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1. Introduction

This paper continues the study of dicompact and real dicompact completely biregular bi-T2 spaces begun in [24–26],
and in particular relates this work with the completeness of certain compatible di-uniformities. Our source of inspiration
is again [2, Chapter 3] on bitopological notions of compactness and real compactness, and other papers in this area such
as [13]. Indeed, there is a close relationship between the bitopological and ditopological theory restricted to plain textures,
as exemplified by the isomorphism K : pCRegw2 → ifPCbiR2 between the construct of pairwise completely regular weakly
pairwise Hausdorff bitopological spaces in the sense of J.C. Kelly [16] and pairwise continuous functions, and the category
of completely biregular bi-T2 plain ditopological texture spaces and ω-preserving bicontinuous functions. See also [22] for
a discussion of this functor in a wider context.

Unlike the classical case [15], the family BDF(S) of real bicontinuous difunctions [12,24], and the family BA(S) of real ω-
preserving bicontinuous point functions [24], are not rings but T -lattices [2]. Such parts of the theory of T -lattices developed
in [2] as are required here have already been given in [24–26], and will not be repeated. A theory of di-uniformities on
textures has been developed in [18], and the relationship with classical uniformities and quasi-uniformities discussed in [19].
In this paper we shall find it convenient to use the representation in terms of dicovers. In a closely related direction [27]
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gives an analogue of quasi-proximities for textures. The subject of completeness and total boundedness for di-uniformities
is discussed in [21], and a completion of a di-uniformity on a plain texture is constructed in [20]. We refer the reader to
[10] for a discussion of normal dicovers that will be needed at one point in the text, to [11] for results on compactness
and stability, and to [23] for a discussion on the representation of real difunctions. We note that there is open access to
[11,12,21,23,27] from www.mat.hacettepe.edu.tr/hjms.

The standard references for textures and ditopological texture spaces are [4–9]. However, although we cite these papers
at various points in the text, most if not all of these concepts and results have been repeated in the papers mentioned
earlier. Our standard reference for notions and results from category theory is [1], while the reader may consult [14] for
terms from lattice theory not mentioned here.

Since our main aim in considering completeness is to link this with our earlier work on real dicompactness, we continue
to work within the same framework. Hence, in Section 2, we begin by extending the notion of a nearly plain extension of
an almost plain ditopological texture space introduced in [26] to a uniform nearly plain extension, and in particular to a
nearly plain dicompletion. This section contains several results that are important in their own right, and which will also
be needed later on. It cumulates in the establishment of a separated nearly plain dicompletion reflector.

Section 3 gives the promised link between real dicompactness and dicompleteness of a suitable di-uniformity. It shows
that the Stone–Čech and Hewitt reflectors given earlier are particular instances of the dicompletion reflector, and concludes
with some results on the existence of minimal compatible di-uniformities that generalize and improve results in [2].

2. Nearly plain dicomplete extensions

We begin by extending the notion of nearly plain extension of almost plain ditopological texture spaces, discussed in [26],
to nearly plain dicomplete extensions.

First we recall that if (S,S) is a texture and U ⊆ S has the property that U = SU = {A ∩ U | A ∈ S} is a texturing of U ,
then (U ,U) is called an induced subtexture of (S,S). Moreover, if (S,S, τ , κ) is a ditopological texture space, an induced
subtexture (U ,SU ) equipped with the induced ditopology (τU , κU ) is referred to as an induced subspace.

Finally, if (S,S) is nearly plain, then (U ,SU , τU , κU ) is said to be a dense subspace of (S,S, τ , κ) if

1. ϕ S
p (U ) ⊆ U p , and

2. U is dense in S under the joint topology of (τ , κ).

Now let (S,S) be a texture and υ a dicovering uniformity on (S,S). If (U ,SU ) is an induced subtexture of (S,S), we may
define the induced dicovering uniformity υU on (U ,SU ) as the covering uniformity on (U ,SU ) with base {C|U | C ∈ υ}, where
C|U = {(A ∩ U , B ∩ U ) | (A, B) ∈ C}, and then (U ,SU ,υU ) will be called a uniform induced subspace.

In case (S,S) is nearly plain, (U ,SU ,υU ) will be called a dense uniform subspace if the above density condition holds for
the uniform ditopologies.

Now we may give:

Definition 2.1. The diuniform nearly plain texture space (V ,V, ν) will be called a nearly plain uniform extension of the
(necessarily almost plain) uniform texture space (S,S,υ) if (S,S,υ) is uniformly di-isomorphic to a dense uniform subspace
of (V ,V, ν).

In case (V ,V, ν) is dicomplete it is called a nearly plain dicompletion of (S,S,υ).

Here, by a uniform di-isomorphism we mean a bijective difunction which, together with its inverse, is uniformly bicon-
tinuous.

Naturally, the notion of nearly plain dicompletion includes that of plain dicompletion as a special case. Clearly, a dicom-
plete nearly plain uniform texture space is a nearly plain dicompletion of itself.

The concept of canonical nearly plain dicompletion can also be defined in the obvious way. Namely, (V ,V, ν) is called
a canonical nearly plain dicompletion of (S,S,υ) if (S p,Sp,υp) is regarded as an induced uniform subspace of (V ,V, ν), and
hence of (V p,Vp, νp).

First we give the following important lemma.

Lemma 2.2. Let (S,S) be an almost plain texture with associated plain texture (S p,Sp) and canonical isomorphism ( fε, Fε) :
(S p,Sp) → (S,S). Let υ be a dicovering uniformity on (S,S), and denote by υp the induced dicovering uniformity on (S p,Sp).
Then ( fε, Fε) : (S p,Sp,υp) → (S,S,υ) is a uniform di-isomorphism.

Proof. As in the proof of [26, Lemma 2.10] we have f ←
ε A = F ←

ε A = A ∩ S p for each A ∈ S, so ( fε, Fε)
−1(C) = C|S p and we

see that ( fε, Fε) is uniformly bicontinuous. On the other hand ( fε, Fε) is known to be bijective by [26, Lemma 3.5(3)], so
its inverse is (F ←

ε , f ←
ε ). Now for A ∈ S,(

F ←
ε

)←
A ∩ S p = ((

F ←
ε

)←)→
A ∩ S p = F →

ε A ∩ S p .

www.mat.hacettepe.edu.tr/hjms
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Hence, by [7, Corollary 2.33(2)] we have A ∩ S p = f ←
ε (F →

ε A ∩ S p) = (F →
ε A ∩ S p) ∩ S p since ( fε, Fε) is injective. Hence

A ∩ S p = ((F ←
ε )← A ∩ S p) ∩ S p , whence A = (F ←

ε )← A ∩ S p by the definition of almost plain texture. Likewise, A =
( f ←

ε )← A ∩ S p , and we deduce that (F ←
ε , f ←

ε )−1(C|S p) = C. Thus the inverse of ( fε, Fε) is also uniformly bicontinuous. �
Lemma 2.3. Let (V ,V, ν) be an almost plain dicovering uniform texture space. Then (V ,V, ν) is dicomplete if and only if the plain
space (V p,Vp, νp) is dicomplete.

Proof. We sketch the proof of necessity, leaving that of sufficiency to the interested reader.
Let Fp × Gp be a regular Cauchy difilter in (V p,Vp, νp) and define F = {A ∈ V | A ∩ V p ∈ Fp}, G = {A ∈ V | A ∩ V p ∈ Gp}.

Clearly F ×G is a regular Cauchy difilter in (V ,V, ν), hence is diconvergent. Thus there exists v1, v2 ∈ V with P v2 � Q v1 for
which F → v1 and G → v2. Now we may choose v ∈ V p with P v2 � Q v and P v � Q v1 , and it is straightforward to verify
that Fp → v and Gp → v . �
Proposition 2.4. A uniform di-isomorphism between almost plain uniform texture spaces preserves dicompleteness.

Proof. A uniform di-isomorphism induces a textural isomorphism between the corresponding plain spaces, and this clearly
preserves dicompleteness. The proof is now completed by applying Lemma 2.3. �

Applying the above results to the nearly plain case shows that, up to a uniform di-isomorphism, there is no loss of
generality in considering plain dicompletions in place of nearly plain dicompletions.

Theorem 2.5. Every almost plain di-uniform space (S,S,υ) has a plain dicompletion.

Proof. In [20] a dicompletion of an arbitrary plain di-uniform texture space was constructed. Applying this construction
to the plain space (S p,Sp,υp) gives a dicomplete dicovering uniform space (̃S p, S̃p, υ̃p), called the prime dicompletion
of (S p,Sp,υp), and a uniformly bicontinuous difunction (e, E) between (S p,Sp,υp) and a dense subspace of (̃S p, S̃p, υ̃p).
It is easy to verify that the inverse of (e, E) on this dense subspace is also uniformly bicontinuous, and that the notion
of density used in [20] coincides with that in Definition 2.1. By Lemma 2.2 the composition (e, E) ◦ (F ←

ε , f ←
ε ) gives us a

uniform di-isomorphism of (S,S,υ) with a dense subspace of the dicomplete plain space (̃S p, S̃p, υ̃p), whence this is a
plain dicompletion of (S,S,υ), as required. �
Corollary 2.6. Every almost plain separated di-uniform space (S,S,υ) has a separated plain dicompletion.

Proof. In place of the prime dicompletion in the proof of Theorem 2.5 it is sufficient to take the separated prime dicomple-
tion [20], which is just its T0 quotient [3]. �
Proposition 2.7. Let (S,S,υ) be a nearly plain dicovering uniform texture space, (U ,SU ,υU ) a uniform dense subspace of S p ,
(V ,V, ν) a dicomplete separated almost plain dicovering uniform texture space and ϕ : U → V a uniformly bi-continuous ω-
preserving point function. Then there exists a uniformly bicontinuous extension ϕ̂ of ϕ to S which is ω-preserving and satisfies
ϕ̂(S) ⊆ V p. Moreover, if ϕ1 , ϕ2 are any two such extensions of ϕ then for u, s, v ∈ S,

u ω s, s ω v ⇒ Q ϕ1(u) ⊆ Q ϕ2(s) ⊆ Q ϕ1(v). (2.1)

Proof. First we extend ϕ to S p . For s ∈ S p , define

Fs =
{

B ∈ V
∣∣∣ ∃G j ∈ τυ with G j � Q s, j = 1, . . . ,n,

(
n⋂

j=1

G j

)
∩ U ⊆ ϕ←B

}
,

Gs =
{

B ∈ V
∣∣∣ ∃K j ∈ κυ with P s � K j, j = 1, . . . ,n, ϕ←B ⊆

(
n⋃

j=1

K j

)
∩ U

}
.

Clearly Fs × Gs is a difilter on (V ,V, ν), and it is regular because U is dense in S for the joint topology of υ . We show it is
ν-Cauchy. To this end take D ∈ ν . Since ϕ is uniformly bicontinuous, ϕ−1(D) ∈ υU so we have C ∈ υ with C|U ≺ ϕ−1(D).
As η∗(s)×μ∗(s) is diconvergent in S p it is υp -Cauchy by [21, Proposition 3.2], hence we have (C1, C2) ∈ C∩ (η∗(s)×μ∗(s)).
Now we have D1 D D2 with C1 ∩ U ⊆ ϕ←D1, ϕ←D2 ⊆ C2 ∩ U , and we deduce (D1, D2) ∈ D ∩ (Fs × Gs) �= ∅, as required.

Since (V ,V, ν) is dicomplete, Fs × Gs is diconvergent, say Fs → v1, Gs → v2 with v1 ω v2. Now we have v ∈ V p with
v1 ω v , v ω v2, and clearly Fs → v , Gs → v by [21, Lemma 2.7]. This point v ∈ V p is unique. Indeed, if Fs → v ′ , Gs → v ′ for
v ′ �= v in V p , we may assume without loss of generality that P v � P v ′ , whence Q v � Q v ′ as v ′ is a plain point. Since the
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uniform ditopology is completely biregular and T0, hence bi-T2, we have H ∈ τν , K ∈ κν with H ⊆ K , P v � K and H � Q v ′ .
This leads at once to H ∈ Fs , K ∈ Gs , which contradicts the fact that Fs × Gs is regular.

We set ϕ̂p(s) = v , so defining a function ϕ̂p : S p → V satisfying ϕ̂p(S p) ⊆ V p . To show that ϕ̂p extends ϕ , take u ∈ U .
Since U ⊆ S p , u is a plain point, so certainly ϕ(u) ∈ V p since ϕ is ω-preserving. It is straightforward to verify that Fu →
ϕ(u), Gu → ϕ(u), whence we have ϕ̂p(u) = ϕ(u), as required.

The proof that ϕ̂p is ω-preserving is left to the interested reader, so we establish uniform bicontinuity. Hence, take
D ∈ ν and C ∈ υ with C|U ≺ ϕ−1(D), as above. Without loss of generality we may assume C is open, co-closed and that
D is closed, co-open. We claim that C ≺ ϕ̂ −1

p (D). Take C1 C C2 and D1 D D2 with C1 ∩ U ⊆ ϕ←D1, ϕ←D2 ⊆ C2 ∩ U and
suppose that C1 � ϕ̂←

p D1. Then for some s ∈ S p , C1 � Q s and P s � ϕ̂←
p D1. Now since C1 ∈ τυ we obtain D1 ∈ Fs , while

since Gs → ϕ̂p(s), P ϕ̂p(s) � D1 ∈ κν gives D1 ∈ Gs , which contradicts the regularity of Fs × Gs . Hence C1 ⊆ ϕ̂←
p D1, and

likewise ϕ̂←
p D2 ⊆ C2, as required.

We now extend ϕ̂ to S by composing it with ϕp : S → S p , which is ω-preserving and uniformly bicontinuous since
clearly ϕ←

p C|S p = C for any C ∈ υ . Hence, ϕ̂ = ϕ̂p ◦ ϕp is an extension of ϕ to S with the required properties.
Finally (2.1) follows from the density of U and the fact that the ditopology on (V ,V, ν) is bi-T2, and we omit the

details. �
Generally (2.1) does not give the uniqueness of the extension in Proposition 2.7, but it clearly does if (S,S) is plain, for

then we may take u = s = v .

Proposition 2.8. Any two nearly plain separated dicompletions of an almost plain separated uniform texture space are uniformly
di-isomorphic under a uniform di-isomorphism that can be taken to preserve S p .

Proof. By Lemma 2.2 there is no loss of generality in assuming that the given dicompletions (V 1,V1, ν1), (V 2,V2, ν2) of
(S,S,υ) are plain, or in assuming that they are canonical plain dicompletions, so that (S p,Sp,υp) is a dense induced
uniform subspace of both of them. Denote by ϕk , k = 1,2, the identity on S p regarded as mapping S p ⊆ Vk into Vl , l �= k.
Then certainly ϕk , k = 1,2, satisfies the conditions of Proposition 2.7, so has an extension ϕ̂k : Vk → Vl which is an ω-
preserving uniformly bicontinuous point function. To complete the proof it is sufficient to show that ϕ̂l is the inverse of ϕ̂k .
Suppose that w = ϕ̂l(ϕ̂k(v)) �= v for some v ∈ Vk .

Consider the case P w � P v . Then Q w � Q v as the texture is plain, so as the uniform ditopology on (Vk,Vk, νk) is bi-T2
we have an open set H and a closed set K with H ⊆ K , v ∈ H and w /∈ K . Since ϕ̂l and ϕ̂k are cocontinuous

F = ϕ̂ ←
k

(
ϕ̂ ←

l K
)

is a closed set in Vk and clearly P v � F . Hence v ∈ H \ F �= ∅, whence by the density of S p in Vk we have s ∈ S p ∩ (H \ F ).
But ϕ̂k(s) = ϕk(s) = s, ϕ̂l(s) = ϕl(s) = s, which easily leads to the contradiction s ∈ F . Likewise, a contradiction is obtained
for the case P v � P w , and the proof is complete. �

We now present a second corollary of Proposition 2.7.

Corollary 2.9. With (S,S,υ) almost plain, (U ,SU ,υU ), (V ,V, ν) and ϕ as in Proposition 2.7, there exists a unique uniformly bicontin-
uous difunction (h, H) : (S,S,υ) → (V ,V, ν) which extends ϕ in the sense that (h, H) ◦ (e, E) = ( fϕ, Fϕ), where (e, E) : (U ,SU ) →
(S,S) is the inclusion difunction.

Proof. Again consider the extension ϕ̂p to S p , and the corresponding difunction ( f ϕ̂p , F ϕ̂p ) : (S p,Sp,υp) → (V ,V, ν), which
is clearly uniformly bicontinuous. Recalling from Lemma 2.2 that (F ←

ε , f ←
ε ) : (S,S,υ) → (S p,Sp,υp) is a uniform di-

isomorphism, we may set (h, H) = ( f ϕ̂p , F ϕ̂p ) ◦ (F ←
ε , f ←

ε ). It is easy to check that (h, H) ◦ (e, E) = ( fϕ, Fϕ), so we have
an extension with the required properties.

To prove uniqueness, let (hk, Hk), k = 1,2 be extensions of ϕ with the given properties. By [7, Proposition 2.27] it is
sufficient to show that h1 = h2, and hence to show that h←

1 A = h←
2 A for all A ∈ V. Suppose that h←

1 A � h←
2 A for some

A ∈ V. Since h←
1 A = H←

1 A we have s ∈ S , t1, t2 ∈ V with P (s,t1) � H1, A � Q t1 and h2 � Q (s,t2) , Pt2 � A. We deduce
Q t2 � Q t1 , so by the bi-T2 property for (V ,V, τν, κν) we have G ∈ τν , K ∈ κν with G ⊆ K , G � Q t1 and Pt2 � K .

It follows now that H←
1 G � h←

2 K , while the given properties of (h1, H1), (h2, H2) imply that H←
1 G ∈ τυ , h←

2 K ∈ κυ .
The density of U now gives u ∈ U with u ∈ H←

1 K \ h←
2 K , and arguing as above we obtain v1, v2 ∈ V with P (u,v1) � H1,

h2 � Q (u,v2) and P v2 � P v1 . On the other hand (h1, H1), (h2, H2) are represented by ϕ on U , which leads to hk � Q (u,ϕ(u)) ,
P (u,ϕ(u)) � Hk , k = 1,2, and applying the condition DF2 for difunctions leads to the contradiction P v2 ⊆ P v1 . �

We will denote by dfDiU the category of di-uniform texture spaces and uniformly bicontinuous difunctions, and by
dfDiU0 the full subcategory of separated di-uniform spaces. A restriction to plain, nearly plain or almost plain textures will
be indicated by adding P, Np or Ap, as the case may be, while a restriction to dicomplete di-uniformities will be indicated
by Dc.
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Theorem 2.10. dfNpDcDiU0 is a reflective subcategory of dfApDiU0 .

Proof. It is certainly a subcategory, so we need only prove it is reflective. For (S,S,υ) ∈ Ob dfApDiU0 , choose a nearly
plain separated dicompletion (S,S,υ) and let (g, G) be a uniform di-isomorphism between (S,S,υ) and a dense uniform
subspace (U ,SU ,υU ) of (S,S,υ), which without loss of generality we assume is plain. Denoting by (e, E) the inclusion
difunction (e, E) : (U ,SU ,υU ) → (S,S,υ), we show that (e, E) ◦ (g, G) : (S,S,υ) → (S,S,υ) is an dfNpDcDiU0-reflection
arrow for (S,S,υ).

To this end, take (V ,V, ν) ∈ Ob dfNpDcDiU0 and a dfApDiU0-morphism ( f , F ) : (S,S,υ) → (V ,V, ν). We require a
unique dfNpDcDiU0-morphism (h, H) : (S,S,υ) → (V ,V, ν) making the following diagram commutative:

(S,S,υ)
(e,E)◦(g,G)

( f ,F )

(S,S,υ)

(h,H)

(V ,V, ν)

The difunction ( f , F ) ◦ (G←, g←) : (U ,SU ,υU ) → (V ,V, ν) is (uniquely) representable by an ω-preserving uniformly bi-
continuous point function ϕ which by Proposition 2.7 has an extension ϕ̂ : S → V . Clearly ( f ϕ̂ , F ϕ̂ ) ◦ (e, E) = ( fϕ, Fϕ) =
( f , F ) ◦ (G←, g←), whence

( f ϕ̂ , F ϕ̂ ) ◦ (e, E) ◦ (g, G) = ( f , F ).

Hence, the dfNpDcDiU0-morphism (h, H) = ( f ϕ̂ , F ϕ̂ ) makes the diagram commutative. On the other hand, for any
dfNpDcDiU0-morphism (h, H) making the diagram commutative we have (h, H) ◦ (e, E) = ( f , F ) ◦ (G←, g←) = ( fϕ, Fϕ).
Hence both (h, H) and ( f ϕ̂ , F ϕ̂ ) extend ϕ , so they are equal by Corollary 2.9. �

Clearly the above result extends [20, Theorem 3.5], which concerns plain textures and separated prime dicompletions.
As mentioned in the introduction, as with our earlier papers [24–26] this paper too is motivated by the work on bitopo-

logical spaces in [2]. The functor K introduced in [25], and shown to be an isomorphism between pCRegw2 and ifPCbiR2
[25, Theorem 3.7], sets on a firm foundation the bijection between bireal compact spaces in the sense of [2], and real
dicompact plain ditopological texture spaces.

The functor K is discussed in a more general setting in [22], and we now show how it may be extended to take into
account quasi-uniformities and uniform continuity on the one hand, and plain di-uniform spaces and uniformly bicontinuous
ω-preserving functions on the other. Since it is shown in [22] that K is only defined for weakly pairwise T0 bitopological
spaces, we restrict our attention to quasi-uniformities Q on a set X that are separated in the sense that the bitopological
space

(X, u, v) = (X,TQ,TQ−1)

is weakly pairwise T0. Here, Q−1 denotes the conjugate of Q. We will find it convenient to regard Q as a dual covering quasi-
uniformity, see for example [19, Proposition 3.6]. In [19, Corollary 3.12] a bijection was set up between the dual covering
quasi-uniformities on X and dicovering uniformities on the discrete texture (X,P(X)). This bijection has the disadvantage
that a quasi-uniformity that is separated in the above sense need not correspond to a dicovering uniformity on (X,P(X))

that is separated in the sense of [18], so we replace (X,P(X)) by (X,Kuv), the texture involved in the definition of K. Here
we recall [22,25] that Kuv is the smallest plain texturing of X containing u ∪ vc . Somewhat similarly to [19, Proposition 3.10]
we have:

Proposition 2.11. Let U = {(A j, B j) | j ∈ J } be an open dual cover of (X, u, v). Then

u∗(U ) = {
(A j, X \ B j)

∣∣ j ∈ J
}

is a dicover of (X,Kuv). Moreover, if U satisfies A j ∩ B j �= ∅ ∀ j ∈ J then u∗(U ) is anchored.

Proof. Since U is open we certainly have A j ∈ u ⊆ Kuv , X \ B j ∈ vc ⊆ Kuv , so to prove u∗(U ) is a dicover it is sufficient to
show that P = {(Px, Q x) | x ∈ X} ≺ u∗(U ) for each x ∈ X . Since U is a dual cover we have j ∈ J with x ∈ A j ∩ B j , and now
Px ⊆ A j , X \ B j ⊆ Q x , which gives P ≺ u∗(U ).

The remainder of the proof is as for [19, Proposition 3.10], and is omitted. �
It is well known that a dual covering quasi-uniformity Q has a base B of open dual covers U satisfying A U B ⇒

A ∩ B �= ∅ for each U ∈ B, so we may define u∗(Q) by

u∗(Q) = {
C

∣∣ C is a dicover of (X,Kuv) and there exists U ∈ B with u∗(U ) ≺ C
}
.

Then:
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Theorem 2.12.

(1) u∗(Q) is a separated dicovering uniformity on (X,Kuv).
(2) The mapping u∗ is a bijection between the separated dual covering quasi-uniformities Q on X and the separated dicovering

uniformities on (X,Kuv).

Proof. (1) It is straightforward to show that u∗(Q) is a dicovering uniformity on (X,Kuv), and that

τu∗(Q) = u = TQ, κu∗(Q−1) = vc = (TQ−1)
c.

Hence the ditopology (τu∗(Q), κu∗(Q−1)) is T0, which means that u∗(Q) is separated.
(2) Given an open, co-closed dicover U = {(A j, B j) | j ∈ J } of (X,Kuv , u, vc), we obtain an open dual cover ∗u(U) of

(X, u, v) by setting ∗u(U) = {(A j, X \ B j) | j ∈ J }, and if U is anchored then ∗u(U) satisfies A ∗u(U) B ⇒ A ∩ B �= ∅. Hence,
corresponding to a dicovering uniformity υ on (X,Kuv) we have the compatible dual covering quasi-uniformity ∗u(υ) on
(X, u, v) generated by the dual covers ∗u(U) for U ∈ υ open, co-closed and anchored.

It is straightforward to verify that ∗u(u∗(Q)) = Q and u∗(∗u(υ)) = υ , whence u∗ is bijective. �
To set up our functor from the category QUni0 of separated quasi-uniform spaces and uniformly continuous functions, to

the category ifPDiU0 of separated di-uniform plain texture spaces and uniformly bicontinuous ω-preserving functions, we
require the following:

Lemma 2.13. Let (X1,Q1), (X2,Q2) be separated quasi-uniform spaces and suppose that the function f : (X1,Q1) → (X2,Q2) is
uniformly continuous. Then f : (X1,Ku1 v1 , u∗(Q1)) → (X2,Ku2 v2 , u∗(Q2)) is ω-preserving and uniformly bicontinuous.

Proof. If f : (X1,Q1) → (X2,Q2) is uniformly continuous then f : (X1, u1, v1) → (X2, u2, v2) is pairwise continuous, whence
f : (X1,Ku1 v1 ) → (X2,Ku2 v2 ) is ω-preserving by the discussion preceding [22, Theorem 3.7]. �

Now let us note the following:

Lemma 2.14. For a uniform texture space (S,S,υ), a plain uniform texture space (T ,T, ν) and an ω-preserving point function
ϕ : S → T , ϕ is uniformly bicontinuous if and only if C ∈ ν ⇒ ϕ−1C ∈ υ .

Proof. This result, with (S,S) plain, was given in [20, Lemma 2.8]. Only minor changes to the proof are needed to establish
the general result. �

Using Lemma 2.14, the uniform continuity of f : (X1,Q1) → (X2,Q2) gives the uniform bicontinuity of f : (X1,Ku1 v1 ,

u∗(Q1)) → (X2,Ku2 v2 , u∗(Q2)).
Now we define the mapping Ku : QUni0 → ifPDiU0 by

Ku
(
(X1,Q1)

f−→ (X2,Q2)
) = (

X1,Ku1 v1 , u∗(Q1)
) f−→ (

X2,Ku2 v2 , u∗(Q2)
)
.

This mapping is well defined by Theorem 2.12(1) and Lemma 2.13, and is clearly a functor. By Theorem 2.12(2) it is bijective
on objects, and it is clearly faithful. Finally it is easy to verify that the converse of Lemma 2.13 is also true, whence Ku is
full. By [1, Remark 3.28(2)] we therefore have:

Theorem 2.15. Ku : QUni0 → ifPDiU0 is an isomorphism. �
We may regard QUni0 as a concrete category over Bitopw0 via the functor U,

U
(
(X1,Q1)

f−→ (X2,Q2)
) = (X1,TQ1 ,TQ−1

1
)

f−→ (X2,TQ2 ,TQ−1
2

),

which forgets the quasi-uniformities but remembers the uniform bitopology they generate. Likewise ifPDiU0 is a concrete
category over ifPDitop0 via the forgetful functor V,

V
(
(X1,X1,υ1)

f−→ (X2,X2,υ2)
) = (X1,X1, τυ1 , κυ1)

f−→ (X2,X2, τυ2 , κυ2).

It is easy to verify that the following diagram is commutative.

QUni0
Ku

U

ifPDiU0

V

Bitop K ifPDitop
w0 0
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Since K is an isomorphism by [22, Theorem 3.7] it is faithful, so QUni0 may also be regarded as being concrete over
ifPDitop0 , whence Ku is a concrete isomorphism over ifPDitop0 . Likewise, it is a concrete isomorphism over Bitopw0 .
Naturally, in the above Bitopw0 may be replaced by pCRegw2 and ifPDitop0 by ifPCbiR2 .

Finally, we note the following:

Proposition 2.16. The functor Ku preserves completeness.

Proof. Suppose first that (X,Q) is complete and let F × G be a regular Cauchy difilter on (X,Kuv , u∗(Q)). Then F is a base
for a filter Bu on X , Gc a base for a filter Bv on X , and clearly B = Bu × Bv is a regular bifilter on X that is Cauchy for
Q in the sense of [2, Definition 1.7.4]. By hypothesis B converges to some x ∈ X , and it follows that F × G diconverges to x
since (X,Kuv) is plain. Hence, (X,Kuv , u∗(Q)) is dicomplete.

Similarly it may be shown that if (X,Kuv , u∗(Q)) is dicomplete then (X,Q) is complete, and we omit the details. �
This discussion makes it clear how the notion of real dicompactness and its relation to dicompleteness, which will be

the subject of the next section, represent an extension of the corresponding bitopological notions and results [2, Chapter 3]
to more general spaces.

3. Real dicompactness and dicompleteness

Now we will look at the relations between real dicompactness and the dicompleteness of a certain di-uniformity. We
begin by establishing a dicovering uniformity on (R,R).

Lemma 3.1. For ε > 0 let με = {(Q x+ε , Px−ε) | x ∈ R}. Then {με | ε > 0} is a base of anchored dicovers for a dicomplete dicovering
uniformity on (R,R) whose uniform ditopology is (τR, κR).

Proof. For x ∈ X we have x ∈ Q x+ε \ Px−ε , so με is a dicover by [22, Lemma 3.4], and it is anchored since (R,R) is plain.
Clearly με ≺(
) μ3ε and με∧δ ≺ (με) ∧ (μδ), so the family {με | ε > 0} is a base for a dicovering uniformity υR on (R,R).
It is trivial to verify that the uniform ditopology of (R,R,υR) is (τR, κR), so we outline the proof of dicompleteness.

Let F ×G be a regular Cauchy difilter on (R,R). Then for each n > 0 we have xn ∈ R with (Q xn+1/n, Pxn−1/n) ∈ F ×G. We
claim the sequence (xn) is Cauchy in R for the usual metric topology. Take ε > 0 and an integer N satisfying N > 2/ε . For
m,n � N we have Q xn+1/n ∈ F, Pxm−1/m ∈ G, whence Q xn+1/n � Pxm−1/m by regularity, and we obtain xm − xn < 1/m +1/n <

2/N < ε . Likewise xn − xm < ε , and our claim is justified. Since R is complete we have xn → x ∈ R, and it is trivial to verify
that F × G is diconvergent to x (see [22]). �

We shall refer to the di-uniformity υR as the standard di-uniformity on (R,R). The interested reader may easily verify
that this is the image under Ku of the standard quasi-uniformity on (R, s, t) considered in [2].

Now let (S,S, τ , κ) be a completely biregular ditopological texture space and B ⊆ BA(S) bigenerating. Then by [18,
Definition 5.23]{(

n∧
k=1

( fϕk , Fϕk )
−1(μεk )

�

)� ∣∣∣ ϕk ∈ B, εk > 0, 1 � k � n, n ∈ N+
}

is a base for the initial covering di-uniformity υB on (S,S) generated by the space (R,R,υR) and the difunctions ( fϕ, Fϕ),
ϕ ∈ B . For convenience we will write ( fϕ, Fϕ)−1(με) as ϕ−1(με), where

ϕ−1(με) = {(
ϕ← Q x+ε,ϕ

← P x−ε

) ∣∣ x ∈ R
}
. (3.1)

Lemma 3.2. Setting ϕδ = {(ϕ← Q ϕ(s)+δ,ϕ
← Pϕ(s)−δ) | s ∈ S}, δ > 0, we have

(1) ϕδ ≺ ϕ−1(μδ)
� ,

(2) ϕ−1(μδ)
� ≺ ϕ2δ .

Proof. For s ∈ S suppose that ϕ← Q ϕ(s)+δ � St(ϕ−1(μδ), P s). Then for some t ∈ S we have ϕ← Q ϕ(s)+δ � Q t and Pt �
St(ϕ−1(μδ), P s). From the first result we deduce ϕ(t) < ϕ(s) + δ, and from the second, P s � ϕ← Px−δ ⇒ Pt � ϕ← Q x+δ for
all x ∈ R, whence ϕ(s) > x − δ ⇒ ϕ(t) � x + δ, or equivalently ϕ(t) < x + δ ⇒ ϕ(s) � x − δ. Now, taking x = ϕ(s), we
obtain the contradiction ϕ(s) � ϕ(s) − δ.

This shows ϕ← Q ϕ(s)+δ ⊆ St(ϕ−1(μδ), P s), and CSt(ϕ−1(μδ), Q s) ⊆ ϕ← Pϕ(s)−δ can be proved in the same way, so (1) is
established.
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For (2), suppose St(ϕ−1(μδ), P s) � ϕ← Q ϕ(s)+2δ . Then we have t ∈ S with St(ϕ−1(μδ), P s) � Q t and Pt � ϕ← Q ϕ(s)+2δ .
Now ϕ← Q x+δ � Q t , P s � ϕ← Px−δ for some x ∈ R, whence ϕ(t) < x + δ and ϕ(s) > x − δ. However, this gives ϕ(t) <

ϕ(s) + 2δ, which contradicts Pt � ϕ← Q ϕ(s)+2δ . Likewise it can be shown that ϕ← Pϕ(s)−2δ ⊆ CSt(ϕ−1(μδ), Q s). �
We will require the following generalization of a well-known classical result.

Lemma 3.3. For ϕ,ψ ∈ B, r ∈ R, the functions ϕ ∨ ψ , ϕ ∧ ψ , ϕ + r, ϕ∗ and ϕ∗ are υB –υR uniformly bicontinuous.

Proof. Using a similar argument to that used in the proof of Lemma 3.2(2), it is not difficult to establish that

(ϕδ ∧ ψδ)
� ≺ (ϕ ∨ ψ)2δ.

Since (ϕ−1(μδ/2)
� ∧ ψ−1(μδ/2)

�)� ≺ (ϕδ ∨ ψδ)
� by Lemma 3.2(2), we deduce that (ϕ ∨ ψ)2δ ∈ υB . Finally, (ϕ ∨ ψ)2δ ≺

(ϕ ∨ ψ)−1(μ2δ)
� by Lemma 3.2(1), so (ϕ ∨ ψ)−1(μ2δ)

� ∈ υB and we have established that ϕ ∨ ψ is υB –υR uniformly
bicontinuous.

The uniform bicontinuity of ϕ ∧ ψ follows likewise from

(ϕδ ∧ ψδ)
� ≺ (ϕ ∧ ψ)2δ,

and that of ϕ + r, ϕ∗ and ϕ∗ follow trivially from (ϕ + r)←Bx = ϕ←Bx−r , ϕ←∗ Bx = ϕ←Bx and ϕ∗←Bx = ϕ←Bx for Bx =
Px, Q x , x ∈ R (see [24, Lemma 3.3]). �
Corollary 3.4. υB = υ〈B〉 = υ〈B〉∗ , where 〈B〉 is the smallest sub-T -lattice of BA(S) containing B and 〈B〉∗ is the smallest such T -lattice
closed under the operations ∗ and ∗ .

Lemma 3.5. Let (S,S, τ , κ) be a completely biregular ditopological texture space and B ⊆ BA(S) bigenerating. Then the initial di-
uniformity υB is compatible with (τ , κ).

Proof. Since ϕ ∈ B is υB -υR uniformly bicontinuous it is τυB -τυR
continuous. Hence, for r ∈ R, ϕ← Q r ∈ τυB as Q r ∈ τR . But

{ϕ← Q r | ϕ ∈ B, r ∈ R} is a subbase for τ since B is bigenerating [25, Definition 2.2], so τ ⊆ τυB .
Conversely, take G ∈ τυB and s ∈ S with G � Q s . By [18, Definition 4.5] we have C ∈ υB with St(C, P s) ⊆ G , and then we

have ϕk ∈ B, εk > 0, k = 1,2, . . . ,n with D = (
∧n

k=1 ϕ−1
k (μεk )

�)� ≺ C. Since ϕk ∈ B is τ -τR continuous, ϕ−1
k (μεk ) is clearly

open with respect to τ for 1 � k � n, whence D is also open and hence St(D, P s) ∈ τ . Finally P s ⊆ St(D, P s) ⊆ G , and we
deduce G ∈ τ by [8, Theorem 3.2(1 iii)].

This establishes τ = τυB , and the proof of κ = κυB is dual and is omitted. �
We are now going to relate the dicompleteness of (S,S,υB) with the B-real dicompactness of (S,S, τ , κ). The following

lemma will be crucial.

Lemma 3.6. Let (S,S, τ , κ) be completely biregular, B ⊆ BA(S) a bigenerating sub-T -lattice and F ×G a regular Cauchy difilter. Then
the ρb-regular bi-ideal (LF ∩ 〈B〉, MG ∩ 〈B〉) in 〈B〉 is finite.

Proof. Since F × G is Cauchy, and υB = υ〈B〉 by Corollary 3.4, for ϕ ∈ 〈B〉 and δ > 0 there exists s ∈ S with

ϕ← Q ϕ(s)+δ ∈ F, ϕ← Pϕ(s)−δ ∈ G (3.2)

by Lemma 3.2. We claim that for α = ϕ(s) − δ, β = ϕ(s) + δ we have [α] � [ϕ] � [β] in 〈B〉/(LF ∩ 〈B〉, MG ∩ 〈B〉) for all
ϕ ∈ 〈B〉, which will establish that (LF ∩ 〈B〉, MG ∩ 〈B〉) is finite.

Suppose that [α] � [ϕ] for some ϕ ∈ B . Then by [2] (see also [25]) there are two cases to consider.

Case 1. There exists r ∈ R with ϕ − r ∈ LF ∩ 〈B〉 and r < α. Choose ε > 0 with r + ε < α. Then (ϕ − r)← Pε ∈ F, and as F ×G

is regular, (ϕ − r)← Pε /∈ G, so by (3.2), (ϕ − r)← Pε � ϕ← Pϕ(s)−δ . Bearing in mind that (ϕ − r)← Pε = ϕ← Pr+ε we obtain
r + ε > ϕ(s) − δ, which contradicts r + ε < α.

Case 2. r � α and ϕ − r /∈ MG ∩ 〈B〉. Since ϕ − r ∈ 〈B〉 we have ϕ − r /∈ MG , so there exists ε > 0 with (ϕ − r)← Q −ε /∈ G.
Using (3.2) as above now leads to the contradiction r > r − ε > ϕ(s) − δ = α.

This gives [α] � [ϕ], and the proof of [ϕ] � [β] is dual and is omitted. �
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Proposition 3.7. Let (S,S, τ , κ) be a completely biregular ditopological texture space and B ⊆ BA(S) bigenerating.

(1) If F × G is a regular difilter on (S,S) and C denotes 〈B〉 or 〈B〉∗ then F × G is υB -Cauchy if and only if (LF ∩ C, MG ∩ C) is a real
bi-ideal in the T -lattice C .

(2) If (L, M) is a real ∗-bi-ideal in the T -lattice 〈B〉∗ then the difilter FL × GM is υB -Cauchy.

Proof. (1) Necessity. Let F × G be a regular Cauchy difilter. We recall from [24] that

LF = {
ϕ ∈ BA(S)

∣∣ ϕ← Pr ∈ F ∀r > 0
}
,

MG = {
ϕ ∈ BA(S)

∣∣ ϕ← Q −r ∈ G ∀r > 0
}
.

By [2, Lemma 3.1.2] it is straightforward to show that the bi-ideal (LF ∩ C, MG ∩ C) is ρb-regular, and we omit the details.
Take a maximal ρb-regular bi-ideal (L, M) in C satisfying (LF ∩ C, MG ∩ C) ≺ (L, M). Since (LF ∩ C, MG ∩ C) is finite by
Lemma 3.6, (L, M) is real by [2, Proposition 3.1.7, Corollary 2]. Hence, there exists p ∈ HC with (L, M) = (L p, M p). We now
show that (L p, M p) ≺ (LF ∩ C, MG ∩ C), whence (LF ∩ C, MG ∩ C) = (L, M) is real, as required.

Suppose that L p � LF ∩ C and take ϕ ∈ L p , ϕ /∈ LF ∩ C . Then ϕ /∈ LF , so there exists δ > 0 with ϕ← P2δ /∈ F. As F × G is
Cauchy there exists s ∈ S with ϕ← Q ϕ(s)+δ � ϕ← P2δ by (3.2), so ϕ(s) > δ. Also by (3.2),

ϕ← Pϕ(s)−δ ∈ G ⇒ (
ϕ + δ − ϕ(s)

)←
Q −r ∈ G, ∀r > 0

⇒ ϕ + δ − ϕ(s) ∈ MG ∩ C ⊆ M = M p

⇒ p(ϕ) + δ − ϕ(s) � 0.

This now gives p(ϕ) > 0, which contradicts ϕ ∈ L p . Hence L p ⊆ LF ∩ C , and a similar argument gives M p ⊆ MG ∩ C .
Sufficiency. Let F ×G be a regular difilter with (LF ∩ C, MG ∩ C) real in C . Take ϕ ∈ C . Then there exists a (unique) α ∈ R

with ϕ − α ∈ LF ∩ C ∩ MG ∩ C . Take δ > 0 and r ∈ R with 0 < r < δ/2. Then

(ϕ − α)← Pr � (ϕ − α)← Q −r

since F × G is regular. If we take s ∈ S with (ϕ − α)← Pr � Q s , P s � (ϕ − α)← Q −r it is trivial to verify that

(ϕ − α)← Pr ⊆ ϕ← Q ϕ(s)+δ and (ϕ − α)← Q −r ⊇ ϕ← Pϕ(s)−δ,

which gives (ϕ← Q ϕ(s)+δ,ϕ
← Pϕ(s)−δ) ∈ F × G. In view of Lemma 3.2(1) this shows that F × G is υB = υC -Cauchy.

(2) Let (L, M) be a real ∗-bi-ideal in 〈B〉∗ . We recall from [24] that

FL = {
A ∈ S

∣∣ ∃ϕ ∈ L, r > 0 with ϕ← Pr ⊆ A
}
,

GM = {
A ∈ S

∣∣ ∃ϕ ∈ M, r > 0 with A ⊆ ϕ← Q −r
}
.

Since (L, M) is a ρb-regular ∗-bi-ideal, FL × GM is regular by [24, Proposition 3.5(2)], whence (LFL ∩ 〈B〉∗, MGM ∩ 〈B〉∗)
is a ρb-regular bi-ideal in 〈B〉∗ . However it is easy to see that (L, M) � (LFL , MGM ), and since a real bi-ideal is maximal
ρb-regular we have (L, M) = (LFL , MGM ). Applying (1) for C = 〈B〉∗ to the real bi-ideal (LFL , MGM ), we deduce that FL ×GM

is υB -Cauchy. �
Theorem 3.8. Let (S,S, τ , κ) be a completely biregular, almost plain bi-T2 ditopological ∗-space. Then (S,S, τ , κ) is B-real dicompact
if and only if the di-uniform texture space (S,S,υB) is dicomplete.

Proof. Necessity. Let (S,S, τ , κ) be B-real dicompact and F ×G a regular υB -Cauchy difilter. By Proposition 3.7(1), (LF, MG)

is a real bi-ideal in 〈B〉 and hence difixed by some s ∈ S p . For ϕ ∈ 〈B〉 we have ϕ −ϕ(s) ∈ L(s) ∩ M(s), whence for δ > 0 we
have ϕ← Q ϕ(s)+δ ∈ F, ϕ← Pϕ(s)−δ ∈ G. It is easy to deduce that F → s, G → s, while P s � Q s so F × G is diconvergent [21,
Definition 2.6]. Hence, (S,S,υB) is dicomplete.

Sufficiency. Let (S,S,υB) be dicomplete and (L, M) a real bi-ideal in 〈B〉∗ . Since (S,S, τ , κ) is a ∗-space, (L, M) is a real ∗-
bi-ideal in 〈B〉∗ = 〈B〉. By Proposition 3.7(2), (FL,GM) is a regular υB -Cauchy difilter, hence diconvergent in (S,S, τυB , κυB ).
Let FL → s, GM → s′ with P s′ � Q s . Since (S,S) is almost plain there exists a ∈ S p with P s′ � Q a , Pa � Q s . We will show
that (L, M) is difixed by a.

Suppose that L(a) � L. Then we have ϕ ∈ L(a) with ϕ /∈ L. Since (L, M) is real there exists a (unique) α ∈ R with ϕ −α ∈
L ∩ M , and ϕ � ϕ − α since ϕ /∈ L, so α > 0. Choose δ > 0 with 2δ < α. Now Pa ⊆ ϕ← Q ϕ(a)+δ ∈ τυB = τ by Lemma 3.5,
and ϕ← Q ϕ(a)+δ � Q s , so ϕ← Q ϕ(a)+δ ∈ FL as FL → s. However, ϕ← Q ϕ(a)+δ ⊆ (ϕ − α)← Q −δ ∈ GM gives ϕ← Q ϕ(a)+δ ∈ GM ,
which contradicts the fact that (FL,GM) is regular. This gives L(a) ⊆ L, and dually M(a) ⊆ M . But (L(a), M(a)) is real and
hence maximal ρb-regular, so (L, M) = (L(a), M(a)) and we have established that (L, M) is difixed by a as required. Hence,
(S,S, τ , κ) is B-real dicompact. �
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Example 3.9. Consider the real ditopological texture space (R,R, τR, κR) and the bigenerating subset B = {ιR,0} of BA(R),
as in [25, Example 2.6]. For ε > 0 we clearly have

με ≺ με = ι−1(με), με ≺ {
(R,R), (R,∅), (∅,∅)

} = 0−1(με),

so υB = υR . Since (R,R,υR) is dicomplete by Lemma 3.1, Theorem 3.8 gives us a second proof that (R,R, τR, κR) is B-real
dicompact, hence real dicompact by [25, Corollary 2.8].

By considering the T -lattice BA∗(S) of bounded functions in BA(S), and recalling from [25, Proposition 2.20] that BA∗(S)-
real dicompactness coincides with dicompactness, we may give at once the following consequence of Theorem 3.8:

Corollary 3.10. Let (S,S, τ , κ) be a completely biregular, almost plain bi-T2 ditopological ∗-space. Then (S,S, τ , κ) is dicompact if
and only if the di-uniform texture space (S,S,υBA∗(S)) is dicomplete.

Now let B be a bigenerating sub-T -lattice of BA(S p) and consider H B ⊆ RB . We may define a dicovering uniformity on
H B as the restriction to H B of the initial dicovering uniformity on RB given by the projection functions ρϕ : RB → R and
the dicovering uniformity υR on R. We will denote this dicovering uniformity on H B by υρB . Then:

Corollary 3.11. Let (S,S, τ , κ) be a completely biregular ditopological almost plain space and B ⊆ BA(S p) a bigenerating sub-T -
lattice. Then (H B ,HB ,υρB ) is a separated plain dicompletion of (S,S,υB).

Proof. It is easy to verify that the embedding ξB : S p → H B is a uniformly bicontinuous bijection between (S,S,υ) and the
restriction of (H B ,HB ,υρB ) to ξB(S p), and we omit the details. Since H B is jointly closed in RB by [25, Proposition 2.17(2)]
it is real dicompact by [25, Theorem 2.19], and an examination of the proof of that theorem shows that it is actually ρB -real
dicompact. Hence, by Theorem 3.8, (H B ,HB ,υρB ) is dicomplete. �

This result enables us to regard the Hewitt reflector [26, Proposition 3.3] and the Stone–Čech reflector [26, Proposi-
tion 3.18] as particular instances of the dicompletion reflector of Theorem 2.10 for the appropriate categories.

Let υ be a compatible dicovering uniformity on (S,S, τ , κ) or (S p,Sp, τp, κp). In the remainder of this section we
consider the family U (υ) of real ω-preserving υ–υR uniformly bicontinuous point functions on S or S p , as the case may
be.

Proposition 3.12. If B is a bigenerating sub-T -lattice of BA(S p) then

B ⊆ U (υB) ⊆ ν
(
BA(H A)

)
.

In particular, for B ∈ B, the set of bigenerating finitely ρb-prime-complete sub-T -lattices of BA(S p), we have B = U (υB).

Proof. By definition, every element of B is υB –υR uniformly bicontinuous, so we have B ⊆ U (υB).
Let us recall from [26] that the mapping ν : BA(H B) → BA(S p) is given by ν(ϕ) = ϕ ◦ ξB , ϕ ∈ BA(H B), where ξ : S p → H B

is given by ξ(s) = ŝ|B , and ŝ : BA(S p) → R by ŝ(ϕ) = ϕ(s), s ∈ S p .
Now take ϕ ∈ U (υB). Then ϕ : S p → R is υB –υR uniformly bicontinuous, and recalling that ξB is a uniformly bicon-

tinuous bijection between S p and ξ(S p) we see that ϕ ◦ ξ−1
B is a uniformly bicontinuous mapping from the restriction of

(H B ,HB ,υρB ) on ξ(S p) to (R,R,υR). But ξ(S p) is jointly dense in H B by [25, Proposition 2.17(1)], and υR is dicomplete

and separated, so by Proposition 2.7, ϕ ◦ ξ−1
B has a uniformly bicontinuous extension ϕ̂ ◦ ξ−1

B to H B . In particular this

function is bicontinuous for the uniform ditopologies, so ϕ̂ ◦ ξ−1
B ∈ BA(H B). Finally, for s ∈ S p ,

ν
(
ϕ̂ ◦ ξ−1

B

)
(s) = ϕ̂ ◦ ξ−1

B

(
ξB(s)

) = (
ϕ ◦ ξ−1

B

)(
ξB(s)

) = ϕ(s),

whence ν(ϕ̂ ◦ ξ−1
B ) = ϕ , that is ϕ ∈ ν(BA(H B)), as required.

By [26, Corollary 3.13], ν(BA(H B)) is a finite ρb-prime-completion of B , hence for B ∈ B we have ν(BA(H B)) = B , and so
B = U (υB). �

For our next result we will require the following lemma. Although this is the textural counterpart of a known bitopolog-
ical result we sketch the proof for the sake of completeness.

Lemma 3.13. Let (S,S, τ , κ) be a bi-R1 dicompact plain space. Then (S,S, τ , κ) is completely biregular and for any compatible
dicovering uniformity υ we have U (υ) = BA(S).
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Proof. The complete biregularity of (S,S, τ , κ) follows from [11, Proposition 4.3] and [9, Corollary 5.24], and clearly
U (υ) ⊆ BA(S). To prove the opposite inclusion take ϕ ∈ BA(S) and δ > 0. By compatibility, for each s ∈ S we have
Cs ∈ υ with St(Cs, P s) ⊆ ϕ← Q ϕ(s)+δ , ϕ← Pϕ(s)−δ ⊆ CSt(Cs, Q s), and we take Ds ∈ υ open, co-closed with Ds ≺(
) Cs .
Now D� is an open, co-closed dicover of (S,S, τ , κ), so by [11, Theorem 4.8(3)] there exists s1, s2, . . . , sn ∈ S for which
{St(Dsk , P sk ),CSt(Dsk , Q sk ) | 1 � k � n} is a dicover of (S,S). It is straightforward to verify

Ds1 ∧ Ds2 ∧ · · · ∧ Dsn ≺ ϕδ,

whence ϕ ∈ U (υ) as required. �
Proposition 3.14. For a bigenerating sub-T -lattice B of BA∗(S p), U (υB) ∈ B∗ .

Proof. In this case (H B ,HB , τB , κB) is dicompact, so by Lemma 3.13 we have U (υρB ) = BA(H B). Hence, U (υB) =
ν(BA(H B)) ∈ B∗ . �

As a consequence of this proposition we see that there is a one to one correspondence between B∗ and the set of totally
bounded dicovering uniformities compatible with (S p,Sp, τp, κp). On the other hand, it is possible to have a bigenerating
sub-T -lattice of BA(S p) for which U (υB) /∈ B, as the following example shows.

Example 3.15. We continue to develop Example 3.9. Hence, for the real texture (R,R, τR, κR) we take B = {ι,0}, which gives
υ〈B〉 = υB = υR . Since (R,R, τR, κR) is real dicompact and B-real dicompact we see from [25, Proposition 2.11] that BA(R)

is a finite ρb-refinement of 〈B〉, and indeed an examination of the proof of this proposition reveals that BA(R) is actually
a finite ρb-prime-refinement of 〈B〉, and hence of U (υB) = U (υR). If we can show that U (υR) �= BA(R) it will follow that
U (υB) = U (υ〈B〉) = U (υR) /∈ B. To this end take

ϕ(x) = ex ∈ BA(R)

and suppose that ϕ ∈ U (υR). Then, given δ > 0 there exists ε > 0 with με ≺ ϕ−1(μδ) since we are dealing with a plain
texture. Hence, given x ∈ R there exists y ∈ R with Q x+ε ⊆ ϕ← Q y+δ , Px−ε ⊆ ϕ← P y−δ , which gives 0 < eε/2 −e−ε/2 < 2δe−x .
This gives a contradiction for large enough x, so ϕ /∈ U (υR), as required.

Using an obvious notation we know from the general theory above that U ∗(υR) ∈ B∗ . Actually, U∗(υR) = BA∗(R) as the
interested reader may easily verify.

For our final theorem we wish to extend the families B and B∗ to BA(S). We begin by taking a compatible dicovering
uniformity υ on (S p,Sp, τp, κp) and extending it to (S,S, τ , κ). To do this, note that given A ∈ Sp we have a unique set
Â ∈ S with Â ∩ S p = A, hence for a dicover C on S p we may define Ĉ = {( Â, B̂) | A C B}. Then:

Lemma 3.16. Let (S,S, τ , κ) be a nearly plain ditopological texture space. Then υ̂ = {̂C | C ∈ υ} is the unique compatible dicovering
uniformity on (S,S, τ , κ) whose restriction to (S p,Sp) is υ .

Proof. The verification of the various properties of υ̂ is quite straightforward, if somewhat tedious, and we omit the details,
proving only that if C is anchored then so is Ĉ. By [18, Definition 2.1(1)] we must first show that P ≺ Ĉ, so take s ∈ S . Since
(S,S) is nearly plain we have ϕp(s) ∈ S p with Q s = Q ϕp(s) , and since C is anchored we have A C B with P p

ϕp(s) ⊆ A and

B ⊆ Q p
ϕp(s) . But now P s ⊆ Pϕp(s) ⊆ Â and B̂ ⊆ Q ϕp(s) = Q s , which establishes P ≺ Ĉ.

Secondly, for Â Ĉ B̂ we have A C B , so by [18, Definition 2.1(2)] we have s ∈ S p satisfying conditions (a) and (b) of that
definition. It is straightforward to verify that Â Ĉ B̂ also satisfies (a) and (b) for the same point s ∈ S p ⊆ S , and the proof is
complete. �

Now let us note that from Lemma 2.14 we trivially have ϕ ∈ U (υ̂) ⇐⇒ ϕ|S p ∈ U (υ). If we recall from Proposition 2.7
that every element of U (υ) can be (non-uniquely) extended to an element of U (υ̂) we see that U (υ) = {ϕ|S p | ϕ ∈ U (υ̂)}.
This suggests the following definition:

Definition 3.17. For a bigenerating set B ⊆ BA(S p) we set B̂ = {ϕ ∈ BA(S) | ϕ|S p ∈ B} and B̂ = {B̂ | B ∈ B}. Likewise, B̂∗
denotes the above family for B ⊆ BA∗(S p).

Lemma 3.18. With B̂ and B̂∗ as above,

(1) B̂ ∈ B̂ ⇒ B̂ = U (υB̂).
(2) If C ⊆ BA∗(S) is bigenerating then U (υC ) ∈ B̂∗ .
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Proof. (1) B̂ ∈ B̂ ⇒ B ∈ B ⇒ B = U (υB) by Proposition 3.12. Hence B̂ = U (υ̂B) = U (υB̂), as required.
(2) For C ⊆ BA∗(S) we have C |S p ⊆ BA∗(S p) and so U (υC |S p

) ∈ B∗ by Proposition 3.14. Hence, U (υC ) ∈ B̂∗ . �
Remark 3.19. The sets B̂ ∈ B̂ have the property that for r ∈ R with r > 0 we have ϕ ∈ B̂ ⇒ rϕ ∈ B̂ . Here, (rϕ)(s) =
r(ϕ(s)), s ∈ S . To see this we only have to verify that ϕ ∈ U (υB̂) ⇒ rϕ ∈ U (υB̂), and this follows easily from the evident
equality (rϕ)←Bx = ϕ←Bx/r , where Bx = Px or Q x as usual.

Before stating our final theorem we require the following definition:

Definition 3.20. Let B be a bigenerating sub T -lattice of BA(S).

1. A pair (F , G), F ∈ S\{∅}, G ∈ S\{S}, is called completely B-excluding if for some ϑ ∈ B , −1 � ϑ � 1, we have F ⊆ ϑ← P−1
and ϑ← Q 1 ⊆ G . Moreover, (F , G) will be called closed, co-open if F ∈ κ and G ∈ τ .

2. A pair (H, K ), H ∈ S \ {S}, K ∈ S \ {∅}, is called completely B-co-excluding if for some ϑ ∈ B , −1 � ϑ � 1, we have
H ∪ ϑ← P−1 = S and K ∩ ϑ← Q 1 = ∅. Moreover, (H, K ) will be called open, co-closed if H ∈ τ and K ∈ κ .

Theorem 3.21. Let (S,S, τ , κ) be a completely biregular nearly plain ditopological space.

(a1) Let B be a minimal element of B̂. Then for every completely B-coexcluding pair (H, K ), either every S-cofilter G with H ∈ G has
a cluster point in S p or every S-filter K with K ∈ F has a cluster point in S p .

(a2) Let B be a minimal element of B̂. Then for every completely B-excluding pair (F , G), either every S-cofilter G with P /∈ G has a
cluster point in S p or every S-filter K with F /∈ K has a cluster point in S p .

(b) Let B ∈ B̂∗ and suppose that for every closed, co-open completely B-excluding pair (F , G), either F is compact or G is cocompact.
Then B is the smallest element of B̂.

Proof. (a1) Suppose that for some completely B-excluding pair (H, K ), there is a filter K with K ∈ K that has no cluster
point in S p and a cofilter G with H ∈ G that has no cluster point in S p . We claim that K × G is a (not necessarily regular)
υB -Cauchy difilter.

Since an arbitrary point a ∈ S p is not a cluster point of K, there exists K (a) ∈ κ with K (a) ∈ K, Pa � K (a), likewise there
exists H(a) ∈ τ with H(a) ∈ G, H(a) � Q a . Hence we have Ea ∈ υB with St(Ea, Pa) ⊆ H(a) and K (a) ⊆ CSt(Ea, Q a). Now take
the restriction υ

p
B of υB to S p , let E ∈ υ

p
B be arbitrary, and consider E ∧ Ea|S p ∈ υ

p
B . This is a normal dicover, so as in the

proof of [10, Proposition 3.5] we have open, co-closed Dn ∈ υ
p
B , n ∈ N, with D0 ≺ E ∧ Ea|S p and Dn+1 ≺(
) Dn for all n ∈ N,

and a corresponding admissible pseudo-dimetric (ρ,ρ) on S p satisfying O1 ≺ D1 ≺ D0 ≺ E ∧ Ea|S p .

Define ϕ = ϕE
a by ϕ(s) = ρ(a, s), s ∈ S p . Clearly ϕ : S p → R is ω-preserving. Take δ > 0. If n � 1 satisfies 3−n < δ it is

easy to show that On ≺ ϕ−1(μδ), while for a sufficiently large m we have Dm ≺ On , so ϕ−1(μδ) ∈ υ
p
B as Dm ∈ υ

p
B . Applying

Proposition 2.7, and noting that (S,S) satisfies S� = S , we have an extension ϕ̂ : S → R of ϕ with ϕ̂−1(μδ) ∈ υB . Hence,

ϕ̂ = ϕ̂E
a ∈ U (υB) = B since B ∈ B. Also, working within S p ,

ϕ← Q 1/3 ⊆ N1(a) ⊆ St
(
D1, P p

a
) ⊆ St

(
E, P p

a
)

from which we deduce ϕ̂← Q ϕ̂(a)+1/3 = ϕ̂← Q 1/3 ⊆ St(E, Pa).
Now we show that these functions generate τ . Firstly,

ϕ̂← Q ϕ̂(a)+1/3 = ϕ̂E
a

←
Q

ϕ̂E
a (a)+1/3

∈ τυB = τ .

On the other hand, if G ∈ τ , G � Q s for s ∈ S , we have a ∈ S p with G � Q a and Pa � Q s . Taking E ∈ υB with St(E, Pa) ⊆ G

gives P s ⊆ Pa ⊆ St(E, Pa) ⊆ G , whence the family {ϕ̂E
a | a ∈ S p, E ∈ υB} does indeed generate the topology τ . In exactly the

same way, defining ψ = ψE
a by ψ(s) = ρ(a, s), s ∈ S p , we have an extension ψ̂ of ψ to S which belongs to B , and the family

{ψ̂E
a | a ∈ S p, E ∈ υB} generates the cotopology κ . It follows that the set

C = {
ϕ̂E

a ∧ (1/3)
∣∣ a ∈ S p, E ∈ υB

} ∪ {0} ∪ {
ψ̂E

a ∧ (1/3)
∣∣ a ∈ S p, E ∈ υB

}
is bigenerating and satisfies U (υC ) ⊆ B . However, C ⊆ BA∗(S) so U (υC ) ∈ B̂∗ ⊆ B̂ by Lemma 3.18(2), and since B is minimal
in B̂ this gives

B = U (υC ). (3.3)

Now from O1 ≺ Ea we obtain, for any δ > 0,

S = ϕ̂E
a ∧ (1/3)← Q 1/3+δ, ϕ̂E

a ∧ (1/3)← P1/3−δ ⊆ H(a),

K (a) ⊆ ψ̂E
a ∧ (1/3)← Q 1/3+δ, ψ̂E

a ∧ (1/3)← P1/3−δ = ∅.
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Hence, in view of (3.3), we see that K × G is indeed υB -Cauchy. Now let us take ϑ ∈ B with −1 � ϑ � 1, H ∪ ϑ← P−1 = S
and K ∩ϑ← Q 1 = ∅. Since (K×G)∩ϑ1/3 �= ∅ we have s ∈ S with ϑ← Q ϑ(s)+1/3 ∈ K and ϑ← Pϑ(s)−1/3 ∈ G. Now K ∈ K, H ∈ G

gives

ϑ← Q ϑ(s)+1/3 ∩ K �= ∅ and ϑ← Pϑ(s)−1/3 ∪ H �= S,

which leads to a contradiction. Hence, (a1) is proved.
(a2) Let B ∈ B̂ be minimal and (F , G) a completely B-excluding pair for which there exists an S-cofilter G with F /∈ G

that has no cluster point in S p and an S-filter K with G /∈ K that has no cluster point in S p . Proceeding exactly as in the
proof of (a1) we may show that K × G is υB -Cauchy, whence for ϑ ∈ B with F ⊆ ϑ← P−1 and ϑ← Q 1 ⊆ G we have s ∈ S
with ϑ← Q ϑ(s)+1/3 ∈ K and ϑ← Pϑ(s)−1/3 ∈ G. This time, F /∈ G and G /∈ K give

F � ϑ← Pϑ(s)−1/3 and ϑ← Q ϑ(s)+1/3 � G,

which lead to a contradiction as before, so proving (a2).
(b) Suppose that B ∈ B̂∗ has the property stated in (b), and that B ′ is any other element of B̂∗ . We wish to show

B ⊆ B ′ , so take ϕ ∈ B . Since B ′ certainly contains all constant real functions on S we may assume ϕ is not constant, whence
α = infϕ(S), β = supϕ(S) satisfy α < β . Take δ > 0, choose n with 2/n < min{δ, (β − α)/2}, and integers p, q satisfying

(p − 1)/n � α < p/n and q/n < β � (q + 1)/n.

Clearly (ϕ← Pi/n,ϕ← Q (i+1)/n), p � i � q − 1 are closed, co-open completely B-excluding pairs, whence by hypothesis ei-
ther the first set is compact or the second cocompact. Suppose, for some given i, that ϕ← Pi/n is compact. Take s ∈ S p

with ϕ← Pi/n � Q s . Then ϕ← Q (i+1)/n � Q s , so since B ′ is a bigenerating sub-T -lattice we have ψs ∈ B ′ and x ∈ R with
P s ⊆ ψ←

s Q x ⊆ Q (i+1)/n . Now ψ←
s Q x � Q s so ψ(s) < x and we may choose ε > 0 with ψ(s) + ε < x. Taking into account

Remark 3.19, we may now choose r,k ∈ R with r > 0 so that ϕs = ((rϕ + k) ∨ (−1)) ∧ 1 ∈ B ′ satisfies

ψ←
s Q ψ(s)+ε ⊆ ϕ←

s P−1 and ϕ←
s Q 1 ⊆ ϕ← Q (i+1)/n.

Using the compactness of ϕ← Pi/n now leads to a function ϑi ∈ B ′ satisfying ϕ← Pi/n ⊆ ϑ←
i P−1, ϑ←

i Q 1 ⊆ ϕ← Q (i+1)/n , and
a dual argument gives a function ϑi with the same properties if ϕ← Q (i+1)/n is cocompact.

In order to prove ϕ ∈ U (υB ′ ) it will be sufficient, by Lemma 3.2(1), to show that ϕδ ∈ υB ′ , and by Lemma 3.2(2) this will
follow from (

∧q−1
i=p (ϑi)1/2)

� ≺ ϕδ . Take s ∈ S and suppose that

St

( q−1∧
i=p

(ϑi)1/2, P s

)
� ϕ← Q ϕ(s)+δ.

If we take t ∈ S with St(
∧q−1

i=p (ϑi)1/2, P s) � Q t , Pt � ϕ← Q ϕ(s)+δ there exist si ∈ S , p � i � q − 1, with
⋂q−1

i=p ϑ← Q ϑ(si)+1/2 �

Q t and P s �
⋃q−1

i=p ϑ←
i Pϑi(si)−1/2. Now there exists j with j/n < ϕ(s) � ( j + 1)/n, from which we obtain ϑ j+1(s) = −1,

and since ϕ(t) � ϕ(s) + δ > ϕ(s) + 2/n we have ϕ(t) > ( j + 2)/n from which we obtain ϑ j+1(t) = 1. However, ϑ j+1(t) �
ϑ j+1(s j+1) + 1/2 and ϑ j+1(s) � ϑ j+1(s j+1) − 1/2, which leads to an immediate contradiction.

A similar argument for the dual inclusion also holds, so we deduce ϕ ∈ U (υB ′ ), that is B ⊆ B ′ as required. �
The following result uses the notions of stability and costability. Stability for bitopological spaces was introduced by

R. Kopperman [17]. We recall that a stable (costable) ditopological texture space (S,S, τ , κ) is one for which every F ∈ κ \{S}
(G ∈ τ \ {∅}) is compact (respectively cocompact).

Corollary 3.22. A stable, costable bi-T2 ditopological texture space has a unique compatible totally bounded di-uniformity.

Proof. We know from [11, Theorem 3.7] that an R1 costable space is regular, while by [11, Theorem 3.5] a regular stable
space is normal, so using [9, Corollary 5.24] we see that a bi-R1 stable, costable space is completely biregular. Hence,
Theorem 3.21 applies. Now for any B ∈ B and a completely B-excluding pair (F , G) we have F ∈ κ , and as clearly F ⊆ G
and G �= S we also have F �= S so F is compact by stability. Likewise, G is cocompact by costability. Hence B is the smallest
element of B, that is B has a single element which generates the unique compatible totally bounded di-uniformity. �

Clearly, the same result holds for a completely biregular bi-T2 space that is either stable or costable. An example of a
space satisfying the conditions of the corollary is (R,R, τR, κR) restricted to the set {r ∈ R | r � 0}.

Bearing in mind that a dicompact space is stable and costable, and that every compatible di-uniformity is totally
bounded, Corollary 3.22 gives at once:

Corollary 3.23. Every dicompact bi-T2 ditopological texture space has a unique compatible di-uniformity.
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Remark 3.24. An examination of the proof of (b) shows that it would be enough to replace the assumption that F is compact
by the weaker requirement that every open cover of G has a finite subfamily covering F , which would be equivalent to
saying that every cofilter G not containing F has a cluster point in G� . Likewise, the assumption that G be cocompact could
be weakened in the same way. Clearly, even these weaker requirements are in general stronger than the conclusion of (a2).

Remark 3.25. For the plain case, the necessary condition (a1) occurs, along with the sufficient condition (b), in bitopological
form in [2, Theorem 3.3.4]. The reason (a1) is interesting there is that, for the single topology case, it coincides with (b).
Generally, however, (a1) would seem to be of less relevance than (a2). For instance, it is easy to see that in the subspace
of (R,R, τR, κR) mentioned above, (a1) holds only by virtue of the fact that in this space there can be no completely
B-co-excluding pairs.
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