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1. Introduction

In this paper, we consider the following Cauchy problem:

Uy + o (WU — Uy + AU+ f(u) = g(x), (t,x) € (0,0) xR, (1.1)
u(0, x) = up(x), u(0,x) = u1(x), x€R, (1.2)

where A is a positive constant, g € L{(R) + L,(R) and nonlinear functions f (-) and o (-) satisfy the following conditions:
fec'®, fwu=0, YueRr, (1.3)
o € C(R), a(0) >0, o(w) >0, VueRr (1.4)

As was mentioned in [1], Eq. (1.1) describes a model for a vibrating string in a viscous medium. In particular, u represents
the displacement from equilibrium, u; is the velocity, and o (u)u, is a resistance force. Applying Galerkin’s method and using
techniques of [2, Proposition 2.2], it is easy to prove the following existence and uniqueness theorem:

Theorem 1.1. Assume that conditions (1.3) and (1.4) hold. Then forany T > 0and (ug, u;) € # = H'(R) x L,(R) problem (1.1)
and (1.2) has a unique weak solution u € C([0, T]; H'(R)) N C!([0, T]; L, (R)) N C%([0, T]; H~'(R)) on [0, T] x R such that

[ (), us ()5 < c(ll(uo, un)llze), Vvt =0,

where ¢ : Ry — R is a nondecreasing function. Moreover if v € C([0, T]; H'(R)) N C'([0, T1; Ly(R)) N C>([0, T]; H~'(R)) is
also a weak solution to (1.1) and (1.2) with initial data (vg, v1) € #, then

lu(t) = v(Ollp® + lue®) = ve®) llg-1q < T, R)(luo — vollw + llur = villg-1g), YVt € [0, T],

where€ : Ry x R, — R, is a nondecreasing function with respect to each variable andR = max{|| (ug, u1) |l 5, || (vo, v1) |l 5¢}-
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Thus, by Theorem 1.1, under conditions (1.3) and (1.4) the solution operator S(t)(ug, u;) = (u(t), u;(t)) of problem (1.1)
and (1.2) generates a weakly continuous (in the sense that if ¢, — ¢ strongly then S(t)¢, — S(t)p weakly) semigroup in
H.

The attractors for Eq. (1.1) in the finite interval were studied in [1], assuming the positivity of o (-). For the two
dimensional case, the attractors for the wave equation with displacement dependent damping were investigated in [3]
under conditions

oceC'(R), O<op<o@) <c(1+ulY), YueR 0<gq< oo,
and

lo'W)| < cleo@)]'™®, YueR 0<e<1, (1.5)
on the damping coefficient. Recently, in [4], condition (1.5) has been improved as

lo'(W)| < co(u), YueR.

For the three dimensional bounded domain case, the existence of a global attractor for the wave equation with displacement
dependent damping was proved in [2] when o (-) is a strictly positive and globally bounded function. When o (-) is not
globally bounded, but equal to a positive constant in a large enough interval, the existence of a global attractor has been
established in [5].

In the articles mentioned above, the existence of global attractors was proved under the positivity or strict positivity
condition on the damping coefficient function o (-). In this paper, we study a global attractor for problem (1.1) and (1.2)
under weaker conditions on o (-) and prove the following theorem:

Theorem 1.2. Under conditions (1.3) and (1.4) a semigroup {S(t)}+>o generated by problem (1.1) and (1.2) possesses a global
attractor in J.

2. Proof of Theorem 1.2

To prove this theorem we need the following lemma:

Lemma 2.1. Let conditions (1.3) and (1.4) hold and let B be a bounded subset of #. Then foranye > Othereexist T, = T.(B) > 0
and r, = r.(B) > 0 such that

ISO@1 @\ —reren <o\ (-remery < € VEZTe, Vo €B. (2.1)

Proof. Let (up, u1) € Band S(t)(ug, u1) = (u(t), u.(t)). Multiplying (1.1) by u; and integrating over (0, t) x R, we obtain

t
llue (117, gy + ||u(t)||;1® +/ fa(u(r,x))uf(r,x) dxdt <¢;, Vt=>0. (2.2)
0 R

Letn € C'(R),0 < n(x) < 1, n(x) = [?3 :;:;,nr(x) = n (%) and Z(u) = [ o (s)ds. Multiplying (1.1) by 12X (u),

integrating over (0, t) x R and taking into account (2.2), we have

t t
/ /nf(x)a(u(r,x))uﬁ(r,x) dxdt +A/ /nf(x)):(u(r,x))u(z,x) dxdr
0 R 0 R

t
2 <1 +Vt+ - +t ”g“Ll(R\(—r,r))+L2(R\(—r,r))) , Yt>0,Yr>0. (2.3)
By (1.4), there exists | > 0 such that
U( )
T 5(s) < 26(0), Vs € [—L 1. (2.4)

Using the embedding Hi+e (R) C Lo (R) and taking into account (2.2) and (2.4), we find

t t
/ /UE(X)uZ(t,X)dxdr < —/ f n2(x) 2 (u(t, x))u(t, x) dxdr
0 JR ©) {x:u(z,0)|<l}
t
+C3/ / n2(x) lu(z, x)| dxdr
{x:|u(z,x)|>1}

B U(O) f /xlu(r x)|<l} r (X)E(u(-( x))u(r, x) dxdr

2C3 // 2(x) X (u(t, x))u(t, x) dxdr
oo I
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and consequently

t t t
f I g dr < ¢4 / I, g dr < o5 f / (0 Z (e, )u(r, 0 dxdr, (25)
0 0 0 R

forr > 1.So by (2.2),(2.3) and (2.5), we get
t 1 1
f [Im2r0 2 @) (D)7, gy + 1120 7 @)U (OIIF, oy
0

1 t
+ AIn2ro 2 @)U ], gy + a7 @] dr < c6<1 +t+ -

+t ”g”L](R\(—r,r))+L2(R\(—r,r))>’ vVt >0, Vr > 1. (2.6)
Now define
1 1
D (u(t)) = 3 Imrue (117, gy + 5 et (N7, gy + 14 (1t (£), mru(t))

A
+ 5 “r]ru(t)”fz(R) + (n:F(u(®)), n:) + (nrg, neu®)),

where . = min{\/z, LY ﬁ(@)}’ (u, v) = [yu®)v(x)dxand F(u) = [;' f(s) ds. By (2.4) and (2.6), it follows that for any

8 > 0 there exist 'Tva = AT:;(B) > 0,15 =r15(B) > 1andt € [0, ?5] such that
& (u(ty)) <8, Vr=>rys. (2.7)
Again by (2.2), we have

t
7wl < [nu) |, @ + ft et ()l gy ds < [neu) |, g + 2t = )
8
and consequently
[nu®l; g = e Inu |y < col(@r)) +2 ”g“L](R\(—r,r))+L2(R\(—r,r)))% +t—15)
< o687 + ||g||L%1(R\(fr’,)HLZ(R\(f”)) +t—t;), V=t Vr>rp,.

X 3 . 6 . . .
Denoting Tj = t; + 3’79 and choosing é € (0, 9’6—2), by the last inequality, we can say that there exists r, 5 > 2r; 5 such that
9

MUl @525y <1 V€ [t5, T5 1. (2.8)

Now, multiplying (1.1) by n?(u; + pu), integrating over R and taking into account (2.4) and (2.8), we obtain

d 1
ad)r(u(t)) + 0@ (u(t)) < cn (; + ”g”L](R\(—r,r))+L2(R\(—r,r))> . Vtelty, Ty,

and consequently

% —c10(t—tH) 1 1— e_clo(t_tg)
@, (u(t)) < &, (u(ty)) e 10%) 4 ¢y (; + ||g||L1(R\(—r,r))+L2(R\(—r,r))> B — Vr > 1. (2.9)
10

By (2.7) and (2.9), there exists r3 s > 1, 5 such that
& (u(t)) <8 Vr=>r3;, Vt e[t T ].

3ce

Hence denoting by ns the smallest integer number which is not less than gT’S and applying above procedure at most ng

times, we find

®,(u(Ty)) <8, Vr=>rys,

for some ry 5 > 2"r; 5. From the last inequality it follows that for any ¢ > 0 there existi = i(B) >0and7, =7.(B) >0
such that

[STO0 a7yt izn <& Vo €B.
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Since, by (2.2), By = U0 S(t)B is a bounded subset of #, for any ¢ > 0 there exist T, = T,(B) > 0and r, = r.(B) > Osuch
that

IS(T) @l 1 R\ (=1 re )y <Ly R\ (=rere)y < &5 Y9 € Bo.
Taking into account the positive invariance of By, from the last inequality we obtain (2.1). O
By (2.1) and (2.4), for any bounded subset B of #¢ there exist/T\B > 0and 7 > 0 such that

o (0) ~ -
o(u(t,x)) > — vVt > T,V |x| > T3, (2.10)

where u(t, x) is the weak solution of problem (1.1) and (1.2) with initial data from B. Hence using techniques of [6,
Lemma 3.3] one can prove the asymptotic compactness of the semigroup {S(t)},~,, which is included in the following
lemma:

Lemma 2.2. Assume that conditions (1.3) and (1.4) hold and B is a bounded subset of #. Then every sequence of the form
{S(t)@ntac 1, {@ntae, C B, t, — 00, has a convergent subsequence in J¢.

By (2.10) and the unique continuation result of [7], it is easy to see that problem (1.1) and (1.2) has a strict Lyapunov
function (see [8] for definition). Thus according to [8, Corollary 2.29] the semigroup {S(t)},>, possesses a global attractor.

Remark 1. We note that, for the problem considered in [1], from compact embedding H(} (0, ) C C[0, ], it immediately

follows that o (u(t, x)) > @, Vt>0,Yx e [0,e]U[mr — e, ], forsomee € (0, %) So a global attractor still exists if one
replaces the positivity condition on o (-) by the (1.4).
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