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a b s t r a c t

A novel approach is presented in this paper for approximate solution of parameterized
unperturbed and singularly perturbed two-point boundary value problems. The problem
is first separated into a simultaneous system regarding the unknown function and the
parameter, and then a methodology based on the powerful homotopy analysis technique
is proposed for the approximate analytic series solutions, whose convergence is guaranteed
by optimally chosen convergence control parameters via square residual error. A conver-
gence theorem is also provided. Several nonlinear problems are treated to validate the
applicability, efficiency and accuracy of the method. Vicinity of the boundary layer is
shown to be adequately treated and satisfactorily resolved by the method. Advantages of
the method over the recently proposed conventional finite-difference or Runga–Kutta
methods are also discussed.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

The prime motivation of the present article is prompted by the recent publications [1–3], where the papers consider the
subsequent singular perturbation boundary value problem depending on a parameter k:
�u0ðtÞ þ gðt;u; kÞ ¼ 0; t 2 ð0;1�; ð1:1Þ
uð0Þ ¼ A; uð1Þ ¼ B; ð1:2Þ
where a prime denotes derivative with respect to t, � is a small parameter, A and B are some prescribed constants. Under the
assumptions on u, g and k as stated in [1], problems (1.1) and (1.2) have a unique solution pair {u(t),k}. For � = 1 the problem
considered is known as unperturbed, whereas for �� 1 it is so-called singularly perturbed. We should remark that although
the two end points enter into the problem in exactly the same manner so that the boundary layers are possible both near
t = 0 and near t = 1, we consider the present problem only with a boundary layer of width O(�) near the point t = 0, see
[4]. It should also be reminded that the parameter k has no connection with the eigenvalue of the nonlinear differential equa-
tion under consideration, since there are two unknowns in (1.1) that can be determined exactly by the conditions given in
(1.2).

Parameterized problems of above-mentioned kind have been dealt with for many years. A variety of examples exist with-
in boundary layer flows in fluid mechanics, for a discussion of existence and uniqueness results and also for applications of
the parameterized equations one can refer to the frequently cited bibliography [5–7], and the references therein.
. All rights reserved.
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The boundary layer behavior of the solution inherent in the singularly perturbed problems always made difficult the
numerical analysis of singular perturbation cases. Such problems undergo rapid changes within thin layers near the bound-
ary or inside the problem domain, see for instance [8]. It is well known that standard numerical methods for solving such
problems are unstable and thus fail to give accurate results when the perturbation parameter is reasonably small enough.
Therefore, it is important to develop suitable numerical methods and taking this need into account [1] gave a uniform finite
difference method on a Shishkin mesh for problems (1.1) and (1.2). They proved that the scheme is almost first-order con-
vergent in the discrete maximum norm. In [3] a hybrid difference scheme on generalized Shishkin meshed was later pro-
posed. The scheme uses a midpoint difference method whenever the local mesh size allows to do so this without losing
stability, but employs an upwind difference method away from the boundary layer. [3] showed that the scheme is sec-
ond-order convergent in the discrete maximum norm, independent of singular perturbation parameter. The approach [2]
used was based on the boundary layer correction technique. By constructing a modified problem with a boundary layer cor-
rection, the original problem was converted into two non-singularly perturbed problems which were then solved by using
classical numerical methods, such as Runge–Kutta methods.

Another classical approach for approximate solutions of singular boundary layer problems is to pursue perturbation
methods. However, solutions obtained within perturbation techniques may not be uniform, restricting the applicability of
results [9,10]. To overcome the limitations of the perturbative techniques Liao [11] proposed a new analytic method for
highly nonlinear problems, namely homotopy analysis method. Unlike the perturbative and non-perturbative methods, this
technique allows more than a uniformly valid analytic solution of nonlinear equations with no possible small parameters. In
this method, according to the homotopy technique, a homotopy with an embedding parameter is constructed, and the
embedding parameter is considered as a small parameter. Thus the original nonlinear problem is converted into an infinite
number of linear problems without using the perturbation techniques. Further advantages of this new technique have been
severally outlined in the literature as also briefly addressed in Section 2. After the introduction of the method, several prob-
lems of science and engineering were revisited. For example, Liao successfully applied the method for the analytical solution
of Falkner–Skan equation [12]. Foundations and fundamentals of the method have been recently summarized in [13]. The
homotopy analysis method keeps evolving steadily and the recent research clearly shows that it may replace the place of
traditional perturbation or numerical methods in a near future. The exact analytic solutions of magnetohydrodynamic swirl-
ing boundary layer flow over a porous rotating disk was recently presented in [14], which reveals the success of homotopy
analysis method even to highly nonlinear systems.

As opposed to the conventional finite-difference or Runge–Kutta methods laid out in Refs. [1–3], we propose here a
scheme for the parameterized two-point boundary value problems. This technique is designed both for the regular case, that
is when the boundary layers are absent, as well as for the singularly perturbed case. The methodology that we develop relies
essentially upon the recently fashionable and powerful homotopy analysis method. Within this aim, suitable auxiliary linear
operators, optimal convergence control parameters (via square residual error concept) and initial guesses are suggested that
generate explicit analytic form of the solution of nonlinear unperturbed/perturbed two-point boundary value problems. The
proposed homotopy analysis technique provides uniformly valid approximate series solutions which is further shown to be
particularly advantageous in the case of singular perturbation.

The following strategy is adopted in the rest of the paper. In Section 2 the methodology of homotopy analysis approach is
presented. Convergence of the method is given in Section 3 Application of the method to unperturbed and singularly per-
turbed nonlinear problems is implemented in Section 4, in which analytic expressions are derived and compared with
the numerical ones. Finally conclusions follow in Section 5.
2. The method

Liao [11] proposed a new kind of analytic technique for the nonlinear problems, namely the homotopy analysis method.
This method is based on the homotopy and has several advantages. To underline, firstly its validity does not depend upon
whether or not nonlinear equations under consideration contain small or large parameters, hence it can solve more of
strongly nonlinear equations than the perturbation techniques. Secondly, it provides us with a great freedom to select proper
auxiliary linear operators and initial guesses so that uniformly valid approximations can be obtained. Thirdly, it gives a fam-
ily of approximations which are convergent in a larger region. Liao successfully applied the homotopy analysis method to
solve some nonlinear problems in mechanics. For example, Liao [15] gave a purely analytic solution of 2D Blasius’s viscous
flow over a semi-infinite flat plate, which is uniformly valid in the whole physical region. Further examples are provided
within Ref. [16]. A recent interesting application was given in [17].

Prior to an outline of the homotopy analysis method and keeping also in mind the singular perturbation theory, for our
analysis we initially modify the parameterized differential equation system (1.1) and (1.2) into the form
�u0ðtÞ þ gðt;u; kÞ ¼ 0; uð0Þ ¼ A; ð2:3Þ
�u0ð1Þ þ gð1;B; kÞ ¼ 0: ð2:4Þ
In the case of a singularly perturbed problem, a boundary layer is presumed to take place near the point t = 0. Such a split of
the original system enables us to construct a homotopy
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ð1� pÞLðu� u0Þ þ phuN ¼ 0; uð0Þ ¼ A; ð2:5Þ
ð1� pÞF þ phkf ¼ 0: ð2:6Þ
In the homotopy system (2.5) and (2.6), p 2 [0,1] is an embedding parameter (hu,hk) are the parameters to adjust the con-
vergence of the homotopy series to be defined later. Moreover, L is an auxiliary linear differential operator whose proper
shape depends on the particular example considered, F is defined by
gð1;B; kÞ � gð1;B; k0Þ;
(u0(t),k0) are initial guesses for the solutions, and furthermore N and f are, respectively, given by
N ¼ �u0ðtÞ þ gðt;u; kÞ; f ¼ �u0ð1Þ þ gð1;B; kÞ:
It is obvious from Eqs. (2.5) and (2.6) that for p = 0 we have the initial approximations u0(t) = u(t,0) and k0 = k(0) to the
solution, and when p = 1 we have the exact solution pair u(t) = u(t,1) and k = k(1) to Eqs. (2.3) and (2.4). It can be deduced
that the deformation process of p from zero to unity is just that of from (u(t,0),k(0)) to (u(t,1),k(1)). The zeroth-order defor-
mations to homotopies (2.5) and (2.6) are thus basically the linear differential equation with the boundary conditions in (2.5)
satisfied exactly and F = 0. Next, the kth-order deformation equations follow as:
L uk � jkuk�1ð Þ ¼ �huNk; ukð0Þ ¼ 0 ð2:7Þ
and
Fk � jkFk�1 ¼ �hkfk; ð2:8Þ
where jk = 0 for k 6 1 and jk = 1 otherwise. In addition to this, Nk and fk are obtained as a result of differentiating Eqs. (2.5)
and (2.6) with respect to p (note that u(t,p) and k(p) in these equations), imposing the resulting equations at p = 0 and hence
are defined by
Nk ¼ �u0k þ
1
k!

@kg
@pk

�����
p¼0

; f k ¼
1
k!
@kf@pk

����
p¼0

:

Further taking into account Taylor series expansion of the solutions u(t,p) and k(p) at p = 0 and later imposition of the expan-
sion at p = 1 we obtain respectively
uðtÞ ¼ u0ðtÞ þ
X1
k¼1

ukðtÞ; ð2:9Þ
and
k ¼ k0 þ
X1
k¼1

kk; ð2:10Þ
where uk and kk are also defined by
uk ¼
1
k!

@ku
@pk

�����
p¼0

; kk ¼
1
k!

@kk
@pk

�����
p¼0

:

The Mth-order finite truncation of the series (2.9) and (2.10) yields the approximations to the solutions
uðtÞ ¼
XM

k¼0

ukðtÞ; ð2:11Þ

k ¼
XM

k¼0

kk; ð2:12Þ
which represent the approximate solution to the desired degree of accuracy.
We should also emphasize that the region of validity of the parameters hu and hv for the convergence of the corresponding

homotopy series might be identified by drawing constant-h curves for particular values of the solution, such as u0(0), u00(0),
etc. [16,13]. In addition to this, a better and optimal value of the convergence control parameters can be determined at the
Mth-order of approximations by the square residual errors [18]
Resðhu; hkÞ ¼
Z 1

0
f�u0ðtÞ þ gðt; u; kÞg2dt; ð2:13Þ
owing to (1.1). Actually, Res(hu,hk) is a polynomial in terms of hu and hk and one can easily minimize (2.13) by the
requirement
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@Res
@hu

¼ @Res
@hk

¼ 0;
obviously by further checking out the second derivative test for two variable functions. It is strongly suggested in [18] on the
classical equation of Blasius flow, the use of the minimum of square residual error to find out the optimal value of the two
convergence-control parameters. However, in the case when the exact square residual error defined by (2.13) needs too
much CPU time to calculate, even if the order of approximation is not very high, and thus is useless in practice, then to avoid
the time-consuming computation we employ the case hu = hk in (2.13) reducing the unknown optimal parameters by one,
which is committed in the subsequent analysis.
3. Convergence of the method

A proof for the analytical convergence of the homotopy analysis method given in Section 2 is outlined here. To do this, let
us state the following theorem which gives sufficient conditions for the convergence/divergence of the homotopy series.

Theorem. Suppose that A � R be a Banach space donated with the L2 norm, over which the sequence uk(t) of the homotopy series
uðt; pÞ ¼

P1
k¼0ukðtÞpk is defined for a prescribed value of h, where uk(t) represent both uk(t) of (2.9) and kk as given in (2.10).

Assume also that the initial approximation u0(t) remains inside the ball of the solution u(t). Taking r 2 R be a constant, the following
statements hold true:

(i) If kvk+1(t)k 6 rkvk(t)k for all k, given some 0 < r < 1, then the series solution converges absolutely at p = 1 over the domain of
definition of t,

(ii) If kvk+1(t)kP rkvk(t)k for all k, given some r > 1, then the series solution diverges at p = 1 over the domain of definition of t.
Proof. (i) If Sn(t) denote the sequence of partial sum of the homotopy series, we need to show that Sn(t) is a Cauchy sequence
in A. For this purpose, consider,
kSnþ1ðtÞ � SnðtÞk ¼ kunþ1ðtÞk 6 rkunðtÞk 6 r2kun�1ðtÞk 6 � � � 6 rnþ1ku0ðtÞk: ð3:14Þ
It should be remarked that owing to (3.14), all the approximations produced by the homotopy method will lie within the ball
of u(t). For every m, n 2 N, n P m, making use of (3.14) and the triangle inequality successively, we have,
kSnðtÞ � SmðtÞk ¼ ðSnðtÞ � Sn�1ðtÞÞ þ ðSn�1ðtÞ � Sn�2ðtÞÞ þ � � � þ ðSmþ1ðtÞ � SmðtÞÞ 6
1� rn�m

1� r
rmþ1

����
����u0ðtÞ

����
����: ð3:15Þ
Since 0 < r < 1, we get from (3.15)
lim
n;m!1

kSnðtÞ � SmðtÞk ¼ 0: ð3:16Þ
Therefore, Sn(t) is a Cauchy sequence in the Banach space A, and this implies that the series solution is convergent. This com-
pletes the proof (i). h

The proof of (ii) follows from the fact that under the hypothesis supplied in (ii), there exist a number l, l > r > 1, so that the
interval of convergence of the power series is jpj < 1/l < 1, which obviously excludes the case of p = 1. h
Remark. Since the finite number of terms does not affect the convergence, Theorem is equally valid if the inequalities stated
in (i–ii) are true for sufficiently large k

0
s. Hence, the ratio b ¼ kvkþ1ðtÞk

kvkðtÞk
needs to be pursued in the convergence analysis.
4. Results and discussion

In this section we apply the above outlined homotopy algorithm to some selected unperturbed (� = 1) and singularly per-
turbed two-point boundary value problems. Approximate analytical solutions obtained from the method have been com-
pared with those obtained from the numerical computations using conventional finite-difference schemes in the
literature. The accumulated error between the approximate and exact numerical solutions (calculated using the MATHEM-
ATICA software) can eventually be estimated via
er1 ¼
Z 1

0
juðtÞ � ueðtÞjdt; ð4:17Þ

er2 ¼ jk� kej ð4:18Þ
in which a subscript is to denote the numerically calculated value.
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First example that is considered here is the subsequent parameterized singularly perturbed nonlinear system
Fig. 1.
20th-or
�u0 þ 2uþ u2 þ k2 � 2k ¼ 0; uð0Þ ¼ 1; uð1Þ ¼ 0: ð4:19Þ
For clarity, we propose the following homotopy parameters for evaluation of the solutions u(t,p) and k(p), that are to be
substituted into Eqs. (2.7) and (2.8)
L ¼ � d
dt
þ 2; u0 ¼ e�2x=�; k0 ¼ 0; f ð1; 0; kÞ ¼ �u0ð1Þ þ k2 � 2k;

Nk ¼ �u0k�1 þ 2uk�1 � 2kk�1 þ
Xk�1

j¼0

ðujuk�1�j þ kjkk�1�jÞ:
Together with these, taken into account the unperturbed case initially, i.e. � = 1, optimal values of the convergence control
parameters at the M = 10th-order of approximation are found to be respectively hu =�0.833 and hk =�0.985. However, as
aforementioned, since it receives much computational cost to evaluate these, we prefer initially hu = hk = h in (2.13) and
hence the optimal value of the convergence control parameter h evaluated through (2.13) appears to be h =�0.886 at the
M = 20th-order of approximation, yielding a residual error 1.677 � 10�10. Using this, the homotopy solutions in (2.11) and
(2.12) of order M = 0, 1, 3 and 20 are compared with the numerical solution in Fig. 1. It can be seen that as the order of
homotopy series solution in equations (2.11) and (2.12) increases, a fast convergence takes place to bring our approximate
solution in excellent agreement with the numerical solution, so, the approximation to the present order can be used to rep-
resent the exact solution. Table 1 tabulates the accumulated errors (4.18) and (4.17) occurred at different orders. It is quite
remarkable that errors between our homotopy solution and numerically calculated one decay quite fast as the order of iter-
ation in the homotopy series (2.11) and (2.12) increases. This Table and Fig. 2(a) and (b) clearly imply the fact of convergence
of the homotopy series solution to the true solution of system (4.19). We used L1 norm and absolute value respectively while
evaluating b’s for u and k. Classical finite difference solution of Eq. (4.19) were also performed for a further comparison. Using
1000 number of uniformly spaced grid points, we found that the maximum error is 5.77601 � 10�6 which is fairly above the
maximum error illustrated in Table 1.

If we consider now the singularly perturbed case of (4.19) with � = 10�5, we obtain the following expression for the sec-
ond-order (M = 2) homotopy solution
uðtÞ ¼
e�að1þ3tÞ 289ea þ 1156e2at � 1156e3at þ 204eað1þtÞ þ 1107eað1þ2tÞ� �

1600
; ð4:20Þ
where a = 200,000. As also demonstrated in Fig. 3, Eq. (4.20) represents the solution to (4.19) with a boundary layer of thick-
ness O(�). Even this fascinating approximate analytic solution can be used in place of the exact singularly perturbed solution
since maximum of the errors comes out to be only 2.45162 � 10�8. On the other hand, to obtain this accuracy numerically
with a finite-difference scheme introduced in [1], over 2500 points were needed.

Second example that we consider is the subsequent singularly perturbed parameterized system given in [3]
�u0 þ 2u� e�u þ xek þ x2 ¼ 0; uð0Þ ¼ 1; uð1Þ ¼ 0: ð4:21Þ
For this set of parameterized singularly perturbed equations, involving a much stronger nonlinearity due to the exponentials
than (4.19), the corresponding auxiliary homotopy parameters are as listed
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Solution of parameterized Eq. (4.19) with � = 1: straight curve from the numerical solution and homotopy solutions are thick-dashed curve from the
der, dashed curve from the third-order, dash-dotted curve from the first-order and dotted curve is the initial approximation.



Table 1
Illustrating the accumulated errors computed at the orders written for the problem (4.19). The exact value of k is �0.11402189.

M = 1 M = 5 M = 10 M = 20 M = 30

er1 5.019 � 10�2 3.209 � 10�3 3.418 � 10�4 6.115 � 10�6 1.201 � 10�8

er2 5.885 � 10�3 3.271 � 10�3 3.110 � 10�4 5.638 � 10�6 1.041 � 10�8
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Fig. 2. A list plot of the ratio b from the theorem to reveal the convergence of the homotopy solutions for (4.19): (a) u and (b) k.
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Fig. 3. Solution of parameterized Eq. (4.19) with � = 10�5: straight curve from the numerical solution and homotopy solutions are thick-dashed curve from
the second-order, dash-dotted curve from the first-order and dotted curve is the initial approximation.
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L ¼ � d
dt
þ 2; u0 ¼ e�2x=�; k0 ¼ 18; f ð1; 0; kÞ ¼ �u0ð1Þ þ ek;

N1 ¼ �u00 þ 2u0 � 1þ xek0 þ x2;

Nk ¼ �u0k�1 þ 2uk�1 � Duk�1 þ xDlk�1; ðk – 1Þ;
where to be able to carry out integrations in Eq. (2.7) rapidly and without any difficulty, the exponential functions appearing
in (4.21) were evaluated from the recursion relation
Du0 ¼ 1; Duk ¼ �
Xk�1

m¼0

1�m
k

� �
uk�m�1Dum;
and similar for Dlk.
Homotopy solution in this case is performed with an optimal convergence control parameter h = �0.555 obtained at the

order of approximation M = 6, yielding a residual error 5.209 � 10�6. To bring out the singularly perturbed nature of the
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problem we take a sufficiently small � = 10�8 as in the paper [3]. Fig. 4(a) and (b) show a comparison between the sixth-order
homotopy series solution and the numerically computed one. Fig. 4(b) is for displaying how well the homotopy methodology
adopted here resolves very thin boundary layer region near t = 0 for the considered singular problem. Table 2 presents a list
of errors calculated at different orders of approximation, which clearly illustrate the convergence of homotopy series results
(2.11) and (2.12) to the exact one. Employing a second-order hybrid finite-difference scheme, [3] gets a minimum error of
only 6.8202 � 10�7 with 1024 Bakhvalov–Shishkin grid points for the problem (4.21). This almost coincides with our 20th-
order homotopy series solution. To achieve smaller and smaller errors, it is not known how the mesh size will be reduced in
the scheme of [3], but as tabulated in Table 2, it is adequate to increase the order of approximation in our method.

The final example that we consider here is
Fig. 4.
homoto

Table 2
Illustrat

er1

er2
�u0 þ u� e�u þ ðxþ kÞe�1=� þ eðxe�1=��e�x=�Þ þ ek þ k� 1 ¼ 0; ð4:22Þ
uð0Þ ¼ 1; uð1Þ ¼ 0;
which is first posed in [2]. For this parameterized singularly perturbed two-point boundary value problem, the correspond-
ing auxiliary homotopy parameters are as follows:
L ¼ � d
dt
þ 1; u0 ¼ e�x=�; k0 ¼ 0; f ð1;0; kÞ ¼ �u0ð1Þ þ ð1þ kÞe�1=� þ ek þ k� 1;

N1 ¼ �u00 þ u0 � 1þ ðxþ k0Þe�1=� þ exe�1=� þ ek0 þ k0 � 1;

Nk ¼ �u0k�1 þ uk�1 � Duk�1 þ ð1þ e�1=�Þkk�1 þ ð�1Þk�1eðxe�1=��ðk�1Þx=�Þ þ Dlk�1:
Homotopy solution in this case is performed with the convergence control parameters h =�0.4 with the singular perturba-
tion � = 10�2 as in [2]. For this particular example even the initial approximation is well capable of resolving all the solution
field with a maximum error of 1.56496 � 10�9, which indicates a fairly sharp convergence. Smaller values of � yield much
smaller errors. Since no numerical values were presented in [2] in which a boundary layer correction combined with a Run-
ge–Kutta integrator was used, no a direct comparison can be made.

It can be readily deduced from Figs. 1–4 and Tables 1 and 2 that the homotopy analysis solutions for the parameterized
singularly perturbed two-point boundary value problems considered are uniformly valid approximate solutions and hence
they reliably represent the exact solutions. It is furthermore worthwhile to state that although specific values of � are chosen
as examples for the homotopy analysis solutions obtained here, the technique introduced can be applied to a vast variety of
parameter � without repeatedly running the algorithm for different �.
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Solution of parameterized Eq. (4.21) with � = 10�8: straight curve from the numerical solution and thick-dashed curve from the sixth-order
py solution. (a) The full solution, (b) to demonstrate an enlarged view of the boundary layer region.

ing the accumulated errors computed at the orders written for the problem (4.21). The exact value of k is 18.8248.

M = 1 M = 6 M = 10 M = 20 M = 30

4.701 � 10�2 3.571 � 10�4 4.202 � 10�6 6.444 � 10�8 1.089 � 10�10

2.698 � 10�1 3.597 � 10�2 2.306 � 10�3 1.009 � 10�6 1.707 � 10�9
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5. Concluding remarks

In this paper the nonlinear parameterized unperturbed and singularly perturbed two-point boundary layer problems
have been considered by means of the homotopy analysis technique. First, the equation system has been modified and then,
a methodology based on the homotopy has been developed with a proper proposal of auxiliary parameters involved.

The success of the method has later been tested by applying it to several unperturbed and singularly perturbed cases ta-
ken from the literature. The convergence of the corresponding homotopy series has been ensured by using optimal conver-
gence control parameters obtained from the square residual error, supported by a mathematical proof of convergence. Even
sufficiently low-order uniformly valid approximate analytic homotopy solutions whose forms have been explicitly written
here reveal excellent agreement with the numerical solutions. Surprisingly, it has been found that as singularity gets stron-
ger, the methodology proposed results in much more accurate solutions by satisfactorily resolving the boundary layers. The
presented approach has clearly shown its advantage over the recently introduced conventional numerical methods for the
singularly perturbed parameterized boundary value problems.
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