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We introduce a new family of continuous distributions called the com-
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1. Introduction

The statistical literature is full of new families of distributions that extend
classical distributions and at the same time become very important for statisticians
due to their flexible properties. These new families have been extensively used in
modelling data in several applied areas such as reliability, engineering and life
testing. In recent years there has been an increased interest in developing more
flexible generators for univariate continuous distributions by adding extra shape
parameter(s) to the baseline distribution. Some well-known families are the beta-
G by Eugene et al. (2002), the Kumaraswamy-G by Cordeiro and de Castro
(2011), the McDonald-G by Alexander et al. (2012), the gamma-G by Zografos
and Balakrishanan (2012), the Weibull-G by Bourguignon et al. (2014), the odd
generalized exponential-G by Tahir et al. (2015), the transmuted exponentiated
generalized-G by Yousof et al. (2015), the generalized transmuted-G by Nofal et
al. (2017), the transmuted geometric-G by Afify et al. (2016a), the Kumaraswamy
transmuted-G by Afify et al. (2016b), the exponentiated transmuted-G by Merovci
et al. (2016), the Burr X-G by Yousof et al. (2016), the two-sided power-G by
Korkmaz and Genc (2016) and the beta transmuted-H by Afify et al. (2016d).

Let G (x;ϕ) be a baseline cumulative distribution function (cdf) and g (x;ϕ)
be the associated probability density function (pdf), where ϕ = (ϕ1, ϕ2, . . .) is a
parameter vector. Then, the cdf and pdf of the transmuted-G (T-G) family of
distributions are, respectively, given by

(1.1) H (x;λ, ϕ) = G (x;ϕ) [1 + λ− λG (x;ϕ)]

and

(1.2) h (x;λ, ϕ) = g (x;ϕ) [1 + λ− 2λG (x;ϕ)] ,

where |λ| ≤ 1. It is noted that the T-G family is a mixture of the baseline and
exponentiated-G (exp-G) distributions, the last one with power parameter equal
to two. Further, we obtain the baseline distribution when λ = 0. For more details
about the T-G family, see Shaw and Buckley (2007).

For a baseline random variable having pdf h(x) and cdf H(x), the complemen-
tary geometric-H (CGc-H) family is defined by the cdf (see Appendix A)

F (x; θ, ϕ) =
θH (x;ϕ)

1− (1− θ)H (x;ϕ)
,

and the pdf given by

f (x; θ, ϕ) =
θh (x;ϕ)

[1− (1− θ)H (x;ϕ)]
2 ,

where θ ∈ (0, 1). In this paper, we propose and study a new extension of the
T-G family by adding one parameter in equation (1.1) to provide more flexibility
to the generated family. We construct a new generator called the complementary
geometric transmuted-G (CGcT-G) family by taking the T-G cdf in (1.1) as the
baseline cdf H in the last two equations. Further, we give a comprehensive de-
scription of the mathematical properties of the new family. In fact, the CGcT-G
family is motivated by its important flexibility in applications. By means of two
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applications, we show that the CGcT-G class provides better fits than at least
seven other families each having the same number of parameters.

The rest of the paper is outlined as follows. Section 2 is devoted to some well-
known distributions, which will be used in the empirical comparisons in Section
9. In Section 3, we define the CGcT-G family. A very useful linear representation
for its pdf is derived in Section 4. In Section 5, we define two special models and
provide plots of their pdfs and hazard rate functions (hrfs). In Section 6, we derive
some mathematical properties including ordinary and incomplete moments, quan-
tile and generating functions, entropies, probability weighted moments (PWMs)
and order statistics. We provide some properties of the CGcT-Weibull (CGcTW)
distribution in Section 7. Maximum likelihood estimation of the model parameters
is addressed in Section 8. In Section 9, we give two applications to real data to
illustrate the importance of the introduced family. Some simulation results assess
the performance of the proposed model in Section 10. Finally, some concluding
remarks are presented in Section 11.

2. Previous works

We shall refer to some competitive models to the introduced distribution,
namely: the Kumaraswamy-transmuted exponentiated modified Weibull (Kw-
TEMW) (Al-Babtain et al., 2015), transmuted exponentiated modified Weibull
(TEMW) (Ashour and Eltehiwy, 2013), transmuted exponentiated Weibull geo-
metric (TEWG) (Saboor et al., 2015), transmuted additive Weibull (TAW) (El-
batal and Aryal, 2013), Kumaraswamy modified Weibull (Kw-MW) (Cordeiro et
al., 2014), beta Weibull (BW) (Lee et al., 2007), Kumaraswamy Weibull (Kw-
W) (Cordeiro et al., 2010), additive Weibull (AW) (Xie and Lai, 1995), Weibull
Lindley (WLi) (Bourguignon et al., 2014), Weibull gamma (WG) (Bourguignon
et al., 2014), odd log-logistic Lindley (OLL-Li) (Ozel et al., 2016), generalized
transmuted Lindley (GT-Li) (Nofal et al., 2017), Kumaraswamy Lindley (Kw-Li)
(Cakmakyapan and Kadilar, 2014) and beta Lindley (BLi) (Merovci and Sharma,
2014) distributions. Their corresponding pdfs are given in Appendix B.

3. The CGcT-G family

In this section, we generalize the T-G family by incorporating one addi-
tional parameter to yield a more flexible generator. The CGcT-G family is given
by the cdf (for x > 0)

F (x; θ, λ, ϕ) =
θG (x;ϕ) [1 + λ− λG (x;ϕ)]

1− (1− θ)G (x;ϕ) [1 + λ− λG (x;ϕ)]
.(3.1)

The pdf corresponding to (3.1) is

f(x; θ, λ, ϕ) =
θg (x;ϕ) [1 + λ− 2λG (x;ϕ)]

{1− (1− θ)G (x;ϕ) [1 + λ− λG (x;ϕ)]}2
,(3.2)

where θ ∈ (0, 1) and |λ| ≤ 1 are shape parameters. For λ = 0, we obtain the
complementary geometric-G (CGc-G) family. For θ → 1, we have the T-G family.
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Henceforth, we denote by X ∼CGcT-G (θ, λ, ϕ) a random variable having pdf
(3.2). The reliability function (rf) and hrf of X are, respectively, given by

R (x; θ, λ, ϕ) =
1−G (x;ϕ) [1 + λ− λG (x;ϕ)]

1− (1− θ)G (x;ϕ) [1 + λ− λG (x;ϕ)]

and

τ (x; θ, λ, ϕ) =
θ r (x;λ, ϕ)

1− (1− θ)G (x;ϕ) [1 + λ− λG (x;ϕ)]
,

where r (x;λ, ϕ) is the hrf of the T-G family.

4. Linear representation

In this section, we provide a very useful linear representation for the CGcT-
G pdf. We omit the dependence of F (x) and f(x) on the model parameters. The
cdf (3.1) can be expressed as

(4.1) F (x) = θG (x) [1 + λ− λG (x)] {1− (1− θ)G (x) [1 + λ− λG (x)]}−1
.

An expansion for equation (4.1) can be derived using the power series

(4.2) (1− z)−b =

∞∑
k=0

Γ (b+ k)

k! Γ(b)
zk, |z| ≤ 1, b > 0.

Applying (4.2) to the last term of (4.1) gives

F (x) =

∞∑
k=0

θ(1− θ)k (1 + λ)
k
Gk+1(x) [1 + λ− λG(x)] [1− p G (x)]

k
,

where p = λ/ (1 + λ).

Using the binomial expansion to [1− pG (x)]
k
, we obtain

(4.3) [1− pG (x)]
k

=

k∑
j=0

(−1)
j

(
k

j

)
pjGj(x).

Combining the last two equations gives

F (x) =

∞∑
k=0

k∑
j=0

(−1)
j
θ(1−θ)k (1 + λ)

k
pj
(
k

j

)[
(1 + λ)Gk+j+1(x)− λGk+j+2(x)

]
.

Then, we can write

(4.4) F (x) =

∞∑
k=0

k∑
j=0

[υk,j Πk+j+1 (x)− ωk,j Πk+j+2 (x)] ,

where Πα (x) is the cdf of the exp-G family with power parameter α,

υk,j = (−1)
j
θ(1− θ)k (1 + λ)

k+1
pj
(
k

j

)
and

ωk,j = (−1)
j
θ(1− θ)k (1 + λ)

k+1
pj+1

(
k

j

)
.
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By differentiating (4.4), the pdf (3.2) can be expressed as

f(x) =

∞∑
k=0

k∑
j=0

(−1)
j
θ(1− θ)k (1 + λ)

k
pj
(
k

j

)
[
(1 + λ) (k + j + 1) g (x)Gk+j(x)− λ (k + j + 2) g (x)Gk+j+1(x)

]
.

The last equation can be rewritten as

(4.5) f(x) =

∞∑
k=0

k∑
j=0

[υk,j πk+j+1 (x)− ωk,j πk+j+2 (x)] ,

where πα (x) = αg (x)Gα−1 (x) is the exp-G pdf with power parameter α > 0.
Thus, some mathematical properties of the CGcT-G family can be determined
from those properties of the exp-G family. Equations (4.4) and (4.5) are the main
results of this section.

5. Special models

In this section, we provide two special models of the CGcT-G family. The
pdf (3.2) will be most tractable when g (x;ϕ) and G (x;ϕ) have simple analytic
expressions. These special models generalize some well-known distributions in the
literature.

5.1. The CGcT-Weibull (CGcTW) distribution. Consider the pdf and
cdf (for x > 0) g(x) = βαβxβ−1 exp

[
−(αx)β

]
and G(x) = 1 − exp

[
−(αx)β

]
,

respectively, of the Weibull distribution with positive parameters α and β. Then,
the cdf and pdf of the CGcTW model (for x > 0) are, respectively, given by

F (x) =
θ
{

1− exp
[
−(αx)β

]} {
1 + λ exp

[
−(αx)β

]}
1− (1− θ) {1− exp [−(αx)β ]} {1 + λ exp [−(αx)β ]}

and

f(x) =
θβαβxβ−1 exp

[
−(αx)β

] {
1− λ+ 2λ exp

[
−(αx)β

]}
(1− (1− θ) {1− exp [−(αx)β ]} {1 + λ exp [−(αx)β ]})2 ,

where θ ∈ (0, 1) , |λ| ≤ 1 and β > 0 are shape parameters and α > 0 is a scale pa-
rameter. The CGcTW distribution includes the complementary geometric Weibull
(CGcW) distribution when λ = 0. If θ tends to 1, we have the transmuted Weibull
(TW) distribution. For β = 2 and β = 1, we obtain the complementary geo-
metric transmuted Rayleigh (CGcTR) and complementary geometric transmuted
exponential (CGcTE) distributions, respectively. Figure 1 displays some possible
shapes of the pdf and hrf of this distribution.
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Figure 1. (a) The CGcTW pdf plots. (b) The CGcTW hrf plots.

5.2. The CGcT-Lindley (CGcTLi) distribution. The Lindley distri-
bution with parameter α > 0 has pdf and cdf (for x > 0) given by g(x) =
α2

1+α (1 + x) exp(−αx) and G(x) = 1 − 1+α+αx
1+α exp(−αx), respectively. Then, the

cdf and pdf of the CGcTLi distribution (for x > 0) are given by

F (x) =
θ
[
1− 1+α+αx

1+α exp(−αx)
] [

1 + λ 1+α+αx
1+α exp(−αx)

]
1− (1− θ)

[
1− 1+α+αx

1+α exp(−αx)
] [

1 + λ 1+α+αx
1+α exp(−αx)

]

and

f(x) =

θα2

1+α (1 + x) exp(−αx)
[
1− λ+ 2λ 1+α+αx

1+α exp(−αx)
]

{
1− (1− θ)

[
1− 1+α+αx

1+α exp(−αx)
] [

1 + λ 1+α+αx
1+α exp(−αx)

]}2 ,

respectively, where θ ∈ (0, 1) and |λ| ≤ 1 are shape parameters and α > 0 is a scale
parameter. The CGcTLi distribution reduces to the complementary geometric
Lindley (CGcLi) distribution when λ = 0. If θ tends to 1, we obtain the transmuted
Lindley (TLi) distribution. Plots of the pdf and hrf of the CGcTLi distribution
are displayed in Figure 2 for some parameter values.



7

0 1 2 3 4 5

0
.0

0
.2

0
.4

0
.6

0
.8

(a)

x

f(
x
)

0 1 2 3 4 5

0
.0

0
.2

0
.4

0
.6

0
.8

 

 

0 1 2 3 4 5

0
.0

0
.2

0
.4

0
.6

0
.8

 

 

0 1 2 3 4 5

0
.0

0
.2

0
.4

0
.6

0
.8

 

 

0 1 2 3 4 5

0
.0

0
.2

0
.4

0
.6

0
.8

 

 

0 1 2 3 4 5

0
.0

0
.2

0
.4

0
.6

0
.8

 

0 1 2 3 4 5

0
.0

0
.2

0
.4

0
.6

0
.8

 

α = 2  θ = 0.3  λ = 0.5

α = 0.9  θ = 0.2  λ = 0.7

α = 2  θ = 0.5  λ = − 0.75

α = 0.5  θ = 0.75  λ = 0.5

α = 1.5  θ = 0.2  λ = − 1

α = 3  θ = 0.07  λ = − 0.4

α = 1.2  θ = 0.1  λ = 0.1

0 1 2 3 4 5

0
1

2
3

4

(b)

x

h
(x

)

0 1 2 3 4 5

0
1

2
3

4

 

 

0 1 2 3 4 5

0
1

2
3

4

 

 

0 1 2 3 4 5

0
1

2
3

4

 

 

0 1 2 3 4 5

0
1

2
3

4

 

 

0 1 2 3 4 5

0
1

2
3

4

 

α = 1.95  θ = 0.09  λ = 0.1

α = 2  θ = 0.15  λ = 0.9

α = 2  θ = 0.1  λ = 0.5

α = 2.5  θ = 0.5  λ = 0.95

α = 1.25  θ = 0.9  λ = − 0.5

α = 2.5  θ = 0.009  λ = 0.95

Figure 2. (a) Plots of the CGcTLi pdf. (b) Plots of the CGcTLi hrf.

6. Properties

The formulae derived throughout the paper can be easily handled in most
symbolic computation software platforms such as Maple, Mathematica and Matlab
because of their ability to deal with analytic expressions of formidable size and
complexity. Established explicit expressions to calculate statistical measures can
be more efficient than computing them directly by numerical integration.

6.1. Moments. Let Yα be a random variable having exp-G pdf πα(x). The
rth ordinary moment of X, say µ′r, follows from (4.5) as

(6.1) µ′r = E (Xr) =

∞∑
k=0

k∑
j=0

[
υk,j E

(
Y rk+j+1

)
− ωk,j E

(
Y rk+j+2

)]
.

For α > 0, we have

E (Y rα ) = α

∫ ∞
−∞

xr g (x;ϕ) G (x;ϕ)
α−1

dx,

which can be computed numerically in terms of the baseline quantile function (qf)
QG (u;ϕ) = G−1 (u;ϕ) as

E (Y nα ) = α

∫ 1

0

QG (u;ϕ)
n
uα−1du.

Setting r = 1 in (6.1) gives the mean of X. The central moments (µn) and
cumulants (κn) of X are determined from (6.1) as µn =

∑n
k=0

(
n
k

)
(−1)k µ′k1 µ′n−k

and κn = µ′n −
∑n−1
k=1

(
n−1
k−1

)
κk µ

′
n−k, respectively, where κ1 = µ′1. The skewness

γ1 = κ3/κ
3/2
2 and kurtosis γ2 = κ4/κ

2
2 are obtained from the third and fourth

standardized cumulants.
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The nth descending factorial moment of X (for n = 1, 2, . . .) is

µ′(n) = E
[
X(n)

]
= E [X (X − 1)× . . .× (X − n+ 1)] =

n∑
k=0

s (n, k)µ′k,

where s (n, k) = (k!)
−1 [

dkk(n)/dxk
]
x=0

is the Stirling number of the first kind.

6.2. Incomplete moments. The rth incomplete moment of X is defined
by mr(y) =

∫ y
−∞ xr f(x)dx. We can write from (4.5)

(6.2) mr(y) =

∞∑
k=0

k∑
j=0

[υk,j mr,k+j+1(y)− ωk,j mr,k+j+2(y)] ,

where

mr,α(y) = E (Y rα ) =

∫ G(y; ϕ)

0

QrG (u;ϕ) uα−1 du.

The integral mr,α(y) can be determined analytically for special models with closed-
form expressions for QG (u;ϕ) or computed at least numerically for most baseline
distributions.

An important application of the first incomplete moment refers to the mean
deviations about the mean [δ1 = E (|X − µ′1|)] and about the median [δ2 = E(|X−
M |)] of X given by

δ1 = 2µ′1 F (µ′1)− 2m1 (µ′1) and δ2 = µ′1 − 2m1(M),

respectively, where M is the median of X, F (µ′1) is easily obtained from (3.1),
µ′1 = E(X) can follow from equation (6.1), and m1(z) can be determined from
(6.2) with r = 1.

Another common application of the first incomplete moment refers to the Bon-
ferroni and Lorenz curves, which are very useful in economics, reliability, demog-
raphy, insurance and medicine. For a given probability π, the Bonferroni and
Lorenz curves are given by B(π) = m1(p)/ (pµ′1) and L(p) = m1(p)/µ′1, where
p = Q(π) = F−1(π) can be determined numerically by inverting (3.1).

6.3. Quantile and generating functions. The qf of X ∼CGcT-G (θ, λ, ϕ)
follows by inverting (3.1), namely x = Q(u) = F−1(u).

θG (x;ϕ) [1 + λ− λG (x;ϕ)]

1− (1− θ)G (x;ϕ) [1 + λ− λG (x;ϕ)]
= u.

Rearranging terms gives the quadratic equation

λG2 (x;ϕ)− (1 + λ)G (x;ϕ) +
u

θ + (1− θ)u
= 0.

The two roots are

G (x;ϕ) =
1 + λ±

√
(1 + λ)

2 − 4λu/ [u+ θ (1− u)]

2λ
.
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Of these, the minus sign gives the valid root. Hence, for λ 6= 0 and u ∈ (0, 1),

x = QG

1 + λ−
√

(1 + λ)
2 − 4λu/ [u+ θ (1− u)]

2λ

 ,

where QG(u) = G−1(u) is the baseline qf. For λ = 0, we have

x = QG (u/ [u+ θ (1− u)]) .

Simulating the CGcT-G random variable is straightforward. If U is a uniform
variate on the unit interval (0, 1), then the random variable X = Q(U) follows
(3.2).

The moment generating function (mgf) of X, say M(t) = E [exp (t X)], is
determined from (4.5) as

M(t) =

∞∑
k=0

k∑
j=0

[υk,j Mk+j+1 (t;ϕ)− ωk,j Mk+j+2 (t;ϕ)] ,

where Mα (t;ϕ) is the generating function of Yα given by

Mα (t;ϕ) = α

∫ ∞
−∞

exp (tx) g (x;ϕ)Gα−1 (x;ϕ) dx = α

∫ 1

0

exp [t QG(u;α)]uα−1du.

Both formulas can be computed numerically for most parent distributions.

6.4. Entropies. The Rényi entropy of a random variable X represents a
measure of variation of the uncertainty. It is defined by

Iγ (X) = (1− γ)
−1

log

(∫ ∞
−∞

fγ (x) dx

)
, γ > 0 and γ 6= 1.

Using the pdf (3.2), we can write

fγ (x) =
θγgγ (x) [1 + λ− 2λG (x)]

γ

{1− (1− θ)G (x) [1 + λ− λG (x)]}2γ
.

Applying (4.2) to the denominator gives

fγ (x) =

∞∑
k=0

θγ (1 + λ)
k

Γ (2γ + k)

k! (1− θ)−k Γ (2γ)
gγ (x)Gk (x) [1− pG (x)]

k
[1 + λ− 2λG (x)]

γ
,

where p = λ/ (1 + λ).
Based on (4.3) and after some algebra, we have

fγ (x) =

∞∑
k=0

k∑
j=0

(−1)
j θ

γ (1 + λ)
k
pjΓ (2γ + k)

k! (1− θ)−k Γ (2γ)

(
k

j

)
gγ (x)Gk+j (x) [1 + λ− 2λG (x)]

γ
,

or, equivalently,

fγ (x) =

∞∑
k=0

k∑
j=0

mk,j g
γ (x)Gk+j (x) [1 + λ− 2λG (x)]

γ
,
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where

mk,j = (−1)
j θ

γ (1 + λ)
k
pjΓ (2γ + k)

k! (1− θ)−k Γ (2γ)

(
k

j

)
.

Then, the Rényi entropy of the CGcT-G family reduces to

Iγ (X) = (1− γ)
−1

log

 ∞∑
k=0

k∑
j=0

mk,j

∫ ∞
−∞

gγ (x)Gk+j (x) [1 + λ− 2λG (x)]
γ
dx

 .
The γ-entropy, say Hγ (X), can be obtained as

Hγ (X) = (γ − 1)
−1

log

{
1−

[∫ ∞
−∞

fγ (x) dx

]}
,

which follows from the last equation, where γ > 0, γ 6= 1.
The Shannon entropy of a random variable X, say SE, is defined by

SE = E {− [log f (X)]} .
It is a special case of the Rényi entropy when γ ↑ 1. So, it follows by taking the
limit of Iγ (X) as γ tends to one.

6.5. PWMs. Generally, the PWMs are expectations of certain functions of
a random variable and they can be defined for any random variable whose ordinary
moments exist.

The (s, r)th PWM of X following the CGcT-G family, say ρs,r, is given by

ρs,r = E [XsF r(X)] =

∫ ∞
−∞

xs f (x)F r(x)dx.

Using (3.1) and (3.2), we have

f (x)F r(x) =
θr+1g (x)Gr (x) [1 + λ− 2λG (x)] [1 + λ− λG (x)]

r

{1− (1− θ)G (x) [1 + λ− λG (x)]}r+2 .

Applying the power series (4.2) gives

f (x)F r(x) =

∞∑
k=0

θr+1Γ (k + r + 2) g (x)Gk+r (x) [1 + λ− 2λG (x)]

k! (1− θ)−k (1 + λ)
−k−r

Γ (r + 2) [1− pG (x)]
−(k+r)

,

where p = λ/ (1 + λ). Using (4.3) and, after some simplifications, we obtain

f (x)F r(x) =

∞∑
k=0

k∑
j=0

(−1)
j
θr+1pjΓ (k + r + 2)

k! (1− θ)−k (1 + λ)
−k−r

Γ (r + 2)

(
k

j

)
×g (x)Gk+r+j (x) [1 + λ− 2λG (x)] .(6.3)

Then, we have

f (x)F r(x) =

∞∑
k=0

k∑
j=0

[ak,j πk+r+j+1 (x)− bk,j πk+r+j+2 (x)] ,(6.4)

where

ak,j =
(−1)

j
θr+1 (1 + λ)

k+r+1
pjΓ (k + r + 2)

k! (1− θ)−k (k + r + j + 1) Γ (r + 2)

(
k

j

)
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and

bk,j =
(−1)

j
2θr+1 (1 + λ)

k+r+1
pj+1Γ (r + k + 2)

k! (1− θ)−k Γ (r + 2)

(
k

j

)
.

Finally, the (s, r)th PWM of X can be expressed as an infinite linear combination
of exp-G moments given by

ρs,r =

∞∑
k=0

k∑
j=0

[
ak,j E

(
Y sk+r+j+1

)
− bk,j E

(
Y sk+r+j+2

)]
.

6.6. Order statistics. Let X1, . . . , Xn denote n independent and identically
distributed CGcT-G random variables. Further, let X(1), . . . , X(n) denote the
order statistics from these n variables. The pdf of the ith order statistic X(i), say
fi:n(x), is given by

(6.5) fi:n (x) =
f (x)

B (i, n− i+ 1)

n−i∑
s=0

(−1)
s

(
n− i
s

)
F s+i−1(x).

Using (6.3), we obtain

f (x)F s+i−1 (x) =

∞∑
k=0

θs+iΓ (k + s+ i+ 1) g (x)Gk+s+i−1 (x) [1 + λ− 2λG (x)]

k! (1− θ)−k (1 + λ)
−k−s−i+1

Γ (r + 2) [1− pG (x)]
−(k+s+i−1)

.

Using (6.4), we can write

f (x)F s+i−1 (x) =

∞∑
k=0

k∑
j=0

(−1)
j
θs+ipjΓ (k + s+ i+ 1)

k! (1− θ)−k (1 + λ)
−k−s−i+1

Γ (s+ i+ 1)

(
k

j

)
×g (x)Gk+s+i+j−1 (x) [1 + λ− 2λG (x)] .(6.6)

Substituting (6.6) in equation (6.5), the pdf of Xi:n can be expressed as

fi:n (x) =

∞∑
k=0

k∑
j=0

n−i∑
s=0

[
a∗∗k,s πk+s+i+j (x)− b∗∗k,s πk+s+i+j+1 (x)

]
,

where πα(x) is the exp-G pdf with power parameter α,

a∗∗k,s =
(−1)

j+s
θs+i (1− θ)k (1 + λ)

k+s+i
pjΓ (k + s+ i+ 1)

k! (k + s+ i+ j) B (i, n− i+ 1) Γ (s+ i+ 1)

(
k

j

)(
n− i
s

)
and

b∗∗k,s =
(−1)

j+s
2θs+i (1− θ)k (1 + λ)

k+s+i
pj+1Γ (k + s+ i+ 1)

k! (k + s+ i+ j + 1) B (i, n− i+ 1) Γ (s+ i+ 1)

(
k

j

)(
n− i
s

)
.

We note that the pdf of the CGcT-G order statistics is a linear combination of
exp-G pdfs. Based on the last equation, the properties of Xi:n can follow from
those properties of Yα. For example, the moments of Xi:n can be expressed as

(6.7) E (Xq
i:n) =

∞∑
k=0

k∑
j=0

n−i∑
s=0

[
a∗∗k,s E

(
Y qk+s+i+j

)
− b∗∗k,s E

(
Y qk+s+i+j+1

)]
.
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The L-moments of X can be written as infinite weighted linear combinations of
suitable means of the CGcT order statistics determined from equation (6.7) with
q = 1. Then, we can write

λr =
1

r

r−1∑
d=0

(−1)
d

(
r − 1

d

)
E (Xr−d:r) , r ≥ 1.

7. The CGcTW properties

In this section, we derive some properties of the CGcTW distribution using
the general properties discussed in Sections 4 and 6. According to equation (4.5),
the CGcTW pdf can be expressed as

f(x) =

∞∑
k=0

k∑
j=0

[υk,j πk+j+1 (x)− ωk,j πk+j+2 (x)] ,

where πη (x) is the exponentiated Weibull (EW) pdf with power parameter η.
Thus, several mathematical properties of the CGcTW distribution can be obtained
simply from those properties of the EW model.

Let T be a random variable having the EW distribution with positive parame-
ters α, β and δ. Then, the pdf and cdf of T are given by

g(t) = δβαβtβ−1 exp
[
−(αt)β

] {
1− exp

[
−(αt)β

]}δ−1

and

G(t) =
{

1− exp
[
−(αt)β

]}δ
.

For any n > −b, Al-Hussaini and Ahsanullah (2015) derived the nth ordinary and
incomplete moments of T as

µ′n =
δΓ (1 + n/b)

an

∞∑
l=0

cl (δ)

(l + 1)
n/b

and ϕn(t) =
δγ
(

1 + n/b, (a/t)
b
)

an

∞∑
l=0

cl (δ)

(l + 1)
n/b

,

where cl (δ) = (−1)
l
δ (δ − 1) . . . (δ − l) / (l + 1)!.

• Moments: From Section 6.1, the rth ordinary moment of the CGcTW
distribution can be expressed (for r > −b) as

µ′r =
Γ (1 + r/b)

ar

∞∑
k,l=0

k∑
j=0

[
(k + j + 1) υk,j

cl (k + j + 1)

(l + 1)
r/b

− (k + j + 2)ωk,j
cl (k + j + 2)

(l + 1)
r/b

]
.
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• Incomplete moments: From Section 6.2, the rth incomplete moment of
the CGcTW model is given (for r > −b) by

mr(y) =

γ

(
1 + r

b ,
(
a
y

)b)
ar

∞∑
k,l=0

k∑
j=0

[
(k + j + 1) υk,j

cl (k + j + 1)

(l + 1)
r/b

− (k + j + 2)ωk,j
cl (k + j + 2)

(l + 1)
r/b

]
.

• mgf: The mgf of the CGcTW model is given by

M(t) =

∞∑
k,l=0

k∑
j=0

(−1)
l
1 Ψ0

[ (
1,−β−1

)
− ; (l + 1)

−1
β

t

α

]
[
υk,j

(
k + j + 1

l + 1

)
− ωk,j

(
k + j + 2

l + 1

)]
,

where pΨq(· · · ) is the complex parameter Wright generalized hypergeo-
metric function with p numerator and q denominator parameters (Kilbas
et al., 2006, Equation (1.9)) defined by the power series

pΨq

[
(α1, A1) , . . . , (αp, Ap)
(β1, B1) , . . . , (βq, Bq)

; z

]
=

∞∑
n=0

p∏
j=1

Γ (αj +Ajn)

q∏
j=1

Γ (βj +Bjn)

zn

n!

for z ∈ C, where αj , βk ∈ C, Aj , Bk 6= 0, j = 1, p, k = 1, q and the series
converges for 1 +

∑q
j=1Bj −

∑p
j=1Aj > 0.

• PWMs: From Section 6.5, we have

ρs,r =
Γ (1 + s/b)

as

∞∑
k,l=0

k∑
j=0

[
(k + r + j + 1) ak,j

cl (k + r + j + 1)

(l + 1)
s/b

− (k + r + j + 2) bk,j
cl (k + r + j + 2)

(l + 1)
s/b

]
.

• Order statistics: From Section 6.6, the qth moments of Xi:n for the
CGcTW distribution can be written as

E (Xq
i:n) =

Γ (1 + q/b)

aq

∞∑
k,l=0

k∑
j=0

n−i∑
s=0

[
(k + s+ i+ j) a∗∗k,s

cl (k + s+ i+ j)

(l + 1)
q/b

− (k + s+ i+ j + 1) b∗∗k,s
cl (k + s+ i+ j + 1)

(l + 1)
q/b

]
.

8. Maximum likelihood estimation

In this section, we consider estimation of the unknown parameters of the
CGcT-G family from complete samples by maximum likelihood. Let x1, . . . , xn be
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a random sample from this family with parameters θ, λ and ϕ. Let ξ = (λ, θ, ϕᵀ)
ᵀ

be the p×1 parameter vector. Then, the log-likelihood function for ξ, say ` = ` (ξ),
is given by

` = n log θ +

n∑
i=0

log g (x;ϕ) +

n∑
i=0

log si − 2

n∑
i=0

log pi,(8.1)

where si = 1 + λ − 2λG (xi;ϕ), pi = 1 + (θ − 1)G (xi;ϕ)
[
1 + λG (xi;ϕ)

]
and

G (xi;ϕ) = 1−G (xi;ϕ).

The score vector components, U (ξ) = ∂`
∂ξ =

(
∂`
∂θ ,

∂`
∂λ ,

∂`
∂ϕk

)ᵀ
= (Uθ, Uλ, Uϕk)

ᵀ
,

are given by

Uθ =
n

θ
−

n∑
i=0

2

pi
G (xi;ϕ)

[
1 + λG (xi;ϕ)

]
,

Uλ =

n∑
i=0

1− 2G (xi;ϕ)

si
− (θ − 1)

n∑
i=0

2

pi
G (xi;ϕ)G (xi;ϕ)

and

Uϕk =

n∑
i=0

g′k (xi;ϕ)

g (xi;ϕ)
− 2λ

n∑
i=0

G′k (xi;ϕ)

si

− (θ − 1)

n∑
i=0

2

pi

{
λG (xi;ϕ)G

′
k (xi;ϕ) +G′k (xi;ϕ)

[
1 + λG (xi;ϕ)

]}
,

where g′k (xi;ϕ) = ∂g (xi;ϕ) /∂ϕk andG′k (xi;ϕ) = ∂G (xi;ϕ) /∂ϕk for k = 1, ..., p−
2.

Setting the nonlinear system of equations Uθ = Uλ = Uϕk = 0 and solving them

simultaneously yields the maximum likelihood estimate (MLE) ξ̂ = (θ̂, λ̂, ϕ̂ᵀ)ᵀ of
ξ = (θ, λ, ϕᵀ)

ᵀ
. These equations cannot be solved analytically and a statistical

software can be used to solve them numerically using iterative methods such as
the Newton-Raphson type algorithms.

The MLEs can also be obtained by maximizing (8.1) directly by using R (optim
function), SAS (PROC NLMIXED), Ox program (MaxBFGS sub-routine) or a MATHCAD

program. In Sections 9 and 10, we used the optim function in R. We maximized
(8.1) using a wide range of starting values. The starting values were taken in a
fine scale. For the CGcTW distribution, for example, they were taken to corre-
spond to all combinations of α = 1, 2, . . . , 10, β = 1, 2, . . . , 10, θ = 0.1, 0.2, . . . , 0.9
and λ = −0.9,−0.7, . . . , 0.9. For the CGcTLi distribution, for example, the
starting values were taken to correspond to all combinations of α = 1, 2, . . . , 10,
θ = 0.1, 0.2, . . . , 0.9 and λ = −0.9,−0.7, . . . , 0.9. The call to optim converged
about 98 percent of the time. When the calls to optim did converge, the maxi-
mum likelihood solution was unique. The unique solution was verified by using
the PROC NLMIXED function in SAS. None of the unique solutions corresponded to
boundaries of the parameter spaces.

We experimented maximization of (8.1) for a wide range of choices for G that
are smooth (smooth in the sense of continuity and differentiability) and for a
wide range of starting values. The reported observations held for each choice.
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That is, optim converged about 98 percent of the time, the maximum likelihood
solution was unique when optim did converge and none of the unique solutions
corresponded to boundaries of the parameter spaces. Generally, the likelihood
surface was smooth whenever G was smooth.

For asymptotic interval estimation of the model parameters, we require the
observed information matrix, whose elements are given by

Uθθ =
−n
θ2

+

n∑
i=0

2

p2
i

G2 (xi;ϕ)
[
1 + λG (xi;ϕ)

]2
, Uθλ =

n∑
i=0

−2

p2
i

G (xi;ϕ)G (xi;ϕ) ,

Uθϕk =

n∑
i=0

−2

p2
i

{
λG (xi;ϕ)G

′
k (xi;ϕ) +G′k (xi;ϕ)

[
1 + λG (xi;ϕ)

]}
,

Uλλ = −
n∑
i=0

[1− 2G (xi;ϕ)]
2

s2
i

+ (θ − 1)
2

n∑
i=0

2

p2
i

G2 (xi;ϕ)G
2

(xi;ϕ) ,

Uλϕk = − (θ − 1)

n∑
i=0

2

p2
i

{
G (xi;ϕ)G

′
k (xi;ϕ) [1 + (θ − 1)G (xi;ϕ)]

+G′k (xi;ϕ)G (xi;ϕ)
}
−

n∑
i=0

2

s2
i

G′k (xi;ϕ)
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and

Uϕkϕj =

n∑
i=0

1

g2 (xi;ϕ)

[
g (xi;ϕ) g′′kj (xi;ϕ)− g′k (xi;ϕ) g′j (xi;ϕ)

]
−λ

n∑
i=0

2

s2
i

[
siG
′′
kj (xi;ϕ) + 2λG′k (xi;ϕ)G′j (xi;ϕ)

]
−λ (θ − 1)

n∑
i=0

2

p2
i

G (xi;ϕ)G
′′
kj (xi;ϕ) + λG′j (xi;ϕ)G

′
k (xi;ϕ)

−λ (θ − 1)

n∑
i=0

2

p2
i

G′k (xi;ϕ)G
′
j (xi;ϕ) +G′′kj (xi;ϕ)

[
1 + λG (xi;ϕ)

]
− (θ − 1)

2
n∑
i=0

2

p2
i

G2 (xi;ϕ)G
′′
kj (xi;ϕ)

[
1 + λG (xi;ϕ)

]
−λ (θ − 1)

2
n∑
i=0

2

p2
i

G (xi;ϕ)G′j (xi;ϕ)G
′
k (xi;ϕ)

[
1 + λG (xi;ϕ)

]
−λ (θ − 1)

2
n∑
i=0

2

p2
i

G (xi;ϕ)G′k (xi;ϕ)G
′
j (xi;ϕ)

[
1 + λG (xi;ϕ)

]
−λ (θ − 1)

2
n∑
i=0

2

p2
i

G (xi;ϕ)G′′kj (xi;ϕ)
[
1 + λG (xi;ϕ)

]2
+λ2 (θ − 1)

2
n∑
i=0

2

p2
i

G2 (xi;ϕ)G
′
k (xi;ϕ)G

′
j (xi;ϕ)

+λ (θ − 1)
2

n∑
i=0

2

p2
i

G (xi;ϕ)G′j (xi;ϕ)G
′
k (xi;ϕ)

[
1 + λG (xi;ϕ)

]
+λ (θ − 1)

2
n∑
i=0

2

p2
i

G (xi;ϕ)G′k (xi;ϕ)G
′
j (xi;ϕ)

[
1 + λG (xi;ϕ)

]
+ (θ − 1)

2
n∑
i=0

2

p2
i

G′k (xi;ϕ)G′j (xi;ϕ)
[
1 + λG (xi;ϕ)

]2
,

where k, j = 1, ..., p−2, g′j (xi;ϕ) = ∂g (xi;ϕ) /∂ϕj , g
′′
kj (xi;ϕ) = ∂2g (xi;ϕ) /∂ϕk∂ϕj ,

G′j (xi;ϕ) = ∂G (xi;ϕ) /∂ϕj and G′′kj (xi;ϕ) = ∂2G (xi;ϕ) /∂ϕk∂ϕj .

Under standard regularity conditions when n→∞, the distribution of ξ̂ can be

approximated by a multivariate normal Np(0, J(ξ̂)−1) distribution to construct ap-

proximate confidence intervals for the parameters. Here, J(ξ̂) is the total observed

information matrix evaluated at ξ̂. The method of re-sampling bootstrap can be
used for correcting the biases of the MLEs of the model parameters. Interval es-
timates may also be obtained using the bootstrap percentile method. Likelihood
ratio tests can be performed for the proposed family of distributions in the usual
way.
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9. Applications

We provide two applications to real data to illustrate the flexibility of the
CGcTW and CGcTLi models introduced in Section 5. We determine the MLEs
of the model parameters and their standard errors. The goodness-of-fit statis-
tics for these models are compared with other competitive models. In order to
compare the fitted models, we consider some goodness-of-fit measures including
the Akaike information criterion (AIC), consistent Akaike information criterion
(CAIC), Hannan-Quinn information criterion (HQIC), Bayesian information cri-

terion (BIC), −2̂̀, where ̂̀ is the maximized log-likelihood, Anderson-Darling
(A∗) and Cramér-von Mises (W ∗) statistics. These statistics are widely used to
determine how closely a specific cdf fits the empirical distribution of a given data
set. Generally, the smaller these statistics are, the better the fit.

9.1. The data sets. The first data set refers to nicotine measurements made
from several brands of cigarettes in 1998, collected by the Federal Trade Commis-
sion, which is an independent agency of the US government, whose main mission
is the promotion of consumer protection. The report entitled tar, nicotine, and
carbon monoxide of the smoke of 1,206 varieties of domestic cigarettes for the year
of 1998 consists of the data sets and some information about the source of the data,
smokers behavior and beliefs about nicotine, tar and carbon monoxide contents
in cigarettes. The free form data set can be found at http://pw1.netcom.com/rda
vis2/smoke.html. These data have been used by Afify et al. (2016c) to fit the
Marshall-Olkin additive Weibull distribution. The second data set corresponds
to uncensored observations on the breaking stress of carbon fibres (in Gba) as
reported in Cordeiro et al. (2014).

9.2. The fitted models. We shall compare the fits of the CGcTW and
CGcTLi distributions with those of other competitive models to both data sets.

Tables 1 and 3 provide the values of −2̂̀, AIC, CAIC, HQIC, BIC, W ∗

and A∗ for models fitted to both data sets. The MLEs and their corresponding
standard errors (in parentheses) for the fitted models are reported in Tables 2 and
4. These numerical results are obtained using the Mathcad program.

In Table 1, we compare the fits of the CGcTW model with the Kw-TEMW,
TEMW, TEWG, TAW, Kw-MW, BW, Kw-W and AW models to the nicotine data.
We note that the CGcTW distribution has the lowest values for all goodness-of-fit
statistics among all fitted models. So, the CGcTW model could be chosen as the
best model to explain the nicotine data.

In Table 3, we compare the fits of the CGcTLi model with the Kw-Li, WLi,
WG, BLi, OLL-Li, BW and GT-Li models to the carbon fibres data. The figures

in this table reveal that the CGcTLi model has the lowest values for −2̂̀AIC,
CAIC, HQIC, BIC, W ∗ and A∗ statistics among all fitted models to these data.
Then, the CGcTLi model can be chosen as the best model.

It is quite clear from the figures in Tables 1 and 3 that the CGcTW and CGcTLi
distributions provide the best fits to both data sets. So, these new distributions
can be better models than other competitive distributions. The plots of the fitted
CGcTW and CGcTLi pdfs and other fitted pdfs discussed before are displayed in
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Table 1. The statistics−2̂̀, AIC, CAIC, HQIC, BIC, W ∗ and A∗

for the nicotine data.

Model −2̂̀ AIC CAIC HQIC BIC W ∗ A∗

CGcTW 212.777 220.777 220.894 226.903 236.162 0.34713 1.92288
Kw-TEMW 215.674 229.674 230.005 240.396 256.599 0.37863 2.08814

TEMW 215.967 225.967 226.143 233.625 245.199 0.38319 2.14169
TEWG 216.832 226.832 227.009 234.491 246.064 0.4391 2.38503
TAW 217.393 227.393 227.569 235.051 246.625 0.37208 2.08766

Kw-MW 221.938 231.938 232.114 239.596 251.17 0.43426 2.52687
BW 225.173 233.173 233.29 239.3 248.559 0.49664 2.89774

Kw-W 226.184 234.184 234.302 240.311 249.57 0.5325 3.08454
AW 226.581 234.581 234.698 240.707 249.966 0.55222 3.17512

Figures 3 and 4. These plots also reveal that the CGcTW and CGcTLi distribu-
tions provide the best fits to both data sets. Figures 5 and 6 display the fitted
cdfs and the QQ plots for both the CGcTW and CGcTLi models. It is evident
from these plots that the two models provide closer fits to the two data sets.
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Figure 3. Fitted pdfs of the CGcTW distribution and other models
for the nicotine data.
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Table 2. MLEs and their standard errors (in parentheses) for the
nicotine data.

Model Estimates

CGcTW
α̂= 2.0778

(0.635)
β̂= 1.5694

(0.309)
θ̂= 0.1218

(0.124)
λ̂= −0.2907

(0.529)

BW
α̂= 0.6686

(0.578)
β̂= 3.1645

(0.426)

â= 0.7784
(0.163)

b̂= 3.0922
(8.174)

Kw-W
α̂= 0.6157

(0.392)
β̂= 3.1187

(0.698)

â= 0.8395
(0.233)

b̂= 3.7931
(6.921)

AW
α̂= 1.135
(0.062)

β̂= 0.3084
(0.1)

γ̂= 0.0002
(0.001369)

θ̂= 2.7219
(0.114)

Kw-TEMW
α̂= 0.113

(0.22)
β̂= 2.316

(0.62)

γ̂= 1.436
(1.71)

α̂= 2.033
(1.145)

λ̂= −0.902
(0.197)

â= 0.47
(0.213)

b̂= 1.079
(1.828)

TEMW
α̂= 0.6977

(0.492)
β̂= 2.5908

(0.265)

γ̂= 1.1925
(0.259)

α̂= 1.5007
(0.487)

λ̂= −0.6328
(0.228)

TEWG
α̂= 9.5829

(6.182)
β̂= 0.8057

(0.155)
θ̂= 3.1388

(1.464)

p̂= 0.9841
(0.011)

λ̂= −0.0876
(0.449)

TAW
α̂= 1.2252

(0.239)
β̂= 0.8994

(0.091)

γ̂= 0.433
(0.229)

θ̂= 2.6404
(0.267)

λ̂= −0.8831
(0.147)

Kw-MW
α̂= 0.6145

(0.09)
β̂= 0.4466

(0.364)

γ̂= 0.5622
(0.353)

â= 4.3285
(3.595)

b̂= 6.7039
(6.728)
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Table 3. The statistics−2̂̀, AIC, CAIC, HQIC, BIC, W ∗ and
A∗for the carbon fibres data.

Model −2̂̀ AIC CAIC HQIC BIC W ∗ A∗

CGcTLi 169.976 175.976 176.364 178.572 182.545 0.051 0.298
Kw-Li 171.419 177.419 177.807 180.015 183.988 0.079 0.469
WLi 171.570 177.570 177.957 180.166 184.139 0.079 0.483
WG 171.957 179.957 180.613 183.418 188.716 0.083 0.517
BLi 175.019 181.019 181.406 183.615 187.588 0.144 0.768

OLL-Li 175.993 179.993 180.183 181.723 184.372 0.160 0.845
BW 184.150 192.150 192.806 195.611 200.909 0.275 1.505

GT-Li 187.590 195.590 196.249 199.054 204.352 0.308 1.684
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Figure 4. Fitted pdfs of the CGcTLi distribution and other models
for the carbon fibres data.
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Table 4. MLEs and their standard errors (in parentheses) for the
carbon fibres data.

Model Estimates

OLL-Li
â= 2.963
(0.313)

α̂= 0.488
(0.017)

CGcTLi
θ̂= 0.0075

(0.002)
λ̂= 0.999

(8.840 · 10−10)

α̂= 1.211
(0.052)

Kw-Li
â= 2.320
(0.283)

b̂= 1.031
(3.010)

α̂= 0.052
(0.043)

WLi
â= 20.266
(44.463)

b̂= 2.278
(0.224)

α̂= 0.219
(0.109)

BLi
â= 3.648
(0.631)

b̂= 2.687 · 104

(8.673)

α̂= 0.004
(0.0006)

WG
â= 1.265
(3.376)

b̂= 2.149
(3.461)

α̂= 1.315
(3.472)

β̂= 0.3021
(0.994)

BW
â= 3.124
(1.103)

b̂= 0.102
(0.0131)

α̂= 2.334
(0.002)

β̂= 1.051
(0.002)

GT-Li
â= 7.046
(1.796)

λ̂= 0.0002
(0.118)

b̂= 3.339
(0.207)

α̂= 1.246
(0.109)
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Figure 6. QQ plots of the CGcTW and CGcTLi distributions.
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10. Simulation Study

In this section, we evaluate the performance of the maximum likelihood
method for estimating the CGcTW and CGcTLi parameters using a Monte Carlo
simulation study with 1, 000 replications. We calculate the mean square errors
(MSEs) of the parameter estimates, estimated average lengths (ALs) and coverage
probabilities (CPs) using the R software.

We generate N = 1, 000 samples of sizes n = 50, 55, . . . , 1000 from the CGcTW
distribution with θ = λ = α = β = 0.5. The numerical results for the above
measures are shown in the plots of Figures 7. It is noted, from these plots, that the
estimated biases decrease when the sample size n increases. Further, the estimated
MSEs decay toward zero as n increases. This fact reveals the consistency property
of the MLEs. The CPs are near to 0.95 and approach to the nominal value when
the sample size increases. Moreover, if the sample size increases, the ALs decrease
in each case.

For the CGcTLi distribution, we consider the following combinations: I: θ =
0.3, α = 0.5, λ = 0.5; II: θ = 0.2, α = 1, λ = 1; III: θ = 0.7, α = 2.5, λ = 1.5; IV:
θ = 0.9, α = 3, λ = 2.

Let (θ̂, α̂, λ̂) be the MLEs of the CGcTLi parameters and (sθ̂, sα̂, sλ̂) be the
standard errors of the MLEs. The MSEs, ALs and CPs can be estimated by the
following equations:

MSEε (n) =
1

N

N∑
i=0

(ε̂i − ε) , ALε (n) =
3.919928

N

N∑
i=0

sε̂i

and

CPε (n) =
1

N

N∑
i=0

I (ε̂i − 1.9599sε̂i , ε̂i + 1.9599sε̂i)

The empirical results are given in Table 5. The figures in this table indicate
that the estimates are quite stable and, more importantly, are close to the true
parameter values for these sample sizes.
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Figure 7. Estimated CPs, biases, MSEs and ALs of the selected pa-
rameter vector.
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Table 5: Means, MSEs, ALs and CPs of the estimates under the maximum
likelihood method for the CGcTLi distribution.

n Mean MSE AL CP

θ α λ θ α λ θ α λ θ α λ

50 0.403 0.514 0.699 0.282 0.013 0.537 1.257 0.346 1.479 0.753 0.963 0.857

100 0.402 0.497 0.648 0.153 0.006 0.127 0.975 0.257 1.305 0.864 0.887 0.863

I 250 0.341 0.502 0.594 0.038 0.005 0.064 0.645 0.193 0.747 0.988 0.950 0.922

500 0.328 0.500 0.514 0.015 0.002 0.010 0.438 0.109 0.683 0.940 0.934 0.938

1000 0.298 0.500 0.512 0.005 0.0008 0.005 0.316 0.084 0.346 0.922 0.931 0.951

50 0.726 0.694 1.764 0.563 0.003 1.253 1.874 0.246 1.463 0.938 0.948 0.849

100 0.574 0.804 1.821 0.113 0.001 0.984 1.146 0.143 0.843 0.940 0.953 0.876

II 250 0.540 0.872 1.582 0.044 0.0007 0.126 0.734 0.112 0.479 0.941 0.951 0.907

500 0.518 0.986 1.233 0.019 0.0003 0.039 0.498 0.089 0.246 0.943 0.951 0.931

1000 0.504 0.999 1.041 0.009 0.0001 0.108 0.345 0.041 0.069 0.943 0.952 0.948

50 0.642 2.709 1.996 0.031 0.395 0.943 0.646 2.186 1.250 0.877 0.934 0.862

100 0.658 2.553 1.865 0.015 0.135 0.741 0.378 1.452 1.114 0.941 0.964 0.905

III 250 0.689 2.537 1.684 0.003 0.054 0.493 0.213 0.873 0.951 0.934 0.969 0.934

500 0.692 2.516 1.602 0.001 0.028 0.342 0.145 0.642 0.776 0.936 0.955 0.945

1000 0.699 2.504 1.523 0.0006 0.012 0.204 0.065 0.463 0.542 0.947 0.948 0.946

50 0.837 3.184 2.909 0.025 0.199 0.952 0.675 1.507 1.466 0.946 0.963 0.895

100 0.874 3.036 2.883 0.012 0.115 0.760 0.383 1.301 1.377 0.936 0.957 0.919

IV 250 0.889 3.022 2.512 0.004 0.0461 0.355 0.224 0.756 0.950 0.932 0.941 0.942

500 0.895 2.997 2.305 0.001 0.018 0.196 0.137 0.662 0.755 0.953 0.936 0.945

1000 0.898 3.011 2.085 0.0007 0.011 0.097 0.076 0.358 0.362 0.969 0.922 0.952
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The figures in Table 5 indicate that the MSEs decrease when n increases.
The simulation study also reveals that the maximum likelihood method is appro-
priate for estimating the CGcTLi parameters. In fact, the MSEs of the parameters
tend to be closer to zero when n increases. This fact supports that the asymp-
totic normal distribution provides an adequate approximation to the finite sample
distribution of the MLEs. The normal approximation can often be improved by
using bias adjustments to these estimators. The CPs are near to 0.95. When the
sample size increases, the CPs approach to the nominal value. The ALs decrease
for all cases.

11. Conclusions

The idea of generating new extended models from classic ones has been
of great interest among researchers in the past decade. We have proposed a
new complementary geometric transmuted-G (CGcT-G) family of distributions,
which extends the transmuted class (Shaw and Buckley, 2007) by adding two ex-
tra shape parameters. Many well-known distributions emerge as special cases of
the proposed family by using special parameter values. We have provided some
mathematical properties of the new family including explicit expansions for the
ordinary and incomplete moments, quantile and generating functions, Rényi and
Shannon entropies, order statistics and probability weighted moments. The max-
imum likelihood estimation of the model parameters has been investigated and
the observed information matrix has been determined. By means of two real data
sets, we have verified that special cases of the CGcT-G family can provide better
fits than other models generated from well-known families.
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Appendix A: Important background
Let r(t) be the pdf of a random variable T ∈ [a, b] for −∞ < a < b < ∞ and

let W [H(x)] be a function of the cdf of a random variable X such that W [H(x)]
satisfies the following conditions:


(i) W [H(x)] ∈ [a, b] ,

(ii) W [H(x)] is differentiable and monotonically non-decreasing, and

(iii) W [H(x)]→ a as x→ −∞ and W [H(x)]→ b as x→∞.

Recently, Alzaatreh et al. (2013) defined the T-X family of distributions by

F (x) =

∫ W [H(x)]

a

r(t) dt,(11.1)

where W [H(x)] satisfies the above conditions. The pdf corresponding to (11.1) is
given by

f(x) =

{
d

dx
W [H(x)]

}
r { W [H(x)]} .(11.2)

For the complementary exponential-geometric (CEGc) distribution introduced by
Louzada-Neto et al. (2011), the pdf and cdf are, respectively, given by

f(x) =
αθ exp (−αx)

[θ + (1− θ) exp (−αx)]
2

and

F (x) =
θ [1− exp (−αx)]

θ + (1− θ) exp (−αx)
,

where α > 0 is the scale parameter and 0 < θ < 1 is the shape parameter.
For W [H(x)] = − log [1−H (x;ϕ)] and r(t) the pdf of the CEGc distribution

with α = 1, we define the cdf of the new complementary geometric-H (CGc-H)
family of distributions by

F (x; θ,ϕ) =

∫ − log[1−H(x;ϕ)]

0

θ exp (−t)
[θ + (1− θ) exp (−t)]2

dt

=
θH (x;ϕ)

1− (1− θ)H (x;ϕ)
, θ ∈ (0, 1) ,(11.3)

where H (x;ϕ) is the baseline cdf depending on a parameter vector ϕ and θ ∈ (0, 1)
is an additional shape parameter. The pdf corresponding to (11.3) becomes

f (x; θ,ϕ) =
θh (x;ϕ)

[1− (1− θ)H (x;ϕ)]
2 .

Appendix B: Existing literature
The pdfs of the competitive distributions used in the application section are

given below:
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• The Kw-TEMW pdf given by

f (x) = abαe−αx−γx
β (
α+ γβxβ−1

) [
1 + λ− 2λ

(
1− e−αx−γx

β
)α]

×
(

1− e−αx−γx
β
)aα−1 [

1 + λ− λ
(

1− e−αx−γx
β
)α]a−1

×

{
1−

[
1+λ−λ

(
1−e−αx−γx

β
)α]a

(1−e−αx−γx
β )

−aα

}b−1

.

• The TEMW pdf given by

f (x) = α
(
α+ γβxβ−1

)
e−αx−γx

β
(

1− e−αx−γx
β
)α−1

×
[
1 + λ− 2λ

(
1− e−αx−γx

β
)α]

.

• The TEWG pdf given by

f (x) = θ(1−p)βαβxβ−1 exp e−(αx)β{
1−p[1−e−(αx)β ]

θ
}2

[
1− e−(αx)β

]θ−1
{

1 + λ− 2λ
(1−p)

[
1−e−(αx)β

]θ
1−p[1−e−(αx)β ]

θ

}
.

• he TAW pdf given by

f(x) =
(
αθxθ−1 + γβxβ−1

)
e−αx

θ−γxβ
[
1− λ+ 2λe−αx

θ−γxβ
]
.

• The Kw-MW pdf given by

f (x) = abγ (β + αx)xβ−1eαx−γx
βeαx

(
1− e−γx

βeαx
)a−1

×
[
1−

(
1− e−γx

βeαx
)a]b−1

.

• The BW pdf given by

f (x) = βαβ

B(a,b)x
β−1e−b(αx)β

[
1− e−(αx)β

]a−1

.

• The Kw-W pdf given by

f (x) = abβαβxβ−1 e−(αx)β
[
1− e−(αx)β

]a−1 {
1−

[
1− e−(αx)β

]a}b−1

.

• The AW pdf given by

f(x) =
(
αθxθ−1 + γβxβ−1

)
e−αx

θ−γxβ .
• The WLi pdf given by

f(x) = abα2

1+α (1 + x)e−αx
(1− 1+α+αx

1+α e−αx)
b−1

( 1+α+αx
1+α e−αx)

b+1 e
−a
[

1− 1+α+αx
1+α

e−αx

1+α+αx
1+α

e−αx

]b
.

• The WG pdf given by

f(x) = abβ−α

Γ(α) x
α−1e−x/β [γ(α,x/β)/Γ(α)]b−1

[1−γ(α,x/β)/Γ(α)]b+1 e−a[
γ(α,x/β)/Γ(α)

1−γ(α,x/β)/Γ(α) ]
b

.

• The OLL-Li pdf given by

f(x) = aα2

1+α (1 + x)e−αx
(1− 1+α+αx

1+α e−αx)
a−1

( 1+α+αx
1+α e−αx)

a−1

[(1− 1+α+αx
1+α e−αx)

a
+( 1+α+αx

1+α e−αx)
a
]
2 .

• The GT-Li pdf given by

f(x) = α2e−αx

1+α (1 + x)
[
1− 1+α+αx

1+α e−αx
]a−1

×
{
a (1 + λ)− λ (a+ b)

[
1− 1+α+αx

1+α e−αx
]b}

.

• The Kw-Li pdf given by

f (x) = abα2(1+x)
(1+α) e−αx

[
1− 1+α+αx

1+α e−αx
]a−1 {

1−
[
1− 1+α+αx

1+α e−αx
]a}b−1

.
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• The BLi pdf given by

f (x) = α2(1+x)
B(a,b)(1+α)e−αx

{
1+α+αx

1+α e−αx
}b−1 [

1− 1+α+αx
1+α e−αx

]a−1

.

The parameters of the pdfs above are all positive real numbers except for the
parameters λ and p, where |λ| ≤ 1 and p ∈ [0, 1).
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