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A SIMPLE CONDITION ENSURING

THE ARENS REGULARITY OF BILINEAR MAPPINGS

NILGÜN ARIKAN

Abstract. We give a simple criterion for certain Banach algebras to be Arens

regular, which applies in particular to the algebras /' with pointwise multiplication,

^"(G), where G is a compact group with convolution, and the trace-class algebra.

This criterion is best established in the more general context of the regularity of

bilinear maps, and depends on the existence of extensions of such maps.

1. Let X, Y, Z be normed spaces and m: X X Y ^> Z be a bounded bilinear

mapping. Arens gives the two natural extensions m*** and m'*"' of m onto

X** X Y** -> Z** in [1]. These are constructed by forming in turn the following

bilinear mappings:

Z*XX^ Y*:(f,x)^xf,   where J(y)=f(m(x,y)),

Y** X Z*^X*: (G,f) -/c,   where/G(x) = G(J),

and

Z** X Y** -Z**: (F,G) ^F°C,    where F ° G{f) = F(/c).

We call F ° G = m***(F,G) the first extension of m. Similarly, we form the next

three mappings:

Z*X Y^X*:(f,y)-*fy,   wherefy(x) = /(/n(x, y)),

X**XZ*^Y*:(F,f)^ Ff,    where Ff(y) = F(fy),

and

A"** X Y** ->Z**: (F,G) -> F*G,    whereF* <7(/) = G(Ff)

and call F * G = m'"*'(F, G) the second extension of m. We call m regular if ° and

* coincide on X** X Y**. This is equivalent to saying that the double limits

lim ¡lim jf(m(x,, yj)), Umylim,/(/n(x,, yj)) are equal whenever they both exist for

bounded sequences (x,) G X, (yy) E Y and / G Z*; see [3]. The latter is known as

the Double Limit Criterion. Then the regularity of a normed algebra A is defined to

be the regularity of its algebra multiplication when considered as a bilinear mapping.

Let F and G be elements of A**, the second dual of A. By Goldstine's Theorem, pp.

424-425 of [4], there exist nets (x¡) and (yf) in A so that F= w*lim¡e(x¡) and

G — w*limj e(yj) where e: A -» A** denotes the canonical embedding of A into A**

_
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as a normed space. So it is easy to see that limylimy/(m(x,, yj)) = F ° G(f) and

hmjlim¡ f(m(x¡, yß = F*G(f) îorfEA*.

In this paper we shall prove that a bilinear map is regular if it factors through

some other bilinear mapping. We shall also prove that irregular algebras may have

dense subalgebras which are regular when given a different norm.

Definition 1. Let X, Y, Z, W all be normed spaces and h be a continuous linear

mapping of Y into W so that the following diagram

X X Y

\m,

\x X h I Z,

XX w

commutes, i.e., w,(x, y) = m2(x, h(y)) for all x G X, y G Y. Then we say that m,

factors through m2.

Theorem 2. Let m,: XX Y -> Z be a bounded bilinear mapping. If there exists a

bounded bilinear mapping m2: XX W -» Z such that m, factors through m2 and such

that the continuous linear mapping h: Y -» W of the above diagram has the property

that h(Yx) is o(h(Y), W*)-compact where Yx is the unit ball of Y, then mx is regular.

Proof. We will prove that for sequences (x,) and (yf) in the unit ball of X and Y

respectively and/ G Z*,

lim lim/(w,(x,, y,)) = lim lim/(m,(x,, v,))
'     j j     '

when both dpuble limits exist. It is straightforward to see that f(mx(x¡, yA) =

e(x¡)*e(h(yjK\f) by using f(mx(x„ yß = f(m2(x¡, yf)). Now by the Banach-

Alaoglu Theorem (e(x¡)) has a subnet weak* converging to some F in X** and

because h(Yt) is weakly compact in W, (h(yj)) has a subnet which converges weakly

to h (y) for some j» G F,. Since the limits of the subnets are the same as the original

limits, we may replace the original nets by the subnets and assume that F is the

weak* limit of (e(x¡)) and h(y) is the weak limit of (h(yj)). Now consider the

following diagram (in which arrows represent limits, not mappings):

e(xl)*e{h(yj))(f) e(x,) * e(h(y))(f)
m

Hi /III

F*e{h(yj))(f) i F*e(h(y))(f)
rv

It is easy to observe that * is weak* continuous on the right. So the horizontal limits

III and IV follow as e(h(y)) is the weak* limit of (e(h(yj))). For the vertical limits

we recall that, for a Banach algebra B, x h» x * e(y) is weak* continuous on 77** for

each y in 77; see [3]. Now the result follows.
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Theorem 3. Let A, B, X, Z all be normed spaces. Suppose that A* — B and there is

a continuous linear injection h: B -> A such that

(1) <¡>(h(xp)) = xp(h(<j>))

for all <p, xp E A* is satisfied. If there exist bounded bilinear mappings mx: XX B -* Z

and m2: X X A -» Z such that mx factors through m2 then m, is regular.

Proof. We know 77, is o(B, A) compact because B — A*. From condition (1) we

get h: (B, w*) -* (A, w) is continuous. So it is clear that h(Bt) is o(h(B), A*)-

compact. Therefore the result follows from Theorem 2.

Now, we are going to give several concrete examples to Theorem 3 as corollaries.

Corollary 4. Let X, Z be normed spaces. Suppose there exist bounded bilinear

mappings

mx:XXlx ^Z    and   m2: X X c0 ^ Z

such that m, factors through m2 when h is taken to be the natural inclusion of7' in c0.

Then mx is regular. Furthermore, the natural extension ofmx onto X** X (/')** -» Z**

is regular.

Proof. Since we have <¡>(h(xp)) = ln<p„xpn = *(A(*)) for <¡> = (<f>n), xp = (xpn) E

(c0)* 3*7', the condition (1) of Theorem 3 is satisfied. So the regularity of m,

follows.

We now prove that w*** is regular. It is easy to see that m*** factors through

m*2** since F ° G(f) = F ° h**(G)(f) for F G X**, G G (/')**,/GZ* and h**:

(/')** -> (c0)** is the second adjoint mapping of h: /' -> c0. We now recall from [2]

or [3] that

(/')** = e(r)@e(c0)±.

Then a simple observation shows that h** is the mapping from (/')** onto /' given

by h**(F) = F,, for F = (F,, F2) G (/')**. Furthermore, we observe that

a(/z**((/-)**), (c0)***) f «(/•,(/■)**) = o{c0, «(/') 0 e(c0)X)r/1

= (c0,/l)r/1=a(/1,/1).

Now the regularity of w*** follows from Theorem 2 since on the unit ball of /',

o(l\ /') coincides with o(l\c0).

Corollary 5. Let X = [0,1] be the unit interval and t] be the Lebesgue measure on

the real line. Then L00 = LX(X) is the Banach space of all essentially bounded

Lebesgue measurable complex functions on X with the usual norm and /J = L\X) is

the Banach space of all complex valued Lebesgue measurable functions on X with its

usual norm. Then V is a commutative Banach algebra with the convolution multiplica-

tion defined by
¿

(2) (f*g)(x)=f f(x-t)g(t)dt

for x G X, f, g E Ü. There is a natural inclusion h from L°° into Ü for which L°° is a

subalgebra of Ü with a different norm and also U°(X) = Ll(X)*. Now convolution
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defines a bounded bilinear mapping m,: L1 X L°° -» L1 so that mx factors through the

algebra multiplication on V. Since the condition (I) of Theorem 3 is also satisfied for

A—Ü and B = Lx the regularity of mx follows from the same theorem.

Corollary 6. Let C(X) be the Banach algebra of all continuous bounded functions

on X — [0,1] with the supremum norm and the convolution multiplication defined by

(2). Then convolution defines a bounded bilinear mapping

C(X)XL*>(X)^C(X):(f,g)^f*g

which is regular.

Proof. Recall from §31 of [5] that x -»/* g(x) is continuous for f E L°° and

g E V (and so, a fortiori, for /G 7_°° and g E Lx or g E C(X)). Hence the

existence of the bounded bilinear mapping C(X) X L\X) -» C(X) with convolu-

tion multiplication makes the proof clear.

Corollary 7. The Banach algebra C(X) is regular with convolution multiplication.

Proof. Since C(X) is a closed subalgebra of LX(X) the result is clear from the

corollary on p. 312 of [3].

For X — [0,1], we have proved by Corollary 7 that C(X) is regular with convolu-

tion multiplication in the form of (2). We are now going to prove that C(X) has

regular second and fourth duals.

Let X be an element of C(X)* = M(X). Then by the Lebesgue Decomposition

Theorem there is a unique representation of X in the form X — o + v where a is

absolutely continuous with respect to 17 (denoted by a « tj) and v is singular with

respect to 17 (denoted by v ± tj). As it is easy to see that || XII = II a || + ||fII we have

M(X) = V(X) ®MS(X),   where M^*) = {p G M(X): p ± tj).

Now by a theorem due to Kakutani M(X)* (s C(X)**) is an Af-space and of the

form M(X)* = LX(X) X MS(X)*. Obviously, U"(X) is a subspace of M(X)* and

the multiplication in MS(X)* will be found by considering its quotient algebras

U°(X) for each X E MS(X).

First let / and g be in the unit ball of L°°( X). By Goldstine's Theorem there are

sequences (/„) and (gm) in the unit ball of C(X) with ||/„|| =s ||/||, ||gj| < ||g||

and e(fn)w-*f, e(gm)^g. Then

(fn * gj = /' f\xf„)(x - t)(Xgm)(t) dt ■ dx   by (2)
•'o •'o

where x is the characteristic function of X. By taking iterated limits and using the

Dominated Convergence Theorem and Fubini's Theorem we get that

lim limr,(/„ * gm) = Ç (\xf)(x ~ t)(xg)U) dt ■ dx = (f*g)(v)
n      m •'0 *H)

and also lim m lim „tj(/„ * gm) = (f*g)(ij).

Now let/and g be in MS(X)* and v E MS(X). We want to find (/* g)(v). Since

Lco(p) is a quotient of MS(X)* there is a function (f*g)~ in L°°(v) such that
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K(7* g)~) — (/* gX*")- Similarly, there are functions /, g in U°(v) with v(f) =

f(v)-> "(g) — g(v)- Assume v is positive. Then X is the union of disjoint sets A and B

for which v(A) — 0, tj(5) = 0. By assuming/= 0 on A we get tj({x: f(x) ¥= 0}) = 0

and hence / is Tj-measurable. Thus /= 0 a.e. (tj). Similarly, g = 0 a.e. (tj). Put

y — v + tj. We have/= 0 on^l and |/|< \\f\\„ on 5 (this can be done by altering/

on a set of ^-measure 0). From Lusin's Theorem there exists a sequence (/„) in C(X)

with

f(x) = lim/„(x)    a.e. (y).
n

Consequently, /„ -»/ a.e. (?) and f„->f a.e. (tj). Hence lim„/„ = 0 a.e. (tj) since

/= 0 a.e. (tj). Similarly, there exists a sequence (gm) in C(X) with limm gm = 0 a.e.

(tj). From the regularity of C(X) and using the Dominated Convergence Theorem

we get

(/* g)(") = v((f*g)~) = um um "(fn * Am)

limlimv(gm*f„) = lim/" lim(x/„)(0   [ (xgm)(x - t) dv(x)
m      n m   '0     " L   0

i// = 0.

So we have (/* g)^) = 0 for all /, g E MS(X)*. Thus for u = (n,tz, U2u) and

u = (n,t>, n2u) in M(A")* with IT,«, Uxv E LX(X) and U2u, U2v E MS(X)* and

X = (o, v) E M(X) with o E L\X), v G Ms(X), the Arens product of u and v is

(m ° u)(\) = (u * v)(x) = a(n,M * n,u) + p(n2« * n2i>)

= a(n,(w * v)) + o = (n,(z< * o),0)(c + p)

= (n,(M*ü),o)(A).

Corollary 8. LX(X) is regular with convolution multiplication.

Proof. Since the algebra multiplication of L°°(X) given by convolution factors

through the bilinear mapping L°° X Ü -» L°°, L°° = (L1)* and the condition (1) of

Theorem 3 is satisfied for A = Ü, B = L°°, the result follows from it.

Corollary 9. The second dual of C(X), C(X)** s M(X)*, is regular.

Proof. The result follows since M(X)* is regular if and only if L°°(X) is regular.

Since the multiplication on M(X)* s¿ L°°(X) X MS(X)* is zero in the second

coordinate the multiplication on M(X)*** s L°°(X)** X MS(X)*** has the same

property. Therefore "M(X)*** s C(X)**** is regular if and only if L°°(X)** is

regular."

Corollary 10. L°°(X)** is regular.

Proof. We have already observed in the course of the proof of Corollary 8 for the

bounded bilinear mappings

m, : L°° X L00 -> L°°    and   m2: L°° X V -* L°°

given by convolution m, factors through m2 by h: L00 -» Ü the natural inclusion.

Then the first extension w*** of w, factors through m\**, the first extension of m2,
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by h**, the second adjoint mapping of h. So it is enough to prove that /z**((L°°)**)

is o(h**((L°°)**), ((F')**)*)-compact. Now consider the diagram

h

S

(L-y
i\**

where S and T denote the canonical embeddings of F°° and Ü into their second

duals respectively, and h* is the first adjoint mapping of h. The diagram is

commutative. The subspace h**((L00)**) of (L1)** is F00 regarded as a subset of

(L1)**. So it is enough to prove that (Lx)x is o(L°°,(LQO)**)-compact. Since U° is

dense in Ü,

o(L°°,(L°°)**) = a(L',(L-)**)rL. = o(L\ L°")tL„.

The latter follows since L1 E (L1)** s (L00)* and, for u in (L°°)**,f G L1, u(T(f))

= F*(tz)(/). By recalling that (F00), is a(L°°, L°°)-compact and applying Theorem

2 the proof is completed.

2. In this section G will denote a compact Hausdorff group and p will denote the

Haar measure on G. We will see that the group algebra L\G) has a regular dense

subalgebra in a different norm. The convolution multiplication on L{(G) is denoted

by *.

Proposition 11. The bounded bilinear mapping

V(G)XL°°(G)^L\G):(f,g)^f*g

is regular.

Proof. It is easy to see that the given bilinear mapping is continuous and it

clearly factors through the algebra multiplication of Ü given by convolution. Now

the result follows from Theorem 3 for A - L\G), B - L°°(G) and X - Z - L\G).

Because L°°(G) is a dense subset of Ll(G) the above result is worth noting since

the multiplication in the group algebra L\G) of a locally compact Hausdorff group

G is regular if and only if G is finite; see [7].

Proposition 12. The bounded bilinear mapping

L<°(G) X L~(G) - C(G): (/, g) ->f* g

is regular.

Proof. We have seen in the proof of Corollary 6 that /* g G C(G) for /, g G

L°°(G). We also have that the given bilinear mapping is continuous since

\f*g(x)\^f\f(xy-])\-\g(y)\dti(y)^\\f\\J\g\\ao.
JG
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As || /1| *s II / II «j for any / G LX(G), the existence of the bounded bilinear mapping

L°°(G) X L\G) -» C(G): (/, g) -*/* g also follows. Now the rest follows by apply-

ing Theorem 3 for A = L\G), B = U°(G), X = L°°(G) and Z = C(G).

Corollary 13. For a compact group G, LX(G) is regular with convolution

multiplication.

Proof. This is clear.

3. In this section we will prove that the Banach algebra of trace-class operators on

a Hilbert space 77 is regular. We denote by L(H), CL(H) and TL(H) the set of

bounded linear operators, compact operators and trace-class operators on 77, respec-

tively. We recall that

TL(H) = ¡SEL(H): ||S||, = tr| 5 |=   f (*„, | S\ *J < ool,

where (xpn)x=x is an orthonormal basis for H.

Theorem 14. The Banach algebra of trace-class operators on a Hilbert space H is

Arens regular.

Proof. We recall from [6] that

(i) TL(H) is a two-sided ideal in L(77).

(ii) ||SII < II5II, for all S in FL(77) (|| • || is the uniform operator norm on

L(H)).

(iii) Every S in TL(H) is compact.

(iv) For each 5 G FL(77) define S(K) = tr(SK) for all K E CL(H). Then the

mapping

FL(77) -^[CL(H)]*: 5^tr(5.)

is an isometric isomorphism of TL(H) onto [CL(77)]*.

(v) For all S E TL(H) and T E L(H), tr(ST) = tr(TS).

Now the existence of the continuous linear injection h: TL(H) -* CL(H) follows

from (ii) and (iii). The operator multiplication in F(77) defines the two bilinear

mappings

m]:TL(H)XTL(H)-^TL(H)    and    m2: TL(H) X CL(H) -> FL(77).

The latter is clear from (i). Also m, factors through m2. Now we put A = CL(H)

and X = Z = B = TL(H). So it follows that A* = B and condition (1) of Theorem

3 are satisfied by (iv) and (v) above, respectively. Hence the result follows from

Theorem 3.
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