Categories of rough sets and textures

Murat Diker*
Department of Mathematics, Institute of Science, Hacettepe University, 06532 Beytepe, Ankara, Turkey

ARTICLE INFO

Article history:

Received 12 December 2011
Received in revised form 20 August 2012
Accepted 11 December 2012
Communicated by A. Skowron

Keywords:

Approximation operator
Dagger category
Direlation
Rough set
Symmetric monoidal category Texture space

Abstract

It is known that the theories of rough sets and fuzzy sets have successful applications in computing. Textures, as a theoretical model, provide a new perspective for both rough sets and fuzzy sets. Indeed, recent papers have shown that there is a natural link between rough sets and textures while a texture is an alternative point-set based setting for fuzzy sets. Relations are representatives of information systems and induce approximation operators. Therefore, the first step for the categorical discussions on rough sets involves the category REL of sets and relations. In this context, we observe that power sets and pairs of rough set approximation operators form a category denoted by R-APR. In particular, we prove that R-APR is isomorphic to a full subcategory of the category cdrTex whose objects are complemented textures and morphisms are complemented direlations. Therefore, cdrTex may be regarded as a suitable abstract model of rough set theory. Here, we show that R-APR and cdrTex are new examples of dagger symmetric monoidal categories.

© 2012 Elsevier B.V. All rights reserved.

0. Introduction

Rough set theory was introduced by the Polish mathematician, Z. Pawlak in the early 1980s as a new mathematical approach to deal with imprecision vagueness, and uncertainty in data analysis [28]. The starting point of the theory is a data set which consists of objects and attributes obtained from measurements and human experts. Formally, a data set is an information system with a universe U of objects and a set A of attributes related to objects of the universe. Any subset B of A determines an equivalence relation r on U, called an indiscernibility relation defined by $(x, y) \in r$ if and only if $a(x)=$ $a(y)$ for every $a \in B$ where $a(x)$ denotes the value of attribute a for object x. Then we can approximate every subset $X \subseteq U$ using only the information contained in B in the following manner: if $[x]$ denotes an equivalence class of r containing x, then we may define two operators $\underline{a p r}, \overline{\operatorname{apr}}: \mathscr{P}(U) \rightarrow \mathscr{P}(U)$ as

$$
\underline{\operatorname{apr}}(X)=\{x \in U \mid[x] \subseteq X\} \text { and } \overline{\operatorname{apr}}(X)=\{x \in U \mid[x] \cap X \neq \emptyset\}
$$

for all $X \subseteq U$, respectively. The pair $(a p r(X), \overline{a p r}(X))$ is called a rough set. In rough set theory, equivalence relations can be replaced by ordinary relations (see e.g., [32-35]). This leads to very successful applications in machine learning, intelligent systems, inductive reasoning, pattern recognition, mereology, knowledge discovery, decision analysis and expert systems (for more information see [29]). Approximation operators are fundamental tools in rough set theory. Here we consider rough set models on two universes for arbitrary relations, and we show that the pairs of approximation operators and power sets form a category denoted by R-APR. In fact, R-APR is isomorphic to the category REL of sets and relations. The categorical discussions on rough sets are rare and recent studies on category theoretical approaches to rough set theory can be found in [3,4,17-19,23,24].

Recall that a texturing \mathcal{U} is a family of subsets of a given universe U satisfying certain conditions related to the basic properties of the power set $\mathcal{P}(U)$. The pair (U, U) is called a texture space or a texture, in brief [6]. The basic motivation

[^0]for textures is to give an alternative point-set based setting for fuzzy lattices, that is, complete, completely distributive lattices with an order reversing involution [7]. Coincidentally, a texture is a T_{0}-topological space with completely distributive lattice of open (or closed) sets [11]. However, this side of textures is not the motivation for the alternative setting for fuzzy lattices and the morphisms are not the same as the ordinary functions between topological spaces. Since duality is an important tool of texture spaces, we notice that the morphisms between textures have two parts which are dual to each other. Namely, a direlation is a pair (r, R) where r (relation) and R (corelation) are the elements of a textural product satisfying certain conditions [8]. Presections with respect to direlations are natural generalizations of rough sets in that if (r, R) is a complemented direlation on a complemented texture (U, U, c_{U}), then the system ($U, U, c_{U}, R^{\leftarrow}, r^{\leftarrow}$) defines an approximation space where $R \leftarrow$ and $r \leftarrow$ are the inverse corelation and inverse relation, respectively (see e.g., [12,27,28,33]). Here, we report that the complemented textures and complemented direlations form a category which is denoted by cdrTex and prove that the category R-APR is a full subcategory of cdrTex.

On the other hand, the concept of monoidal category goes back to works on monoid in abstract algebra. It is well-known that Abelian groups, vector spaces, more generally R-modules, or R -algebras constitute symmetric monoidal categories by means of ordinary tensor product (see e.g., $[20,21,25,31]$). Dagger (involutive) symmetric monoidal categories are also used in linear logic and quantum mechanics [1,2]. Here, we prove that cdrTex is a new example to a dagger symmetric monoidal category.

This paper is an extended and revised version of the conference paper [13] and it contains full proofs, more detailed remarks, and several further results.

For the benefit of the reader we give the necessary concepts and results related to textures and textural rough sets in Sections 1-4. For details, we refer to [5-8,11-16,26].

1. Textures

Let U be a set. Then $U \subseteq \mathscr{P}(U)$ is called a texturing of U, and (U, U) is called a texture space, or simply a texture, if

1. (U, \subseteq) is a complete lattice containing U and \emptyset, such that arbitrary meets coincide with intersections, and finite joins coincide with unions,
2. U is completely distributive, i.e., for all index set I, and for all $i \in I$, if J_{i} is an index set and if $A_{i}^{j} \in U$, then we have

$$
\bigcap_{i \in I} \bigvee_{j \in J_{i}} A_{i}^{j}=\bigvee_{\gamma \in \prod_{i} J_{i}} \bigcap_{i \in I} A_{\gamma(i)}^{i}
$$

3. U separates the points of U, i.e., given $u_{1} \neq u_{2}$ in U there exists $A \in U$ such that $u_{1} \in A, u_{2} \notin A$, or $u_{2} \in A, u_{1} \notin A$.

Note that for any family $\left\{A_{i} \mid i \in I\right\} \subseteq \mathcal{U}$, we have

$$
\bigvee_{i \in I} A_{i}=\bigcap\left\{A \mid A \in \mathcal{U} \text { and } \bigcup_{i \in I} A_{i} \subseteq A\right\}
$$

A mapping $c_{U}: U \rightarrow \mathcal{U}$ is called a complementation on (U, \mathcal{U}) if it satisfies the conditions $c_{U}^{2}(A)=A$ for all $A \in U$ and $A \subseteq B$ in \mathcal{U} implies $c_{U}(B) \subseteq c_{U}(A)$. Then the triple $\left(U, \mathcal{U}, c_{U}\right)$ is said to be a complemented texture space.

For $u \in U$, the p-sets and q-sets are defined by

$$
P_{u}=\bigcap\{A \in \mathcal{U} \mid u \in A\} \text { and } Q_{u}=\bigvee\{A \in U \mid u \notin A\}
$$

A nonempty set $A \in U$ is a molecule if $\forall B, C \in U, A \subseteq B \cup C \Rightarrow A \subseteq B$ or $A \subseteq C$. Clearly, p-sets are molecules of a texture space. A texture space (U, \mathcal{U}) is called simple if all molecules of the space are p-sets. The p-sets and q-sets are important tools in the theory of texture spaces since complete distributivity can be written in terms of p-sets and the q-sets:
Theorem 1.1 ([11]). Let (U, \subseteq) be a complete lattice. The following statements are equivalent.
(i) (U, \mathcal{U}) is completely distributive.
(ii) For $A, B \in U$, if $A \nsubseteq B$ then there exists $u \in U$ with $A \nsubseteq Q_{u}$ and $P_{u} \nsubseteq B$.

Example 1.2 ([8]). (i) The pair $(U, \mathcal{P}(U))$ is a texture space where $\mathcal{P}(U)$ is the power set of U. It is called a discrete texture. Clearly, $(U, \mathcal{P}(U))$ is simple and for $u \in U$ we have

$$
P_{u}=\{u\} \text { and } Q_{u}=U \backslash\{u\}
$$

and $c_{U}: \mathcal{P}(U) \rightarrow \mathcal{P}(U)$ is the ordinary complementation on $(U, \mathcal{P}(U))$ defined by $c_{U}(A)=U \backslash A$ for all $A \in \mathscr{P}(U)$.
(ii) Let $M=(0,1]$. The family $\mathcal{M}=\{(0, r] \mid r \in[0,1]\}$ is a texture on M which is called the Hutton texture. Clearly, \mathcal{M} is closed under arbitrary intersections. Then it is easy to see that it is a complete lattice with respect to set inclusion. It is also completely distributive. To see this, take $(0, r],(0, s] \in \mathcal{M}$ where $(0, r] \nsubseteq(0, s]$. Then we have $s<r$. Choose a point $t \in[0,1]$ where $s<t<r$. Since we have $P_{t}=Q_{t}=(0, t]$, we may conclude that $(0, r] \nsubseteq Q_{t}$ and $P_{t} \nsubseteq(0, s]$. Therefore, by Theorem 1.1. \mathcal{M} is completely distributive. Further, \mathcal{M} is simple and the complementation $c_{M}: \mathcal{M} \rightarrow \mathcal{M}$ is defined by

$$
\forall r \in(0,1], c_{M}((0, r])=(0,1-r]
$$

Here, join is not always equal to union. For example, for the collection $\left\{\left.\left(0,1-\frac{1}{n}\right] \right\rvert\, n \in N\right\} \subseteq \mathcal{M}$ we have

$$
\bigcup_{n \in N}\left(0,1-\frac{1}{n}\right]=(0,1) \text { and } \bigvee_{n \in N}\left(0,1-\frac{1}{n}\right]=(0,1]
$$

(iii) Using a similar argument as in (ii), we may show that the pair (I, ℓ) where

$$
I=[0,1] \text { and } \ell=\{[0, r) \mid r \in I\} \cup\{[0, r] \mid r \in I\}
$$

is also a texture (unit texture). For $r \in I$, we have $P_{r}=[0, r], Q_{r}=[0, r)$. Since Q_{r} is also a molecule, the texture is not simple. Further, the mapping $c_{I}: \ell \rightarrow \ell$ defined by

$$
\forall r \in I, c_{I}([0, r])=[0,1-r), c_{I}([0, r))=[0,1-r]
$$

is a complementation on (I, ℓ).
(iv) Let $U=\{a, b, c\}$. Then $\mathcal{U}=\{\emptyset,\{a\},\{a, b\}, U\}$ is a texture on U. Clearly,

$$
P_{a}=\{a\}, P_{b}=\{a, b\}, P_{c}=U \text { and } Q_{a}=\emptyset, Q_{b}=\{a\}, Q_{c}=\{a, b\}
$$

The mapping $c_{U}: U \rightarrow U$ defined by

$$
c_{U}(\emptyset)=U, c_{U}(U)=\emptyset, c_{U}(\{a\})=\{a, b\}, c_{U}(\{a, b\})=\{a\}
$$

is a complementation on (U, U). It is clearly simple.

2. Products of textures

Here, we discuss the product of any two texture spaces (U, U) and (V, \mathcal{V}). For more information about the products of arbitrary families of textures we refer to [7]. Consider the family $\mathcal{A}=\{A \times V \mid A \in \mathcal{U}\} \bigcup\{U \times B \mid B \in \mathcal{V}\}$ and define

$$
\mathcal{B}=\left\{\bigcup_{j \in J} E_{j} \mid\left\{E_{j}\right\}_{j \in J} \subseteq \mathscr{A}\right\} .
$$

The family of arbitrary intersections of the elements of \mathcal{B}, that is, the lattice

$$
u \otimes \mathcal{V}=\left\{\bigcap_{i \in I} D_{i} \mid\left\{D_{i}\right\}_{i \in I} \subseteq \mathscr{B}\right\}
$$

is a texture on $U \times V$. Clearly, for all $A \in \mathcal{U}$ and for all $B \in \mathcal{V}$, we have $A \times B \in \mathcal{U} \otimes \mathcal{V}$. Further, the p-sets and q-sets may be easily determined as

$$
P_{(u, v)}=P_{u} \times P_{v} \text { and } Q_{(u, v)}=\left(U \times Q_{v}\right) \cup\left(Q_{u} \times V\right) .
$$

If c_{U} and c_{V} are complementations on the textures (U, U) and (V, \mathcal{V}), respectively, then for the complementation $c_{U \times V}$ on the product, it is enough to check that

$$
c_{U \times V}(U \times B)=U \times c_{V}(B) \text { and } c_{U \times V}(A \times V)=c_{U}(A) \times V
$$

for all $A \in \mathcal{U}$ and $B \in \mathcal{V}$. In particular, if $\mathcal{P}(U)$ is a discrete texture on U, then for the textures $(U, \mathcal{P}(U)),(V, \mathcal{V})$, the p-sets and q-sets will be

$$
\bar{P}_{(u, v)}=\{u\} \times P_{v} \text { and } \bar{Q}_{(u, v)}=((U \backslash\{u\}) \times V) \cup\left(U \times Q_{v}\right)
$$

for the product texture $(U \times V, \mathcal{P}(U) \otimes \mathcal{V})$.
Now take the texture $\left(M, \mathcal{M}, c_{M}\right)$ in Example 1.2(ii). We determine the product texture $\mathcal{P}(U) \otimes \mathcal{M}$ on $U \times(0,1]$. It is easy to see that the sets $A \times(0, r]$ are the elements of the product texture for all $A \subseteq U$ and $r \in[0,1]$. Note that for $\mathcal{P}(U)$, we have $P_{u}=\{u\}$ and $Q_{u}=U \backslash\{u\}$ where $u \in U$. Further, we have $P_{r}=(0, r]=Q_{r}$ in \mathcal{M}. Therefore, the p-sets and q-sets of the product texture $\mathcal{P}(U) \otimes \mathcal{M}$ are

$$
P_{(u, r)}=P_{u} \times P_{r}=\{u\} \times(0, r]
$$

and

$$
Q_{(u, r)}=\left(Q_{u} \times(0,1]\right) \cup\left(U \times Q_{r}\right)=(U \backslash\{u\} \times(0,1]) \cup(U \times(0, r])
$$

respectively. On the other hand, the complementations on \mathcal{M} and $\mathcal{P}(U)$ are given by

$$
\forall r \in(0,1], c_{(0,1]}(0, r]=(0,1-r] \text { and } \forall A \subseteq U, c_{U}(A)=U \backslash A
$$

For the complementation $c_{U \times M}$ on the product texture $\mathcal{P}(U) \otimes \mathcal{M}$, we have

$$
c_{U \times M}((A \times(0,1]) \cup(U \times(0, r]))=(U \backslash A) \times(0,1-r]
$$

for every subset $A \subseteq U$ and $r \in(0,1]$.

3. Hutton textures

The basic motivation of textures is the correspondence between fuzzy lattices and simple textures [7]. Let ($L, \leq, /$) be a fuzzy lattice (Hutton algebra), that is, a complete, completely distributive lattice with an order reversing involution "". Recall that $m \in L$ is join-irreducible, if

$$
\forall a, b \in L, m \leq a \vee b \Rightarrow m \leq a \text { or } m \leq b
$$

Consider the sets

$$
\begin{aligned}
& M_{L}=\{m \mid m \text { is join-irreducible in } L\} \\
& \mathcal{M}_{L}=\{\widehat{a} \mid a \in L\}, \text { and } \widehat{a}=\left\{m \mid m \in M_{L} \text { and } m \leq a\right\} \text { for all } a \in L .
\end{aligned}
$$

Then the mapping ${ }^{\wedge}: L \rightarrow \mathcal{M}_{L}$ defined by $\forall a \in L, a \mapsto \widehat{a}$ is a lattice isomorphism and the triple $\left(M_{L}, \mathcal{M}_{L}, c_{M_{L}}\right)$ is a complemented simple texture space which is called a Hutton texture. Here the complementation $\mathcal{C}_{M_{L}}: \mathcal{M}_{L} \rightarrow \mathcal{M}_{L}$ is defined by

$$
\forall a \in L, c_{M_{L}}(\widehat{a})=\widehat{a^{\prime}}
$$

Conversely, every complemented simple texture may be obtained in this way from a suitable Hutton algebra [7].
Example 3.1. (i) The unit interval [0,1] is a Hutton algebra with the usual ordering \leq and the order reversing involution / where $u^{\prime}=1-u$ for all $u \in[0,1]$. The simple texture corresponding to the Hutton algebra [0, 1] is the Hutton texture (M, \mathcal{M}, c_{M}) given in Example 1.2(ii) where

$$
\mathcal{M}=\{(0, u] \mid u \in[0,1]\} \text { and } c_{M}(0, u]=(0,1-u], \forall u \in[0,1]
$$

Indeed, the set of all join-irreducible elements of $[0,1]$ is $M=(0,1]$ and for every $u \in[0,1]$, we have $\widehat{u}=(0, u]$. Then the mapping

$$
\begin{aligned}
\widehat{\sim} & {[0,1] \longrightarrow \mathcal{M} } \\
& u \longrightarrow(0, u], \forall u \in[0,1]
\end{aligned}
$$

is a lattice isomorphism.
(ii) Recall that a fuzzy subset α of U is a membership function $\alpha: U \rightarrow[0,1]$. We denote the set of all fuzzy subsets of U by $\mathcal{F}(U)$. It is well known that $\mathcal{F}(U)$ is also an Hutton algebra with the pointwise ordering

$$
\forall u \in U, \alpha \leq \beta \Longleftrightarrow \alpha(u) \leq \beta(u)
$$

and the order reversing involution $\alpha^{\prime}(u)=1-\alpha(u)$. Here the join and the meet of fuzzy sets are considered as

$$
(\alpha \wedge \beta)(u)=\alpha(u) \wedge \beta(u) \text { and }(\alpha \vee \beta)(u)=\alpha(u) \vee \beta(u)
$$

for all $\alpha, \beta \in \mathcal{F}(U)$.
Now consider the fuzzy points u_{s} and fuzzy copoints u^{s} of $\mathcal{F}(U)$ defined by

$$
u_{s}(z)=\left\{\begin{array}{ll}
s, & \text { if } z=u \\
0, & \text { if } z \neq u
\end{array} \text { and } \quad u^{s}(z)= \begin{cases}s, & \text { if } z=u \\
1, & \text { if } z \neq u\end{cases}\right.
$$

Let us take the sets:

$$
\begin{aligned}
& \widehat{\alpha}=\left\{u_{s} \mid u_{s} \leq \alpha\right\}, \\
& \mathcal{M}_{\mathcal{F}(U)}=\{\widehat{\alpha} \mid \alpha \in \mathcal{F}(U)\}, \text { and } \\
& M_{\mathscr{F}(U)}=\left\{u_{s} \mid u_{s} \text { is a fuzzy point in } \mathscr{F}(U)\right\} .
\end{aligned}
$$

Then under the lattice isomorphism $\mathfrak{\sim}(U) \rightarrow \mathcal{M}_{\mathcal{F}(U)}$, the corresponding texture space will be $\left(M_{\mathcal{F}(U)}, \mathcal{M}_{\mathcal{F}(U)}\right)$. Every fuzzy point u_{s} can be regarded as an ordered pair $(u, s) \in U \times(0,1]$ and then we may obtain that $\widehat{\alpha}=\{(u, s) \mid s \leq \alpha(u)\}$. Therefore, it can be shown that the texture $\left(M_{\mathcal{F}(U)}, \mathcal{M}_{\mathcal{F}(U)}\right)$ is isomorphic to the product texture

$$
\left(U \times M, \mathcal{P}(U) \otimes \mathcal{M}, c_{U \times M}\right)
$$

while the complementation mapping is defined by $c_{U \times M}(\widehat{\alpha})=\widehat{1-\alpha}$ for all $\alpha \in \mathcal{F}(U)$ [7]. Further, for the p-sets and q-sets in this product we immediately have that

$$
\widehat{u_{s}}=\{u\} \times(0, s]=P_{(u, s)} \text { and } \widehat{u^{s}}=(U \backslash\{u\} \times[0,1]) \cup(U \times(0, s])=Q_{(u, s)} .
$$

4. Direlations

Direlations play a central role in the theory of texture spaces [8]. A direlation has two parts which are dual to each other. Now let $(U, \mathcal{U}),(V, \mathcal{V})$ be texture spaces and let us consider the product texture $\mathcal{P}(U) \otimes \mathcal{V}$ of the texture spaces $(U, \mathcal{P}(U))$ and (V, \mathcal{V}) and denote the p-sets and the q-sets by $\bar{P}_{(u, v)}$ and $\bar{Q}_{(u, v)}$ respectively. Then
(i) $r \in \mathcal{P}(U) \otimes \mathcal{V}$ is called a relation from (U, \mathcal{U}) to (V, \mathcal{V}) if it satisfies

R1 $r \nsubseteq \bar{Q}_{(u, v)}, P_{u^{\prime}} \nsubseteq Q_{u} \Longrightarrow r \nsubseteq \bar{Q}_{\left(u^{\prime}, v\right)}$.
R2 $r \nsubseteq \bar{Q}_{(u, v)} \Longrightarrow \exists u^{\prime} \in U$ such that $P_{u} \nsubseteq Q_{u^{\prime}}$ and $r \nsubseteq \bar{Q}_{\left(u^{\prime}, v\right)}$.
(ii) $R \in \mathcal{P}(U) \otimes \mathcal{V}$ is called a corelation from (U, \mathcal{U}) to (V, \mathcal{V}) if it satisfies

CR1 $\bar{P}_{(u, v)} \nsubseteq R, P_{u} \nsubseteq Q_{u^{\prime}} \Longrightarrow \bar{P}_{\left(u^{\prime}, v\right)} \nsubseteq R$.
CR2 $\bar{P}_{(u, v)} \nsubseteq R \Longrightarrow \exists u^{\prime} \in U$ such that $P_{u^{\prime}} \nsubseteq Q_{u}$ and $\bar{P}_{\left(u^{\prime}, v\right)} \nsubseteq R$.
A pair (r, R), where r is a relation and R a corelation from (U, \mathcal{U}) to (V, \mathcal{V}) is called a direlation from (U, \mathcal{U}) to (V, \mathcal{V}).
If textures are discrete, then there is a close relation between direlations and ordinary relations. Indeed, if r is an ordinary relation from U to V, then the pair $(r,(U \times V) \backslash r)$ may be regarded as a complemented direlation between discrete textures $(U, \mathcal{P}(U))$ and $(V, \mathcal{P}(V))$. Conversely, if (r, R) is a complemented direlation from $(U, \mathcal{P}(U))$ to $(V, \mathcal{P}(V))$, then r and R are already ordinary relations where $R=(U \times V) \backslash r$. Hence, direlations between textures may be considered as natural generalizations of ordinary relations between sets. On the other hand, direlations are abstract approximation operators in rough set theory and this is the essential connection between rough sets and textures. Further, note that if (r, R) is a direlation from $(U, \mathcal{P}(U))$ to $(V, \mathcal{P}(V))$, then r and R are point relations from U to V, that is, $r, R \subseteq U \times V$ since $\mathcal{P}(U) \otimes \mathcal{P}(V)=\mathcal{P}(U \times V)$.

The identity direlation (i, I) on (U, \mathcal{U}) is defined by

$$
i=\bigvee\left\{\bar{P}_{(u, u)} \mid u \in U\right\} \text { and } I=\bigcap\left\{\bar{Q}_{(u, u)} \mid u \in U^{\mathrm{b}}\right\}
$$

where $U^{b}=\left\{u \mid U \nsubseteq Q_{u}\right\}$. Recall that if (r, R) is a direlation on (U, U), then r is reflexive if $i \subseteq r$ and R is reflexive if $R \subseteq I$. Then we say that (r, R) is reflexive if r and R are reflexive.

Now let (r, R) be a direlation from (U, \mathcal{U}) to (V, \mathcal{V}) where (U, \mathcal{U}) and (V, \mathcal{V}) are any two texture spaces. The inverses of r and R are defined by

$$
r \leftarrow=\bigcap\left\{\bar{Q}_{(v, u)} \mid r \nsubseteq \bar{Q}_{(u, v)}\right\} \text { and } R^{\leftarrow}=\bigvee\left\{\bar{P}_{(v, u)} \mid \bar{P}_{(u, v)} \nsubseteq R\right\}
$$

respectively. One can prove that $r \leftarrow$ is a corelation and R^{\leftarrow} is a relation. Then the direlation $(r, R) \leftarrow=\left(R^{\leftarrow}, r \leftarrow\right)$ from (V, \mathcal{V}) to (U, U) is called the inverse of the direlation (r, R) and (r, R) is called symmetric if $r=R \leftarrow$ and $R=r \leftarrow$.

The A-sections and the B-presections with respect to relation and corelation are given as

$$
\begin{aligned}
& r^{\rightarrow} A=\bigcap\left\{Q_{v} \mid \forall u, r \nsubseteq \bar{Q}_{(u, v)} \Rightarrow A \subseteq Q_{u}\right\} \\
& R^{\rightarrow} A=\bigvee\left\{P_{v} \mid \forall u, \bar{P}_{(u, v)} \nsubseteq R \Rightarrow P_{u} \subseteq A\right\} \\
& r^{\leftarrow} B=\bigvee\left\{P_{u} \mid \forall v, r \nsubseteq \bar{Q}_{(u, v)} \Rightarrow P_{v} \subseteq B\right\}, \text { and } \\
& R^{\leftarrow} \text { B }=\bigcap\left\{Q_{u} \mid \forall v, \bar{P}_{(u, v)} \nsubseteq R \Rightarrow B \subseteq Q_{v}\right\}
\end{aligned}
$$

for all $A \in \mathcal{U}$ and $B \in \mathcal{V}$, respectively.
Now let $(U, \mathcal{U}),(V, \mathcal{V}),(W, \mathcal{W})$ be texture spaces. For any relation p from (U, \mathcal{U}) to (V, \mathcal{V}) and for any relation q from (V, \mathcal{V}) to (W, \mathcal{W}) their composition $q \circ p$ from (U, \mathcal{U}) to (W, \mathcal{W}) is defined by

$$
q \circ p=\bigvee\left\{\bar{P}_{(u, w)} \mid \exists v \in V \text { with } p \nsubseteq \bar{Q}_{(u, v)} \text { and } q \nsubseteq \bar{Q}_{(v, w)}\right\}
$$

and any corelation P from (U, \mathcal{U}) to (V, \mathcal{V}) and for any corelation Q from (U, \mathcal{U}) to (V, \mathcal{V}) their composition $Q \circ P$ from (U, \mathcal{U}) to (V, \mathcal{V}) defined by

$$
Q \circ P=\bigcap\left\{\bar{Q}_{(u, w)} \mid \exists v \in V \text { with } \bar{P}_{(u, v)} \nsubseteq P \text { and } \bar{P}_{(v, w)} \nsubseteq Q\right\}
$$

Finally, the composition of the direlations $(p, P),(q, Q)$ is the direlation

$$
(q, Q) \circ(p, P)=(q \circ p, Q \circ P)
$$

Further, r is transitive if $r \circ r \subseteq r$ and R is transitive if $R \subseteq R \circ R$. Then (r, R) is called transitive if r and R are transitive. Finally, if (r, R) is reflexive, symmetric and transitive, then it is called an equivalence direlation.

Now let c_{U} and c_{V} be the complementations on (U, \mathcal{U}) and (V, \mathcal{V}), respectively. The complement r^{\prime} of the relation r is the corelation

$$
r^{\prime}=\bigcap\left\{\bar{Q}_{(u, v)} \mid \exists w, z \text { with } r \nsubseteq \bar{Q}_{(w, z)}, c_{U}\left(Q_{u}\right) \nsubseteq Q_{w} \text { and } P_{z} \nsubseteq c_{V}\left(P_{v}\right)\right\} .
$$

The complement R^{\prime} of the corelation R is the relation

$$
R^{\prime}=\bigvee\left\{\bar{P}_{(u, v)} \mid \exists w, z \text { with } \bar{P}_{(w, z)} \nsubseteq R, P_{w} \nsubseteq c_{U}\left(P_{u}\right) \text { and } c_{V}\left(Q_{v}\right) \nsubseteq Q_{z}\right\}
$$

The complement $(r, R)^{\prime}$ of the direlation (r, R) is the direlation $(r, R)^{\prime}=\left(R^{\prime}, r^{\prime}\right)$. A direlation (r, R) is called complemented if $r=R^{\prime}$ and $R=r^{\prime}$. It is easy to see that if (r, R) is a complemented direlation from $(U, \mathcal{P}(U))$ to $(V, \mathcal{P}(V))$, then we have

$$
r^{\prime}=(U \times V) \backslash r \text { and } R^{\prime}=(U \times V) \backslash R
$$

Therefore, if (r, R) is a complemented direlation, then we obtain $r=(U \times V) \backslash R$.

5. Category of rough set approximation operators

For the basic motivation of rough sets in terms of equivalence relations, we refer to [28]. Here, we consider rough set models on two universes [10,33]. Let U and V be any two sets and r be any relation from U to V. Recall that a generalized rough set based on r is given by a pair $\left(\underline{a p r}_{r}(A), \overline{\operatorname{apr}}_{r}(A)\right)$ where the approximation operators $\underline{a p r} r, \overline{a p r}_{r}: \mathcal{P}(V) \rightarrow \mathcal{P}(U)$ are defined by

$$
\begin{aligned}
& \forall A \subseteq V, \underline{a p r}_{r}(A)=\{x \in U \mid \forall y \in V,(x, y) \in r \Longrightarrow y \in A\} \text { and } \\
& \overline{\operatorname{apr}}_{r}(A)=\{x \in U \mid \exists y \in V,(x, y) \in r \text { and } y \in A\},
\end{aligned}
$$

respectively.
The following result will be useful in the sequel:
Theorem 5.1. If r is a relation from U to V, then for any subset $A \subseteq V$,

$$
\underline{a p r}_{r}(A)=U \backslash r^{-1}(V \backslash A) \text { and } \overline{a p r}_{r} A=r^{-1}(A)
$$

where r^{-1} is the inverse relation of r.
Proof. Suppose that $\underline{a p r}_{r} A \nsubseteq U \backslash r^{-1}(V \backslash A)$. Let us choose a point $u \in U$ where $u \in \underline{a p r}_{r} A$ and $u \notin U \backslash r^{-1}(V \backslash A)$. Then $u \in r^{-1}(V \backslash A)$ and so we have $v \in V \backslash A$ such that $(u, v) \in r$. But $v \notin A$ is a contradiction since $u \in \operatorname{apr} A$. Now let $U \backslash r^{-1}(V \backslash A) \nsubseteq \underline{a p r}_{r} A$ and take a point $u \in U$ where $u \in U \backslash r^{-1}(V \backslash A)$ and $u \notin \underset{r}{a p r} A$. Then $u \notin r^{-1}(V \backslash A)$ and for some $v \in V$ we have $(u, v) \in r$ and $v \notin A$. However, $v \in V \backslash A$ and this contradicts $u \notin \dot{r}^{-1}(V \backslash A)$. The proof of the second equality follows from the definition of the inverse image of a relation.

The lower and upper approximation operators satisfy the following properties [33] which can be easily proved in view of Theorem 5.1.
(L1) $\operatorname{apr}_{r}(A)=U \backslash\left(\overline{a p r}_{r}(V \backslash A)\right)$,
(L2) $\underline{a p r}_{r}(A \cap B)=\underline{a p r}_{r}(A) \cap \underline{a p r}_{r}(B)$,

(U1) $\left.\overline{\operatorname{apr}}_{r}(A)=U \overline{\text { apr }}_{r}(V \backslash A)\right)$,
(U2) $\overline{a p r}_{r}(A \cup B)=\overline{a p r}_{r}(A) \cup \overline{a p r}_{r}(B)$,
(U3) $A \subseteq B \Longrightarrow \overline{\operatorname{apr}}_{r}(A) \subseteq \overline{\operatorname{apr}}_{r}(B)$.
The system $\left(\mathcal{P}(U), \mathcal{P}(V), \cap, \cup, \backslash, \underline{a p r}_{r}, \overline{\operatorname{apr}}_{r}\right.$) defines a rough set model on two universes.
Now we may give the following lemma:
Proposition 5.2. Let U, V, W and Z be sets, and let $r \subseteq U \times V, q \subseteq V \times W$ and $p \subseteq W \times Z$. Then we have the following statements:
(i) For any subset $C \subseteq W, \underline{a p r}_{q \circ r}(C)=\underline{a p r}_{r}\left(\underline{a p r}_{q}(C)\right)$ and $\overline{a p r}_{q \circ r}(C)=\overline{a p r}_{r}\left(\overline{a p r}_{q}(C)\right)$.
(ii) Let $\Delta_{U}=\{(u, u) \mid u \in U\} \subseteq U \times U$. Then for any subset $A \subseteq U$,

$$
\overline{\operatorname{apr}}_{r \circ \Delta_{U}}(A)=\overline{a p r}_{r}(A) \text { and } \forall B \subseteq V, \underline{a p r}_{\Delta_{V} \circ r}(B)=\underline{a p r}_{r}(B) .
$$

(iii) For any subset $D \subseteq Z, \underline{a p r}_{p \circ(q \circ r)}(D)=\underline{a p r}_{(p \circ q) \circ r}(D)$ and $\overline{a p r}_{p \circ(q \circ r)}(D)=\overline{a p r}_{(p \circ q) \circ r}(D)$.

Proof. We give the proof using Theorem 5.1.

$$
\text { (i) } \begin{aligned}
\underline{a p r}_{q \circ r}(C) & =U \backslash\left((q \circ r)^{-1}(W \backslash C)\right)=U \backslash\left(r^{-1}\left(q^{-1}(W \backslash C)\right)\right. \\
& =U \backslash\left(\overline{\operatorname{apr}}_{r}\left(\overline{\operatorname{apr}}_{q}(W \backslash C)\right)\right)=\underline{a p r}_{r}\left(V \backslash\left(\overline{\operatorname{apr}}_{q}(W \backslash C)\right)\right) \\
& =\underline{a p r}_{r}\left(\underline{a p r}_{q}(C)\right), \text { and }
\end{aligned}
$$

$$
\overline{\operatorname{apr}}_{q \circ r}(C)=(q \circ r)^{-1}(C)=r^{-1}\left(q^{-1}(C)\right)=r^{-1}\left(\overline{a p r}_{q}(C)\right)=\overline{a p r}_{r}\left(\overline{\overline{a p r}}_{q}(C)\right)
$$

(ii) It is immediate since $r \circ \Delta_{U}=\Delta_{V} \circ r=r$.
(iii)

$$
\begin{aligned}
\underline{a p r}_{p o(q o r)}(D) & =\underline{a p r}_{q o r}\left(\underline{a p r}_{p}(D)\right)=\underline{a p r}_{r}\left(\underline{a p r}_{q}\left(\underline{a p r}_{p}(D)\right)\right) \\
& \left.=\underline{a p r}_{r} \underline{a p r}_{p o q}(D)\right)=\underline{a p r}_{(p o q) \circ r}(D)
\end{aligned}
$$

and

$$
\begin{aligned}
\overline{\operatorname{apr}}_{p \circ(q \circ r)}(D) & =\overline{\operatorname{apr}}_{q \circ r}\left(\overline{a p r}_{p}(D)\right)=\overline{\operatorname{arp}}_{r}\left(\overline{a p r}_{q}\left(\overline{a p r}_{p}(D)\right)\right. \\
& =\overline{\operatorname{apr}}_{r}\left(\overline{a p r}_{p o q}(D)\right)=\overline{\operatorname{apr}}_{(p o q)) \text { or }}(D) .
\end{aligned}
$$

Note that Proposition 5.2(ii) is also true for $\Delta_{U} \circ r$ and $r \circ \Delta_{V}$.
Corollary 5.3. (i) The composition of the pair of rough set approximation operators defined by

$$
\left(\underline{a p r}_{q}, \overline{a p r}_{q}\right) \circ\left(\underline{a p r}_{r}, \overline{a p r}_{r}\right)=\left(\underline{a p r}_{r o q}, \overline{a p r}_{r o q}\right)
$$

is associative.
(ii) $\left(\underline{a p r}_{r}, \overline{a p r}_{r}\right) \circ\left(\underline{a p r}_{\Delta_{U}}, \overline{a p r}_{\Delta_{U}}\right)=\left(\underline{a p r}_{\Delta_{V}}, \overline{a p r}_{\Delta_{V}}\right) \circ\left(\underline{a p r}_{r}, \overline{a p r}_{r}\right)=\left(\underline{a p r}_{r}, \overline{a p r}_{r}\right)$.

Proof. (i) By Proposition 5.2 (ii), we have

$$
\begin{aligned}
& \left(\underline{a p r}_{p}, \overline{a p r}_{p}\right) \circ\left(\left(\underline{a p r}_{q}, \overline{a p r}_{q}\right) \circ\left(\underline{a p r}_{r}, \overline{a p r}_{r}\right)\right)=\left(\underline{a p r}_{p}, \overline{a p r}_{p}\right) \circ\left(\underline{a p r}_{r o q}, \overline{a p r}_{r o q}\right) \\
& =\left(\underline{a p r}_{(\text {roq) }) \mathrm{p}}, \overline{a p r}_{(\text {roq) }) p}\right)=\left(\underline{a p r}_{r \circ(\text { (qor) })}, \overline{a p r}_{r o(q \circ p)}\right)=\left(\underline{a p r}_{q \circ p}, \overline{a p r}_{q \circ p}\right) \circ\left(\underline{a p r}_{r}, \overline{a p r}_{r}\right) \\
& =\left(\left(\underline{a p r}_{p}, \overline{a p r}_{p}\right) \circ\left(\underline{a p r}_{q}, \overline{a p r}_{q}\right)\right) \circ\left(\underline{a p r}_{r}, \overline{a p r}_{r}\right) .
\end{aligned}
$$

(ii) It is immediate by Proposition 5.2 (iii).

Corollary 5.4. Power sets and the pairs of rough set approximation operators form a category which is denoted by R-APR.
Theorem 5.5. The functor $\mathfrak{T}: \mathbf{R E L} \rightarrow$ R-APR defined by

$$
\mathfrak{T}(U)=\mathcal{P}(U) \text { and } \mathfrak{T}(r)=\left(\underline{a p r}_{r}, \overline{a p r}_{r}\right)
$$

for all sets U, V and $r \subseteq U \times V$ is contravariant, and an isomorphism.
Proof. For any object U, the pair id ${ }_{U}=\left(\underline{a p r}_{\Delta_{U}} \overline{\operatorname{apr}}_{\Delta_{U}}\right)$ is an identity morphism in the category of R-APR and $\mathfrak{T}\left(\Delta_{U}\right)=$ ${\stackrel{(a p r}{\Delta_{U}}}, \overline{a p r}_{\Delta_{U}}$). Further,

$$
\mathfrak{T}(q \circ r)=\left(\underline{a p r}_{q \circ r}, \overline{a p r}_{q \circ r)}\right)=\left(\underline{a p r}_{r}, \overline{\operatorname{apr}}_{r}\right) \circ\left(\underline{a p r}_{q}, \overline{a p r}_{q}\right)=\mathfrak{T}(r) \circ \mathfrak{T}(q)
$$

and so indeed \mathfrak{T} is a contravariant functor. Let U and V be any two sets, and r, q be direlations from U to V where $r \neq q$. Suppose that $(u, v) \in r$ and $(u, v) \notin q$ for some $(u, v) \in U \times V$. Then we have $u \in r^{-1}(\{v\})=\overline{\operatorname{apr}}_{r}(\{v\})$ and $u \notin q^{-1}(\{v\})$ $=\overline{\operatorname{apr}}_{q}(\{v\})$ and this gives $\left(\underline{a p r}_{r}, \overline{\operatorname{apr}}_{r}\right) \neq\left(\underline{\operatorname{apr}}_{q}, \overline{\operatorname{apr}}_{q}\right)$. Conversely, if $\left(\underline{a p r}_{r}, \overline{a p r}_{r}\right) \neq\left(\underline{a p r}_{q}, \overline{a p r}_{q}\right)$, then we have ${ }^{\text {apr }} r{ }_{r}(B) \neq$ $\underline{a p r}_{q}(B)$ or $\overline{a p r}_{r}(B) \neq \overline{\operatorname{apr}}_{q}(B)$ for some $B \subseteq V$. With no loss of generality, if $\overline{\operatorname{apr}}_{r}(B) \neq \overline{\operatorname{apr}}_{q}(B)$, then $r^{-1}(B) \neq q^{-1}(B)$ and so $\overline{\text { clearly, }} \boldsymbol{r} \neq q$. Therefore, the functor \mathfrak{T} is bijective on hom-sets. Clearly, it is also bijective on objects.

6. Category of textures and direlations

By Proposition 2.14 in [8], direlations are closed under compositions and the composition is associative. By Theorem $2.17(1)$ in [8], for any texture (U, U), we have the identity direlation $\left(i_{U}, I_{U}\right)$ on (U, U) and if (r, R) is a direlation from (U, \mathcal{U}) to (V, \mathcal{V}), then

$$
\left(i_{V}, I_{V}\right) \circ(r, R)=(r, R) \text { and }(r, R) \circ\left(i_{U}, I_{U}\right)=(r, R) .
$$

Now we may claim:
Theorem 6.1. Texture spaces and direlations form a category which is denoted by drTex.
Let $\left(U, \mathcal{U}, c_{U}\right)$ and $\left(V, \mathcal{V}, c_{V}\right)$ be complemented textures, and (r, R) a complemented direlation from (U, U) to (V, \mathcal{V}). If (q, Q) is a complemented direlation from (V, \mathcal{V}, c_{V}) to $\left(Z, \mathcal{Z}, c_{Z}\right)$, then by Proposition 2.21(3) in [8], we have

$$
(q \circ r)^{\prime}=q^{\prime} \circ r^{\prime}=Q \circ R \text { and }(Q \circ R)^{\prime}=Q^{\prime} \circ R^{\prime}=q \circ r .
$$

Hence,

$$
\begin{aligned}
((q, Q) \circ(r, R))^{\prime} & =(q \circ r, Q \circ R)^{\prime} \\
& =\left((Q \circ R)^{\prime},(q \circ r)^{\prime}\right) \\
& =(q \circ r, Q \circ R) \\
& =(q, Q) \circ(r, R),
\end{aligned}
$$

that is the composition of (r, R) and (q, Q) is also complemented. Since the identity direlation $\left(i_{U}, I_{U}\right)$ is also complemented, we have the following result:

Theorem 6.2. Complemented texture spaces and complemented direlations form a category which is denoted by cdrTex.
Now let r be a relation from U to V. Then the pair $(r,(U \times V) \backslash r)$ can be regarded as a complemented direlation from $(U, \mathcal{P}(U))$ to $(V, \mathcal{P}(V))$ where $R=U \times V \backslash r$ (for detail see Proposition 3.1(11) and (12) in [26]). Conversely, if (r, R) is a complemented direlation from $(U, \mathcal{P}(U))$ to $(V, \mathcal{P}(V))$, then

$$
r, R \subseteq \mathcal{P}(U) \otimes \mathcal{P}(V)=\mathcal{P}(U \times V)
$$

that is, r and R are ordinary relations from U to V where $R=(U \times V) \backslash r$. For discrete textures $(U, \mathcal{P}(U))$ and $(V, \mathcal{P}(V))$, we have the following facts:
(1) $\bar{Q}_{(u, v)}=((U \backslash\{u\}) \times V) \cup(U \times(V \backslash\{v\}))$.
(2) $\bar{P}_{(u, v)}=P_{u} \times P_{v}=\{u\} \times\{v\}=\{(u, v)\}$.
(3) $r \nsubseteq \bar{Q}_{(u, v)} \Longleftrightarrow(u, v) \in r$.
(4) $\bar{P}_{(u, v)} \nsubseteq R \Longleftrightarrow(u, v) \notin R$.

By definition of A-presections, we may easily see that

$$
\left(r \leftarrow A, R^{\leftarrow} A\right)=\left(\underline{a p r}_{r} A, \overline{\operatorname{apr}}_{r} A\right)
$$

for every set $A \in \mathcal{P}(V)$. To see the equality, it is enough to observe that

$$
\begin{aligned}
r \leftarrow A & =\bigvee\left\{P_{u} \mid \forall v, r \nsubseteq \bar{Q}_{(u, v)} \Longrightarrow P_{v} \subseteq A\right\} \\
& =\bigcup\{\{u\} \mid \forall v,(u, v) \in r \Longrightarrow v \in A\} \\
& =\{u \mid \forall v,(u, v) \in r \Longrightarrow v \in A\}=\underline{a p r}_{r} A
\end{aligned}
$$

and

$$
\begin{aligned}
R^{\leftarrow} A & =\bigcap\left\{Q_{u} \mid \forall v, \bar{P}_{(u, v)} \nsubseteq R \Longrightarrow A \subseteq Q_{v}\right\} \\
& =\bigcap\{U \backslash\{u\} \mid \forall v,(u, v) \in r \Longrightarrow A \subseteq U \backslash\{v\}\} \\
& =U \backslash(\bigcup\{\{u\} \mid \forall v,(u, v) \in r \Longrightarrow v \notin A\}) \\
& =U \backslash\{u \mid \forall v,(u, v) \in r \Longrightarrow v \notin A\} \\
& =\{u \mid \exists v,(u, v) \in r \text { and } v \in A\}=\overline{a p r}_{r} A
\end{aligned}
$$

for all $A \in \mathcal{P}(V)$. Therefore, presections are very natural generalizations of approximation operators of rough sets. Further, we have

$$
\begin{aligned}
r \leftarrow & =\bigcap\left\{\bar{Q}_{(v, u)} \mid r \nsubseteq \bar{Q}_{(u, v)}\right\} \\
& =\bigcap\{((V \backslash\{v\}) \times U) \cup(V \times(U \backslash\{u\})) \mid(u, v) \in r\} \\
& =(V \times U) \backslash(\bigcup\{(\{v\} \times U) \cap(V \times\{u\}) \mid(u, v) \in r\}) \\
& =(V \times U) \backslash(\bigcup\{\{(v, u)\} \mid(u, v) \in r\}) \\
& =(V \times U) \backslash\{(v, u) \mid(u, v) \in r\}=(V \times U) \backslash r^{-1} .
\end{aligned}
$$

By a similar argument, we find

$$
R^{\leftarrow}=\bigvee\left\{\bar{P}_{(v, u)} \mid \bar{P}_{(u, v)} \nsubseteq R\right\}=r^{-1}
$$

Now we can prove the following.

Theorem 6.3.

(i) The functor $\mathfrak{L}: \mathbf{R}-\mathbf{A P R} \rightarrow \mathbf{c d r T e x}$ defined by

$$
\mathfrak{L}(\mathcal{P}(U))=(U, \mathcal{P}(U)), \quad \mathfrak{L}\left(\underline{a p r}_{r}, \overline{a p r}_{r}\right)=\left(R^{\leftarrow}, r \leftarrow\right)
$$

for every morphism $\left(\underline{a p r}_{r}, \overline{\operatorname{apr}}_{r}\right): \mathcal{P}(U) \rightarrow \mathcal{P}(V)$ in R-APR where

$$
R^{\leftarrow}=r^{-1} \text { and } r^{\leftarrow}=(U \times V) \backslash r^{-1}
$$

is a full embedding.
(ii) The functor $\mathfrak{N}:$ REL \rightarrow cdrTex defined by

$$
\mathfrak{N}(U)=(U, \mathcal{P}(U)), \quad \mathfrak{N}(r)=(r, R)
$$

for every morphism $r: U \rightarrow V$ in REL where $R=(U \times V) \backslash r$ is a full embedding.

Proof. First let us show that \mathfrak{L} is a functor leaving the proof of \mathfrak{N}. By Corollary 5.3(ii), the pair ($\left.\underline{a p r}_{\Delta_{U}}, \overline{\operatorname{apr}}_{\Delta_{U}}\right)$ is the identity morphism in R-APR for an object $\mathcal{P}(U)$. Then

$$
\mathfrak{L}\left(\underline{a p r}_{\Delta_{U}}, \overline{\operatorname{apr}}_{\Delta_{U}}\right)=\left(\Delta_{U}^{-1},(U \times U) \backslash \Delta_{U}^{-1}\right)=\left(\Delta_{U},(U \times U) \backslash \Delta_{U}\right)
$$

is the identity direlation on the texture $(U, \mathcal{P}(U))$. Now let $\left(\underline{a p r}_{r}, \overline{\operatorname{apr}}_{r}\right): \mathcal{P}(W) \rightarrow \mathcal{P}(V)$ and $\left(\right.$ apr $\left._{q}, \overline{\operatorname{apr}}_{q}\right): \mathcal{P}(V) \rightarrow \mathcal{P}(U)$ be morphisms in R-APR where $q: U \rightarrow V$ and $r: V \rightarrow W$ are relations. Then by Proposition 3.1(7) and (8) in [26], we have

$$
\begin{aligned}
\mathfrak{L}\left(\left(\underline{a p r}_{q}, \overline{a p r}_{q}\right) \circ\left(\underline{a p r}_{r}, \overline{\operatorname{apr}}_{r}\right)\right) & =\mathfrak{L}\left(\underline{a p r}_{\text {roq }}, \overline{\operatorname{apr}}_{\text {roq }}\right) \\
& =\left((r \circ q)^{-1},(W \times U) \backslash(r \circ q)^{-1}\right) \\
& =\left(q^{-1} \circ r^{-1},\left((V \times U) \backslash q^{-1}\right) \circ\left((W \times V) \backslash r^{-1}\right)\right) \\
& =\left(q^{-1},(V \times U) \backslash q^{-1}\right) \circ\left(r^{-1},(W \times V) \backslash r^{-1}\right) \\
& =\mathfrak{L}\left(\underline{a p r}_{q}, \overline{a p r}_{q}\right) \circ \mathfrak{L}\left(\underline{a p r}_{r}, \overline{a p r}_{r}\right) .
\end{aligned}
$$

The functors \mathfrak{L} and \mathfrak{N} are injective on objects and hom-sets. Further, if $\left(R^{\leftarrow}, r^{\leftarrow}\right)$ is a complemented direlation from $(U, \mathcal{P}(U))$ to $(V, \mathcal{P}(V))$, then r is a relation from V to U. Hence, (apr $r_{r}, \overline{\operatorname{apr}}_{r}$) is a pair of approximation operators from $\mathcal{P}(U)$ to $\mathcal{P}(V)$. Therefore, \mathfrak{L} is full. Likewise, \mathfrak{N} is also full.

7. Textural isomorphisms

Definition 7.1 ([6]). Let (U, U) and (V, \mathcal{V}) be texture spaces. A function $\psi: U \rightarrow V$ is a textural isomorphism if
(i) ψ is bijective,
(ii) $\forall A \in \mathcal{U}, \psi(A) \in \mathcal{V}$, and
(iii) the mapping $\psi: U \rightarrow \mathcal{V}, A \mapsto \psi(A)$ is bijective.

We say (U, \mathcal{U}) and (V, \mathcal{V}) are isomorphic if there exists an isomorphism between them. We denote this by $(U, \mathcal{U}) \cong(V, \mathcal{V})$. If c_{U} and c_{V} are complementations on (U, \mathcal{U}) and (V, \mathcal{V}), respectively, and ψ satisfies the additional property

$$
\forall A, \psi\left(c_{U}(A)\right)=c_{V}(\psi(A)),
$$

then ψ is called a complemented textural isomorphism. When such an isomorphism exists we write $\left(U, U, c_{U}\right) \cong\left(V, \mathcal{V}, c_{V}\right)$.
Proposition 7.2 ([6]). Let ψ be a textural isomorphism from (U, \mathcal{U}) to (V, \mathcal{V}) and $\left\{A_{j} \mid j \in J\right\} \subseteq U$. Then
(i) $\psi\left(\bigvee_{j \in J} A_{j}\right)=\bigvee_{j \in J} \psi\left(A_{j}\right)$.
(ii) $\psi\left(\bigcap_{j \in J} A_{j}\right)=\bigcap_{j \in J} \psi\left(A_{j}\right)$.

Proposition 7.3. (i) Let $(U, \mathcal{U}),(V, \mathcal{V})$ and (W, W) be texture spaces. Then

$$
((U \times V) \times W,(U \otimes \mathcal{V}) \otimes w) \cong(U \times(V \times W),(U \otimes(\mathcal{V} \otimes w)) .
$$

(ii) Take the texture (E, \mathcal{E}) where $E=\{e\}$ and $\mathcal{E}=\{\{e\}, \emptyset\}$. Then for any texture (U, U) we have

$$
(U, U) \cong(E \times U, \mathcal{E} \otimes U) \text { and }(U, U) \cong(U \times E, U \otimes \mathcal{E}) \text {. }
$$

(iii) $(U \times V, u \otimes \mathcal{V}) \cong(V \times U, \mathcal{V} \otimes \mathcal{U})$.

Proof. (i) For the sake of shortness, we denote the product textures

$$
((U \times V) \times W,(u \otimes \mathcal{V}) \otimes w) \text { and }(U \times(V \times W), u \otimes(\mathcal{V} \otimes w))
$$

by (S, δ) and (T, \mathcal{T}), respectively. Then the function $\psi: S \rightarrow T$ defined by

$$
\forall((u, v), w) \in S, \psi(((u, v), w))=(u,(v, w)) \in T
$$

is one-to-one and onto. Further, the mapping

$$
\psi: \delta \rightarrow \mathcal{T}, A \mapsto \psi(A), A \in \mathcal{S}
$$

is also one-to-one and onto. Hence, ψ is a textural isomorphism.
(ii) It is enough to consider the mappings defined by

$$
\varphi: U \rightarrow E \times U, \varphi(u)=(e, u) \text { and } \varphi^{\prime}: U \rightarrow U \times E, \varphi^{\prime}(u)=(u, e)
$$

for all $u \in U$, respectively.
(iii) The mapping $\gamma: U \times V \rightarrow V \times U$ defined by $\gamma(u, v)=(v, u)$ for all $(u, v) \in U \times V$ is a textural isomorphism.

Proposition 7.4. If $(U, U),(V, \mathcal{V})$ and (W, W) are complemented, then the textural mappings ψ, φ and γ in the proof of Proposition 7.3 are complemented.

Proof. Let us show that the mapping ψ is complemented leaving the mappings φ, γ to the interested reader. Let $c_{(U \times V) \times W}=$ c_{S} and $c_{U \times(V \times W)}=c_{T}$ be the complementations on S and T, respectively. By Proposition 7.2, for the proof it is enough to consider a set $(E \times G) \times H$ where $E \in \mathcal{U}, G \in \mathcal{V}$ and $H \in \mathcal{W}$. Then

$$
\begin{aligned}
c_{T} \psi((E \times G) \times H) & =c_{T}(E \times(G \times H)) \\
& =c_{T}(E \times(V \times W) \cap(U \times(G \times H)) \\
& =\left(c_{U}(E) \times(V \times W)\right) \cup\left(U \times\left(c_{V \times W}(G \times H)\right)\right. \\
& =\left(c_{U}(E) \times(V \times W)\right) \cup\left(U \times\left(c_{V \times W}((G \times W) \cap(V \times H))\right.\right. \\
& =\left(c_{U}(E) \times(V \times W)\right) \cup\left(U \times\left(c_{V}(G) \times W\right)\right) \cup\left(U \times\left(V \times c_{W}(H)\right)\right) \\
& =\psi\left(\left(c_{U}(E) \times V\right) \times W\right) \cup\left(\left(U \times c_{V}(G)\right) \times W\right) \cup\left((U \times V) \times c_{W}(H)\right) \\
& =\psi\left((c _ { U \times V } (E \times V) \times W) \cup (c _ { U \times V } (U \times G) \times W) \cup \left((U \times V) \times c_{W}(H)\right.\right. \\
& \left.=\psi\left(c_{S}((E \times V) \times W) \cup c_{S}((U \times G) \times W) \cup c_{S}((U \times V) \times H)\right)\right) \\
& \left.\left.=\psi\left(c_{S}((E \times V) \times W)\right) \cap((U \times G) \times W) \cap((U \times V) \times H)\right)\right) \\
& =\psi\left(c_{S}((E \times G) \times H)\right) .
\end{aligned}
$$

Proposition 7.5. (i) Let ψ be a textural isomorphism from (U, \mathcal{U}) to (V, \mathcal{V}). Then the direlation $\left(r_{\psi}, R_{\psi}\right)$ from (U, \mathcal{U}) to (V, \mathcal{V}) defined by

$$
r_{\psi}=\bigvee\left\{\bar{P}_{(u, v)} \mid P_{\psi(u)} \nsubseteq Q_{v}\right\} \text { and } R_{\psi}=\bigcap\left\{\bar{Q}_{(u, v)} \mid P_{v} \nsubseteq Q_{\psi(u)}\right\}
$$ is an isomorphism in drTex.

(ii) If (U, \mathcal{U}) and (V, \mathcal{V}) are complemented textures and ψ is a complemented textural isomorphism, then $\left(r_{\psi}, R_{\psi}\right)$ is also complemented.
(iii) Let φ be a textural morphism from (V, \mathcal{V}) to a texture (W, \mathcal{W}). Then $\varphi \circ \psi$ is also a textural isomorphism from (U, \mathcal{U}) to (W, W). If φ and ψ are complemented isomorphisms, then $\varphi \circ \psi$ is also complemented. Further, we have

$$
r_{\varphi \circ \psi}=r_{\varphi} \circ r_{\psi} \text { and } R_{\varphi \circ \psi}=R_{\varphi} \circ R_{\psi} .
$$

Proof. (i) It can be easily checked that $\left(r_{\psi}, R_{\psi}\right)$ is a direlation, that is, it satisfies conditions R1 and R2. To show that the direlation $\left(r_{\psi}, R_{\psi}\right)$ is an isomorphism in drTex, it is enough to prove the equalities

$$
\left(r_{\psi}, R_{\psi}\right) \circ\left(r_{\psi}, R_{\psi}\right) \leftarrow=\left(i_{V}, I_{V}\right) \text { and }\left(r_{\psi}, R_{\psi}\right) \leftarrow \circ\left(r_{\psi}, R_{\psi}\right)=\left(i_{U}, I_{U}\right),
$$

respectively. For the first equality let us suppose that $r_{\psi} \circ R_{\psi} \overleftarrow{\subseteq i_{V}}$. Then we may choose $v, v^{\prime} \in V$ such that

Hence, for some $u \in U$, there exist $v_{1}, v_{2} \in V$ such that

$$
R_{\psi}^{\overleftarrow{ } \nsubseteq \bar{Q}_{\left(v_{1}, u\right)} \text { and } r_{\psi} \nsubseteq \bar{Q}_{\left(u, v_{2}\right)}}
$$

and $\bar{P}_{\left(v_{1}, v_{2}\right)} \nsubseteq \bar{Q}_{\left(v, v^{\prime}\right)}$. Note that $v_{1}=v, P_{v_{2}} \nsubseteq Q_{v^{\prime}}$ and $P_{v^{\prime}} \nsubseteq Q_{v}$. Further, by Proposition 2.4(1) in [8] we may obtain that $\bar{P}_{\left(u, v_{1}\right)} \nsubseteq R_{\psi}$, that is, $\bar{P}_{(u, v)} \nsubseteq R_{\psi}$. Then for some $w \in U$ and $z \in V, \bar{P}_{(u, v)} \nsubseteq \bar{Q}_{(w, z)}$ and $P_{z} \nsubseteq Q_{\psi(w)}$. Clearly, we have $u=w$ and $P_{v} \nsubseteq Q_{z}$ and so we obtain $P_{v} \nsubseteq Q_{\psi(u)}$. On the other hand, since $r_{\psi} \nsubseteq \bar{Q}_{\left(u, v_{2}\right)}$, for some $w_{1} \in U$ and $z_{1} \in V$ we have

$$
\bar{P}_{\left(w_{1}, z_{1}\right)} \nsubseteq \bar{Q}_{\left(u, v_{2}\right)} \text { and } P_{\psi\left(w_{1}\right)} \nsubseteq Q_{z_{1}} .
$$

It is easy to see that $w_{1}=u$ and $P_{z_{1}} \nsubseteq Q_{v_{2}}$. Hence, we have $P_{\psi(u)} \nsubseteq Q_{v_{2}}$. Since $P_{v_{2}} \nsubseteq Q_{v^{\prime}}, P_{\psi(u)} \nsubseteq Q_{v^{\prime}}$ and so $P_{v^{\prime}} \nsubseteq Q_{v}$ implies that $P_{\psi(u)} \nsubseteq \mathrm{Q}_{v}$. But this is a contradiction. The reverse inclusion $i_{V} \subseteq r_{\psi} \circ R_{\psi}^{\leftarrow}$ and the second equality can be proved in a similar way.
(ii) Let c_{U} and c_{V} be complementations on the textures (U, \mathcal{U}) and (V, \mathcal{V}). If ψ is a textural isomorphism, then by Proposition 3.15 in [8] for all $u \in U$ we have $\psi\left(P_{u}\right)=P_{\psi(u)}$ and $\psi\left(Q_{u}\right)=Q_{\psi(u)}$. Suppose that for some $w \in U$ and $z \in V$, we have $r_{\psi} \nsubseteq \bar{Q}_{(w, z)}$ such that $c_{U}\left(Q_{u}\right) \nsubseteq Q_{w}$ and $P_{z} \nsubseteq c_{V}\left(P_{v}\right)$. The function ψ preserves the inclusion and so since $P_{w} \subseteq c_{U}\left(Q_{u}\right)$, $\psi\left(P_{w}\right) \subseteq \psi\left(c_{U}\left(Q_{u}\right)\right)$ and hence, we find $P_{\psi(w)} \subseteq c_{V} \psi\left(Q_{u}\right)=c_{V}\left(Q_{\psi(u)}\right)$. If we apply the complementation to the both sides of the inclusion, we obtain $Q_{\psi(u)} \subseteq c_{V}\left(P_{\psi(w)}\right)$. Further, since $r_{\psi} \nsubseteq \bar{Q}_{(w, z)}, P_{\psi(w)} \nsubseteq \mathrm{Q}_{z}$. Then by the inclusion $c_{V}\left(P_{v}\right) \subseteq Q_{z}$, we conclude that $P_{\psi(w)} \nsubseteq c_{V}\left(P_{v}\right)$. Therefore, we have $P_{v} \nsubseteq c_{V} P_{\psi(w)}$, that is, $P_{v} \nsubseteq Q_{\psi(u)}$. Finally, by definition of the corelation R_{ψ}, we have $R_{\psi} \subseteq \bar{Q}_{(u, v)}$ and so we obtain $R_{\psi} \subseteq r_{\psi}^{\prime}$. Similarly, one can show that $r_{\psi}^{\prime} \subseteq R_{\psi}$.
(iii) It is easy to see that $\varphi \circ \psi$ is a textural isomorphism. Let us show that $r_{\varphi \circ \psi}=r_{\varphi} \circ r_{\psi}$. The second equality is similar. Suppose that $r_{\varphi} \circ r_{\psi} \nsubseteq r_{\varphi \circ \psi}$. Let us choose $u \in U$ and $w \in W$ such that

$$
r_{\varphi} \circ r_{\psi} \nsubseteq \bar{Q}_{(u, w)} \text { and } \bar{P}_{(u, w)} \nsubseteq r_{\varphi \circ \psi}
$$

Then for some $w^{\prime} \in W$, we have

$$
r_{\psi} \nsubseteq \bar{Q}_{(u, w)} \text { and } r_{\varphi} \nsubseteq \bar{Q}_{\left(u, w^{\prime}\right)}
$$

where $v \in V$. By (i), $r_{\psi} \nsubseteq \bar{Q}_{(u, w)}$ and $r_{\varphi} \nsubseteq \bar{Q}_{\left(u, w^{\prime}\right)}$ implies that $P_{\psi(u)} \nsubseteq Q_{v}$ and $P_{\varphi(v)} \nsubseteq Q_{w^{\prime}}$, respectively. Further, since $\bar{P}_{(u, w)} \nsubseteq r_{\varphi \circ \psi}$ and $P_{w^{\prime}} \nsubseteq Q_{w}, P_{(\varphi \circ \psi)(u)} \subseteq Q_{w^{\prime}}$. By the proof of Proposition 3.15 in [8], textural isomorphisms preserve the p -sets and q -sets and so we have

$$
\varphi\left(P_{\psi(u)}\right)=P_{\varphi(\psi(u))} \nsubseteq \varphi\left(Q_{v}\right)=Q_{\varphi(v)}
$$

On the other hand, $P_{\varphi(v)} \nsubseteq Q_{w^{\prime}}$ gives that $P_{(\varphi \circ \psi)(u)} \nsubseteq Q_{w^{\prime}}$ which is a contradiction. The reverse inclusion is similar.

8. Product of direlations

Let (r, R) be a direlation from (U, \mathcal{U}) to (V, \mathcal{V}) and (q, Q) be a direlation from (W, \mathcal{W}) to (Z, \mathcal{Z}). Then the product of (r, R) and (q, Q) is defined by

$$
(r \times q, R \times Q):(U \times W, \mathcal{U} \otimes \mathcal{W}) \rightarrow(V \times Z, \mathcal{V} \otimes \mathbb{Z})
$$

where

$$
\begin{aligned}
& r \times q=\bigvee\left\{\bar{P}_{((u, w),(v, z))} \mid r \nsubseteq \bar{Q}_{(u, v)} \text { and } q \nsubseteq \bar{Q}_{(w, z)}\right\}, \text { and } \\
& R \times Q=\bigcap\left\{\bar{Q}_{((u, w),(v, z))} \mid \bar{P}_{(u, v)} \nsubseteq R \text { and } \bar{Q}_{(w, z)} \nsubseteq Q\right\}[5] .
\end{aligned}
$$

Proposition 8.1. (i) If the above textures are complemented, then
$(r \times q)^{\prime}=r^{\prime} \times q^{\prime},(R \times Q)^{\prime}=R^{\prime} \times Q^{\prime}$.
(ii) $(r \times q) \leftarrow=r^{\leftarrow} \times q^{\leftarrow},(R \times Q)^{\leftarrow}=R^{\leftarrow} \times Q^{\leftarrow}$.
(iii) $(r \times p) \circ(q \times k)=(r \circ q) \times(p \circ k)$,
$(R \times P) \circ(Q \times K)=(R \circ Q) \times(P \circ K)$.
Proof. (i) Assume that $r^{\prime} \times q^{\prime} \nsubseteq(r \times q)^{\prime}$. Let us choose $(u, w) \in U \times W$ and $(v, z) \in V \times Z$ such that

$$
(r \times q)^{\prime} \nsubseteq \bar{Q}_{((u, w),(v, z))} \text { and } \bar{P}_{((u, w),(v, z))} \nsubseteq r^{\prime} \times q^{\prime}
$$

From the first statement, for all $\left(u^{\prime}, w^{\prime}\right),\left(v^{\prime}, z^{\prime}\right)$, we have

$$
\begin{equation*}
\sigma\left(Q_{(u, v)}\right) \subseteq Q_{\left(u^{\prime}, w^{\prime}\right)} \text { and } P_{\left(v^{\prime}, z^{\prime}\right)} \subseteq \eta\left(P_{(v, z)}\right) \Longrightarrow r \times q \subseteq \bar{Q}_{\left(\left(u^{\prime}, w^{\prime}\right),\left(v^{\prime}, z^{\prime}\right)\right)} \tag{*}
\end{equation*}
$$

where $c_{U} \times c_{W}=\sigma$ and $c_{V} \times c_{Z}=\eta$. From the latter, it is easy to show that

$$
\bar{P}_{(u, v)} \nsubseteq r^{\prime} \text { and } \bar{P}_{(w, z)} \nsubseteq q^{\prime}
$$

Then by definition of complementation, for some $v_{1} \in V$ we have

$$
P_{v} \nsubseteq Q_{v_{1}}, r \nsubseteq \bar{Q}_{\left(u_{2}, v_{2}\right)}, P_{v} \nsubseteq c_{V}\left(P_{v_{2}}\right) \text { and } c_{U}\left(Q_{u}\right) \nsubseteq Q_{u_{2}}
$$

where $u_{2} \in U$ and $v_{2} \in V$. Similarly, for some $z_{1} \in Z$, we have

$$
P_{z} \nsubseteq Q_{z_{1}}, q \nsubseteq \bar{Q}_{\left(w_{2}, z_{2}\right)}, P_{z} \nsubseteq c_{Z}\left(P_{z_{2}}\right) \text { and } c_{W}\left(Q_{w}\right) \nsubseteq Q_{w_{2}}
$$

where $w_{2} \in W$ and $z_{2} \in Z$. Now let us choose $\left(u_{2}^{\prime}, v_{2}^{\prime}\right),\left(w_{2}^{\prime}, z_{2}^{\prime}\right)$ such that

$$
r \nsubseteq \bar{Q}_{\left(u_{2}^{\prime}, v_{2}^{\prime}\right)}, \bar{P}_{\left(u_{2}^{\prime}, v_{2}^{\prime}\right)} \nsubseteq \bar{Q}_{\left(u_{2}, v_{2}\right)} \text { and } q \nsubseteq \bar{Q}_{\left(w_{2}^{\prime}, z_{2}^{\prime}\right)}, \bar{P}_{\left(w_{2}^{\prime}, z_{2}^{\prime}\right)} \nsubseteq \bar{Q}_{\left(w_{2}, z_{2}\right)}
$$

Then we have

$$
r \nsubseteq \bar{Q}_{\left(u_{2}, v_{2}^{\prime}\right)}, P_{v_{2}^{\prime}} \nsubseteq Q_{v_{2}} \text { and } q \nsubseteq \bar{Q}_{\left(w_{2}, z_{2}^{\prime}\right)}, P_{z_{2}^{\prime}} \nsubseteq Q_{z_{2}}
$$

Therefore, $\bar{P}_{\left(\left(u_{2}, w_{2}\right),\left(v_{2}^{\prime}, z_{2}^{\prime}\right)\right)} \subseteq r \times q$. On the other hand, if $c_{U}\left(Q_{u}\right) \nsubseteq Q_{u_{2}}$ and $c_{W}\left(Q_{w}\right) \nsubseteq Q_{w_{2}}$, then $\left(c_{U} \times c_{W}\right)\left(Q_{\left(u_{2}, w_{2}\right)}\right) \nsubseteq Q_{(u, w)}$ and similarly, if $P_{v} \nsubseteq c_{V}\left(P_{v_{2}}\right)$ and $P_{z} \nsubseteq c_{Z}\left(P_{z_{2}}\right)$, then $P_{(v, z)} \nsubseteq\left(c_{V} \times c_{Z}\right)\left(P_{\left(v_{2}, z_{2}\right)}\right)$. Hence, by $(*)$ we have $r \times q \subseteq \bar{Q}_{\left(\left(u_{2}, w_{2}\right),\left(v_{2}, z_{2}\right)\right)}$. But $P_{v_{2}^{\prime}} \nsubseteq Q_{v_{2}}$ and $P_{z_{2}^{\prime}} \nsubseteq Q_{z_{2}}$ give a contradiction. The reverse inclusion is similar.
(ii) Let $(r \times q) \leftarrow \nsubseteq r^{\leftarrow} \times q^{\leftarrow}$. Let us choose $(u, w) \in U \times W$ and $(v, z) \in V \times Z$ such that

$$
(r \times q) \leftarrow \nsubseteq \bar{Q}_{((v, z),(u, w))} \text { and } \bar{P}_{((v, z),(u, w))} \nsubseteq r^{\leftarrow} \times q^{\leftarrow}
$$

From the first statement, we have $\bar{P}_{((u, w),(v, z))} \nsubseteq r \times q$ and by definition of product of direlations we have $r \subseteq \bar{Q}_{(u, v)}$ or $q \subseteq \bar{Q}_{(w, z)}$. Further, if we consider the latter statement, then for some $u_{1} \in U$ and $w_{1} \in W$ we have

$$
\bar{P}_{\left(v, u_{1}\right)} \nsubseteq r^{\leftarrow} \text { and } \bar{P}_{\left(z, w_{1}\right)} \nsubseteq q^{\leftarrow}
$$

where $P_{(u, w)} \nsubseteq Q_{\left(u_{1}, w_{1}\right)}$. Hence, $r \nsubseteq \bar{Q}_{\left(u_{1}, v\right)}$ and $q \nsubseteq \bar{Q}_{\left(w_{1}, z\right)}$. However, since $P_{u} \times P_{w} \nsubseteq\left(Q_{u_{1}} \times W\right) \cup\left(U \times Q_{w_{1}}\right), P_{u} \nsubseteq Q_{u_{1}}$ and $P_{w} \nsubseteq Q_{w_{1}}$. As a result, by condition R1, we obtain $r \nsubseteq \bar{Q}_{(u, v)}$ and $q \nsubseteq \bar{Q}_{(w, z)}$ which is a contradiction. The reverse inclusion and the proof of second equality is similar.
(iii) For the first equality, let us choose $(u, z) \in U \times Z$ and $(w, n) \in W \times N$ such that
$(r \times p) \circ(q \times k) \nsubseteq \bar{Q}_{((u, z),(w, n))}$ and $\bar{P}_{((u, z),(w, n))} \nsubseteq(r \circ q) \times(p \circ k)$.
From the first statement for some $\left(v_{1}, m_{1}\right)$, there exist $\left(u_{1}, z_{1}\right) \in U \times Z$ and $\left(w_{1}, n_{1}\right) \in W \times N$ such that

$$
q \times k \nsubseteq \bar{Q}_{\left(\left(u_{1}, z_{1}\right),\left(v_{1}, m_{1}\right)\right)} \text { and } r \times p \nsubseteq \bar{Q}_{\left(\left(v_{1}, m_{1}\right),\left(w_{1}, n\right)\right)}
$$

with $\bar{P}_{\left(\left(u_{1}, z_{1}\right), w_{1}, n_{1}\right)} \nsubseteq \bar{Q}_{((u, z),(w, n))}$. Further, it is clear that $u_{1}=u, z_{1}=z, P_{w_{1}} \nsubseteq Q_{w}$ and $P_{n_{1}} \nsubseteq Q_{n}$. Therefore, we obtain that $q \times k \nsubseteq \bar{Q}_{\left((u, z),\left(v_{1}, m_{1}\right)\right)}$ and $r \times p \nsubseteq \bar{Q}_{\left(\left(v_{1}, m_{1}\right),(w, n)\right)}$.
Since $q \times k \nsubseteq \bar{Q}_{\left((u, z),\left(v_{1}, m_{1}\right)\right)}$, for some $\left(u_{2}, z_{2}\right) \in U \times Z$ and $\left(v_{2}, m_{2}\right) \in V \times M$ we have
$\bar{P}_{\left(\left(u_{2}, z_{2}\right),\left(v_{2}, m_{2}\right)\right)} \nsubseteq \bar{Q}_{\left((u, z),\left(v_{1}, m_{1}\right)\right)}, q \nsubseteq \bar{Q}_{\left(u_{2}, v_{2}\right)}$ and $k \nsubseteq \bar{Q}_{\left(z_{2}, m_{2}\right)}$.
This gives that $u=u_{2}, z=z_{2}, P_{v_{2}} \nsubseteq Q_{v_{1}}$, and $P_{m_{2}} \nsubseteq Q_{m_{1}}$. Now we have
$q \nsubseteq \bar{Q}_{\left(u, v_{1}\right)}$ and $k \nsubseteq \bar{Q}_{\left(z, m_{1}\right)}$.
On the other hand, since $r \times p \nsubseteq \bar{Q}_{\left(\left(v_{1}, m_{1}\right),(w, n)\right)}$, for some $\left(v_{3}, m_{3}\right) \in V \times M$ and $\left(w_{2}, n_{2}\right) \in W \times N$, we have $r \nsubseteq \bar{Q}_{\left(v_{3}, w_{2}\right)}$ and $p \nsubseteq \bar{Q}_{\left(m_{3}, n_{2}\right)}$. Since $v_{1}=v_{3}, m_{1}=m_{3}, P_{w_{2}} \nsubseteq Q_{w_{1}}$ and $P_{n_{2}} \nsubseteq Q_{n_{1}}$, where $\bar{P}_{\left(\left(v_{3}, m_{3}\right),\left(w_{2}, n_{2}\right)\right)} \nsubseteq \bar{Q}_{\left(\left(v_{1}, m_{1}\right),\left(w_{1}, n_{1}\right)\right)}$, we obtain $r \nsubseteq \bar{Q}_{\left(v_{1}, w_{1}\right)}$ and $p \nsubseteq \bar{Q}_{\left(m_{1}, n_{1}\right)}$.
Hence, by (1) and (2), we conclude that $\bar{P}_{\left(u, w_{1}\right)} \subseteq r \circ q$ and $\bar{P}_{\left(z, n_{1}\right)} \subseteq p \circ k$. By the assumption $r \circ q \subseteq \bar{Q}_{(u, w)}$ or $k \nsubseteq \bar{Q}_{\left(z, m_{2}\right)}$. Then $\bar{P}_{\left(u, w_{1}\right)} \subseteq \bar{Q}_{(u, w)}$ or $\bar{P}_{\left(z, n_{1}\right)} \subseteq \bar{Q}_{\left(z, n_{2}\right)}$. However,

$$
P_{w_{1}} \subseteq Q_{w} \text { or } P_{n_{1}} \subseteq Q_{n_{2}}
$$

is a contradiction. The reverse inclusion and the proof of the second equality is similar.
Corollary 8.2. If (r, R) and (q, Q) are complemented direlations, then
$(r \times q, R \times Q)$
is also a complemented direlation.
Proof. By Proposition 8.1(i), it is immediate.
Corollary 8.3. The mapping $\otimes:$ cdrTex \times cdrTex $\longrightarrow \mathbf{c d r T e x}$ defined by

$$
\otimes((U, \mathcal{U}),(V, \mathcal{V}))=(U \times V, \mathcal{U} \otimes \mathcal{V}) \text { and } \otimes((r, R),(q, Q))=(r \times q, R \times Q)
$$

is a functor.
Proof. Let $(r, R):(V, \mathcal{V}) \rightarrow(W, \mathcal{W}),(q, Q):(U, \mathcal{U}) \rightarrow(V, \mathcal{V}),(p, P):(M, \mathcal{M}) \rightarrow(N, \mathcal{N})$ and $(k, K):(Z, \mathcal{Z}) \rightarrow$ (M, \mathcal{M}) be direlations in cdrTex. By Proposition 8.1(iii), we have

$$
\begin{aligned}
\otimes(((r, R),(q, Q)) \circ((p, P),(k, K))) & =\otimes((r, R) \circ(p, P),(q, Q) \circ(k, K)) \\
& =\otimes((r \circ p, R \circ P),(q \circ k, Q \circ K)) \\
& =((r \circ p) \times(q \circ k),(R \circ P) \times(Q \circ K)) \\
& =((r \times q) \circ(p \times k),(R \times Q) \circ(P \times K)) \\
& =(r \times q, R \times Q) \circ(p \times k, P \times K) \\
& =\otimes((r, R),(q, Q)) \circ \otimes((p, P),(k, K)) .
\end{aligned}
$$

Further, if $\left(i_{U}, I_{U}\right)$ and (i_{V}, I_{V}) are the identity direlations of some objects (U, \mathcal{U}) and (V, \mathcal{V}), respectively in cdrTex, then the identity of object $((U, \mathcal{U}),(V, \mathcal{V}))$ in $\mathbf{c d r T e x} \times \mathbf{c d r T e x}$ is $\left(\left(i_{U}, I_{U}\right),\left(i_{V}, I_{V}\right)\right)$. Now let us show that $\left(i_{U} \times i_{V}, I_{U} \times I_{V}\right)=$ $\left(i_{U \times V}, I_{U \times V}\right)$ where $\left(i_{U \times V}, I_{U \times V}\right)$ is the identity direlation of $U \times V$. Let $i_{U} \times i_{V} \nsubseteq \bar{Q}_{\left((u, v),\left(u^{\prime}, v^{\prime}\right)\right)}$. By definition of product, we have

$$
\bar{P}_{\left(\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)\right)} \nsubseteq \bar{Q}_{\left((u, v),\left(u^{\prime}, v^{\prime}\right)\right),}, i_{U} \nsubseteq \bar{Q}_{\left(u_{1}, u_{2}\right)} \text { and } i_{V} \nsubseteq \bar{Q}_{\left(v_{1}, v_{2}\right)}
$$

for $\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right) \in U \times V$. This follows that $\bar{P}_{((u, v),(u, v))} \nsubseteq \bar{Q}_{\left((u, v),\left(u_{2}, v_{2}\right)\right)}$, that is, $i_{U \times V} \nsubseteq \bar{Q}_{\left((u, v),\left(u_{2}, v_{2}\right)\right)}$. This implies that $i_{U} \times i_{V} \subseteq i_{U \times V}$. For the reverse inclusion, let $i_{U \times V} \nsubseteq \bar{Q}_{\left((u, v),\left(u^{\prime}, v^{\prime}\right)\right)}$. Then for some $\left(u_{1}, v_{1}\right) \in U \times V$, we have $P_{u_{1}} \nsubseteq Q_{u^{\prime}}$ and $P_{v_{1}} \nsubseteq Q_{v^{\prime}}$. Now let us choose $u_{2} \in U$ and $v_{2} \in V$ such that

$$
P_{u_{1}} \nsubseteq Q_{u_{2}}, P_{u_{2}} \nsubseteq Q_{u^{\prime}}, P_{v_{1}} \nsubseteq Q_{v_{2}} \text { and } P_{v_{2}} \nsubseteq Q_{v^{\prime}}
$$

Then clearly,

$$
\bar{P}_{\left(\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)\right)} \nsubseteq \bar{Q}_{\left(\left(u_{1}, v_{1}\right),\left(u^{\prime}, v^{\prime}\right)\right)}, P_{u_{1}} \nsubseteq Q_{u_{2}} \text { and } P_{v_{1}} \nsubseteq Q_{v_{2}} .
$$

This means that $i_{U} \times i_{V} \nsubseteq \bar{Q}_{\left((u, v),\left(u^{\prime}, v^{\prime}\right)\right)}$ and so we obtain $i_{U \times V} \subseteq i_{U \times V}$. The second equality $I_{U \times V}=I_{U \times V}$ can be proved by a similar way. Hence, we have

$$
\otimes\left(\left(i_{U}, I_{U}\right),\left(i_{V}, I_{V}\right)\right)=\left(i_{U} \times i_{V}, I_{U} \times I_{V}\right)=\left(i_{U \times V}, I_{U \times V}\right)
$$

Since $\left(i_{U \times V}, I_{U \times V}\right)$ is the identity of the object $(U \times V, \mathcal{U} \otimes \mathcal{V})$ in cdrTex, the proof is complete.

Proposition 8.4. Let

$$
(p, P):(U, \mathcal{U}) \rightarrow\left(U^{\prime}, U^{\prime}\right),(q, Q):(V, \mathcal{V}) \rightarrow\left(V^{\prime}, \mathcal{V}^{\prime}\right) \text { and }(r, R):(W, w) \rightarrow\left(W^{\prime}, w^{\prime}\right)
$$

be direlations where $(U, \mathcal{U}),(V, \mathcal{V}),(W, \mathcal{w}),\left(U^{\prime}, \mathcal{U}^{\prime}\right),\left(V^{\prime}, \mathcal{V}^{\prime}\right)$ and $\left(W^{\prime}, \mathcal{W}^{\prime}\right)$ are arbitrary texture spaces. Then for all $u \in U, v \in V, w \in W, u^{\prime} \in U^{\prime}, v^{\prime} \in V^{\prime}, w^{\prime} \in W^{\prime}$, we have the following conditions:
(i) $(p \times q) \times r \nsubseteq \bar{Q}_{\left(((u, v), w),\left(\left(u^{\prime}, v^{\prime}\right), w^{\prime}\right)\right)} \Longleftrightarrow p \times(q \times r) \nsubseteq \bar{Q}_{\left((u,(v, w)),\left(u^{\prime},\left(v^{\prime}, w^{\prime}\right)\right)\right)}$.
(ii) $(P \times Q) \times R \nsubseteq \bar{Q}_{\left(((u, v), w),\left(\left(u^{\prime}, v^{\prime}\right), w^{\prime}\right)\right)} \Longleftrightarrow P \times(Q \times R) \nsubseteq \bar{Q}_{\left((u,(v, w)),\left(u^{\prime},\left(v^{\prime}, w^{\prime}\right)\right)\right)}$.
(iii) $p \times q \nsubseteq \bar{Q}_{\left((u, v),\left(u^{\prime}, v^{\prime}\right)\right)} \Longrightarrow q \times p \nsubseteq \bar{Q}_{\left((v, u),\left(v^{\prime}, u^{\prime}\right)\right)}$.
(iv) $P \times Q \nsubseteq \bar{Q}_{\left((u, v),\left(u^{\prime}, v^{\prime}\right)\right)} \Longrightarrow Q \times P \nsubseteq \bar{Q}_{\left((v, u),\left(v^{\prime}, u^{\prime}\right)\right)}$.

Proof. (i) Let $(p \times q) \times r \nsubseteq \bar{Q}_{\left.((u, v), w),\left(\left(u^{\prime}, v^{\prime}\right), w^{\prime}\right)\right)}$. Then there exist $\left(u_{1}, v_{1}, w_{1}\right) \in U \times V \times W$ and $\left(u_{1}^{\prime}, v_{1}^{\prime}, w_{1}^{\prime}\right) \in U^{\prime} \times V^{\prime} \times W^{\prime}$ such that

$$
\bar{P}_{\left(\left(\left(\left(u_{1}, v_{1}\right), w_{1}\right),\left(\left(\left(u_{1}^{\prime}, v_{1}^{\prime}\right), w_{1}^{\prime}\right)\right)\right.\right.} \nsubseteq \bar{Q}_{\left(((u, v), w),\left(\left(u^{\prime}, v^{\prime}\right), w^{\prime}\right)\right)}
$$

and

$$
p \times q \nsubseteq \bar{Q}_{\left(\left(u_{1}, v_{1}\right),\left(u_{1}^{\prime}, v_{1}^{\prime}\right)\right)} \text { and } r \nsubseteq \bar{Q}_{\left(w_{1}, w_{1}^{\prime}\right)} .
$$

Then we have $u_{1}=u, v_{1}=v, w_{1}=w$ and $P_{u_{1}^{\prime}} \nsubseteq Q_{u^{\prime}}, P_{v_{1}^{\prime}} \nsubseteq Q_{v^{\prime}}, P_{w_{1}^{\prime}} \nsubseteq Q_{w^{\prime}}$ and so by definition p-sets and q-sets in textural product we obtain

$$
\bar{P}_{\left(\left(u_{1},\left(v_{1}, w_{1}\right)\right),\left(u_{1}^{\prime},\left(v_{1}^{\prime}, w_{1}^{\prime}\right)\right)\right)} \nsubseteq \bar{Q}_{\left((u,(v, w)),\left(u^{\prime},\left(v^{\prime}, w^{\prime}\right)\right)\right)} .
$$

Then we must show that

$$
\begin{equation*}
q \times r \nsubseteq \bar{Q}_{\left(\left(v_{1}, w_{1}\right),\left(v_{1}^{\prime}, w_{1}^{\prime}\right)\right)} \text { and } p \nsubseteq \bar{Q}_{\left(u_{1}, u_{1}^{\prime}\right)} \tag{*}
\end{equation*}
$$

By definition of $p \times q$, there exist $\left(u_{2}, v_{2}\right) \in U \times V$ and $\left(u_{2}^{\prime}, v_{2}^{\prime}\right) \in U^{\prime} \times V^{\prime}$ such that

$$
\bar{P}_{\left.\left(\left(u_{2}, v_{2}\right)\right),\left(u_{2}^{\prime}, v_{2}^{\prime}\right)\right)} \nsubseteq \bar{Q}_{\left(\left(u_{1}, v_{1}\right),\left(u_{1}^{\prime}, v_{1}^{\prime}\right)\right)}, p \nsubseteq \bar{Q}_{\left(u_{2}, u_{2}^{\prime}\right)} \text { and } q \nsubseteq \bar{Q}_{\left(v_{2}, v_{2}^{\prime}\right)}
$$

However, since $u_{2}=u_{1}, p \nsubseteq \bar{Q}_{\left(u_{1}, u_{2}^{\prime}\right)}$. Further, since $P_{u_{2}^{\prime}} \nsubseteq Q_{u_{1}^{\prime}}$, by definition of p-sets and q-sets, we obtain $p \nsubseteq \bar{Q}_{\left(u_{1}, u_{1}^{\prime}\right)}$. Now we show that $q \times r \nsubseteq \bar{Q}_{\left(\left(v_{1}, w_{1}\right),\left(v_{1}^{\prime}, w_{1}^{\prime}\right)\right)}$. First, let us choose $w_{1}^{*}, w_{2}^{*} \in W$ such that $r \nsubseteq Q_{\left(w_{1}^{*}, w_{2}^{*}\right)}$ and $\bar{P}_{\left(w_{1}^{*}, w_{2}^{*}\right)} \nsubseteq \bar{Q}_{\left(w_{1}, w_{1}^{\prime}\right)}$. Then $r \nsubseteq Q_{\left(w_{1}, w_{2}^{*}\right)}$ and $P_{w_{2}^{*}} \nsubseteq Q_{w_{1}^{\prime}}$. By definition of product of relations, we have write $\bar{P}_{\left(\left(v_{1}, w_{1}\right),\left(v_{2}^{\prime}, w_{2}^{*}\right)\right)} \subseteq q \times r$. On the other hand, $P_{w_{2}^{\prime}} \nsubseteq Q_{v_{1}^{\prime}}$ and $P_{w_{2}^{*}} \nsubseteq Q_{w_{1}^{\prime}}$ implies that

$$
\bar{P}_{\left(\left(v_{1}, w_{1}\right),\left(v_{2}^{\prime}, w_{2}^{*}\right)\right)} \nsubseteq \bar{Q}_{\left(\left(v_{1}, w_{1}\right),\left(v_{1}^{\prime}, w_{1}^{\prime}\right)\right)}
$$

As a result, we obtain $q \times r \nsubseteq \bar{Q}_{\left(\left(v_{1}, w_{1}\right),\left(v_{1}^{\prime}, w_{1}^{\prime}\right)\right)}$. From (*), we have

$$
\bar{P}_{\left(\left(u_{1},\left(v_{1}, w_{1}\right)\right),\left(u_{1}^{\prime},\left(v_{1}^{\prime}, w_{1}^{\prime}\right)\right)\right)} \subseteq p \times(q \times r)
$$

We conclude that $p \times(q \times r) \nsubseteq \bar{Q}_{(u,(v, w)),\left(u^{\prime},\left(v^{\prime}, w^{\prime}\right)\right)}$. The second part of the equivalence is similar.
(ii) Similar to (i).
(iii) Let $p \times q \nsubseteq \bar{Q}_{\left((u, v),\left(u^{\prime}, v^{\prime}\right)\right)}$. By definition of product, there exists $\left(u_{1}^{\prime}, v_{1}^{\prime}\right) \in U^{\prime} \times V^{\prime}$ such that

$$
P_{u_{1}^{\prime}} \nsubseteq Q_{u^{\prime}}, P_{v_{1}^{\prime}} \nsubseteq Q_{v^{\prime}}, p \nsubseteq \bar{Q}_{\left(u, u_{1}^{\prime}\right)} \text { and } q \nsubseteq \bar{Q}_{\left(v, v_{1}^{\prime}\right)}
$$

Then we have $\bar{P}_{\left((v, u),\left(v_{1}^{\prime}, u_{1}^{\prime}\right)\right)} \subseteq q \times p$. However, since $\bar{P}_{\left(v_{1}^{\prime}, u_{1}^{\prime}\right)} \nsubseteq \bar{Q}_{\left(v^{\prime}, u\right)}, \bar{P}_{\left((v, u),\left(v_{1}^{\prime}, u_{1}^{\prime}\right)\right)} \nsubseteq \bar{Q}_{\left((v, u),\left(v^{\prime}, u^{\prime}\right)\right)}$ and this gives that

$$
q \times p \nsubseteq \bar{Q}_{\left((v, u),\left(v^{\prime}, u^{\prime}\right)\right)}
$$

(iv) Similar to (iii).

9. Dagger symmetric monoidal categories

Dagger symmetric monoidal categories are used in abstract quantum mechanics [1,30]. The primary examples are the categories REL of relations and sets, and FdHilb of finite dimensional Hilbert spaces and linear mappings. Since REL and R-APR are isomorphic categories, R-APR is also a dagger symmetric monoidal category. In this section, we show that the categories drTex and cdrTex are also dagger symmetric monoidal categories.

Definition 9.1. (i) A dagger category [9,22] is a category \mathbf{C} together with an involutive, identity-on-objects, contravariant functor $\dagger: \mathbf{C} \rightarrow \mathbf{C}$. In other words, every morphism $f: A \rightarrow B$ in \mathbf{C} corresponds to a morphism $f^{\dagger}: B \rightarrow A$ such that for all $f: A \rightarrow B$ and $g: B \rightarrow C$ the following conditions hold:

$$
\mathrm{id}_{A}^{\dagger}=\mathrm{id}_{A}: A \rightarrow A,(g \circ f)^{\dagger}=f^{\dagger} \circ g^{\dagger}: C \rightarrow A, \text { and } f^{\dagger \dagger}=f: A \rightarrow B
$$

(ii) A symmetric monoidal category [25] is a category \mathbf{C} together with a bifunctor \otimes, a distinguished object I, and natural isomorphisms

$$
\begin{aligned}
& \alpha_{A, B, C}:(A \otimes B) \otimes C \rightarrow A \otimes(B \otimes C), \\
& \lambda_{A}: A \rightarrow I \otimes A, \rho_{A}: A \rightarrow A \otimes I \text { and } \sigma_{A, B}: A \otimes B \rightarrow B \otimes A
\end{aligned}
$$

subject to Mac Lane's standard coherence conditions.
(iii) A dagger symmetric monoidal category [30] is a symmetric monoidal category \mathbf{C} with a dagger structure preserving the symmetric monoidal structure:

$$
\begin{aligned}
& \text { For all } f: A \rightarrow B \text { and } g: C \rightarrow D,(f \otimes g)^{\dagger}=f^{\dagger} \otimes g^{\dagger}: B \otimes D \rightarrow A \otimes C \text {, } \\
& \alpha_{A, B, C}^{\dagger}=\alpha_{A, B, C}^{-1}: A \otimes(B \otimes C) \rightarrow(A \otimes B) \otimes C, \lambda^{\dagger}=\lambda^{-1}: I \otimes A \rightarrow A \text {, and } \\
& \sigma_{A, B}^{\dagger}=\sigma_{A, B}^{-1}: B \otimes A \rightarrow A \otimes B
\end{aligned}
$$

Theorem 9.2. The categories drTex and cdrTex are dagger categories.
Proof. First let us determine the dagger structure on drTex. By Proposition 2.17 in [8], note that for any texture (U, U),

$$
\left(i_{U}, I_{U}\right) \leftarrow=\left(i_{U}, I_{U}\right) \text { and }((q, Q) \circ(r, R)) \leftarrow=(r, R) \leftarrow \circ(q, Q) \leftarrow
$$

where (r, R) is a direlation from (U, \mathcal{U}) to $V, \mathcal{V})$ and (q, Q) is a direlation from (V, \mathcal{V}) to (Z, \mathcal{Z}). Therefore, $\dagger:$ drTex \rightarrow drTex is a functor defined by

$$
\dagger(U, \mathcal{U})=(U, \mathcal{U}) \text { and } \dagger(r, R)=(r, R)^{\leftarrow}
$$

for all $(U, U) \in \mathrm{ob}(\mathbf{d r T e x})$ and $(r, R) \in \operatorname{hom}(\mathbf{d r T e x})$. Further, we have $\left((r, R)^{\leftarrow}\right) \leftarrow=(r, R)$.
Therefore, drTex is a dagger category. On the other hand, if (r, R) is complemented, then $(r, R) \leftarrow=\left(R^{\leftarrow}, r^{\leftarrow}\right)$ is also complemented. Indeed, by Proposition 2.21 in [8],

$$
\left(R^{\leftarrow}\right)^{\prime}=\left(R^{\prime}\right)^{\leftarrow}=r^{\leftarrow} \text { and }\left(r^{\leftarrow}\right)^{\prime}=\left(r^{\prime}\right)^{\leftarrow}=R^{\leftarrow}
$$

As a result, the category cdrTex is also a dagger category.
Corollary 9.3. The diagram

commutes.
Proof. Let $r: U \rightarrow V$ be a morphism in REL. If we take $R=(U \times V) \backslash r$, then

$$
\left.\begin{array}{rl}
(\dagger \circ \mathfrak{L})(r)=\dagger(\mathfrak{L}(r)) & =\dagger(r, R)=(r, R) \leftarrow=\left(R^{\leftarrow}, r^{\leftarrow}\right) \\
& =\mathfrak{N}(\underline{a p r} \\
r
\end{array}, \overline{\operatorname{apr}}_{r}\right)=\mathfrak{N}(\mathfrak{T}(r))=(\mathfrak{N} \circ \mathfrak{T})(r) . ~ \$
$$

Corollary 9.4. (i) For the functors

$$
\mathfrak{F}, \mathfrak{B}: \text { cdrTex } \times \text { cdrTex } \times \text { cdrTex } \rightarrow \text { cdrTex }
$$

defined by

$$
\begin{aligned}
& \mathfrak{F}((U, \mathcal{U}),(V, \mathcal{V}),(W, \mathfrak{w}))=((U \times V) \times W,(U \otimes \mathcal{V}) \otimes \mathfrak{w}), \\
& \mathfrak{F}((p, P),(q, Q),(r, R))=((p \times q) \times r,(P \times Q) \times R)
\end{aligned}
$$

and

$$
\begin{aligned}
& \mathfrak{B}((U, \mathcal{U}),(V, \mathcal{V}),(W, \mathcal{W}))=(U \times(V \times W), \mathcal{U} \otimes(\mathcal{V} \otimes \mathcal{W})), \\
& \mathfrak{B}((p, P),(q, Q),(r, R))=(p \times(q \times r), P \times(Q \times R)),
\end{aligned}
$$

respectively, there exists a natural transformation $\alpha: \mathfrak{F} \rightarrow \mathfrak{B}$ with the component

$$
\alpha_{(u, v, w)}:((U \times V) \times W,(u \otimes \mathcal{V}) \otimes w) \cong(U \times(V \times W), u \otimes(\mathcal{V} \otimes w))
$$

which is a natural isomorphism.
(ii) Take the functors $\mathfrak{R}, \mathfrak{D}: \mathbf{c d r T e x} \rightarrow \mathbf{c d r T e x}$ defined by

$$
\mathfrak{R}((U, \mathcal{U}))=(U \times E, \mathcal{U} \otimes \mathcal{E}) \quad \mathfrak{D}((U, \mathcal{U}))=(E \times U, \mathcal{E} \otimes u)
$$

$\mathfrak{R}((r, R))=\left(r \times i_{E}, R \times I_{E}\right)$, and $\mathfrak{D}((r, R))=\left(i_{E} \times r, I_{E} \times R\right)$ where (E, \mathcal{E}) is the texture given in Proposition 7.3(ii).
Then there exist the natural transformations $\lambda: \mathfrak{R} \rightarrow \mathfrak{I}_{\mathbf{c d r T e x}}$ and $\rho: \mathfrak{D} \rightarrow \mathfrak{I}_{\mathbf{c d r T e x}}$ such that for all (U, \mathcal{U}), the components

$$
\lambda_{(U, u)}:(U, \mathcal{u}) \cong(E \times U, \varepsilon \otimes \mathcal{U}) \text { and } \rho_{(U, u)}:(U, u) \cong(U \times E, u \otimes \varepsilon)
$$

are natural isomorphisms where $\mathfrak{I}_{\mathbf{c d r T e x}}: \mathbf{c d r T e x} \rightarrow \mathbf{c d r T e x}$ is the unit functor.
(iii) Consider the functors \mathfrak{S}, $\mathfrak{U}: \mathbf{c d r T e x} \times \mathbf{c d r T e x} \rightarrow \mathbf{c d r T e x}$ defined by

$$
\begin{aligned}
& \mathfrak{S}((U, \mathcal{U}),(V, \mathcal{V}))=(U \times V, \mathcal{U} \otimes \mathcal{V}) \quad \mathfrak{U}((U, \mathcal{U}),(V, \mathcal{V}))=(V \times U, \mathcal{V} \otimes \mathcal{U}) \\
& \mathfrak{S}((r, R),(q, Q))=(r \times q, R \times Q), \quad \text { and } \quad \mathfrak{U}((r, R),(q, Q))=(q \times r, Q \times R) .
\end{aligned}
$$

Then there exists a natural transformation $\sigma: \mathfrak{S} \rightarrow \mathfrak{U}$ such that for all (U, \mathcal{U}), the component

$$
\sigma_{(u, v)}:(U \times V, u \otimes \mathcal{V}) \cong(V \times U, \mathcal{v} \otimes u)
$$

is a natural isomorphism.
Proof. (i) Using a similar argument as in the proof of Corollary 8.3, it is easy to show that the mappings \mathfrak{F} and \mathfrak{B} are indeed functors. Now let $((U, \mathcal{U}),(V, \mathcal{V}),(W, \mathcal{W}))$ be an object in cdrTex $\times \mathbf{c d r T e x} \times \mathbf{c d r T e x}$ and consider the complemented textural isomorphism $\psi:(U \times V) \times W \rightarrow U \times(V \times W)$ defined by $\psi((u, v), w))=(u,(v, w))$ for all $((u, v), w) \in$ $(U \times V) \times W$. By Proposition 7.5(i), the corresponding isomorphism $\left(r_{\psi}, R_{\psi}\right)$ in cdrTex can be given by the equalities

$$
\begin{aligned}
& r_{\psi}=\bigvee\left\{\bar{P}_{(((u, v), w),(a,(b, c)))} \mid P_{(u,(v, w))} \nsubseteq Q_{(a,(b, c))}\right\} \\
& R_{\psi}=\bigcap\left\{\bar{Q}_{(((u, v), w),(a,(b, c)))} \mid P_{(a,(b, c))} \nsubseteq Q_{(u,(v, w))}\right\}
\end{aligned}
$$

We prove that $\left(r_{\psi}, R_{\psi}\right)$ is the desired natural isomorphism $\alpha_{(u, v, w)}$ in cdrTex. Now for all objects $\left(\left(U^{\prime}, \mathcal{U}^{\prime}\right),\left(V^{\prime}, \mathcal{V}^{\prime}\right)\right.$, $\left.\left(W^{\prime}, W^{\prime}\right)\right)$ in cdrTex \times cdrTex \times cdrTex and for all morphisms

$$
((p, P),(q, Q),(r, R)):((U, \mathcal{U}),(V, \mathcal{V}),(W, \mathcal{w})) \rightarrow\left(\left(U^{\prime}, \mathcal{U}^{\prime}\right),\left(V^{\prime}, \mathcal{V}^{\prime}\right),\left(W^{\prime}, w^{\prime}\right)\right)
$$

we show that the diagram

is commutative, where $\left(r_{\varphi}, R_{\varphi}\right)$ is a direlation corresponding to the mapping

$$
\varphi:\left(U^{\prime} \times V^{\prime}\right) \times W^{\prime} \rightarrow U^{\prime} \times\left(V^{\prime} \times W^{\prime}\right)
$$

defined by $\varphi\left(\left(u^{\prime}, v^{\prime}\right), w^{\prime}\right)=\left(u^{\prime},\left(v^{\prime}, w^{\prime}\right)\right)$ for all $\left(\left(u^{\prime}, v^{\prime}\right), w^{\prime}\right) \in\left(U^{\prime} \times V^{\prime}\right) \times W^{\prime}$. In other words, we check the equalities

$$
(p \times(q \times r)) \circ r_{\psi}=r_{\varphi} \circ((p \times q) \times r) \text { and }(P \times(Q \times R)) \circ R_{\psi}=R_{\varphi} \circ((P \times Q) \times R)
$$

For the first equality, let us suppose that $(p \times(q \times r)) \circ r_{\psi} \nsubseteq r_{\varphi} \circ((p \times q) \times r)$ and let us choose $((a, b), c) \in(U \times V) \times W$ and $\left(a^{\prime},\left(b^{\prime}, c^{\prime}\right)\right) \in U^{\prime} \times\left(V^{\prime} \times W^{\prime}\right)$ such that

$$
\begin{equation*}
(p \times(q \times r)) \circ r_{\psi} \nsubseteq \bar{Q}_{\left(((a, b), c),\left(a^{\prime},\left(b^{\prime}, c^{\prime}\right)\right)\right)} \text { and } \bar{P}_{\left(((a, b), c),\left(a^{\prime},\left(b^{\prime}, c^{\prime}\right)\right)\right)} \nsubseteq r_{\varphi} \circ((p \times q) \times r) \tag{*}
\end{equation*}
$$

Then for some $\left(\left(a_{1}, b_{1}\right), c_{1}\right) \in(U \times V) \times W,\left(a_{1}^{\prime},\left(b_{1}^{\prime}, c_{1}^{\prime}\right)\right) \in U^{\prime} \times\left(V^{\prime} \times W^{\prime}\right)$ and $\left(u^{*},\left(v^{*}, w^{*}\right)\right) \in U \times(V \times W)$, we have

$$
\bar{P}_{\left(\left(\left(a_{1}, b_{1}\right), c_{1}\right),\left(a_{1}^{\prime},\left(b_{1}^{\prime}, c_{1}^{\prime}\right)\right)\right)} \nsubseteq \bar{Q}_{\left(((a, b), c),\left(a^{\prime},\left(b^{\prime}, c^{\prime}\right)\right)\right)}
$$

where

$$
r_{\psi} \nsubseteq \bar{Q}_{\left(\left(\left(a_{1}, b_{1}\right), c_{1}\right),\left(u^{*},\left(v^{*}, w^{*}\right)\right)\right)} \text { and } p \times(q \times r) \nsubseteq \bar{Q}_{\left(\left(u^{*},\left(v^{*}, w^{*}\right)\right),\left(a_{1}^{\prime},\left(b_{1}^{\prime}, c_{1}^{\prime}\right)\right)\right)}
$$

Therefore, by Proposition 8.4(i), we conclude

$$
(p \times q) \times r \nsubseteq \bar{Q}_{\left(\left(\left(u^{*}, v^{*}\right), w^{*}\right),\left(\left(a_{1}^{\prime}, b_{1}^{\prime}\right), c_{1}^{\prime}\right)\right)}
$$

Further, $r_{\psi} \nsubseteq \bar{Q}_{\left(((a, b), c),\left(u^{*},\left(v^{*}, w^{*}\right)\right)\right)}$ and $P_{\left(a_{1}^{\prime},\left(b_{1}^{\prime}, c_{1}^{\prime}\right)\right)} \nsubseteq Q_{\left(a^{\prime},\left(b^{\prime}, c^{\prime}\right)\right) \text {. }}$. On the other hand, by the second part of $(*)$, for all $\left(\left(u^{\prime}, v^{\prime}\right), w^{\prime}\right) \in\left(U^{\prime} \times V^{\prime}\right) \times W^{\prime}$ we have

$$
\begin{equation*}
(p \times q) \times r \nsubseteq Q_{((a, b), c)),\left(\left(u^{\prime},\left(v^{\prime}, w^{\prime}\right)\right)\right.} \Longrightarrow r_{\varphi} \subseteq \bar{Q}_{\left(\left(\left(u^{\prime}, v^{\prime}\right), w^{\prime}\right),\left(a^{\prime},\left(b^{\prime}, c^{\prime}\right)\right)\right.} . \tag{**}
\end{equation*}
$$

Now let us choose $\left(\left(a_{3}^{\prime}, b_{3}^{\prime}\right), c_{3}^{\prime}\right) \in\left(U^{\prime} \times V^{\prime}\right) \times W^{\prime}$ such that

$$
(p \times q) \times r \nsubseteq \bar{Q}_{\left(\left(u^{*}, v^{*}\right), w^{*}\right),\left(\left(a_{3}^{\prime}, b_{3}^{\prime}\right), c_{3}^{\prime}\right)} \text { and } P_{\left(\left(a_{3}^{\prime}, b_{3}^{\prime}\right), c_{3}^{\prime}\right)} \nsubseteq Q_{\left(\left(a_{1}^{\prime}, b_{1}^{\prime}\right), c_{1}^{\prime}\right)} .
$$

It is easy to see that since $r_{\psi} \nsubseteq \bar{Q}_{\left(((a, b), c),\left(\left(u^{*},\left(v^{*}, w^{*}\right)\right)\right.\right.}, P_{((a, b), c)} \nsubseteq Q_{\left(u^{*},\left(v^{*}, w^{*}\right)\right)}$. Hence, by R1 we find

$$
(p \times q) \times r \nsubseteq \bar{Q}_{\left(((a, b), c),\left(\left(a_{3}^{\prime}, b_{3}^{\prime}\right), c_{3}^{\prime}\right)\right)}
$$

Thus by $(* *)$, we obtain $r_{\varphi} \subseteq \bar{Q}_{\left(\left(\left(a_{3}^{\prime}, b_{3}^{\prime}\right), c_{3}^{\prime}\right),\left(a^{\prime},\left(b^{\prime}, c^{\prime}\right)\right)\right.}$. Further, since $P_{\left.\left(\left(a_{3}^{\prime}, b_{3}^{\prime}\right), c_{3}^{\prime}\right)\right)} \nsubseteq Q_{\left.\left(\left(a_{1}^{\prime}, b_{1}^{\prime}\right), c_{1}^{\prime}\right)\right),} P_{\left.\left(\left(a_{3}^{\prime}, b_{3}^{\prime}\right), c_{3}^{\prime}\right),\left(\left(a_{1}^{\prime}, b_{1}^{\prime}\right), c_{1}^{\prime}\right)\right)} \subseteq r_{\varphi}$. But this is a contradiction since $P_{\left(a_{1}^{\prime},\left(b_{1}^{\prime}, c_{1}^{\prime}\right)\right)} \nsubseteq Q_{\left(a^{\prime},\left(b^{\prime}, c^{\prime}\right)\right)}$. Therefore,

$$
(p \times(q \times r)) \circ r_{\psi} \subseteq r_{\varphi} \circ((p \times q) \times r)
$$

The reverse inclusion can be proved using a similar argument.
(ii) Let us prove the existence of the natural isomorphism $\lambda: \mathfrak{R} \rightarrow \Im_{\text {cdrTex }}$. Consider the textural isomorphism $\psi:(U, \mathcal{U}) \rightarrow$ ($E \times u, \varepsilon \otimes U$) defined by

$$
\forall u \in U, \psi(u)=(e, u)
$$

It is easy to see that by Proposition 7.5(i), the corresponding isomorphism (r_{ψ}, R_{ψ}) can be given by the equalities

$$
r_{\psi}=\bigvee\left\{\bar{P}_{\left(u,\left(e, u^{\prime}\right)\right)} \mid P_{u} \nsubseteq Q_{u^{\prime}}\right\} \text { and } R_{\psi}=\bigcap\left\{\bar{Q}_{\left(u,\left(e, u^{\prime}\right)\right)} \mid P_{u^{\prime}} \nsubseteq Q_{u}\right\}
$$

Now let (r, R) be a morphism from (U, \mathcal{U}) to (V, \mathcal{V}) in cdrTex. By the definition of product of direlations, we have

$$
i_{E} \times r=\bigvee\left\{\bar{P}_{((e, u),(e, v))} \mid r \nsubseteq \bar{Q}_{(u, v)}\right\} \text { and } I_{E} \times R=\bigcap\left\{\bar{Q}_{((e, u),(e, v))} \mid P_{(u, v)} \nsubseteq R\right\}
$$

Take the isomorphism $\left(r_{\varphi}, R_{\varphi}\right)$ in $\mathbf{c d r T e x}$ corresponding to the textural isomorphism $\varphi:(V, \mathcal{V}) \rightarrow(V \times E, \mathcal{V} \otimes \mathcal{E})$. Now we show that the diagram

is commutative, that is, the equalities

$$
\left(i_{E} \times r\right) \circ r_{\psi}=r_{\varphi} \circ r \text { and }\left(I_{E} \times R\right) \circ R_{\psi}=R_{\varphi} \circ R
$$

hold. Let $\left(i_{E} \times r\right) \circ r_{\psi} \nsubseteq r_{\varphi} \circ r$. Let us choose $u_{1} \in U, v_{1} \in V$ such that

$$
\left(i_{E} \times r\right) \circ r_{\psi} \nsubseteq \bar{Q}_{\left(u_{1},\left(e, v_{1}\right)\right)} \text { and } \bar{P}_{\left(u_{1},\left(e, v_{1}\right)\right)} \nsubseteq r_{\varphi} \circ r
$$

From the first statement, for some $u \in U$ and $v \in V$, we have $\bar{P}_{(u,(e, v))} \nsubseteq \bar{Q}_{\left(u_{1},\left(e, v_{1}\right)\right)}$ such that $r_{\psi} \nsubseteq \bar{Q}_{\left(u,\left(e, u^{\prime}\right)\right)}$ and $r \times i_{E} \nsubseteq \bar{Q}_{\left(\left(e, u^{\prime}\right),(e, v)\right)}$ where $u^{\prime} \in U$. On the other hand, since $u=u_{1}$ and $P_{v} \nsubseteq Q_{v_{1}}, r_{\psi} \nsubseteq \bar{Q}_{\left(u_{1},\left(e, u^{\prime}\right)\right)}$ and $r \times i_{E} \nsubseteq \bar{Q}_{\left(\left(e, u^{\prime}\right),\left(e, v_{1}\right)\right)}$. Hence, $r_{\psi} \nsubseteq \bar{Q}_{\left(u_{1},\left(e, u^{\prime}\right)\right)}$ implies that $\bar{P}_{\left(u_{3},\left(e, u_{4}\right)\right)} \nsubseteq \bar{Q}_{\left(u_{1},\left(e, u^{\prime}\right)\right)}$ and $P_{\psi\left(u_{3}\right)} \nsubseteq Q_{\left(e, u_{4}\right)}$ for some $u_{3}, u_{4} \in U$. Therefore, it is easy to see that $P_{u_{1}} \nsubseteq Q_{u^{\prime}}$. Further, $i_{E} \times r \nsubseteq \bar{Q}_{\left(\left(e, u^{\prime}\right),\left(e, v_{1}\right)\right)}$ gives that $\bar{P}_{\left(\left(e, u_{5}\right),\left(e, v_{2}\right)\right)} \nsubseteq \bar{Q}_{\left(\left(e, u^{\prime}\right),\left(e, v_{1}\right)\right)}$ and $r \nsubseteq \bar{Q}_{\left(u_{5}, v_{2}\right)}$ for some $u_{5} \in U$ and $v_{2} \in V$. Then we have $r \nsubseteq \bar{Q}_{\left(u^{\prime}, v_{1}\right)}$. As a result, $P_{u_{1}} \nsubseteq Q_{u^{\prime}}$ and condition R1 implies that $r \nsubseteq \bar{Q}_{\left(u_{1}, v_{1}\right)}$. Further, since $\bar{P}_{\left(u_{1},\left(e, v_{1}\right)\right)} \nsubseteq r_{\varphi} \circ r$, we have that

$$
\begin{equation*}
\forall v^{*} \in V, r \nsubseteq \bar{Q}_{\left(u_{1}, v^{*}\right)} \Longrightarrow r_{\varphi} \subseteq \bar{Q}_{\left(v^{*},\left(e, v_{1}\right)\right)} . \tag{1}
\end{equation*}
$$

Now let us choose $u^{*} \in U$ and $v^{*} \in V$ such that

$$
r \nsubseteq \bar{Q}_{\left(u^{*}, v^{*}\right)} \text { and } \bar{P}_{\left(u^{*}, v^{*}\right)} \nsubseteq \bar{Q}_{\left(u_{1}, v_{1}\right)} .
$$

Then we have $u_{1}=u^{*}$ and $P_{v^{*}} \nsubseteq Q_{v_{1}}$. Hence, $r \nsubseteq \bar{Q}_{\left(u_{1}, v^{*}\right)}$ and so by (1) we find $r_{\varphi} \subseteq \bar{Q}_{\left(v^{*},\left(e, v_{1}\right)\right)}$. Let us choose $a \in V$ such that $P_{v^{*}} \nsubseteq Q_{a}$ and $P_{a} \nsubseteq Q_{v_{1}}$. Clearly, $P_{\varphi\left(v^{*}\right)} \nsubseteq Q_{(e, a)}$. Therefore, we obtain $\bar{P}_{\left(v^{*},(e, a)\right)} \subseteq r_{\varphi}$, that is, $\bar{P}_{\left(v^{*},(e, a)\right)} \subseteq \bar{Q}_{\left(v^{*},\left(e, v_{1}\right)\right)}$. By the inclusion

$$
\left\{v^{*}\right\} \times P_{(e, a)} \subseteq\left(V \backslash\left\{v^{*}\right\} \times(\{e\} \times V) \cup\left(V \times Q_{\left(e, v_{1}\right)}\right)\right.
$$

we conclude that $\left\{v^{*}\right\} \times P_{(e, a)} \subseteq V \times Q_{\left(e, v_{1}\right)}$. Hence,

$$
\{e\} \times P_{a} \subseteq\left(\{e\} \times Q_{v_{1}}\right) \cup\left(Q_{e} \times V\right)=\left(\{e\} \times Q_{v_{1}}\right) \cup(\emptyset \times V)=\{e\} \times Q_{v_{1}}
$$

so that one obtains the contradiction $P_{a} \subseteq Q_{v_{1}}$. The reverse inclusion and the second equality can be proved using a similar argument. The proof of the existence of the natural transformation $\rho: \mathfrak{D} \rightarrow \mathfrak{I}_{\text {cdrTex }}$ is similar.
(iii) Let $((U, U),(V, \mathcal{V}))$ be an object in cdrTex \times cdrTex. The mapping $\psi: U \times V \rightarrow V \times U$ defined by $\psi(u, v)=(v, u)$ for all $(u, v) \in U \times V$ is a complemented textural isomorphism. Using Proposition 7.5(i), let us consider the corresponding isomorphism $\left(r_{\psi}, R_{\psi}\right)$ from $(U \times V, \mathcal{U} \otimes \mathcal{V})$ to $(V \times U, \mathcal{V} \otimes \mathcal{U})$ where

$$
r_{\psi}=\bigvee\left\{\bar{P}_{\left((u, v),\left(v_{1}, u_{1}\right)\right)} \mid P_{(v, u)} \nsubseteq Q_{\left(v_{1}, u_{1}\right)}\right\} \text { and } R_{\psi}=\bigcap\left\{\bar{Q}_{\left.\left((u, v), v_{1}, u_{1}\right)\right)} \mid P_{\left(v_{1}, u_{1}\right)} \nsubseteq Q_{(v, u)}\right\}
$$

We show that the diagram

is commutative, that is, the equalities

$$
(q \times p) \circ r_{\psi}=r_{\phi} \circ(p \times q) \text { and }(Q \times P) \circ r_{\psi}=r_{\varphi} \circ(P \times Q)
$$

hold for all morphisms $((p, P),(q, Q)):((U, \mathcal{U}),(V, \mathcal{V})) \rightarrow\left(\left(U^{\prime}, \mathcal{U}^{\prime}\right),\left(V^{\prime}, \mathcal{V}^{\prime}\right)\right)$ where $\left(r_{\varphi}, R_{\varphi}\right)$ is defined as $\left(r_{\psi}, r_{\psi}\right)$. Suppose that $(q \times p) \circ r_{\psi} \nsubseteq r_{\varphi} \circ(p \times q)$. Then we may choose $(u, v) \in U \times V$ and $\left(v^{\prime}, u^{\prime}\right) \in V^{\prime} \times U^{\prime}$ such that

$$
(q \times p) \circ r_{\psi} \nsubseteq \bar{Q}_{\left((u, v),\left(v^{\prime}, u^{\prime}\right)\right)} \text { and } \bar{P}_{\left((u, v),\left(v^{\prime}, u^{\prime}\right)\right)} \nsubseteq r_{\varphi} \circ(p \times q)
$$

From the first statement, for some $\left(v_{1}, u_{1}\right) \in V \times U$ we may find $\left(v_{1}^{\prime}, u_{1}^{\prime}\right) \in V^{\prime} \times U^{\prime}$ such that

$$
r_{\psi} \nsubseteq \bar{Q}_{\left((u, v),\left(v_{1}, u_{1}\right)\right)} \text { and } q \times p \nsubseteq \bar{Q}_{\left(\left(v_{1}, u_{1}\right),\left(v_{1}^{\prime}, u_{1}^{\prime}\right)\right)}
$$

where $P_{\left(v_{1}^{\prime}, u_{1}^{\prime}\right)} \nsubseteq Q_{\left(v^{\prime}, u^{\prime}\right)}$. On the other hand, since $r_{\psi} \nsubseteq \bar{Q}_{\left((u, v),\left(v_{1}, u_{1}\right)\right)}$, we find $P_{(u, v)} \nsubseteq Q_{\left(u_{1}, v_{1}\right)}$ or equivalently, $P_{(v, u)} \nsubseteq$ $Q_{\left(v_{1}, u_{1}\right)}$. Hence, if we consider condition R1, then we obtain $q \times p \nsubseteq \bar{Q}_{\left((v, u),\left(v_{1}^{\prime}, u_{1}^{\prime}\right)\right)}$. Therefore, by Proposition 8.4(iii), we conclude that $p \times q \nsubseteq \bar{Q}_{\left((u, v),\left(u_{1}^{\prime}, v_{1}^{\prime}\right)\right)}$. Now let us choose $u_{2}^{\prime} \in U^{\prime}$ and $v_{2}^{\prime} \in V^{\prime}$ such that

$$
p \times q \nsubseteq \bar{Q}_{\left((u, v),\left(u_{2}^{\prime}, v_{2}^{\prime}\right)\right)} \text { and } P_{\left(u_{2}^{\prime}, v_{2}^{\prime}\right)} \nsubseteq Q_{\left(u_{1}^{\prime}, v_{1}^{\prime}\right)} .
$$

Since $\bar{P}_{\left((u, v),\left(v^{\prime}, u^{\prime}\right)\right)} \nsubseteq r_{\varphi} \circ(p \times q)$, we have $r_{\varphi} \subseteq \bar{Q}_{\left(\left(u_{2}^{\prime}, v_{2}^{\prime}\right),\left(v^{\prime}, u^{\prime}\right)\right)}$. Further, $P_{\left(u_{2}^{\prime}, v_{2}^{\prime}\right)} \nsubseteq \mathrm{Q}_{\left(u_{1}^{\prime}, v_{1}^{\prime}\right)}$ implies that $P_{\left(v_{2}^{\prime}, u_{2}^{\prime}\right)} \nsubseteq \mathrm{Q}_{\left(v_{1}^{\prime}, u_{1}^{\prime}\right)}$. Then we see that $\bar{P}_{\left(\left(u_{2}^{\prime}, v_{2}^{\prime}\right),\left(v_{1}^{\prime}, u_{1}^{\prime}\right)\right)} \subseteq r_{\varphi}$. But $P_{\left(v_{1}^{\prime}, u_{1}^{\prime}\right)} \nsubseteq \mathrm{Q}_{\left(v^{\prime}, u^{\prime}\right)}$ gives a contradiction. We have showed that $(q \times p) \circ r_{\psi} \subseteq r_{\varphi} \circ(p \times q)$. The reverse inclusion and the second equality can be proved in a similar way.

Proposition 9.5. Mac Lane's associativity and unit coherence conditions hold [25]:
(i) The following pentagonal diagram commutes:

(ii) The following diagram is commutative.

Proof. (i) Consider the complemented textural isomorphisms defined by

$$
\begin{aligned}
& \psi:((U \times V) \times W) \times Z \rightarrow(U \times(V \times W)) \times Z, \psi((((u, v), w), z))=((u,(v, w)), z), \\
& \varphi:(U \times(V \times W)) \times Z \rightarrow U \times((V \times W) \times Z,) \varphi((u,(v, w)), z))=(u,((v, w), z)), \\
& \gamma:(U \times((V \times W) \times Z) \rightarrow U \times(V \times(W \times Z)), \gamma((u,((v, w)), z)))=(u,(v,(w, z))) \\
& \left.\psi^{\prime}:((U \times V) \times W) \times Z \rightarrow(U \times V) \times(W \times Z), \psi^{\prime}(((u, v), w), z)\right)=((u, v),(w, z)), \\
& \varphi^{\prime}:(U \times V) \times(W \times Z) \rightarrow U \times(V \times(W \times Z)), \varphi^{\prime}(((u, v),(w, z)))=(u,(v,(w, z))
\end{aligned}
$$

for all $u \in U, v \in V, w \in W, z \in Z$, respectively. By Proposition 7.5(iii),

$$
\gamma \circ(\varphi \circ \psi) \text { and } \gamma^{\prime} \circ \psi^{\prime}
$$

are also complemented textural isomorphisms. Again by Proposition 7.5(iii), for the corresponding isomorphisms in cdrTex, we have

$$
r_{\gamma \circ(\varphi \circ \psi)}=r_{\gamma} \circ\left(r_{\varphi} \circ r_{\psi}\right) \text { and } R_{\gamma \circ(\varphi \circ \psi)}=R_{\gamma} \circ\left(R_{\varphi} \circ R_{\psi}\right)
$$

and

$$
r_{\varphi^{\prime} \circ \psi^{\prime}}=r_{\varphi^{\prime}} \circ r_{\psi^{\prime}} \text { and } R_{\varphi^{\prime} \circ \psi^{\prime}}=R_{\varphi^{\prime}} \circ R_{\psi^{\prime}}
$$

It is easy to see that we have

$$
\begin{aligned}
r_{\gamma \circ(\varphi \circ \psi)} & =\bigvee\left\{\bar{P}_{(((u, v), w), z),\left(u_{1},\left(v_{1},\left(w_{1}, z_{1}\right)\right)\right)} \mid P_{((u,(v,(w, z))} \nsubseteq Q_{\left(u_{1},\left(v_{1},\left(w_{1}, z_{1}\right)\right)\right.}\right\} \\
& =\bigvee\left\{\bar{P}_{(((u, v), w), z),\left(u_{1},\left(v_{1},\left(w_{1}, z_{1}\right)\right)\right)} \mid P_{\varphi^{\prime}((u, v),(w, z))} \nsubseteq Q_{\left(u_{1},\left(v_{1},\left(w_{1}, z_{1}\right)\right)\right.}\right\} \\
& =\bigvee\left\{\bar{P}_{(((u, v), w), z),\left(u_{1},\left(v_{1},\left(w_{1}, z_{1}\right)\right)\right)} \mid P_{\varphi^{\prime}\left(\psi^{\prime}((u,(v,(w, z))))\right.} \nsubseteq Q_{\left(u_{1},\left(v_{1},\left(w_{1}, z_{1}\right)\right)\right.}\right\} \\
& =\bigvee\left\{\bar{P}_{(((u, v), w), z),\left(u_{1},\left(v_{1},\left(w_{1}, z_{1}\right)\right)\right)} \mid P_{\left(\varphi \circ \psi^{\prime}\right)((u,(v,(w, z))))} \nsubseteq Q_{\left(u_{1},\left(v_{1},\left(w_{1}, z_{1}\right)\right)\right)}\right\} \\
& =r_{\varphi^{\prime} \circ \psi^{\prime}}
\end{aligned}
$$

and similarly

$$
\begin{aligned}
R_{\gamma \circ(\varphi \circ \psi)} & =\bigcap\left\{\bar{Q}_{(((u, v), w), z),\left(u_{1},\left(v_{1},\left(w_{1}, z_{1}\right)\right)\right)} \mid P_{\left(\left(u_{1},\left(v_{1},\left(w_{1}, z_{1}\right)\right)\right.\right.} \nsubseteq Q_{(u,(v,(w, z))}\right\} \\
& =\bigcap\left\{\bar{Q}_{(((u, v), w), z),\left(u_{1},\left(v_{1},\left(w_{1}, z_{1}\right)\right)\right)} \mid P_{\left(u_{1},\left(v_{1},\left(w_{1}, z_{1}\right)\right)\right.} \nsubseteq Q_{\varphi^{\prime}((u, v),(w, z))}\right\} \\
& =\bigcap\left\{\bar{Q}_{(((u, v), w), z),\left(u_{1},\left(v_{1},\left(w_{1}, z_{1}\right)\right)\right)} \mid P_{\left(u_{1},\left(v_{1},\left(w_{1}, z_{1}\right)\right)\right.} \nsubseteq Q_{\varphi^{\prime}\left(\psi^{\prime}((u,(v,(w, z))))\right.}\right\} \\
& =\bigcap\left\{\bar{Q}_{(((u, v), w), z),\left(u_{1},\left(v_{1},\left(w_{1}, z_{1}\right)\right)\right)} \mid P_{\left(u_{1},\left(v_{1},\left(w_{1}, z_{1}\right)\right)\right.} \nsubseteq Q_{\left.\left(\varphi \circ \psi^{\prime}\right)((u,(v,(w, z))))\right)}\right\} \\
& =R_{\varphi^{\prime} \circ \psi^{\prime}} .
\end{aligned}
$$

As a result, the isomorphisms

$$
\left(r_{\psi}, R_{\psi}\right),\left(r_{\varphi}, R_{\varphi}\right),\left(r_{\gamma}, R_{\gamma}\right),\left(r_{\psi^{\prime}}, R_{\psi^{\prime}}\right) \text { and }\left(r_{\varphi^{\prime}} R_{\varphi^{\prime}}\right)
$$

in cdrTex are the desired morphisms

```
\(\alpha_{(u, v, w) \otimes \mathcal{Z}}, \alpha_{(u \otimes v, w, \mathcal{Z})}, \alpha_{(u, v \otimes w, \mathcal{Z})}, u \otimes \alpha_{(v, w, \mathcal{Z})}\) and \(\mathcal{U} \otimes \alpha_{(v, w, \mathcal{Z})}\)
```

satisfying the pentagonal diagram, respectively.
(ii) Let us consider the complemented textural isomorphisms defined by

$$
\begin{aligned}
& \psi:(U \times E) \times V \rightarrow U \times(E \times V), \psi((u, e), v)=(u,(e, v)), \\
& \varphi: U \times(E \times V) \rightarrow U \times V, \varphi((u,(e, v))=(u, v) \\
& \gamma:(U \times E) \times V \rightarrow U \times V, \varphi((u, e), v))=(u, v)
\end{aligned}
$$

Then $\varphi \circ \gamma$ is also a complemented textural isomorphism and we clearly have $\gamma=\varphi \circ \psi$. Further, by Proposition 7.5(iii), we obtain that

$$
\begin{aligned}
r_{\gamma} & =\bigvee\left\{\bar{P}_{\left(((u, e), v),\left(u_{1}, v_{1}\right)\right)} \mid P_{(u, v)} \nsubseteq Q_{\left(u_{1}, v_{1}\right)}\right\} \\
& =\bigvee\left\{\bar{P}_{\left(((u, e), v),\left(u_{1}, v_{1}\right)\right)} \mid P_{\varphi((u,(e, v))} \nsubseteq Q_{\left(u_{1}, v_{1}\right)}\right\} \\
& =\bigvee\left\{\bar{P}_{\left(((u, e), v),\left(u_{1}, v_{1}\right)\right)} \mid P_{\varphi(\psi((u, e), v))} \nsubseteq Q_{\left(u_{1}, v_{1}\right)}\right\} \\
& =\bigvee\left\{\bar{P}_{\left(((u, e), v),\left(u_{1}, v_{1}\right)\right)} \mid P_{(\varphi \circ \psi)(((u, e), v)))} \nsubseteq Q_{\left(u_{1}, v_{1}\right)}\right\} \\
& =r_{\varphi \circ \psi} \\
& =r_{\varphi} \circ r_{\psi}
\end{aligned}
$$

and

$$
\begin{aligned}
R_{\gamma} & =\bigcap\left\{\bar{Q}_{\left(((u, e), v),\left(u_{1}, v_{1}\right)\right)} \mid P_{\left(u_{1}, v_{1}\right)} \nsubseteq Q_{(u, v)}\right\} \\
& =\bigcap\left\{\bar{Q}_{\left(((u, e), v),\left(u_{1}, v_{1}\right)\right)} \mid P_{\left(u_{1}, v_{1}\right)} \nsubseteq Q_{\varphi((u,(e, v))}\right\} \\
& =\bigcap\left\{\bar{Q}_{\left(((u, e), v),\left(u_{1}, v_{1}\right)\right)} \mid P_{\left(u_{1}, v_{1}\right)} \nsubseteq Q_{\varphi(\psi((u, e), v))}\right\} \\
& =\bigcap\left\{\bar{Q}_{\left(((u, e), v),\left(u_{1}, v_{1}\right)\right)} \mid P_{\left(u_{1}, v_{1}\right)} \nsubseteq Q_{(\varphi \circ \psi)(((u, e), v))}\right\} \\
& =R_{\varphi \circ \psi} \\
& =R_{\varphi} \circ R_{\psi} .
\end{aligned}
$$

Then the corresponding isomorphisms $\left(r_{\psi}, R_{\psi}\right),\left(r_{\varphi}, R_{\varphi}\right)$ and $\left(r_{\gamma}, R_{\gamma}\right)$ in cdrTex are the desired morphisms

$$
\alpha_{(u, \varepsilon, v)}, \rho_{u} \otimes \mathcal{V}, \quad \mathcal{U} \otimes \lambda_{v}
$$

satisfying the diagram, respectively.
Corollary 9.6. The categories drTex and cdrTex are dagger symmetric monoidal categories.
Proof. It is immediate from Proposition 8.1(ii) and 9.5, and Corollary 9.4.

10. Conclusions

In this paper, we have considered a rough set model on two universes. We have determined the position of the theory of rough sets with respect to category REL of sets and relations. We have shown that the categories REL and R-APR are isomorphic. In view of this argument, we have obtained that R-APR and REL are a full subcategories of the category cdrTex of complemented textures and complemented direlations. Further, we have shown that cdrTex and R-APR are new examples of dagger symmetric monoidal categories.

Acknowledgments

The author sincerely thanks the reviewers for their valuable comments that improve the presentation of the paper. This work has been supported by the Turkish Scientific and Technological Research Council under the project TBAG 109 T 683.

References

[1] S. Abramsky, B. Coecke, A categorical semantics of quantum protocols, in: Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, LICS, IEEE Computer Society Press, 2004, pp. 415-425.
[2] S. Abramsky, N. Tzevelekos, Introduction to categories and categorical logic, in: B. Coecke (Ed.), New Structures for Physics, in: Lecture Notes in Physics, Springer-Verlag, 2009, pp. 3-89.
[3] M. Banerjee, M.K. Chakraborty, A category for rough sets, Foundations of Computing and Decision Sciences 18 (3-4) (1983) $167-188$.
[4] M. Banerjee, Y. Yao, A categorial basis for granular computing, in: Rough Sets, Fuzzy Sets, Data Mining and Granular Computing, in: Lecture Notes in Computer Science, vol. 4482, 2007, pp. 427-434.
[5] L.M. Brown, A. Irkad, Binary di-operations and spaces of real difunctions on a texture, Hacettepe Journal of Mathematics and Statistics 37 (1) (2008) 25-39.
[6] L.M. Brown, M. Diker, Ditopological texture spaces and intuitionistic sets, Fuzzy Sets and Systems 98 (1998) 217-224.
[7] L.M. Brown, R. Ertürk, Fuzzy sets as texture spaces, I. Representation theorems, Fuzzy Sets and Systems 110 (2) (2000) $227-236$.
[8] L.M. Brown, R. Ertürk, Ş Dost, Ditopological texture spaces and fuzzy topology, I. Basic Concepts, Fuzzy Sets and Systems 147 (2000) 171-199.
[9] M. Burgin, Categories with involution and correspondences in g-categories, IX All-Union Algebraic Colloquium, Gomel (1968) 34-35 (1968).
[10] P. Daowu, Z. Xu, Rough set models on two universes, International Journal of General Systems 33 (5) (2004) 569-581.
[11] M. Demirci, Textures and C-spaces, Fuzzy Sets and Systems 158 (2007) 1237-1245.
[12] M. Diker, A. Altay Uğur, Textures and covering based rough sets, Information Sciences 184 (2012) 44-63.
[13] M. Diker, Categories of direlations and rough set approximation operators, in: Rough Sets and Current Trends in Computing, Warsaw, Poland June-28-30 2010, in: Lecture Notes in Artificial Intelligence, Springer Verlag, 2010, pp. 288-298.
[14] M. Diker, Definability and textures, International Journal of Approximate Reasoning 53 (4) (2012) 558-572.
[15] M. Diker, Textures and fuzzy rough sets, Fundamenta Informaticae 108 (2011) 305-336.
[16] M. Diker, Textural approach to rough sets based on relations, Information Sciences 180 (8) (2010) 1418-1433.
[17] P. Eklund, M.A. Galán, Monads can be rough, in: Rough Sets and Current Trends in Computing, in: Lecture Notes in Computer Science, vol. 4259, Springer, Berlin, 2006, pp. 77-84.
[18] P. Eklund, M.A. Galán, The rough powerset monad, Journal of Multiple-Valued Logic and Soft Computing 13 (4-6) (2007) $321-333$.
[19] P. Eklund, M.A. Galán, W. Gähler, Partially ordered monads for monadic topologies, rough sets and kleene algebras, Electronic Notes in Theoretical Computer Science 225 (2009) 67-81.
[20] R. Houston, Finite products are biproducts in a compact closed category, Journal of Pure and Applied Algebra 212 (2) (2008) 394-400.
[21] M. Jaskelioff, E. Moggi, Monad transformers as monoid transformers, Theoretical Computer Science 411 (2010) 4441-4466.
[22] J. Lambek, Diagram chasing in ordered categories with involution, Journal of Pure and Applied Algebra 143 (13) (1999) $293-307$.
[23] X. Li, X. Yuan, The category RSC of I-rough sets, in: 2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery, fskd 1 (2008) 448-452.
[24] J. Lu, S.-G. Li, X.-F. Yang, W.-Q. Fu, Categorical properties of M-indiscernibility spaces, in: Rough Sets and Fuzzy Sets in Natural Computing, Edited by Andrzej Skowron, Sankar K. Pal and Hung Son Nguyen, Theoretical Computer Science 412 (42) (2011) 5902-5908.
[25] S. Mac Lane, Categories for the Working Matematician, in: Springer Graduate Text in Mathematics, vol. 5, 1971.
[26] S. Özçağ, L.M. Brown, A Textural view of the distinction between uniformities and quasi-uniformities, Topology and its Applications 153 (2006) 3294-3307.
[27] P. Pagliani, A pure logic algebraic analysis on rough top and rough bottom equalities, in: W.P. Ziarko (Ed.), Rough Sets, Fuzzy Sets and Knowledge Discovery Proceedings of the International Workshop on Rough Sets and Knowledge Discovery, Banf, October 1993, Vol. 199, Springer, 1993, pp. 225-236.
[28] Z. Pawlak, Rough sets, International Journal of Computer and Information Sciences (1982) 341-356.
[29] Z. Pawlak, A. Skowron, Rudiments of rough sets, Information Sciences 177 (2007) 3-27.
[30] P. Selinger, Dagger compact closed categories and completely positive maps, Electronic Notes in Theoretical Computer Science (2007) 139-163. 170 Pages.
[31] A.E. Stanculesku, A quillen model category structure on some categories of comonoids, Journal of Pure and Applied Algebra 214 (2010) $629-633$.
[32] Y. Yao, Two views of the theory of rough sets in finite universes, International Journal of Approximation Reasoning 15 (4) (1996) $291-317$.
[33] Y. Yao, S.K.M. Wong, T.Y. Lin, A review of rough set models, in: T.Y. Lin, N. Cercone (Eds.), Rough Sets and Data Mining: Analysis for Imprecise Data, Kluwer Academic Publishers, Boston, 1997, pp. 47-75.
[34] Y. Yao, Constructive and algebraic methods of the theory of rough sets, Information Sciences 109 (1998) 21-47.
[35] W. Zhu, Relationship between generalized rough sets based on binary relation and covering, Information Sciences 179 (3) (2009) $210-225$.

[^0]: * Tel.: +90 3122977859.

 E-mail addresses: mdiker@hacettepe.edu.tr, mrtdiker@gmail.com.

