduced that, whenever
(3.12) holds, a neutral stability takes place at the location, say, r = r̄.
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Having determined the linear terms, we now consider the terms arising from the
non-linear interactions in the governing equations in the lower deck. From equating
coefficients of like powers of ε from the terms proportional to δ2E2 in (3.4–3.8) and
likewise manipulations of the resulting equations together with the zero normal-derivative
on the wall will yield the relation

C2{4γ2
0

I2
Tw

+ i
T 3

w

γ
β0

U02
ū0I3 − i

Tw

γ
β2
0
(2∆)1/2U10 + i γ

β2
0
ω0I1(2∆)3/4

−6 γ
β2
0
∆ TwT̄0

Uc(0,0)I4 + γ
β2
0
(σ − 1)∆ T 3

w ρ̄0
Uc(0,0)I5} = C2

1
γ2

β4
0
(2∆)3/2T 2

w,
(3.13)

which associates the amplitude of the first harmonic C2 to C1. A similar argument as
above leads to the amplitude of the second harmonic C3, which is related to C1 through
the relation

C3{9γ2
0

I2
Tw

+ i
T 3

w

γ
β0

U02
ū0I3 − 2 i

Tw

γ
β2
0
(3∆)1/2U10 + 3i

2
γ
β2
0
ω0I1(3∆)3/4

−6 γ
β2
0
∆ TwT̄0

Uc(0,0)I4 + γ
β2
0
(σ − 1)∆ T 3

wρ̄0
Uc(0,0)I5} = C2C

∗
1

γ2

β4
0
(3∆)3/2T 2

w,
(3.14)

in which the last appearing term is owing to the non-linear terms and ∗ denotes complex
conjugate. Next, we proceed to the terms proportional to δ3E, which are basically very
similar to the δE equations in (3.4–3.8). As implemented above, the relation linking the
amplitude of the third harmonic C4 to C1 is found to be

C4{− i
Tw

γ
β2
0
U10 + ∆−1/2[γ2

0
I2
Tw

+ i
T 3

w

γ
β0

U02
ū0I3] + i γ

β2
0
ω0I1∆1/4

−6 γ
β2
0
∆ TwT̄0

Uc(0,0)I4 + γ
β2
0
(σ − 1)∆ T 3

w ρ̄0
Uc(0,0)I5} = C2C

∗
1

γ2

β4
0
∆T 2

w.
(3.15)

And finally, the mean-flow correction terms from the solutions of the δ2 terms in (3.4–
3.8), together with the anticipation of zero-slip on the wall as well as the match with the
main deck, are obtained as

Um0 = r
γ

β2
0

C2
ū1

T 2
w

ζ, Vm0 = r
γ

β2
0

C2
v̄1

T 2
w

ζ, Wm0 = − γ

β2
0

C2
ū1

T 2
w

ζ2. (3.16)

4. Results and discussion.
4.1. Linear results. Since the linear evolution of the neutral compressible modes was

discussed in detail for the zero-suction case in [39] and for suction/blowing applied in
[45], we only give a brief outline here. Within this connection, Figure 1 (a-d) shows
the scaled leading-order wavenumber against the frequency for a suction s̄ = 5 at the
selected Mach numbers 0, 1, 2, and 3, and also for a blowing s̄ = −5 at the selected
Mach numbers 0, 0.5, and 1, respectively, within the domain of definition of local Mach
numbers. Asymptotic results corresponding to the large suction or blowing limit as
obtained in the Appendix are also shown by the starred curves, which are in excellent
agreement with the calculated results. As the Mach number increases towards its cut-off
value, the trend is the same as when no-suction is applied as in [39]. However, as the
suction parameter is increased, its value for small Mach number is substantially increased.
From a linear stability analysis point of view, suction is found to be stabilizing, whereas
injection enhances the instability as compared to the no-suction through the surface of
the disk, in line with the outcome of [46]. In both cases, positive frequency waves are
found to be highly destabilized as compared to the waves having negative frequencies.
As also pointed out in [39] and [45], there occurs a double mode region over the positive
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Fig. 1. The development of non-stationary neutral leading-order
wavenumber against the frequency are demonstrated for the com-
pressible modes for the suction s̄ = 5 in (a) M = 0.0, in (b) M = 2,
and for the injection s̄ = −5 in (c) M = 0.0, in (d) M = 1, respec-
tively. Curves are for both heat transfer with Tw = 1.5 (— —), 1
(– –), and 0.6 (—), and wall insulation (...). Also stars show the
asymptotic results of large suction/blowing limits as given in the
Appendix.

frequency disturbances. The impact of wall insulation and heat transfer is toward the
reduction of the interval of double modes for positive frequencies as the Mach number
increases, while the wall cooling rapidly increases the size of the interval for the suction
case, with a reverse effect for the injection case. The impacts are more pronounced
in the case of wall suction. In addition to this, it can also be seen that although the
high-cooling case persists to have larger wavenumbers especially for large suction, the
perturbations received into the compressible boundary layer will evolve on a much longer
wavelength as the local Mach number attains its highest value in its domain of definition.
To conclude from the linear stability point of view, the compressibility destabilizes as
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the Mach number increases, making the flow more convectively unstable. However, the
non-linearity may totally alter the situation, as will be discussed next.

We remind the reader that the scaled wave angle correction term from the eigenrelation
(3.12) was also calculated in [45] together with a comparison to the full linearized stability
equations. The boundary layer growth contributes in the way of destabilizing all the
modes, in particular for the compressible modes, though the wall cooling in the case of
suction and the wall insulation and heating in the case of injection are found to persist
to the destabilization for the modes in the vicinity of the stationary mode. Below we
proceed to examine the impacts of non-linearity on the stability of the flow.

4.2. Non-linear results. [2] and [36] showed that to obtain a classical evolution equa-
tion for a non-linear disturbance involving derivatives with respect to r, it is necessary
to take account of disturbances of amplitude O(ε5/2) within the lower deck where the
non-linearity is first important. This mode then develops in an O(ε) neighborhood of the
neutral position as determined in (3.12) by r = r̄. Considering this, as in [2], we perturb
the solution from the position of neutral stability by writing

r = r̄ + εr1, (4.1)

as a result of which the radial derivative of a quantity is replaced by
∂

∂r
= i

α0

ε4
+ i

α1

ε2
+

1
ε

∂

∂r1
+ · · · . (4.2)

We additionally replace r from (4.1) in the governing equations (2.1–2.4) and rewrite
the expansions of the perturbation quantities (3.4–3.8) in the lower deck. Thus the
disturbance velocity Ũ will expand as

Ũ = ε7/2{[ε−1r̄A1(
ū0

Tw
+ 2ε

ū1

T 2
w

ζ + · · · ) + ε−1(Ū−1 + εŪ0 + · · · )]E (4.3)

+ε−1/2[r̄
A2

2
(
ū0

Tw
+ 2ε

ū1

T 2
w

ζ + · · · )+(Ū20 + εŪ21 + · · · )]E2+ε1/2(Ūm0+εŪm1+· · · )

+ [r̄
A3

3
(
ū0

Tw
+ 2ε

ū1

T 2
w

ζ + · · · ) + (Ū30 + εŪ31 + · · · )]E3} + O(ε4) + c.c.,

together with a similar expression for Ṽ , ρ̃, and T̃ , while W̃ and P̃ expand as

W̃ = ε7/2{{−ε5iA1[(α0r
ū1

T 2
w

+ β0
v̄1

T 2
w

)ζ2 + · · · ] + ε6(W̄0 + εW̄1 + · · · )}E

+ ε1/2[−ε5iA2[(α0r
ū1

T 2
w

+ β0
v̄1

T 2
w

)ζ2 + · · · ] + ε6(W̄20 + εW̄21 + · · · )]E2 (4.4)

+ ε19/2(W̄m0 + εW̄m1 + · · · )

+ {−ε6iA3[(α0r
ū1

T 2
w

+β0
v̄1

T 2
w

)ζ2+· · · ]+ε7(W̄30+εW̄31 + · · · )}E3}+O(ε10) + c.c.,

P̃ = ε7/2{ε3(P̄0 + εP1 + · · · )E + ε5/2(P̄20 + εP̄21 + · · · )E2 (4.5)

+ ε27/2(P̄m0 + εP̄m1 + · · · ) + ε4(P̄30 + εP̄31 + · · · )E3} + O(ε8) + c.c.,

where now quantities depend upon r1 and ζ. The aim of the weakly non-linear analysis
is to determine C1(r1). In order to obtain the required eigenrelation involving terms
proportional to C1, r1C1, dC1

dr1
, and C1|C1|2, equations (4.3–4.5) are substituted into the
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non-linear disturbance equations obtained by perturbing (2.1–2.4), and coefficients of
like powers of ε in the terms proportional to E are equated to solve for W̄1. Following
the analysis of [2], the solution to W̄1 is obtained as

W̄1 = −iβ2
v̄0
Tw

∆−1/4A1s − r̄ ū0
Tw

∆−1/4sdA1
dr1

+ i
r̄β1

v̄0
Tw

∆−1/4r1A1s

+ i
r̄ r1

U10
Tw

∆−1/4A1s
β2
0M2

∞
γ2 − i

r̄ω0F1(s)r1A1(1 + β2
0M2

∞
γ2 ) + ∆−3/4{−2

r̄ r1C1γ
2
0

F2(s)
Tw

−2 i
r̄β0U

02
ū0r1A1

F3(s)
T 3

wUc(0,0) (1 + β2
0M2

∞
γ2 ) − 6 r1

r̄ Tw∆A1
F4(s)

Uc(0,0) [−T̄0(1 + β2
0M2

∞
γ2 ) + 2bT 2

w]

+ r1
r̄ T 3

w∆(σ − 1)A1
F5(s)

Uc(0,0) [−ρ̄0(1 + β2
0M2

∞
γ2 ) − 2b]} − ∆3/4T 2

wA2A
∗
1s

−k1
r1
r̄ ζ2 + O(ζ2) + A1RHS,

(4.6)

where b = (Γ−1)M2f ′
1(0)/(4T 3

w) and the RHS term contains various eigenvalues as well
as perturbation quantities (including also terms proportional to the suction parameter s̄),
whose precise shape will turn out to be unimportant for the subsequent analysis. More-
over, the satisfaction of the boundary conditions on the wall in the continuity equation
gives the solvability condition

∂W̄1

∂s
− i

r1

r̄3
U10∆−1/4A1

β2
0M2

γ2
− s̄

Rw

∂ρ̄0

∂s
= 0 at s = 0. (4.7)

Furthermore, as a consequence of the use of (4.7) together with (4.6) we obtain the
following amplitude equation on C1:

dC1
dr1

= r1C1{iβ1v̄0
r̄2ū0

+ β4
0γ2

0M2I2

r̄4∆1/2ū0γ3 − β2
0γ2

0I2

r̄2∆1/2ū0γ
− i U10

r̄2ū0
(1 + β2

0M2

r̄2γ2 )

−12bTw4∆1/2I4
r̄2ū0Uc(0,0) − 2bT 4

w(σ−1)∆1/2I5
r̄2ū0Uc(0,0) } − C∗

1 C2γT 3
w∆

r̄β2
0 ū0

+ ∆1/4Tw

r̄ū0
I6C1 = 0,

(4.8)

for which I6 is given by a complex contour integration as

I6 =
1

2Uc(0, 0)

∫ ∞

0

θUc(0, θ)RHS(
√

2s = θ)dθ, (4.9)

and the correspondence of C2 can be obtained from (3.13) as

C2 = C2
12

√
2∆3/2T 2

wγ0M
2
1 {4γ0β

4
0

I2
Tw

+ i
U02 ū0I3M1β3

0
T 3

w
− i

√
2β3

0∆1/2r̄ū0M1
Φ0
Tw

−6TwT̄0∆β2
0M1I4

Uc(0,0) + T 3
w(σ−1)ρ̄0∆β2

0M1I5
Uc(0,0) + iω0I1β

2
023/4∆3/4M1}−1,

(4.10)

where M1 =
√

1 − M2

U02 and Φ0 = [α1
β0

− β1α0
β2
0

].
Next, we rewrite equation (4.8) in the form

dC1

dr1
= (a + ib1)r1C1 + (c + id)C1|C1|2 + (e + if)C1, (4.11)

where the coefficients a, b1, c, d, e, and f in (4.11) are real constants. Multiplying
(4.11) by the complex conjugate of C1, adding the complex conjugate and replacing r1

by r2 = r1 + e/a for a �= 0 gives

d|C1|2
dr2

= 2c|C1|4 + 2ar2|C1|2. (4.12)

It is true that the amplitude equation does not involve the suction parameter s̄ explicitly.
However, the imposition of suction or blowing directly affects the non-linear evolution of
a disturbance, since an implicit dependence of the coefficients in (4.12) on the suction pa-
rameter through the basic flow quantities is apparent. Moreover, the amplitude equation
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we obtained in (4.12) is in the same form as the one in [2] and [1], but the coefficients
now depend on the frequency term ω0. Indeed, the scaled parameter c is given by using
(4.8) and (4.10) as c = Br̄−13/4, where B is expressed by

B =
1

2
√

2
| v̄0

u0
|5/2 U03/2

ū0

M3
1

T 5
w

γ1/2 (κ1 − κ2)
(κ2

1 + κ2
2)

, (4.13)

in which κ1 = (4 −
√

2)γ3U0−2
I2/Tw + [1 − 2−1/4] cos(π/8)M1| v̄0

U0ū0
|3/4ΩI1γ

3/4/T 3
w and

κ2 = (1 −
√

2)γ3U0−2
I2/Tw + [(2−3/4 − 2−1/4) cos(π/8) + (1 − 2−3/4) sin(π/8)]

M1| v̄0
U0ū0

|3/4ΩI1γ
3/4/T 3

w.
The effects of suction and blowing on the value of the parameter B defined in (4.13) are

demonstrated for a large suction s̄ = 5 in Figure 2 (a-b) and for a large blowing s̄ = −5
in Figure 2 (c-d) for both adiabatic and insulated wall conditions. It is found that the
behavior of stationary compressible modes and non-stationary incompressible modes is
in total agreement with those of [2] and [45], respectively. In spite of the fact that Figure
2 (a-d) represents specific cases of a suction and injection (and restricted Mach numbers),
the general trend for values of s̄ > 0 and s̄ < 0 is similar to those in Figure 2 (a-d). The
trends calculated for zero-suction incompressible modes in [40] are preserved here for
large blowing, while an opposite behavior is seen for the large suctioning, in particular
for an isothermal wall as the Mach number increases. An immediate conclusion to be
drawn from Figure 2 (a-d) is that the non-linear effects are destabilizing for a linearly
unstable disturbance for all of the Mach numbers within which the neutral stationary
or non-stationary waves exist, since B is positive for both suction and injection. In
addition to this, the values of B for the suction case are much larger than those of
injection, thus the nonlinear effects are stronger for a mode under the influence of strong
suction. Moreover, although a mode with high cooling applied is more destabilizing for
the suction case, a mode created as a result of an adiabatic wall or an isothermal wall
with Tw ≥ 1 has the same effect for the blowing case. Furthermore, another significant
finding is that compressibility as the Mach number increases is seen to have a destabilizing
impact for suctioning for particular modes in the vicinity of the stationary mode, whereas
a reverse effect is observed for blowing for all the modes. The final outcome that can be
deduced from Figure 2 (a-d) is that no matter whether adiabatic or isothermal wall and
suction or blowing on the wall are considered, B is greater for the disturbances having
positive frequencies as compared to those having negative frequencies. Therefore, for such
modes the destabilizing effects of non-linearity will be much larger for a compressible flow
with non-stationary positive frequencies than for an incompressible flow of [12] or for a
compressible flow of [1] having the stationary modes.

The second coefficient of (4.12), a is also given by using (4.8) and (4.10) as a = Ar̄−7/4,
where A is expressed by

A = −γ5/2U0−3/2
T 2

wI2

M3
1 |u0v0|1/2

+
bT 2

wγ1/2U0−1/2 |v0|1/2

|u0|3/2Uc(0, 0)
[−6I4 − (σ − 1)I5]. (4.14)

The ultimate state of the disturbed flow field can be determined by the values of A,
the behavior of which is demonstrated next in Figure 3 (a-b) for the large suction case
and in Figure 3 (c-d) for the large blowing case taking into account both adiabatic and
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Fig. 2. The development of the parameter B is displayed as a func-
tion of Ω for an adiabatic wall (...) and for an isothermal wall with
Tw = 1.5 (— —), 1 (– –), and 0.6 (—) at the chosen Mach numbers,
for the suction s̄ = 5 (a) M = 0, (b) M = 2 and for the injection
s̄ = −5 (c) M = 0 and (d) M = 1.

isothermal wall conditions. Again the graphs are fully consistent with those displayed
in [1] in the case of stationary compressible modes. Although the trend in the case of
large suction is similar to zero-suction non-stationary compressible modes, it differs in
the case of large blowing. The effect of compressibility is seen to increase the value
of A for large suction, particularly in the case of high cooling, whereas it decreases A

substantially in the case of large blowing for all of the modes. Regardless of the wall
insulation or heat transfer through the wall or suction (for small Mach numbers) and
blowing, a region of disturbances with positive frequencies also having positive A is
observed, corresponding to the lower part of the double modes as shown in Figure 1
(a-d). Additionally, the upper part of the double modes also has positive value of A

as the Mach number increases. Moreover, as compressibility is stronger, not only the
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positive frequency waves but also the negative frequency waves receive positive value of
A. Although not shown here, such modes extend onto Ω = −62 for s̄ = 5 with M = 3
and Tw = 0.6. The importance of such modes with positive value of A is that for these
modes the amplitude of the disturbance increases continuously as the distance from the
neutral radius is increased; that is, the solution will be always unstable. Thus, for large
suction the range of local Mach number over which a stable solution can exist decreases
in the case of heat transfer with Tw small. However, whenever the sign of A is negative
as shown in Figure 3 (a-d), an unstable solution can only occur if a disturbance is away
from the neutral location, otherwise the amplitude of the disturbance decreases.
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Fig. 3. The development of the parameter A is displayed as a func-
tion of Ω for an adiabatic wall (...) and for an isothermal wall with
Tw = 1.5 (— —), 1 (– –), and 0.6 (—) at the chosen Mach numbers,
for the suction s̄ = 5 (a) M = 0, (b) M = 2 and for the injection
s̄ = −5 (c) M = 0 and (d) M = 1.
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Applying the same transformations to the amplitude equation (4.12) as in [2], we reach
the solution for the amplitude function of any given disturbance as

|C1| =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√√
a

2c
ex2/2

(y−1
0 −

∫ x
0 et2dt)1/2 , a > 0,√

e
c

ex/2

(y−1
0 +1−ex)1/2 , a = 0,√√

|a|
2c

e−x2/2

(y−1
0 −

∫ x
0 e−t2dt)1/2 , a < 0,

(4.15)

where y0 = y(0), x = 0 corresponds to the neutral position and x is given by

x =
{ √

|a|r2, a �= 0,

2er1, a = 0.
(4.16)

The result (4.15) is a generalization of the stationary and non-stationary non-linear
disturbance amplitude, which is valid for both incompressible and compressible flows
under either the influence of suction or injection through the surface of the disk, i.e.,
the cases that were previously investigated by several authors, such as [36], [2], [12],
[1], and [40, 45]. It can be easily seen from equation (4.15) that for a ≥ 0 (see also
Figure 3 (a-d)), the solutions will grow unboundedly and terminate at a finite value of
the radius, leading to an unstable solution. However, for a < 0 the same results hold for
the non-stationary compressible problem as for the stationary compressible problem of
[1]. Therefore, as described in these works, a critical value exists for the initial amplitude
of the disturbance above which the disturbance will amplify infinitely at a specific radius,
leading to an unstable solution and below which the disturbance will grow initially but
will eventually decay to zero, leading to a stable solution. In line with the previous
research, this critical value is found to be y0 = 2/

√
π for both suction and blowing. For

a < 0 then the scaled threshold amplitude can be given by

T = r̄−19/8|C1|2|x=0y
−1
0 =

√
−A

4B2
. (4.17)

To be able to understand whether suction or blowing makes a mode crucial and also to
compare the likelihood of appearance of modes of compressible or incompressible kind,
we plot the threshold amplitude T , defined in (4.17), of the perturbations in Figures
4 (a-d) and 5 (a-c). In the case of large suction, Figure 4 (a-d) demonstrates that the
threshold amplitude for highly cooled walls is much smaller, as compared to the values for
a range of the local Mach numbers, than for an adiabatic wall or for an isothermal wall.
What is more intriguing here is that the modes corresponding to the high cooling case
(which are missing in Figures 4 and 5 but instead shown in Figure 3 (a-b)) are already
unstable regardless of the initial amplitude not only for positive frequencies but also
for negative frequencies. This property extends to cover isothermal wall modes too, for
sufficiently large Mach numbers. In addition to this, as the local Mach number increases,
the value of the initial amplitude of the disturbance required to cause an unstable solution
decreases, except for the modes born particularly from the adiabatic wall conditions for
which compressibility has a stabilizing effect. On the other hand, compressibility as the
Mach number increases has a destabilizing effect when the isothermal wall is considered,
a result just opposite to the modes of [2]. Moreover, this finding completely contradicts
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Fig. 4. The development of the initial amplitude disturbance pa-
rameter T for the suction s̄ = 5 is displayed as a function of Ω for an
adiabatic wall (...) and for an isothermal wall with Tw = 1.5 (— —),
1 (– –), and 0.6 (—) at the chosen Mach numbers (a) M = 0, (b)
M = 1, (c) M = 2, and (d) M = 3. Also, stars show the asymptotic
results of large suction/blowing limits as given in the Appendix.

the findings of linear modes in Section 4.1 in that compressibility when the adiabatic
wall condition is considered is destabilizing, but for isothermal walls in particular for
high cooling it is stabilizing.

As for the large blowing case, Figure 5 (a-c) shows that much larger initial amplitude
is required in this case as compared to the large suction case, indicating the stabilizing
influence of fluid injection for the non-linear disturbances. Moreover, larger Mach num-
bers lead to enhanced values of the threshold parameter, and thus the compressibility is
also stabilizing. However, in contrast to the zero-suction findings of [2], the imposition
of blowing increases the threshold amplitude for highly cooled walls for both stationary
and some non-stationary modes as compared to the adiabatic wall or heat transfer cases
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Fig. 5. The development of the initial amplitude disturbance pa-
rameter T for the injection s̄ = −5 is displayed as a function of Ω for
an adiabatic wall (...) and for an isothermal wall with Tw = 1.5 (—
—), 1 (– –), and 0.6 (—) at the chosen Mach numbers (a) M = 0,
(b) M = 0.5, and (c) M = 1. Also, stars show the asymptotic results
of large suction/blowing limits as given in the Appendix.

with Tw > 1, thus decreasing the possibility of occurrence of such modes in an unstable
state.

Figures 4–5 also show the asymptotic results (starred curves) as computed from the
large suction/injection limits obtained in the Appendix. The asymptotic results are
in excellent agreement with the threshold amplitudes as calculated from (4.17). It is
also apparent for both suction and blowing from Figures 4 (a-d) and 5 (a-c) that in
parallel to the previous findings, perturbations having positive frequencies will amplify
prior to the other disturbances including the compressible stationary modes of [2] to
carry the flow into an unstable state. Whether suction or blowing is applied to the
disk, highly cooled modes are likely to be more dangerous than the adiabatic or heat
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transfer cases. These outcomes can also be justified by examining the asymptotic large
suction/blowing behavior of the quantities given in the Appendix. It is seen in the
Appendix that for positive frequencies with the scaled wavenumber γ small, the initial
amplitude |C1||x=0 will be on the order of magnitude of γ7/4 for an adiabatic wall and
of γ3/4 for an isothermal wall, whereas for negative frequencies with γ large, it will
be on the order of magnitude γ15/4. This implies that for the total amplification of the
perturbations received into the three dimensional rotating-disk boundary layer, a smaller
amplitude will be sufficient for the positive frequency waves (generated as a result of
highly cooled walls) than for the negative ones. Thus, the destabilizing influences of non-
linearity are greater for a positive frequency disturbance than for a negative one, resulting
in the fact that for the negative frequencies close to the neutral location the non-linear
effects are less important. This enables us to conclude that transition from laminar flow
to turbulence may first take place through the amplification of the disturbances having
positive frequencies rather than through the zero-frequency modes of [2], if of course
the lower branch modes calculated here dominate over the inviscid upper branch modes
of [14]. If this is the case, then the non-stationary short-wavelength unstable modes
described in this paper could be observed experimentally as in [23] and [37, 38].

5. Conclusions. The triple-deck theory has been implemented in this work to inves-
tigate theoretically the linear and non-linear evolution of stationary and non-stationary
short-wavelength small frequency lower branch modes of the disturbances imposed on
the basic compressible three-dimensional boundary layer flow induced by a rotating disk.
Particular interest has been taken to search for the possible influences of suction and
blowing applied to the disk on the modes especially developing non-linearly. The imposi-
tion of suction or blowing on the three-dimensional compressible boundary layer has been
shown to have a significant effect on the mean flow, which in turn influences the stability
properties of this boundary layer. The effects of non-parallelism were determined in detail
previously in [45] on the evolution of compressible linear lower branch modes, which has
also been briefly reviewed here for comparison purposes. In place of the linear evolution,
we rather concentrate here on the influences of the non-linearity on the time-dependent
solutions, but quite close to the linear stationary neutral waves having vanishingly small
shear stress on the wall. On this ground, an amplitude equation has been extracted and,
as a result of solving this equation, disturbances that grow or decay with respect to the
positions from the location of neutral stability have been determined for both suction
and injection. To summarize, for both suction and blowing, the non-linearity always has
a destabilizing impact on the three-dimensional rotating-disk boundary layer flow. The
destabilization influence of the non-linearity is particularly pronounced for the positive
short-wavelength frequency waves; however, negative frequency waves with highly cooled
walls are also destabilized for large suction limit. Also, even though the modes as a result
of adiabatic wall conditions are found to be stabilized in the case of suction as the local
Mach number increases, modes with high cooling conditions are stabilized in the case of
injection. The asymptotic large suction/blowing limits have been shown to excellently
agree with the numerical results.
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The compressibility has different influences on the evolution of linear and non-linear
lower branch modes. As far as the linear modes are concerned, suction is highly stabiliz-
ing, whereas injection is destabilizing as also concluded in [45]. In addition to this, modes
as a consequence of high cooling are the most unstable as the compressibility increases
in the case of suction, though an opposite effect is observed in the case of injection for
the same modes. However, non-linearity has a strong impact; thus a completely reverse
effect has been observed here for the evolution of the non-linear modes.

It has been known since the pioneering works of [36] and [2] that the non-linear
influences are more important in lower branch modes close to the neutral locations than in
inviscid upper branch modes. Indeed, the trends in the behaviors of the coefficients in the
evolution equation clearly show that the non-linearity is destabilizing for the stationary
as well as the non-stationary modes existing in the domain of the local Mach number
for both suction and injection. Also, the non-linear effects resulting from suction on the
surface of the disk are found to be much stronger as compared to the injection. Moreover,
in spite of the fact that a mode with high cooling is largely destabilized in the case of
suction, it is highly stabilized in the case of injection. In line with the stationary modes
of [2], [1], and [12], a threshold amplitude of the perturbations has been demonstrated to
exist at the position of neutral stability of the lower branch modes. If at the position of
neutral stability, the amplitude of any disturbance is larger than this specific value, the
solutions are most likely to grow in size driving the flow into turbulence, as the distance
from the neutral stability location is increased. Different from the works of [2], [1], and
[12], it has been shown here that in the case of large suction some stationary as well as
non-stationary modes are always unstable regardless of the initial amplitude, the extent
of which increases as the local Mach number gets bigger. Particularly the modes under
the influence of strong suction with cooled walls are subjected to a powerful non-linear
instability as the Mach number increases for both the positive and negative frequency
waves. On the other hand, not the modes with high cooling but those with large heating
are more likely to occur for a blowing, as they attain a smaller threshold amplitude.
Compressibility has a stabilizing effect whenever blowing is applied to the disk, whereas
it destabilizes the modes generated particularly through the isothermal wall condition.
Furthermore, it has been found that the initial amplitude of the modes leading to an
infinite growth is much larger for the negative frequency waves as compared to the positive
ones, regardless of the suction or injection applied on the flow. Thus, in compliance with
the experiments of [37, 38], non-stationary waves having positive or negative (in the case
of suction) frequencies with sufficiently small amplitude near the neutral location are
of significance in application. These unstable modes are most probably the ones also
observed in the experiment of [23]. If, however, the amplitude of a disturbance is smaller
than the threshold amplitude, it eventually decays to zero after an initial growth as the
distance from the position of neutral stability is increased, leaving the flow stable. In this
case, of course, the unstable inviscid mode observed to be dominant in the experiment
of [14] will definitely be in action.

To conclude, our results show that an unstable mode of instability is more likely to
occur for a compressible flow either due to the existence of positive or negative frequency
waves with high cooling in the case of suction or positive frequency waves with heating
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or adiabatic wall in the case of injection. In addition to this, suction is absolutely more
effective as compared to the blowing. Thus, in the absence of other more dangerous
instability mechanisms, the early breakdown of the laminar flow over a rotating disk will
be a consequence of the non-linear amplification of the lower branch modes identified in
this work.

6. Appendix.
6.1. The large suction limit. In this section of the Appendix we give the large suction

(s̄ >> 1) limit behaviors of various quantities for γ fixed and small, particularly the
threshold amplitude (2.4) as described in Section 4. Based on the large suction behavior
of the wall, derivatives of the velocities given by

ū0 =
Tw

2s̄
, v̄0 = − s̄

Tw
, (6.1)

the leading-order behavior of the expressions Ω, A, and B in the text can be computed
asymptotically:

Ω ∼ B2γ
1/4s̄

T 2
wA2

, (6.2)

A ∼ −γ5/2I2T
5
ws̄−3

2
− 2b0γ

1/2s̄2

Uc(0, 0)T 3
w

[6I4 + (σ − 1)I5], (6.3)

B ∼ 27/2A2
2ψ2γ

−1/2s̄8

B2ZI2
1T 9

w

, (6.4)

where A2 = [cos(π
8 )− sin(π

8 )]2−3/4I1, Z = (ψ4 cos(π
8 ))2 + 2−3/2(ψ5 cos(π

8 ) + ψ2 sin(π
8 ))2,

ψ2 = 23/4 − 1, ψ4 = 1 − 2−1/4, and ψ5 = 1 −
√

2. Additionally, b0 and B2 vary in
accordance with the consideration of adiabatic or isothermal wall conditions and are
thus given by

b0 =

{
0, for an adiabatic wall,

(Γ−1)σM2

2 , for an isothermal wall,

B2 =

{
I3Tw, for an adiabatic wall,

I3Tw + [6I4+(σ−1)I5]
2Uc(0,0) { (Γ−1)σM2

2 + (1 − Tw)σ}, for an isothermal wall.

Thus the asymptotic behavior of the threshold amplitude is given by

T =
√
−A

2B
, (6.5)

where the corresponding parameters are given in equations (6.3–6.4).
6.2. The large blowing limit. In this section of the Appendix we give the large blowing

(s̄ << −1) limit behaviors of various quantities for γ fixed and large, particularly the
threshold amplitude as described in Section 4. Based on the large blowing behavior of
the wall derivatives of the velocities given by

ū0 = −Tw

s̄
, v̄0 = 2

T 3
w

s̄3
, (6.6)
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the leading-order behavior of the expressions Ω, A, and B in the text can be computed
asymptotically:

Ω ∼ −γ9/4I2T
2
w(−s̄)3/2

A3
, (6.7)

A ∼ −γ5/2I2s̄
2

√
2M3

1

, (6.8)

B ∼ 2M3
1 ψ9γ

−5/2s̄−4

Twψ8
, (6.9)

where M1 = (1 − M2)1/2, A3 = A223/4M1T
3/2
w , ψ8 = ψ2

6 + ψ2
7 , ψ6 =

[ψ3− ψ4
A3

23/4 cos(π
8 )M1T

3/2
w I1]I2/Tw, ψ7 = [ψ5− (ψ5 cos( π

8 )+ψ2 sin( π
8 ))

A3
23/4M1T

3/2
w I1]I2/Tw,

ψ9 = ψ6 − ψ7, and ψ3 = 4 −
√

2.
Thus the asymptotic behavior of the threshold amplitude is given by

T =
√
−A

2B
∼ TwI

1/2
2 ψ8γ

15/4(−s̄)5

29/4ψ9M
9/2
1

. (6.10)

It should be remarked that to the leading-order, T in (6.10) gives amplitude of the modes
resulting from both the adiabatic as well as the isothermal wall conditions.
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