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The particular motivation of this work is to develop a computational method to calculate
exact and analytic approximate solutions to singular strongly nonlinear initial or boundary
value problems of Lane–Emden–Fowler type which model many phenomena in mathemat-
ical physics and astrophysics. A powerful algorithm is proposed based on the series repre-
sentation of the solution via suitable base functions. The utilization of such functions
converts the solution of a given nonlinear differential equation to the solution of algebraic
equations. Error analysis and convergence of the method is presented. Comparisons with
the other methods reveal validity, applicability and great potential of the method. Several
physical problems are treated to illustrative the good performance and high accuracy of the
technique.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Some problems occurring in extensive applications in mathematical physics, astrophysics and other fields in engineering
are generally reduced to so-called singular nonlinear Lane–Emden–Fowler differential equations through a process of math-
ematical modeling. Therefore, there has been a renewed recent interest in the research on the analytical and numerical solu-
tion methods for such nonlinear differential equations of the form
y00 þ a
x

y0 þ f ðx; yÞ ¼ gðxÞ; 0 < x < b; ð1:1Þ
subjected to the initial conditions
yð0Þ ¼ a; y0ð0Þ ¼ b; ð1:2Þ
or accompanied by the boundary conditions
y0ð0Þ ¼ a; yðbÞ ¼ b; ð1:3Þ
where gðxÞ is a sufficiently smooth prescribed function physically representing the source term, a; b;a; b are known constants
and yðxÞ is the sought solution depending on x. It is well known that (1.1) has a unique solution if f ðx; yÞ is a continuous func-
tion, @f

@y P 0 exists and continuous [1]. It is noted that mixed boundary conditions are also allowed within the subsequent
analysis. Moreover, linear differential equations can also be efficiently treated by the proposed method in this work.
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Typically, closed-form solutions to (1.1)–(1.3) either do not exist, except for some special cases, or are practically intrac-
table. It hence becomes important to develop analytical or numerical schemes for finding the solution. Accurate and fast
numerical solution of two-point singular boundary value problems for ordinary differential equations of the kind (1.1) is nec-
essary in many important scientific and engineering applications, e.g. reactant concentration in a chemical reactor, boundary
layer theory, control and optimization theory, and flow networks in biology, areas of astrophysics such as the theory of stel-
lar interiors, the thermal behavior of a spherical cloud of gas, isothermal gas spheres, and the theory of thermionic currents
[2–4].

The solution of the Lane–Emden–Fowler Eqs. (1.1)–(1.3), as well as other various linear and non-linear singular initial and
boundary value problems in quantum mechanics and astrophysics, is numerically challenging because of the singular behav-
ior at the origin. The approximate analytical solutions to the Lane–Emden equations were presented in [5] using the Adomi-
an decomposition method. Homotopy perturbation method was used in [6] for the analytical solutions of the Emden–Fowler
equations. A special class of Emden–Fowler equations was solved analytically in [7] by means of the homotopy analysis
method. Variational iteration method for the approximate solutions of singular initial and boundary value problems of
Lane–Emden type was used in [8].

On the other hand, there are some deficiencies of the aforementioned methods. For instance, since inner iterations are
required in the variational iteration method, it becomes tedious and even impossible to carry out the integrations beyond
some iterations. Although the homotopy analysis method is a decent method which contains the Adomian and homotopy
perturbation methods, it requires the knowledge of auxiliary parameters and of optimum convergence control parameter,
without which a fast convergence (sometimes convergence itself) is not guaranteed. Considering all these, the main objec-
tive of the present study is to develop and implement an analytic approximate solution technique for the nonlinear equa-
tions of Lane–Emden–Fowler type. The purpose is such that the devised scheme should give rapid solutions, besides its
reliability in terms of its accuracy. As opposed to the techniques employed in the literature, it should be straightforward
to apply and formulate. In line with this, the approach adopted here is simply based upon the well chosen base functions
(the classical polynomials, for instance). The solution to nonlinear differential equations is later presented as linear com-
binations of these functions, whose coefficients are determined using the Galerkin-like procedure. A rigorous mathemat-
ical proof is laid down for the error analysis and convergence of the method. Unlike the aforementioned methods, the
present approach yields a detailed solution in a straightforward fashion without any discretization. Application of the
developed method to well-documented nonlinear equations in the literature justifies the success of the introduced meth-
od. In addition to this, the method is capable of capturing the exact analytical solutions whenever they are basically clas-
sical polynomials.

The remainder of this paper is organized as follows. In Section 2 the new approach is described. The accuracy, error and
convergence of the method are discussed in Section 3. Section 4 contains several physical problems and analyzes the method
in terms of its accuracy and convergence. Finally, our conclusions follow in Section 5.

2. Description of the method

We assume that differential Eq. (1.1) under the initial and boundary conditions (1.2) and (1.3) has a unique solution. In
addition to this, the interval of interest ½0; b� is simply taken as ½0;1�, which can be achieved by an appropriate linear trans-
formation. Considering the base functions
! ¼ f!0ðxÞ;!1ðxÞ; . . . ;!NðxÞ; . . .g;
which reside in the solution space of Eq. (1.1), let the solution be expressed by the series expansion in terms of these base
functions
yðxÞ ¼
X1
k¼0

ak!kðxÞ; ð2:4Þ
where the coefficients ak’s are to be determined. By means of the definitions
X ¼ ½!0ðxÞ !1ðxÞ !2ðxÞ !3ðxÞ . . . !NðxÞ�; A ¼ ½a0 a1 a2 a3 . . . aN�T ;
the series solution (2.4) can be approximated at the Nth order by the dot product
yNðxÞ ¼
XN

k¼0

ak!kðxÞ ¼ X � A: ð2:5Þ
It is reminded here that the matrix U in the below-given notations and theorems is set to X. The higher derivatives of the
solution can also be obtained in the form
yðnÞN ðxÞ ¼ X � Bn � A; n P 1; ð2:6Þ
where B is the operational matrix depending on the choice of !.
Consequently, substituting (2.5) and (2.6) into differential Eq. (1.1), the following matrix equation reads
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xXB2 � Aþ aX � B � Aþ xf ðx;X � AÞ ¼ xgðxÞ: ð2:7Þ
Having donated the working Hilbert space H ¼ L2½0;1� with the inner product
hf ; gi ¼
Z 1

0
f ðxÞgðxÞdx;
consider the linearly independent set of functions in H
v ¼ fv0ðxÞ;v1ðxÞ; � � � ;vNðxÞg; ð2:8Þ
whose entries might be the classical monomial standard polynomials or any other polynomials type, such as, the polynomi-
als of Chebyshev, Legendre, Bernstein and so on [9]. Afterwards, within a Galerkin-like approach, taking the inner product of
Eq. (2.7) with the elements of v results in ðN þ 1Þ nonlinear equations for the unknowns of A, whose matrix equation is given
by
W ¼ G; ð2:9Þ
where the ith row of W and G, respectively consists of
hvi; xX � B2:Aþ aX � B � Aþ xf ðx;X � AÞi; hvi; xgðxÞi; 0 6 i 6 N:
The initial or boundary conditions (1.2) and (1.3) only modify 2 rows of the matrix W and the corresponding parts of right
hand side matrix G, due to the restrictions
Xð0Þ � Bk � A ¼ ak; k ¼ 0;1 ð2:10Þ
and
Xð0Þ:B:A ¼ a;
Xð1Þ:A ¼ b: ð2:11Þ
Therefore, taking the inner product of (2.10) or (2.11) with vi ð0 6 i 6 NÞ will modify n rows of (2.9). Eq. (2.9) is later solved
either numerically or by any routine solver mounted in object-oriented programs so that the elements a0; a1; a2; . . . ; aN of A
are uniquely determined. Eventually, substituting this into (2.5) yields the required analytic approximate solution to the
nonlinear differential Eq. (1.1).
3. Error analysis and convergence of the method

Before we approximate a function, we take into account the following preliminaries. Suppose that H ¼ L2½0;1�,
Pm ¼ f/0;/1; . . . ;/mg � H be the set of polynomials of mth-degree and Y ¼ SpanðPmÞ. If f is an arbitrary element in H, due
to Y being a finite dimensional vector space, f has the unique best approximation out of Y such as y0 2 Y , that is,
jjf � y0jj2 6 jjf � yjj2; for all y 2 Y ;
where jjf jj22 ¼ hf ; f i. Since y0 2 Y , there exist unique coefficients A ¼ ½a0 a1 � � � am� such that
f ’ y0 ¼
Xm

k¼0

ak/k ¼ A �U;
where U ¼ ½/0 /1 � � � /m�
T and A can be obtained by
AhU;Ui ¼ hf ;Ui;
where
hf ;Ui ¼
Z 1

0
f ðxÞUðxÞT dx ¼ ½hf ;/0i hf ;/1i � � � hf ;/mi�
and hU;Ui is an ðmþ 1Þ � ðmþ 1Þ matrix which is said to be the dual matrix denoted by u given by
u ¼ hU;Ui ¼
Z 1

0
UðxÞUðxÞT dx;
then
A ¼
Z 1

0
f ðxÞUðxÞT dx

� �
�u�1:
Keeping in mind this information, the subsequent theorems and lemmas can be outlined:
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Theorem 1. Suppose that H is an Hilbert space, Y is a closed subspace of H such that dimY is finite and fy1; y2; � � � ; yNg is any basis
for Y. Let f be an arbitrary element in H and y0 be the unique best approximation to f out of Y. Then we have
jjf � y0jj
2
2 ¼

Dðf ; y1; y2; � � � ; ynÞ
Dðy1; y2; � � � ; ynÞ

; ð3:12Þ
where
Dðf ; y1; y2; � � � ; yNÞ ¼

hf ; f i hf ; y1i � � � hf ; yni
hy1; f i hy1; y1i � � � hy1; yni

..

. ..
.

� � � ..
.

hyn; f i hyn; y1i � � � hyn; yni

����������

����������

Proof. Refer to [10].

We define the inner product in H by hf ; gi ¼
R 1

0 f ðxÞgðxÞdx and the subspace Y ¼ SpanðPmÞ, so the presented absolute error
(3.12) in Theorem 1 can be written
jjf � y0jj2 ¼
det½

R 1
0 WðxÞWðxÞT dx�

det½
R 1

0 UðxÞUðxÞT dx�
for which UT ¼ ½/0 /1 � � � /m� and WT ¼ ½f /0 /1 . . . /m�. An upper bound for the estimation of approximate error is presented
in the following lemma.
Lemma 1. Suppose that function g: ½0;1� ! R is mþ 1 times continuously differentiable, g 2 Cmþ1½0;1�, and
Y ¼ Spanf/0;/1; � � � ;/mg. If AU is the best approximation to g out of Y, then a bound for the absolute error is presented by
jjg � A �Ujj2 6
M

ðmþ 1Þ!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mþ 3
p ; ð3:13Þ
where M ¼ maxx2½0;1�jgðmþ1ÞðxÞj
Proof. Taking into consideration the Taylor polynomial
y1ðxÞ ¼ gð0Þ þ xg0ð0Þ þ � � � þ gðmÞð0Þ xm

m!
ð3:14Þ
from which it is known
jgðxÞ � y1ðxÞj 6 RmðxÞ ¼ jgðmþ1ÞðgÞj xmþ1

ðmþ 1Þ! ; ð3:15Þ
where g 2 ½0;1�. Since AU is the best approximation to g out of Y, considering y1 2 Y and using (3.15) we have
jjg � AUjj22 6 jjg � y1jj
2
2 ¼

Z 1

0
jgðxÞ � y1ðxÞj

2dx 6
Z 1

0
R2

mðxÞdx 6
M2

½ðmþ 1Þ!�2ð2mþ 3Þ
and taking the square roots we have the bound (3.13).
Now it is intended to prove that this approximation is convergent to f when m!1 only under the continuity constraint

of f.
Definition. Let us define the modulus of continuity xðf ; dÞ of a general function f on ½0;1� by
xðf ; dÞ ¼ supx;y2½0;1� and jy�xj6djf ðxÞ � f ðyÞj:
Lemma 2. A function f ðxÞ is continuous on ½0;1� if and only if
lim
d!0

xðf ; dÞ ¼ 0:
Proof. Refer to [11]
Theorem 2. If f ðxÞ is bounded on ½0;1�, then
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jjf � pðf ;mÞjj1 6
3
2
x f ;

ffiffiffiffiffi
1
m

r !
;

where pðf ;mÞ ¼
Pm

k¼0f ð k
mÞ/k and jjf jj1 ¼ supfjf ðxÞj : x 2 ½0;1�g. If f also satisfies a Lipschitz condition of order a on ½0;1�, then
jjf � pðf ;mÞjj1 6
3
2

Lm�
a
2;
where L is a Lipschitz constant.
Proof. Refer to [11]
Lemma 3. If f ðxÞ is bounded on ½0;1� and Y ¼ Spanf/0;/1; � � � ;/mg, then
jjf � AUjj2 6
3
2
x f ;

ffiffiffiffiffi
1
m

r !
;

where AU is the best approximation to f out of Y.
Proof. Since AU is the best approximation to f out of Y; pðf ;mÞ 2 Y and using jjf jj2 6 jjf jj1, it is straightforward to write
jjf � AUjj2 6 jjf � pðt; f ÞUjj2 6 jjf � pðt; f ÞUjj1 6
3
2
x f ;

ffiffiffiffiffi
1
m

r !
:

It is noted that whenever f is defined on ½a; b�, the interval ½a; b� can be transformed onto ½0;1�, and if f is also continuous on
½0;1�, by virtue of Lemma 2 we get
lim
m!1

x f ;

ffiffiffiffiffi
1
m

r !
! 0:
It is further shown that the approach defined in section 2 generates the exact solution when the solution consists of poly-
nomials of finite degree.
Lemma 4. Let f ðxÞ be a polynomial of finite degree M. Then, the best approximation AU with degree m P M coincides with f.
Proof. Because the Taylor expansion is unique and from Lemma 1, the proof is complete.
4. Application of the method

To illustrate the underlying ideas, validity, effectiveness, accuracy and performance of the proposed technique, we ana-
lyze several nonlinear Lane–Emden–Fowler equations. Throughout the calculations, the absolute error is defined by
err ¼ jyðxÞ � yeðxÞj; ð4:16Þ
where yeðxÞ denotes the exact solution. We incorporate the following simple polynomials as the base functions
X ¼ ½1 x x2 x3 . . . xN �
for which the entries of the operational matrix BðNþ1Þ�ðNþ1Þ are expressed as biðiþ1Þ ¼ i; 1 6 i 6 N and bi;j ¼ 0 for other
1 6 i; j 6 N þ 1. All calculations in this paper were made using Mathematica 7.

Example 1. To demonstrate that the presented approach can handle exact solutions when they are polynomials in
compliance with the Lemma 4, let us first consider the nonlinear differential equations [12]
y00 þ 1
x

y0 þ y ¼ 4� 9xþ x2 � x3; yð0Þ ¼ yð1Þ ¼ 0; x 2 ½0;1� ð4:17Þ
and
y00 þ 2
x

y0 þ y3 ¼ 12xþ ð1þ x3Þ3; yð0Þ � 1 ¼ y0ð0Þ ¼ 0; x 2 ½0;1�; ð4:18Þ
which correspond to linear and nonlinear singular initial boundary value problems. The following approximations are then
found using the present algorithm, respectively
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yðxÞ ¼ 0; n ¼ 0;1;

yðxÞ ¼ �53
47
ð�1þ xÞx; n ¼ 2; ð4:19Þ

yðxÞ ¼ �ð�1þ xÞx2; n P 3;

yðxÞ ¼ 1; n ¼ 0;1;

yðxÞ ¼ 1þ 1
4
�5� 245

91
3ð1392921þ 8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36024580869
p

Þ

 !1=3

þ
1

91 ð1392921þ 8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36024580869
p

Þ
� �1=3

32=3

0
B@

1
CAx2; n ¼ 2;

ð4:20Þ
yðxÞ ¼ 1þ x3; n P 3:
It is fascinating that exact solutions are obtained at all the approximation levels n P 3 for (4.17) and (4.18). However, [12]
used reproducing kernel space approach for (4.17) employing 51 and 250 terms to get a maximum absolute error of only
Oð10�8Þ. Moreover, the variational iteration method used in [13] does also fail to get the exact solution in finite number
of iterations (see Example 1 in [13]).
Example 2. Let us consider now the radial stress on a rotationally symmetric shallow membrane cap [14]
y00 þ 3
x

y0 þ 1
8

y2 ¼ 1
2
; y0ð0Þ ¼ yð1Þ � 1 ¼ 0; x 2 ½0;1�: ð4:21Þ
No an exact solution exists for this equation, hence it was solved numerically. Table 1 lists the values obtained from the pres-
ent method at the order of approximation n ¼ 10. It is seen from the table that the proposed method can resolve singular
nonlinear problem (4.21) accurately for small levels of approximations. In fact, at this level the maximum absolute error
is found to be order of magnitude Oð10�16Þ. However, the variational iteration method used in [13] for the solution of
(4.21) is not as accurate as the present one. Even though no exact solution exists, the following 5th order approximation
has an accuracy of Oð10�9Þ and can be used in place of the exact solution for practical purposes
y ¼ 0:9521484205þ 0:04833591932x2 � 6:774976833� 10�6x3 � 0:0004663349433x4

� 0:00001122989264x5: ð4:22Þ
Example 3. Let us consider now the gravitational potential of the degenerate white-dwarf stars which can be modeled by
the so-called white-dwarf equation [3]
y00 þ 2
x

y0 þ y3 ¼ 0; yð0Þ ¼ 1; y0ð0Þ ¼ 0; x 2 ½0;R�: ð4:23Þ
A closed-form solution to this equation can not be written down, hence a numerical solution is preferred. To approximate the
solution to (4.23), we first convert the interval [0,R] to [0,1] by the linear mapping x ¼ Rt and fix R at 5. Fig. 1 demonstrates
numerical (exact) and approximate solutions and the absolute errors at two levels of approximations, n ¼ 4 and n ¼ 12,
respectively. Figs. 1(a-d) clearly show that the accuracy of our method is getting better as the approximation level is increas-
ing. There appears an exponential decrease in the maximum absolute error for increasing n and thus the proposed method
converges rapidly to the exact solution. However, even the 20th order approximate solution given in [7] by means of the
homotopy analysis method seems not to converge to the exact solution as quickly as the proposed method here. This can
Table 1
Comparison between the present and variational iteration method in [13].

x Exact solution Present method Method in [13]

0.0 0.95214843206703 0.95214843206703 0.95214843208264
0.1 0.95263172996208 0.95263172996208 0.95263172997768
0.2 0.95408104815379 0.95408104815379 0.95408104816938
0.3 0.95649465883179 0.95649465883179 0.95649465884735
0.4 0.95986967789500 0.95986967789500 0.95986967791053
0.5 0.96420205838500 0.96420205838500 0.96420205840048
0.6 0.96948658141026 0.96948658141026 0.96948658142561
0.7 0.97571684467904 0.97571684467904 0.97571684469400
0.8 0.98288524879211 0.98288524879211 0.98288524880584
0.9 0.99098298147963 0.99098298147963 0.99098298148966
1.0 1.00000000000000 1.00000000000000 1.00000000000000
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Fig. 1. Exact and approximate solutions and absolute errors computed from the present method for (4.23). (a-b) n ¼ 4 and (c-d) n ¼ 12. Unbroken curves
represent exact and dashed present solutions in (a-c).

Table 2
The theoretical error TE and maximum absolute errors of present method and of [13] are
tabulated with various n for the solutions of (4.24).

n ¼ 3 n ¼ 6 n ¼ 8

TE 1:3888� 10�2 1:3893� 10�3 3:7606� 10�4

Present err 1:1100� 10�3 5:5622� 10�6 5:2440� 10�8

[13] err 3:9200� 10�4 – –
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be easily judged from the Figs. 5 and 6 drawn in [7]. A quantification can not be made for this example since no data was
presented in [7]. Moreover, the Adomian decomposition method implemented in [5] for this problem was reported to di-
verge in [7].
Example 4. We consider now a nonlinear singular two-point boundary value problem arising in astronomy, the equilibrium
of isothermal gas spheres described by [1]
y00 þ 2
x

y0 þ y5 ¼ 0; y0ð0Þ ¼ 0; yð1Þ ¼
ffiffiffi
3
p

2
; x 2 ½0;1�: ð4:24Þ
Eq. (4.24) has an exact solution y ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

3

q
. In Table 2 the accuracy and convergence history of the approximate solutions

are presented. The maximum absolute errors are observed to diminish fast at an exponential rate as compared with the the-
oretical estimate TE (3.13) as seen in Table 2. Table also shows the errors of variational iteration method of [13], which are



Table 3
The theoretical error TE and maximum absolute errors of present method are tabulated with various n for
the solutions of (4.25).

TE n ¼ 5 n ¼ 10 n ¼ 15

TE 2:1101� 10�1 1:9751� 10�2 8:7827� 10�4

err 8:0229� 10�3 1:2038� 10�6 1:4881� 10�10

Table 4
Comparison between the present and methods in [13,17].

x Exact solution Present method Method in [13] Method in [17]

0.0 0.82848329035969 0.82848329035969 0.82848355162932 0.82848327295802
0.1 0.82970609243381 0.82970609243381 0.82970635371727 0.82970607521884
0.2 0.83337473359101 0.83337473359101 0.83337499490687 0.83337471691089
0.3 0.83948991395371 0.83948991395371 0.83949017524076 0.83948989814383
0.4 0.84805278499607 0.84805278499607 0.84805304589079 0.84805277036165
0.5 0.85906492716924 0.85906492716924 0.85906518654929 0.85906491397434
0.6 0.87252831995829 0.87252831995829 0.87252857519543 0.87252830841853
0.7 0.88844530562320 0.88844530562320 0.88844555152002 0.88844529589927
0.8 0.90681854806681 0.90681854806681 0.90681877548439 0.90681854026297
0.9 0.92765098836558 0.92765098836558 0.92765118257926 0.92765098252660
1.0 0.95094579849648 0.95094579849648 0.95094593734191 0.95094579461056

7546 M. Turkyilmazoglu / Applied Mathematical Modelling 37 (2013) 7539–7548
again higher than the presented errors from the current method for increasing approximation levels. It should be noticed
that [13] did not give error beyond the iteration number 3 because we believe that the time for integrations beyond the iter-
ation number 3 considerably increases in variational iteration approach.
Example 5. Consider now isothermal gas spheres which are modeled by [2]
y00 þ 2
x

y0 þ ey ¼ 0; yð0Þ ¼ y0ð0Þ ¼ 0; x 2 ½0;R�: ð4:25Þ
After transforming with

u ¼ e�y; x ¼ Rt;
Eq. (4.25) reduces to
u u00 þ 2
t

u0 � R2
� �

� u02 ¼ 0; uð0Þ ¼ 1; u0ð0Þ ¼ 0; t 2 ½0;1�: ð4:26Þ
Again no an exact solution can be found for this problem. We now solve Eq. (4.26) using our method and compare the results
with the numerical (exact) ones for R ¼ 5. For this purpose, in Table 3 the theoretical estimate TE (3.13) for the error and
maximum absolute error (4.16) are presented for changing approximation levels. The fast convergence of our method to
the exact solution can be observed, quadratic decrease of the maximum absolute error when n is doubled exhibits how accu-
rate the method is for this real hard singular nonlinear physical model. On the other hand, no such a fast convergence can be
observed from the 20th order homotopy solutions in [7] (see Fig. 7 in [7]), in which it was also demonstrated that the Ado-
mian decomposition method [5] fails to converge for this problem.
Example 6. Consider now the nonlinear singular boundary value problem arising in oxygen tension in a cell with Michaelis–
Menten oxygen uptake kinetics [15,16]
y00 þ 2
x

y0 � ay
yþ b

¼ 0; y0ð0Þ ¼ 0; 5yð1Þ þ y0ð1Þ ¼ 5; x 2 ½0;1�; ð4:27Þ
where a ¼ 0:76129 and b ¼ 0:03119. No exact solution is available for this nonlinear problem. For comparison purposes, Ta-
ble 4 tabulates the values found from the present approach at n ¼ 12, the variational iteration approach of [13] and the cubic
spline approach of [17]. The superiority of our method over the latter is clear from this table. The 12th order approximate
analytic solution to (4.27) results in an accuracy of order Oð10�16Þ by the present approach which is adequate for the prac-
tical purposes.

Fig. 2 also demonstrates numerical (exact) and approximate solutions and the absolute errors at two levels of
approximations, n ¼ 2 and n ¼ 12, respectively. Figs. 2(a-d) clearly show that the accuracy of our method is getting better as
the approximation level is increasing. There appears an exponential decrease in the maximum absolute error for increasing n
and thus the proposed method converges rapidly to the exact solution. The convergence of proposed technique for this
singular nonlinear problem is summarized in Table 5, which is in line with the results shown in Fig. 2. The 5th order
approximate solution having an accuracy of order O (10�8) is expressed by
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Fig. 2. Exact and approximate solutions and absolute errors computed from the present method for (4.27). (a-b) n ¼ 2 and (c-d) n ¼ 12. Unbroken curves
represent exact and dashed present solutions in (a-c).

Table 5
The theoretical error TE and maximum absolute errors of present method and of [13,17] are
tabulated with various n for the solutions of (4.27).

n ¼ 4 n ¼ 8 n ¼ 12

TE 1:1796� 10�5 1:8393� 10�7 8:8765� 10�9

Present err 8:7984� 10�7 2:9079� 10�11 8:2903� 10�16

[13] err 2:1311� 10�6 – –

[17] err 1:0432� 10�7 – –
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y ¼ 0:8284832475þ 0:1222817603x2 � 0:00001764304867x3 þ 0:0002317526606x4

� 0:00003331890487x5: ð4:28Þ
5. Conclusions

A feasible series expansion technique has been introduced in this study to compute exact and analytic approximate solu-
tions for the singular nonlinear Lane–Emden–Fowler type differential equations arising from the models of mathematical
physics and astrophysics. Matrix formulation is used throughout the entire procedure. The presented algorithm expands
the desired solution in terms of a set of continuous functions (the simplest are polynomials) over a closed interval and then
makes use of the Galerkin-like method to determine the expansion coefficients to construct a solution. Hence, within this
new approach, the problem is reduced to the solution of a system of nonlinear algebraic equations. The method is simple
and easy to implement, since it is generally based on the well selected base functions. A mathematical analysis regarding
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the error and convergence of the technique is provided. The success of the method is verified against comparisons with some
of the available methods, such as the homotopy analysis method, the reproducing kernel space method, the cubic spline
method and the variational iteration method. Several physical singular nonlinear examples treated by the method exhibit
that the proposed method is reliable, efficient and of high accuracy as compared to variants. Therefore, the proposed scheme
is an effective and highly promising method for treating various classes of both linear and nonlinear singular boundary value
problems.
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