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Abstract

In this work a long-wavelength asymptotip@oach is used to analyze the region ofa@lhte installity in the compressible
rotating disk boundary layer flow. Theetically determined values of branch points the occurrence of absgk instability in the
compressible flow are shown to match onto the ones which are obtained via a numerical solution of the linear inviscid compressible
Raylegh equations.
(© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The flow over a rotating disk has attractedreat deal of attention over the laktcade as regards the determination
of the character of instabilities in terms of their absolute as well as convective nature. This aspect is of crucial
significance since it is expected to shed light on the similar instabilities existing over real aircraft wings.

The convective nature of the instability of the rotatidisk boundary layer flow has been investigated by a broad
investigator group; see for instance the experimental studieg]adrid [2], and the numerical and theoretical works
of [1,3] and [4], amongst many others. Since the pioneering work5fwfith regard to the existence of absolute
instability in fluid dynamic problems, see al€7] and [8], attention has been focused esarch into the absolute
type of instability. Absolute instabilitpccurs simply when the sthamplitude disturbanceagatroduced into a system
start growing exponentially in time at every fixed positiangace, while in convectivenstability growing wave
packets desert the place of excitation. Plane Poiseuille flow is an example of convective instability and Taylor—Couette
flow is an example of absolute instability.

The current study is devoted to the absolute rather than the convective instability of the rotating disk flow. This
instability was first explored by911 and [12]; see also the recent study dfj. Making use of the Briggs—Bers
criterion and assuming that the flow is parallel, the latter authors were able to show that the flow becomes both
inviscidly and viscously absolutely unstable. The main conclusion from this research is that the absolute instability
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mechanism found in this flow causes the disturbances to grow exponentially at a fixed radius, leading to an unbounde
linear response that would promote non-linearity followed by transition.

In the work of [L4] the absoltely unstable inviscid regime was identified with the use of analytical tools, which
adequately matched with the numerical calculationd 6f§nd [L2] when the compressibility vedgnored. Therefore,
our maininterest in the present research is to extend the finding&4ftp cases in which the compressibility is
important. For this reason the analytical branch points generated using the long-wavelength anabsiswef |
compared with the ones obtained from the Rayleigh sdlvehe case of wall insulation as well as heat transfer.
The criteria used for absolute or convective ingigband the terminology usedhroughout closely follow the
derivation preented in 16]. The branch points where the group velocity tends to zero are searched for in the relevant
eigenvalue planes. The numerical calculations are done using a spectral collocation technique as well as a fourth-orc
Runge—-Kutta integrator. The stility characteristics of the Von Efmén velocity profile are then examined and the
absolute instability range associated with this profile is determined.

We adopt the following strategy in this work. First, governing equations for the fluid motion are giBaction 2
followed by the asymptotic expansion of flow quantities areirthnalysis in the regionséshtified. Second, analytical
and numerical results are compared@iection 3 Conclusions are finally drawn iBection 4

2. Governing equations and the dispersion relation

Our concern here is with the rtion of a three-dimensional inviscid cqressible boundary layer flow adjacent to a
disk rotating about its axis of rotatiawith a constant angular velocity,. The flow hakinematic viscosity.,, and
the cylindical polar ®ordinateqr, 6, z) are made dimensionless with respto a reference length scéldollowed
by non-dimensionalization of other flow variables using. The characterizing parameter, the Reynolds number of
the flow, which is based on the local angular velocity, is definedRas= wal2/voo, and itis assume to be large for
the following analysis. The inviscid Rayleigh equations governing the evolution of long-wavelength perturbations are
then given by

ilar F + G — 2]p +ips |:05U+€Ui| +(pBw)’=o<Rie),
,OB[i[arF+,3G—.Q]u+rF/w]+iap=O<Rie),
. , iB 1
pB[I[arF+,3G—Q]v+rGw]+r—p=O<%), B
. 1
pB[I[arF—i—ﬂG—Q]w]—i-p’:O(Ee),
pelif[arF + G — (] p]=FPB[i[arF+ﬂG—Q]p+p’Bw]+0<Rie),

I'M2 p=Tgp+ psT.

Here a prime denotes differentiation with respect to a scaled paraMeierRe%z that defines the boundary layer
coordinate. The perturbation quantitiesu, v, w, p andT are respectively the density, instantaneous three-velocity
components, pressure and temperature. Moreover, the paramieteard M, are respectively the ratio of specific
heats and the free stream Mach numberalty, the mean flowtbie terms in Eq(1) given by the suffixB) is digurbed
by perturbations proportional t0® +£—Y wherea and g are disturbance wavenumbers afiche disturbance
frequency.

The generalized Von &méan solution for the compressible three-dimensional mean velogitypressurePg and
densitypp are given in the form
1 1

1
Ug=(F,rG, Re"2H), Pe = ——,
B = ( ) B TMZ

where thefunctionsF, G andH sdisfy the following ordinary diffeential equations and boundary conditions:
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F2-(G+1?+FH-F'=0, 2FG+1+GH-G"=0,

2F+H' =0, FO0) =G0 =H(@0) =0  F(c0)=0, G(oo) = —1. @)

The basic temperature field can be written in terms of a viscous dissipationftemma a heat conducting term
see [L7] and [18]. Assuming that an ideal fluid enables us to expressidq in terms of the velocity components, see
for instance 19, the basic temperature field can be represented by

-1
2

Te(Y)=1— M2 (Y) + (Ty — Dq(Y), ®)

whereM = r My is the local Mach number and,, is the wall temperature value. The viscous dissipation téris
found to bef = F2 + G2 — 1 for an irsulated surfacéq = 0), and f = F2 + G2 + G for surface heat conduction.

The asymptotic analysis depends crucially on the properties of the basic flow near the wall where generally a critical
layer is situated. Therefore, we can write the basic velocity profiles near the surface of the rigid disk employing the
Taylor expansion

(F, G, pg, Tg) = (0,0, Ry, ) + (A1, 11, R1, SDY + (A2, 2, Ro, Y2+ -+, 4

where the coefficientss, u1, €tc., depend upon and the Mach number. For insulated wall conditions, we simply
haveR; = S = 0, and if there is heat trarefthrough the surface, the # 0. For further detids of the basic flow
see Q.

Via a techrgue of dominant balance between the unsteady terms and viscous terms (of order of magmitude

on the right hand side of E€1)), it can be concluded that a viscous layer of thicknes@d?gl/z) exigs, which we
denote byh in what follows. Followhg next the works of]5,21], the wavenumbers and frequency can be sought for
in terms of this small paramethbras follows:

(@, B, 2) = (@0, o, Oh + (a1, B1, 0)h? + (a2, B2, 21D + - - -. (5)

As implemented in14], the long-wavelength analysis is based on the method of matched asymptotic expansions
for obtaining solutions to Eql) as Re — oo. Thus, in the main part of the boundary layer in which the flow is
viscous, flow variables are expandeditcordance with the boundary layer scélas

(U, v, w, p, p, T) = (To, B0, 0, 0, po, To) + h({ix, ¥1, Wo, Po, A1, T1) + - --. (6)

Substituting these expansions into the linearized governinglBawe obtain the leading-order solutions depending
upon a displacement functiofy,

N N N o L Ta -
Bo = Po(r.0), Go=rAF', io=rAG, o= —iAUs(Y), o= App. To=——Apj. (7)
0B

To awoid the singularity occurring at the next-order solutions in the viscous layer, a wall layer is required whose
thickness i90(h), yielding a new oordinateY suchthatY = hY. Thus, in this zone the appropriate expansions are

(u$ v, w, pv O, T) = (GO, 7-_)0» O, 0» 150» -l:O) + h(uls 7__)1, 0» FjO» 151» -l:l) + Tt (8)

Upon substitution of8) into the governing Eq(1) the leadig-order solutiongg andwg are obtained as follows:
iy?2
RoA1

Po = Po(r, 6), wo = — o — iA(ALY — o), 9)

2
wherey? = aé + ’f—g and A7 = «or A1 + Boun1. The boundary layer flow must also match with the potential flow

outside the boundary layer region, introducing a new coordMaﬁei, andthus the flow quantities here expand as

(u’ v, w, p’ P, T) = h(CIOa 130, ﬁ)07 ﬁ()v /30’ -fO) + - ) (10)
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Again substituting these into the linearized governing@ygives solutions, some of which are

R 1 2_ .2 R ~
by = [Pl(r, 0) — = (y 5 > 90) Y o, 9)] e,
v
v yz—ozz 1 v ; (1)
b= —i || 22 (=) (==Y | Bor. 6) + — Py, 6) | eY,
i Hugo ( 0z, °> (v )} o )+ g P )}

in whichUs = aof Fe + f0Goo andv? = y2 — U2 M2 (a subscripto indicates a free-stream value). For further
details on the solutions one can refer id]|
Having found the solutions in each of the asymptot@gioas, a analysis of matching between the prespunad
thenormal velocityw is pursued, resulting in
_ r%
RoAqv’
whered = %[%]”2(—0”2 comes in due to viscous correction through the Stokes layer, Chapman’s viscosity
0
law is adopted withu (S) = S, and alsdk andc are functions of«g, f29) found to be

1 2 124 R
K = _—[1+”—]+—[—2+—1}[In|90|+1]

2 2= (ic—k+ &), (12)

00 V2 A1 [ A Ro
2 1y 1 Ap— Ay
FRA |1 19 L : 13
w [ 242 R .
= —|—4+ = Aq).
e = T[22+ 2 signiay

It should be remarked here that the term i) arises from the jump condition in the linear critical layer theory.
Moreover, the parameters appearing(8) involve integrals and are respectively given by = fooo(pBUé —

pocUZ) dY,

of 1 1 1 24 R 00 1 1
1 ,OBUB ROA]_Y ROA]_Y A1 Ro 1 ,OBUB PooUS

Finally, from the condition that the group velocity, which can be expanded (E()HB% = % + %—% +0(hd),
vanishes whenever absolute instability is present, a dispersion relation for the occurrence of branch points is obtaine
written implicitly in the form

F(a, 8, M, Ty,) =0. (14)
3. Resultsand discussion

Although some interesting cases associated with the tranddnie (1) and also with the hypersonic flow regimes
(M > 1) can be further investigated analytically through the relat{@@%—(14) snce the corresponding expressions
are rather lengthy, we prefer instead a straightforwautherical treatment to locatée branch points satisfying
the Briggs—Bers pinching criterion. By settildd = 0, Ry = 1 andR; = 0 in (14), the resits of [14] for the
incompressible flow case are easily recovered, which will also be shown graphically later.

Eqg. (14) was next teated numerically with a Newton iteration techué. The effects of compression arising by
means of wall insulation and heat transfer on the long-wavelength perturbations which give rise to the absolutt
instability are shown ifrigs. 1and?2. In these figures solid lines correspond to the numerical inviscid flow calculations
(which compare exdiently with the numerical calculations o19]) and dashed lines denote the asymptotic results.
The wae angle ¢ is defired bye = tan*l(%[a)). It can be immediately seen that the long-wavelength limit of
the eigenvalues leading to absolute instability is captured to a considerable extent. In addition to this, in the case ¢
the incompressible limit perfect agreeménobserved with the figures displayed Y. Fig. 1 emphasizes that the
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Fig. 1. Branch points are shown in the &), (b) @, (c) %, (d) 2 versus the ave aglee planes, all for the insulated wall case and drawn for
M = 0, 3 and 5. Solid lines correspond to numerical data, broken lines to asymptotic values.
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Fig. 2. Branch points are shown in the &), (b) «j, (c) £2r, (d) 2 versus the \&ve angle e planes, when the heat transfer is taken into account at
a fixed Mach number oM = 1. Solid and broken lines are ashig. 1
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compressibility within the wall insutéon has a suppressive effect on the amyalé of the absolutergwth, though the
rangeof the instability is seen to enlarge. A similar effect can also be seEigir2. Moreover, itis seen that the wall
cooling has a stabilizing effect, unlike the wake flows in the vicinity of trailing edges, see for ins@djcarid also
the mixing layer flows, see for instanc2d]; however, wall heating enhances the instability.

4. Conclusions

In this work we have analyzed the analytical dispersion relation which was previously obtaiddpimthe long-
wavelength limit. Using the singularities in the dispersion telaship, the modes that ceelocal absolte instability
have been located and good agreement with the ones obtained from the numerical calculations of the inviscid Rayleic
equations has been shown to exist. The current work carries importance owing to the fact that the presence of a loc
absolute instability may coaminate the entire mean flow field, leadimgatnonlinearity and a possible transition to
turbulence. The results found in this work clearly indicate that the rotating disk boundary layer flow is subject to a
local absolute instability in some regions of the eigenvalues for insulated wall cases and, in particular, for the wall
heating.

Even though the present research emphasizes the local analysis with the effects of non-parallelism disregarded, t
results obtained here may be used in further study of a global analysis requiring the solution of full linearized stability
equations.
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