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Abstract

This paper gives a priori estimates and continuous dependence of

the solutions to fourth-order nonlinear wave equation.
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1 Introduction

We consider the following initial boundary value problem

uy — aAu — BAuy — yAuy = f(u) (1)
u(z,0) = up(x), ut(x,0) = u(z), x € Q (2)
u=0, x € 9N, t>0, (3)



where (0 C R™ is bounded region with smooth boundary 09; o, and ~y are positive

constants. f(u) is a given nonlinear function which satisfies

FeCt R, |f @ <c(1+ ™) p21(n-2)p<n (4
and
lim sup fiu) < a\ (5)

where A1 is the first eigenvalue of the Laplace operator with the homogeneous
Dirichlet boundary condition.

Continuous dependence of solutions on coefficients of equations is a type of
structural stability, which reflects the effect of small changes in coefficients of
equations on the solutions. Many results of this type can be found in [1].

In [2], authors studied asymptotic behaviour of solution to initial value problem
of fourth order wave equation with dispersive and dissipative terms by taking
coefficients « = 3 =+ = 1 in (1). They proved that the global strong solution of
the problem decays to zero exponentially as t — oo. The authors Guo-wang Chen
and Chang-Shun Hou, in article [3], studied the following initial value problem for

a class of fourth order nonlinear wave equations,
Vit — A1V — A2Vt — A3Vggtt = f(Vz)e 2 € BT >0

v(x,0) = vo(x), ve(x,0) =vi(x), x € R

where a1, as, ag are positive constants. They gave also the blow up results for this
problem.

In [4], Shang studied the initial boundary value problem

uy — Au — Aug — Auy = f(u),z € Q,t >0 (1)
u(z,0) = uo(z), ut(x,0) = uy(x), © € Q (27)
u=0, z €t >0, (3"

Under the assumptions that n = 1,2, 3; f € C, f/(u) is bounded above and satisfies
i) |f'(w)] < AP +B,0 < p< ooifn=2,0<p< % if n = 3;u(x) €



H?(Q) N HE(Q) (i = 0,1), it was proven that problem (1')-(3’) admits unique
global strong solution u such that VI > 0,u € W2> (0, T; H? (Q) N H} (Q))

In [5], problem (1’)-(3’) were studied again for all n > 1. By supposing that
f € C! and f'(u) is bounded above satisfying (ii)|f’(u)| < A|ul’ + B,0 < p < oo
iftn=20<p< % if n > 3,u;(x) € H2(Q) N HL (Q) (i = 0,1), it was proven
that problem (1’)-(3’) admits unique global strong solution u such that for all 7" >
0,u € W2 (0,T; H* (Q) N Hy ().

In [6], authors studied the spatial behavior of a coupled system of wave-plate
type . They got the alternative results of Phragmen-Lindelof type in terms of
an area measure of the amplitude in question based on a first-order differential
inequality. They also got the spatial decay estimates based on a second-order
differential inequality.

The aim of this paper is to prove the continuous dependence of solutions to
the problem (1)-(3) on coefficients «, § and ~.

Throughout this paper , we use the notation |||, for the norm in LY (Q). We

use ||.|| instead of ||.|,.

2 A Priori Estimates

In this section, we obtain a priori estimates for the problem (1)-(3).

Theorem 1 Assume that the conditions (4) and (5) hold. Then for up,u; €
H(Q) the solution u of problem (1)-(3) satisfies the following estimates:

[Vaul® + || Vue||* < Dy (6)
and
t
/HVusstds < Dot (7)
0

for anyt > 0. Here D1 > 0 and D2 > 0 depend on initial data and the parameters
of (1).



Proof. First, by taking the inner product of (1) by u; in L?(Q) and integrating
by parts, we get

d |1 2, @ 2, 7 2 / 2
7 |3 Il + 5 IVul™ + 5 [Vuel” = [ Flu)de| +B8[[Vae|" =0 (8)
Q
and
E(t) < E(0) (9)
where F (u ff )ds and E(t) = & |jw|® + 2 |Vul]® + 2 | V|| — [ F(u)da
Q

From (5) and deﬁmtlon of limsup we obtain

F(u )<c+a7/\1u2f;u2 (10)

Using (10) and Poincare’s inequality from (9) we find (6).
Next we multiply (1) by uy in L2() to get

dt? B 15wl 4 [Vuael® + fee]? —I—Q/VuVuttdac—/f Vude (1)

Using Cauchy-Schwarz inequality, e-Cauchy inequality and from (4), we take,

Ial2 ct
(v = *) IVual? + 22 | u]? < + o IVul® + 5 [ JufPde (12)

dt2

where c1, co are constants and ¢ is sufficiently small and positive. Using Sobolev

inequality and (6) we have

/|U|2p dx = ||ull3p < e3 | Vul[*? < cs (13)

where c3 is a Sobolev constant and ¢4 = c4(e, v, up,u1). From (12) and (13) we
obtain

d g
(o~ DIVl + 50

where ¢5 depends on initial data and the parameters of (1). Now, we integrate

(14) from (0,t), then we obtain

‘VUtH < Cs (14)

/ | Vuss||® ds < cgt (15)



where ¢¢ depends on initial data and the parameters of (1). Hence, (7) follows
from (15).

3 Continuous Dependence on the Coefficients

In this section, we prove that the solution of the problem (1)-(3) depends contin-
uously on the coefficients a, 3 and v in H(Q).

We consider the problem

uy — a1 Au — B Auy — v Auy = f(u) (16)
u(z,0) = 0,uy(2,0) = 0 (17)
ulgo =0 (18)
and
vt — aaAv — Bolvy — 2 Avy = f(v) (19)
v(z,0) = 0,vi(z,0) = 0 (20)
v)pq =0 (21)

Let us define the difference variables w, «, 8 and v by w=u-v, & = a1 — a2 ,
B = 1 — P2 and v = 71 — 2 then w satisfy the following the initial boundary value

problem:
wy — a1 Aw — aAv — B1Awy — BAv — 1 Awy — yAvy = f(u) — f(v)  (22)
w(x,0) = 0, wy(z,0) =0 (23)
Wl =0 (24)
The main result of this section is the following theorem.

Theorem 2 Let w be the solution of the problem (22)-(24). If

) = F@)] < er (T ™+ o) Ju ol (25)



holds, then w satisfies the estimate

ol + [V + [V < K (o = a2)” + (81 — B2)” + (1 — 70)7]
where M and K are positive constants depending on initial data and the parameters
of (1).
Proof. Let us take the inner product of (22) with w; in L?(Q); we have

d
A R o R

a/Vvatd:L'—l—ﬁ/Vvtitd:E+7/Vvttitdm :/|f(u) — f(v)|wedx (26)
Q Q Q

From (26) we obtain

d
B () + B[ Vur|* < ol [Vl [Vl + 18] [V | Vorl| +

Y[V | IIVvttII+/|f(U)—f(v)|wtdfC (27)

where Ey(t) = 3 [[wil® + G |V ||* + 3 V|,
Using the Holder, Sobolev, Cauchy-Schwarz inequalities and (25) we obtain the

estimate

/|f v)| wpdr < 07/ (1 + |uP~t + |U\p_1) |w| wydx

Q
p—1 p—1
<o (14 VUl ™ + [Vl ) [ 2,
< C (Ve + i) (28)

where c7, cg are constants and C' = C(c7, ¢g).Using Cauchy-Schwarz inequality and
(28), from (27), we get

d
B + (61 —¢) V7w <*\04\ Vol t !B! IV +

3
= P [ 90all® + o (7wl + flwel”) (29)

6



and from (29) we can write

d 3
=B < = (laP Vo> + 8P Vol + 1 Veul®) + ME(£)  (30)

where M = %ﬁral) Applying Gronwall’s inequality with (6) and (7), we get
Ey(t) < MK (Jaf + 18P + 1) ¢ (31)

Hence proof is completed.
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