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Abstract

In this paper, we study the asymptotic behavior of solutions for the plate equation with a localized damp-
ing and a critical exponent. We prove the existence, regularity and finite dimensionality of a global attractor
in W3 (R") x Lo(R™).
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1. Introduction

The paper is devoted to the investigation of a global attractor for the following plate equation
in R™:

U + (g + A%u+ru+ fu) =gx), (1.1

where X is a positive constant, «(-) and g(-) are given functions and f(-) is a nonlinear function
satisfying certain growth conditions.

The global attractors for the hyperbolic equations with interior dissipation were investigated
in [1-6] and references therein. The long-time behavior of solutions for the semilinear wave
equations with localized damping was investigated in [7,8], where the author established the
exponential decay of solutions using a unique continuation result for wave equations from [9].
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In [10], using finite speed of propagation and a unique continuation result for the wave equations,
the existence of a global attractor for the semilinear wave equations with localized damping has
been established. The existence of a global attractor for Eq. (1.1), when a(x) = g > 0, was
studied in [11].

The main objective of this paper is to study the existence, regularity and finite dimensionality
of a global attractor for the plate equation with a localized damping and a critical exponent in
an unbounded domain. The paper is organized as follows: In the next section we establish the
asymptotic compactness of the semigroup generated by the Cauchy problem for Eq. (1.1), in
Section 3 we present the proof of point dissipativity and then applying the result from [12], we
establish the existence of a global attractor, and finally in Section 4 we prove regularity and finite
dimensionality of the global attractor.

2. Preliminaries

We consider the problem

Uy +a(x)u; + Ay +iu+ f(u)=gkx), (,x)€RxR", 2.1)
(0, x) =up(x), u;(0,x) =u1(x), xeR", 2.2)

where . > 0, g € Lo(R") and the functions «(-) and f(-) satisfy the following conditions:

a€Ls(R"), a()=0, (2.3)

a(x) 2 ap>0 forevery |x|>ry>0, 2.4)
feC'®), |f@w|<c(l+ul?), p>0, (r—4p<4, (2.5)
f@)-u=>0 foreveryu e R. (2.6)

We denote the spaces W5 (R") by H*, and the norm in H* by || - ||s. We introduce the spaces
Hs — H2+2S x st.

It is well known that under conditions (2.3)—(2.6) the solution operator S(¢)(ug,u1) =
(u(t),u;(t)), t € R, of problem (2.1), (2.2) generates a Co-group on the space Hg, which satisfies
the following equation

%S(t)@o = AS(1)60 + F(S(1)6o), 2.7

and consequently
t
S(t)6y = "6 + / eTOAF(S()bp)dT V1 >0, (2.8)
0

where 8y = (ug, u1), F(S(1)8p) = (0, — f (u(t))+g) and A w = (w2, —A?w1 — Awy — o (-)w»)
for w = (w1, wy). Using techniques of [8] it is easy to show that

le ] g 3, < Me™ W2 >0, Vs e [—1.1], 2.9)
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holds for some M > 0, w > 0.
To prove the existence of a global attractor we need the following lemmas:

Lemma 1. Let us assume that conditions (2.3)—~(2.6) are satisfied. If 6,, — 6y weakly in Hy as
m — 00, then

S(1)0, — S(1)60 weakly in L(0, T; Ho),
3 3
oS0 — =Sy weakly in Lo(0. T3 H-),

S8, — S(1)09 weakly in Hy for every t > 0.
Proof. The proof of this lemma is the same as the proof of [11, Lemma 1]. O

Lemma 2. Let us assume the conditions (2.3)—(2.6) are satisfied and B is a bounded subset
of Ho. Then for any & > 0 there exist t| = t1(e, B) > 0 and r1 = r1 (e, B) such that for every
t >t1, r >ry and every 0 € B we have

t
1 2
;/HS(T)QH WZZ(R”\B(O,r))xLz(R”\B(O,r))dT <é, (2.10)

0

where B(0,r) ={x: x € R", |x| <r}.

Proof. Multiplying (2.1) by u, and integrating over [z, ] X R we obtain

t
E(u(t),ut(l))+/®(u(t,x))dx—/g(x)u(t,x)dx—i—//ot(x)utz(s,x)dxds

R" R" T RN

=E(u(r),ut(r))+/¢(u(r,x))dx—/g(x)u(r,x)dx, (2.11)

R" R

where Eu(t), uy (1)) = 3lu )12 + 1 Au@)* + 5 lu@)||? and & (s) = [; f(v)dx.
Let ¢(-) € C*°(R™) be such that 0 < ¢(x) < 1 and

1 w2,
“’(X)‘{o, <1,

furthermore define ¢, (x) = ¢(3). Multiplying (2.1) by ¢,u(t, x), integrating over [0, ] x R"
and taking into account (2.5), (2.6), (2.11) we obtain that for every r > r; and ¢t > 0

t

t
2 2 2
/(”Au”LZ(R"\B(O,Zr)) + llellZ, rm 50.2r)y) 45 < €1 <1 T+ t”g”Lz(R”\B(O,r))>’
0

which together with (2.11) yields (2.10). O
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Lemma 3. Assume the conditions (2.3)—(2.6) are satisfied, and B is a bounded subset of H.
If {6} is a sequence in B weakly converging to 6 in Ho, then for any ¢ > 0 there exists a
To = To(e, B) > 0 such that whenever T > Ty

limsup [ S(T)6m — S(T)0| 5, <e (2.12)
m—00

holds.

Proof. Let 6, = (ttom, tt1m), then S(t)0 = ™ (£), u'™ (1)), where u™ (¢, -) is the solution of
Eq. (2.1) subject to the conditions u™ (0, x) = uom (x) and u" (0, x) = w1, (x). Multiplying (2.1)
by (u; + %Owrou), integrating over [0, T'] x R" and taking into account (2.5), (2.6) and (2.11) we
obtain that for every 7 > 0

T
/[/wro s ) + [ Au(@) [P + 2|u )] ]dx+f(prof(u(t,x))u(t,x)dx]dt
0

R R

T n
+/[ / Au(t)u(t) Agpydx +2 / Au(t)—u(t) ¢r0dx:|d
0 LB©.2r) =1 B(0,2ry)

T
—//wrog(X)u(t,x)dxdt <

0 R"

(2.13)

Similar to (2.13), since B is bounded in Hg and 6,, € B, forevery T > 0

T
f|:/(pr0 |th)}2+‘Au(m)|2+)L}u(m)|2]dx+/¢r0f(u(m))u(m)dx:|dt
0 R R"

T

au™ dgp
(m)A (m)A d 2 / Au m) 9% " 9%y dx | at
+/|: / ! oro 6% Z x; ox

0 “B(0,2rg) =1 B(0,2r9)

T
—//wmg(x)u(’”)(t,x)dxdt <o (2.14)

0 R

holds.
By (2.6), Lemma 1 and compact embedding theorems we have

T T
1iminf/f<pr0f(u(m))u(m) dxdt}//(pmf(u)udxdt. (2.15)

m— 00
0 R" 0 R

By Lemma 1 and inequalities (2.13)—(2.15) we obtain
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limsup//(pro }utm)|2+ |Au(m)|2+)»|u(m)|2]dxdt
m— 00

0 R"
T
<262+/f¢r0[|u,|2+|Au|2+klu|2]dxdt, VT >0,
0 R"
or
T
imsup [ [ [ < 4@ <0 3 —uPavar <2es
e 0 R"™\B(0,2rg)
VT > 0. (2.16)

Now let p;(-) € C*°(R") be such that

() = 0, x| =3ro, P s
PRY= i, Ixl<2r, P70

Multiplying (2.1) by "7, (pi a—i_u + ( Ok Opi u) integrating over [0, 7] x R" and taking into

account (2.11) we obtain that for every T >0

T
/[ / [nu|ut(t)|2+(2—nu)|Au(t)|2—,\nu|u(r)|2]dx}dt

0 B(0,2r9)

+“/[Z / | (O] = Au®)] = Au)] ]dx:|

i=1 pn\ B(0, 2r0)

T n

T

—/Z /bcb(u)dxdt—i-Z/
3)6,' .

0

0 =l gn i=1 k=lpn\ B(0,2r0)

1 3(Ap;) "\ du 3%p;
Z_ 2 2 —_— dxdt
- <2 M) / / |: et Pyt 0X) 0X; 00Xk o

i= an

n l’l

9 2
f Pi p dx dt
axk 8x, 0Xx

r o, T

+/Z/AuAp,—dxdt O/ER[ |:pl_+<%_u>gxl ]dxdt

0 =l pgn

<3 (2.17)

Similar to (2.17)—since B is bounded in Hg and 6,, € B—for every T > 0 we can say that

T

|:nu|ufm)(t)|2 + 2 - nu)|Au(”’)(t)|2 — knu|u(m)(t)}2:| dxi| dt
0 B(0,2rp)
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T
wuf [ / a—’ﬁ[luf’"%wlz—|Au<'"><r>|2—kiu‘m“’)'z]‘”}d’
0

=1 pn\ B(0,2r0)
T T
—/ /ap, (™) dxdt~|—2/
0 0 R™ B(0,2r0)

/ Ap™ 3(APZ) o Zau@“) PP | geds
0xp 0x;0xk

n n n

. 2, (m)
/ %AMM dx dt

Xy 0X; 00Xy
i=1k=1

i=

%

i=1 pn k=1
T n ) T n au(m)
+f / (m)Apl . dxdt—/ /pig o dxdt
0 =l gn i 0 =l pn x,
1
( )/Z/ i gy ay <cs. (2.18)
1= lRu

If we take u € (0, %), then by Lemma 1 and from (2.16)—(2.18) we have

limsupf / §’">—ut|2+|A(u<’">—u)|2]dxdt<C4(1+ﬁ) (2.19)
e 0 B(0,2rp)

forevery T > 0.
On the other hand, by (2.5), (2.6), (2.10) and (2.11), for any § > 0 there exist ty) = tp(5, B) > 0
and ri =r (8, B) such that forevery T > 1y, r > ry

T

1
?/ / @ (u"™ (t,x))dxdt <8. (2.20)
0 R™\B(0,r)

Thus (2.16), (2.19) and (2.20) give us

T

limsup%[[E(u(m)(t),ul{m)(t))+/€D(u(m)(t,x))dx—/g(x)u(m)(;’x)dx} dt

m— 00
0 R" Rn

T
< %/[E(uu),uz(r))+/q>(u<t,x))dx_fg(x)u(,’x)dx]dHMH’
0

R" R"

which together with (2.11) yields
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limsup[E(u(’")(T),ui’")(T)) f (u"™(T, x) dx+—///a(x)|u§m)(s,x)|2dxdsdt:|

m—»00
0 t R"

T T
E(u(T),u,(T))+f (u(T,x))dx + — ! //fa(x)|ut(s,x)|2dxdsdt
0

R t R"

+M+5

. 221

forevery T > 1y.
Since by Lemma 1

1iminf/q>(u<’">(r,x))dx>f¢>(u(T,x))dx

m— 00
RN Rn

lrinrgioléf[f/a(x)|u,m)(s x)| dxdsdt > ///a(x)|ut(s x)| dxdsdt,

t Rn t Rn

inequality (2.21) gives (2.12). O

Now Lemmas 1-3 give us asymptotic compactness of S(¢), which is included in the following
theorem:

Theorem 1. Assume conditions (2.3)—~(2.6) hold. Then for any bounded subset B of Hy, the set
{S(tm)Om}an:l is relatively compact in Ho, where t,, — oo and {9,,1}5’,?:1 C B.

Proof. Since B is bounded, taking into account (2.5) and (2.6) in (2.11) we find that
sup,; > Supgep 1S ()01, < oo. Therefore there exists a bounded subset By of Ho such that
S(t)@ € By for every t > 0 and 0 € B. Thus {S(#,,)0n},_, has a subsequence {S(t,; )0},
weakly converging in Hg to some ¥ € Hp. From Lemma 3 we know that, if {£,}°2 | C By and
&, — & weakly in Hy, then for any ¢ > 0 there exists a Tp = Tp(e, Bo) > 0 such that

limsup||S(To)&, — S(Tp)é ||H <e. (2.22)

For t,,,, 2 To—since S(t,,, — T0)0n, € Bo—there is a subsequence {S (tmy, —T0)0m,, 152, weakly
converging to some & in Ho. Then by Lemma 1, the sequence {S (m,, )0m,, };—, weakly converges
to S(Tp)é in Hp. Hence from the uniqueness of the limit we get ¢ = S(7p)&. Taking &, =
S(tmy, — 10)0my, in (2.22) we obtain

limsup|| S (g, O, — V|44, <&
V—> 00

and consequently liminfy, oo | S(#)0m — ¥ |7, = 0. In other words the sequence {S(t)0n},,_;
has a subsequence strongly convergent in Hp. It can be seen in a similar way that every
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subsequence of {S(#,)0,}5._, has a subsequence strongly convergent in Hy. Thus the set
{S(tm)0m ), is relatively compact in Hy. O

3. Existence of a global attractor
In this section, we shall show the existence of the global attractor. To this end, we first prove
the point dissipativity of S(z).
Let Z ={¢: ¢ € Ho, S(t)¢ = ¢, Vt € R}. From condition (2.6) it follows that Z is bounded
in Ho (even in Hy).
Theorem 2. Assume conditions (2.3)—(2.6) hold. Then
lim dist(S(1)6, Z) =0, 3.1
—00

for every 6 € Hp.

Proof. Let 6 € Hyp. From Theorem 1 it follows that the w-limit set of & namely

w(0) = ﬂ U S(t)o°!

201271
is compact in H, invariant with respect to S(¢) and
lim dist(S(t)G, cu(@)) =0. 3.2)
11— 00
Let (u,u;) = S(#)0. Since by (2.3) and (2.11) the Lyapunov function L(S(#)0) := E(u(?),
() + [pn @(t, x))dx — [pn g(x)u(t, x)dx is nonincreasing and bounded below, it has a
limit at positive infinity, i.e.
lim L(S(t)Q) =1.
—>00
This means that
Lip)=1

for every ¢ € w(0). Consequently if ¢ € w(0) and (v, v;) = S(t)¢, then v(¢, x) satisfies the
following equations:

v+ A2+ av+ fu) =gx), (1,x)€R x R", (3.3)
av, =0, (t,x) € R x R". '

Let w(t,-) =v(t +1ty,-) —v(t,-) and h(t, x) = fol f'(v 4+ tw)dz. Then from (3.3) we obtain

{wzz+A2w+kw+hw=O, (t,x) € R x R", (3.4)

aw =0, (t,x) € R x R".
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Now let us show that ¢ € Z. (Note that when n < 3, since & € Loo(R x R") we see w =0
in R x R" from the result of [13], consequently ¢ € Z.) Multiplying both sides of (3.4); by

HKXj=1% and applying the Fourier transform we have
82 n l 2 n n
a7.7:(11)6’1‘ 25=1%) () + |:Z(k — iyj)2:| F(wek25=171) (y) 4+ 1 F (wek Zi=1%7) (y)
j=1
+ F(hwetXi=1%)(y) =0, (1,y) € R x R", (3.5)

where k > 1 and F(¢)(y) = W fRn e(xX)e V) dx, (x, y) = 27:1 Xjyj.
Multiplying both sides of (3.5) by

ivi+y2+-+w)
Z’}-:l(k—iyj)2

and integrating the real parts over (0, r) X R" we obtain

f(wek =i ()

13
/ 2k +y2 4+ )’ | F(w, e Zi=1%9)|* dy d

| =iy’

0 R}l

+//[2k(y1 + 244 ) = ]| F(wek Zi=10) [P dy de

0 R"
+Re //1(y1+y2+ +2y")]:(hwek27=1xf)]_-"(wekz'}=1x-’)dydf
0 R" l(k_lyj)

(0@, Vi >0

which together with Plancherel’s theorem gives us

//l(y1+y2+ +2Yn)]_-(hwek27=nXJ)]_:(wekZ7=1xf)dydr
j 1k —1y;j)

2
+2k//|: wesz 1xf):| dxdt
0 R =l
t
</\//[wekZ'}:lxjfdxdz+c1(||w(9)||H0), Vi >0, (3.6)
0 R

where [[&(8) 174, = SUP, ey 6 1917
Now in order to estimate the first term on the left side of (3.6) let us show thatifu, v € W22(R")
and v =0in R"\ B(0, rg) then
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n

9
[/ @l oy < (0 Maelzom) | D05 3.7
j=1 "7 MLy R
where
2n 2m—Dn—4
g =min " , (=D =9 forn>5
n+3 nn-—1)—-16

and 1 < g <2 for n < 5. We will prove (3.7) in the case n > 5 (in the case n < 5 the proof is
simpler). Let x; = lezl yj,i=1,nandi(y) =u(x), v(y) =v(x). Since v(y) =0 for |y1| = ro
we have

d
—U
ay1

— 1012, Ry < €2(70) (3.9)

sup [9(y1, || Ly(grn-1y S €2(Fo)

VieR CATEN FNT-O) LaRY)

Let

ﬁ:max{l, 47’1}
n—4)(n+3)

Since W22(R”) C Lyg(Ry,; Lz(,,_l)/(,,_4_1/,3)(R”’1)) using (1.3) and Holder inequality we find
that

ro
/|f’(u)v|qu=/dy1 / | @) dy'
Rll

—rQ {y/: y/ER’l*l, |y/‘<;0}

< e3(60) / 0PI, BN s

< e4(ro) / A e I d
< 5(70, ”u”sz(Rn)) Sup “f)()’l» ')||12(R;1—1)
Y1ER

which together with (3.8); yields (3.7).
It is easy to verify that

(1+Z] ly])g/ZZj lyj

kK les(n), foree(1,2).
Zj:](k_lyj)z

<ca(n)

n
Doyl +
j=1
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Then we have

// i(y1 +yz +- +yn)]_—(hwekZLlxj)f‘(wekz.';ﬂx!')dy dr

—&/2
//<C4(n) Zy/ +cs(m)k*™ 1) (l—l—Zy]) |]:(hwek2?:1)fj)|
0 R"

X |]_-'(wek2?:1xf)|dy dt

dt
La(R™)

Zai (wek Zie1 )

t
<c4(n)/th6kZ;:1xf I Wy (RY)
0

+ cs(n)k®~ I/thesz ! f||W ¢ (Rm) wek Xi=1%i dt

I 47

dt

Cﬁ(n)/ |hwekz] 14 HLQ(R”)
Ly (R™)

Y o)
= %

wek Xj=1%i dr, (3.9)

+e7(m)ke! /thekz’}=1x'i HLO,(R") HLz(R")

where a = ni”zg when n > 5, and 1 < o <2 when n < 5. From the definition of ¢ follows that
1< @ <2, when n > 5. So taking ¢ = %;q) we have @ = ¢ when n > 5. Hence taking

into account (3.7) in (3.9) we obtain

/’/‘l(yli-yz-i- +2yn).7:(hwekz ]x,) (wekz 1x’)dyd‘t

0 R"
2
”a)(e)”HO / wekzj 1"/) dr
0 11 Ly(R")
+ o (@] 5, )k wek27=1"f) |we == g dT. (3.10)
j=1 La(R™)

Since by (3.4); we have w =01in (0, 1) x R"\B(0, rp), from (3.8), it follows that

2 1
//[ e (wek i m)} dxdr>a/ / [wekXi=1%i P dxdr, Vi>0. @3.11)
x]

0 R = 0 B(0,r)
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Thus taking into account (3.10) and (3.11) in (3.6) for large enough k we find

t

/Hw(r)ekz’}ﬁx" 17 50y 47 <cto(o® ], ). V>0, (3.12)
0
which yields
t
/”w(r)”iz(mo’ro))dr <cn(fo®]yy,).  ve>0, (3.13)
0

Since w(¢, x) is the solution of the equation

wyy +aw; + A%w + Aw + hw =0, (t,x) € R x R",
taking into account (2.5), (2.9) and (3.13) we obtain

t

[l + Jwld)dr <cn(lo@ly,). o G4
0

Now let T > 0 and define w = ¢(T — t)w. Then from (3.4) we have

{ Wi + AW + AW + h = 2(T —20)w; — 2w, (t,x) € R x R, (3.15)

aw =0, (t,x) € R x R".

As above, multiplying both sides of (3.15); by & Ei=1% and applying the Fourier transform,
similar to (3.5) we find

82

n 2
T 7 (D E=) () + [Z(k - iyj>2] F (et 21) () + AF (el Zi=17) (7)

j=l1

+ f(hﬁ}ek Y ) (y)

=2(T — 21‘)%.7-"(11)6’(2?:1 ) () — 2F (we* i )G

from which by multiplying by

i Y240 = k5
- - Flwe" ~i=t*i R
ST G )

integrating real parts over (0, T) x R" and taking into account that (0, -) = w(7, ) = 0 we
obtain
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|\ F (@, 2= P dy di

T

//2k(y1+yz+-~+yn)2
. 2

S ok —iyp?]

+/f[2k(Y1 + 244 yn)? = A |F (@ XI5 [P dy di
0 R"

T
//l(y1+y2+ +2yn)‘7:(h/\ekzj 1"/) (u)esz lx’)dydf
5 1k —iyj)

T
_ f/l(y1+y2+ +2yn)f(w KLIa N F ek Zi=1%1) dy di
0 R J 1(k_lyj)

+2Re //l(yr:yz-i- +2yn)(2t—T).F(wekz;'elxf)]_-‘(@,ekz'}ﬂxj)dydt
j 1k —1iyj)

which yields

f/[Zk(yl 244y’ — A= 1]|F (@t Zi=1%) > dy i
0 R)'l

4 Re //l(yl+y2+ +2y")j:(h" k3G 1"1) (wekz/ “‘f)dydt
] 1k —1iyj)

2+1)//\f(wek2?=1xf)yzdydt. (3.16)

0 R)‘l

Taking into account (3.10), (3.11) and (3.12) in (3.16) for large enough k we find that

/HfEekZ} ! ’”Lz(mom))d (T + Dei(Jo@ |y,), VYT >0,
from which follows
—~12
/||w||L2(B(O!rO)) dt < (T? + 1)er14(|w®)],,, ), ¥T >0. (3.17)

Since w(z, x) is the solution of the equation

Dy + aly + A’W + A + ho =2(T —20)w; — 2w, (f,x) € R x R",
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taking into account (2.5), (2.9), (3.14) and (3.17) we obtain

T
U@+ @l ar < (72 + Ders(lo@ly,). v7 >0
0

consequently
27T/3
1
f [ St +10)p — S(z)¢||§1_] T2c16(||w(9)||H ), VT >0,Voew®). (3.18)
T/3
Since

H_S(WH <c17(||a)(¢9)||H0), Vi >0, Yo € w(0),

using integration by parts on (3.18) we obtain
2

S 2T+t S 2T
3 (1% 3 <PH_

Let ¢, = S(—n)¢p. Then from (3.19) we find that

1
< mclg(ﬂw(e)”%), VT >0, Vo ew(®). (3.19)

|G+ 1009 — SO, = [SC+10+mgn — S +m)ga]3, |
1
< mcl9(”w(9)“m)~

The last inequality means that ¢ € Z and consequently w(0) C Z, which together with (3.2)
gives (3.1). O

Now Theorems 1, 2 and [12, Theorem 3.1] give the existence of a global attractor.

Theorem 2. Assume conditions (2.3)—(2.6) hold. Then problem (2.1), (2.2) has a global attractor
A C H, which is invariant and compact.

4. Regularity and finite dimensionality
To prove the regularity of the global attractor .4 we will need the following lemmas.

Lemma 4. For any ¢ > 0 there exists § > 0 such that if [t — t1| < 8 and 6 € A then ||S(t2)0 —
Sbln, <e.
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Proof. Let 7, > t; and At =1, — ;. From (2.8) we obtain

|S2)6 — S8, = [SAnSE)o — Sno|,,,
At
< JleAS(t)6 — S0y, +/||e<4’—”AF(S(r)S(z1)9) 34,47
0

=1+ Db. “.1)
Taking into account (2.5) and (2.9) we get
D < cAt. “4.2)

On the other hand, since lim,_, o+ e/4¢ = ¢ for every ¢ € Ho and A is compact in H, for any
& > 0 there exist §; > 0 such that if 0 < ¢ < §y, then for every ¢ € A

&

9=l <5

”etA
2

holds. Since A is invariant, from the last inequality we obtain that if Az < §; then

n<< 4.3)
< —. .
=3
Choose § = min{éy, 287} from (4.1)-(4.3) we get that if |t — #1| < 6 then

|S(t2)6 — S(11)6 ||H0 <e¢

foreveryf e A. O

Lemma 5. Assume K is a compact subset of H* and f (-) satisfies condition (2.5). Then for any
& > 0 there exists § > 0 such that ||vy — v1||2 < & implies

[ @) = f@w]u| ., <elluls (4.4)
for every vi,va € K andu € H® (s =0,2).

Proof. Let us perform the proof in the more interesting case n > 4. Denote

2n . Iz« (R
p*= and ¢= sup —2——=
n—4 ver2  vll2
v£0

Since K is compact in H 2 for & > 0 there exists 8; > 0 such that if mes E < §; then

&

Lops(E) < % “.5)

| £ @)
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foreveryve K. Leta = W sup,cx llvll2. Define the following subsets of R":
1

Qi ={x: xeR",

vi| <a}, i=1,2.

Then

*

1 P .
mes(R"\ Q) < (;”Ui”L,,*(R")) <681, i=1,2 (4.6)

Since f’(-) is uniformly continuous in [—a, ], there exists §; > 0 such that if s1, 52 € [—a, o]
and |s; — 52| < 87 then

£/(s2) = f(s1)| < 2 4.7

Let O3 = {x: x € R", [v2(x) —vi(x)| <82} and & = lémin{éﬁl/p*, 55717} Then from
lva — v1]l2 < 8 we obtain

1 P o
mes(R”\Q3) < (5”1)2 — V] ||Lp*(Rn)> < (&) T+ <L 6. 4.8)

Thus if ||vp — v1]|2 < 6, then from (4.5)—(4.8) we have

/|f’<vz> — /@D |lullg| dx

R"

3
< / | £/ 2) = f' D) lullpldx + ) /!f’<vz>—f’<v1)||u|!<p!dx
Mo 0 R

&
< g lulollelio

3
+ Z ”u”LZn/anA'(R”)[” f/(”) ”Ln/z(R"\Q,-) + “ f/(UZ) “Ln/z(R"\Qi)]||§0”L2n/n+2s—4(R")
i=1

e e .
< slullsliello—s + ) —=cllullsliella—s = ellullsl@lla—s
4 4¢

i=1
for every u € H* and ¢ € H>™ (s =0, 2). The last inequality yields (4.4). O

Now we can prove the regularity of the global attractor.
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Theorem 3. The global attractor A is a bounded subset of the space H;.

Proof. Let 6) = (ug, u1) € A and choose ¢ € (0, %). According to Lemma 5, there exists ] =
€1(¢) such that if ||6 — 01]/7¢, < &1 then

[(F @) — @)y, <elnlizg,. V62,61 € AandVyeH,, s=0.~1,  (49)

where F*@)n = (0, — f/(0YHnl) for 6 = (61,6%), n = (»', n?). On the other hand, since
S(t)A=A (t € R), similar to proof of Theorem 2 it is easy to show that lim,_, . dist(S(¢)8,
Z) =0 for every 6 € A. Thus there exists Ty = Tp(e1, 6p) < 0 such that

&1

dist(S(1)6, Z) < > Vi < Tp. (4.10)

For %‘ choose 6 = §(e1) asin Lemma4 and denote T, = To—md (m = 1,2, ...). Then according
to (4.10) there exists a sequence {a,, } such that a,, € Z and || S(T;,)00 — am ||+, < %1 for every m.
Introduce the function w(t) = {ay,, t € (T, T,—1], m = 1,2, ...}. Then from Lemma 4 we have

|S®8 —w®)|;,, <e1, Y <To. 4.11)
Let s <t < Tp. According to (2.8) we obtain

S0 = S(t — $)S(s)6
t—s
=™948(5)0) + / UTSTOAR(S(7)S(s)60) dt
0
t—s

— A (5)00 + / AF(S(t — 0)60) do,

0
from whichforO<h <t —s
S(t)0y — St — h)by
h
1 1 t—s
= Z(e(t_S)A — e I4) S (5)8) + . f e A[F(S(t —0)p) — F(St —h — 0)8)]do

0

1—s
+ - f e AF(S(t —h —0)6p) do.
t—s—h

Letting DjS(1)8p = 3PS - A5(1)gy = S(1)6y — S(t — )by and B(r, ) = Tw(r) +
(1 — ©)w(t — h) from the last equality we have
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t—s

1 : ‘ 1
DpS(1)0p = Z(em)/‘ — eI S(5)80 + A / CAF(S(t —h —0)8) do

t—s—h
t—s 1
+ % / o4 / ﬁ(S(t — 0o —h)0y+ TAS(t — 0)60) AS(t — 0)6pdT do
0 0
1—s
= %(AHM — eI S(5)8) + % / e AF(S(t —h — 0)by) do
t—s—h

r—s

1
/‘”‘/ (S(t — o — h)6o + TAS(1 — 0)60)
0

'Tjoo

— F(W(t —0,7))|DyS(t —0)bpdt do

\

oA

+ | et | F(i5(t — 0. 1)) DiS(t — 0)bodr do

+ ST
o—__

=K, + K2+ K3 + K. 4.12)

Let us continue the proof in the case n > 8 (suitable embeddings are used when n < 8). Using
(2.9) and condition (2.5) we have

lim [|Kill}, =0 and lim ||K3|l3, =0.
§—>—00 §——00

On the other hand, since w(-) € Loo(—00, Ty; H1) and Dy, S(t)6p is uniformly bounded in H_
with respect to & and ¢, we have

IKallpe, <

where pu = =4 8 and ¢; does not depend on ¢, s, h and 6.
Using (4 9) and (4.11) we obtain

t
1K3llp, < sM/e*‘““*")H DiS(@)60 |, do

So from (4.12) we get

| DS ®60 |5, <c1+eM / e~ | DyS ()60 4, do

—0o0

which yields
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| DS @05, < 2. forVi<Tp, Vh € (0. +00).

Taking into account the last inequality we can get a more regular estimate for K4, and repeating
the above procedure a finite number of times we have

| DrS @60 ||, < 3. for Ve < To, Yh € (0, +00)

which means

<c3, forVve <T.

d
—S(1)0
Hdt ()OH0

Since the operator A is an isomorphism from H; to H, taking into account the last inequality in
(2.7) we obtain

|}S(r)90||H <cs, forVe<Tp, (4.13)

where ¢4 does not depend on 6. It is known that S(7p)6p € H; implies S(¢)S(To)6y € H; for
every t € R. Then 6y = S(—Ty)S(Ty)6p € H; and since 6 is an arbitrary element of A we get
A C Hj. Let ng € A. Then from (2.7)—(2.9) we obtain

d
H —S(m es(Imolle, + Inollgh)e ™
t 7'(0

t d

+ M/e_('_s)’” F(S(r)no)—S(r)no dr, Vt>0. (4.14)
/ dt Ho

Since A is compact in H there exists £(¢) > 0 such that

[EM@lyy, = 1/ (e |y <elo' |, +E@]e' ], (4.15)

for every n = (', n?) e Aand every ¢ = (@', %) € Ho. Thus from (4.13)—(4.15) we have

<ce, VE20, (4.16)

d
H d—S(I)S(To)90
t Ho

where c¢ does not depend on ¢ and 6. Consequently from (2.7) and (4.16) we get ||6pll7, < c7.
Since 6y is arbitrary element of A and ¢7 does not depend on 6y, the last inequality means A is
boundedin H;. O

Now let us prove the finite dimensionality of the global attractor .A.
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Theorem 4. The fractal dimension of A is finite.

Proof. Again let us present the proof in the more interesting case n > 8. By Eq. (2.8) and Theo-
rem 4 we have

t

| $062 = @013, < Me™ 1162 = Orll3g, + Mre™ / i NOEERl HH(g,n)/(n,@ de
0
< Me 02 = O1ll3gy + MiMe™ 162 = 01135 10s)
v
+ Mye ™" / / e’ ||S(0)62 — S(0)6; ||H71 do dr, 4.17)

for every ¢t > 0 and every 01, 6, € A.

Let (u' (1), u} (1)) = S()01, @?(@), uf (1)) = S(1)62, u(t) = u?(t) — u' (t) and @, (-) be as in
the proof of Lemma 2. Furthermore define 0, (t) = (¢,u(t), ¢ u;(¢)). Then from (2.1) (or (2.7))
we have

d y
Enr(t)zAnr(t)+Fl(t)+F2(t)’ vt =20, (4.18)

where
1
A=A+ FO). FO= [f (S®6 + (161 — S(1)6)) dT — 1;(0)} 0y (1)
0

and

n n
Fi(t) = (0, Aulg, + A (4 D un (@) + qu) —2> " Alpr)xity,

i=1 i=1

—4 Z Z Uxix; (‘pr)x,-x_,-) .

i=1 j=I

Since f/(0) > 0 (thanks to (2.6)) it is easy to show that

e ZA||L(H ) SMie, Vi20, ¥se[~1,1]. (4.19)

On the other hand, for some k; > 0 we have
9
IF®],, <= ||S(r>92 — 80615, < 7e’<"||92 —O1ll3,, VE=0. (4.20)

Choose ¢ € (0, M%)' According to Lemma 5, there exists ro = ro(¢) such that if r > rg then
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| RO, <eln®], . ve=o0. 4.21)

So from (4.18)—(4.21) we obtain that

[ |5 <M (e—““—M'S)’ IO 5 + Crﬂek"nez —6 ||HO>, Vi>0. (422)

Similarly denoting &, () = ((1 — ¢, )u(t), (1 — ¢, )u,(t)) we have

l&- ]y, <M (6O ]y + M0~ 013, ). Vez0. (423
H 1 H 1 r

Since S(1)0> — S()0, = 1, (t) + & (¢t) from (4.17), (4.22) and (4.23) we obtain

1
[ S(®)62 — S(1)6, ||H0 <m1(DN02 — 011, + mz(l)[ll92 = 0llH_ B0, + - 162 — 64 ||H0i|,
vVt >0,

where H_1(B(0,r)) = Ly(B(0,r)) x W2_2(B(O, r)), ma(t) is an increasing function and
mi(t) > 0ast — +oo.

The last inequality together with [14, Theorem 5.3] yields finiteness of the fractal dimension
of the global attractor A. O
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