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Abstract: This paper suggests several models that describe the symmetry and asymmetry structure of each
subdimension for the multiway square contingency table with ordered categories. A classical three-way cat-
egorical example is examined to illustrate the model results. These models analyze the subsymmetric and
asymetric structure of the table.
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1 Introduction
Square contingency tables with the same categories occur frequently in applied sciences. Such tables arise
from tabulating the repeatedmeasurements of a categorical response variable. Some examples for these kind
of tables are: for instance, when the subjects are measured at two di�erent points in time (e.g., responses
before and after experiments); the decisions of two experts are measured on the same set of subjects (e.g.,
the grading of the same cancer tumors by two specialists); two similar units in a sample are measured (e.g.,
the grades of vision of the left and the right eyes); matched pair experiments (e.g., social status of the fathers
and sons) [1]. For square contingency tables, several models have been proposed (see, for example [2–8] but
the models of symmetry (S), quasi-symmetry (QS), marginal homogeneity (MH) are classical and well known
models [9, 10] and the applicability of the these models is straightforward. The QS is less restrictive model
than the S model [11–13].

Consider an RxR square contingency table with the same row and column classi�cations. Let pij denote
the probability that an observation will fall in the ith row and jth column of the table. Bowker [14] considered
the symmetry (S) model for RxR tables de�ned by

pij = pji (i ≠ j).

The S model implies that the probability that an observation will fall in cell (i, j) of the table is equal to the
probability that it falls in cell (j, i).

Multiway contingency table is obtained when a sample of n observations is cross classi�ed with respect
to T categorical variables having the same number of categories. Such tables are very popular in panel studies
or matched pair examples. The symmetry model is den�ed in multidimensional way.

Denote the kth categorical variable by Xk (k = 1, . . ., T) and consider an RT contingency table (T > 3).
Let pi1...iT denote the probability that an observation will fall in the (i1, . . ., iT)th cell of the table.
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Agresti [1] de�ned the S model as

pi1...iT = pj1...jT ,

for any permutation (j1, . . ., jT) of (i1, . . ., iT ) with it = 1, . . ., r; t = 1, . . ., T .
For example, when T = 3, let X, Y and Z denote the row, column and layer variables, the S model can be

expressed as

pijk = pikj = pjik = pjki = pkij = pkji .

The simplest possible model of interest is the model of complete independence, where the joint distribution
of the three variables is the product of the marginals. The corresponding hypothesis is

H0 : pijk = pi..p.j.p..k

Symmetry model for multiway tables is given in general as follows:

pi1...iT =
( T∏
i=1
αi

)( T∏
i=1
αi

)
ψi1...iT (1.1)

The common schemes for representing contingency tables are based on the row column and layer variables
that are independent. In three way contingency tables, the choice of predictor and control variable is of inter-
est to many researches. The purpose of this paper is to give some models which represent the subsymmetry
and asymmetry formultiway contingency tables.Wewill concentrate on only three dimensional tables which
are a cross-classi�cation of observations by the levels of three categorical variables.

The models are de�ned in the sub symmetry and asymmetry context taking the �rst variable as a control
variable. The models below are often used to analyze three dimensional tables.

Model Terms
Saturated (XYZ)

Homogeneous associations (XY, XZ, YZ)
Conditional independence (XY, XZ), (XY, YZ), (XZ, YZ)

Joint independence (XY, Z), (XZ, Y), (X, XZ)
Complete independence (X, Y, Z)

2 Subsymmetry and asymmetry models
We collect the triplet (X,Y,Z) for each unit in a sample of n units, then the data can be summarized as a three-
dimensional table. Let pijk be the probability of units having X = i, Y = j, and Z = k. In what follows, we
de�ne some models that represent the subsymmetry and asymmetry.
Model 1:

pijk =

 C∏
j=1
βj

( K∏
k=1

γk

)( S∏
s=1

ψs

)( L∏
l=1
ωl

)
.δ.υ.η

j =1, . . . , C; k = 1, . . . , K; s = 1, 2; l = 1, 2, 3, 4.
C∑
j=1

βj =
K∑
k=1

γk = 0
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Model 2:

pijk =

 C∏
j=1
βj

( K∏
k=1

γk

)( S∏
s=1

ψs

)( L∏
l=1
ωl

)
.υ.η

j =1, . . . , C; k = 1, . . . , K; s = 1, 2;w = 1, 2, 3, 4.
C∑
j=1

βj =
K∑
k=1

γk = 0

Model 3:

pijk =

 C∏
j=1
βj

( K∏
k=1

γk

)( S∏
s=1

ψs

)( L∏
l=1
ωl

)
.τ.η.υ

i =1, . . . , R; j = 1, . . . , C; k = 1, . . . , K; s = 1, 2; l = 1, 2, 3, 4.
C∑
j=1

βj =
K∑
k=1

γk = 0

Model 4:

pijk =

 C∏
j=1
βj

( K∏
k=1

γk

)( S∏
s=1

ψs

)( L∏
l=1
ωl

)
υ.η

i =1, . . . R; j = 1, . . . , C; k = 1, . . . , K; s = 2, 3, 5; l = 2, 3, 5.
C∑
j=1

βj =
K∑
k=1

γk = 0

Model 5:

pijk =

 C∏
j=1
βj

( K∏
k=1

γk

)( S∏
s=1

ψs

)( M∏
m=1

θm

)
.τ.δ.ν.

i =1, . . . , R; j = 1, . . . , C; k = 1, . . . , K; s = 2, 3, 5;m = 2, 3, 5.
C∑
j=1

βj =
K∑
k=1

γk = 0

Model 6:

pijk =
( R∏
i=1
αi

) C∏
j=1
βj

( K∏
k=1

γk

)( S∏
s=1

ψs

)( M∏
m=1

θm

)( L∏
l=1
ωl

)
i =1, . . . , R; j = 1, . . . , C; k = 1, . . . , K; s = 2, 3, 5;m = 2, 3, 5; l = 2, 3, 5.

R∑
i=1

αi =
C∑
j=1

βj =
K∑
k=1

γk = 0

Model 7:

pijk =
( R∏
i=1
αi

) C∏
j=1
βj

( S∏
s=1

ψs

)( M∏
m=1

θm

)
ν.τ.η

i =1, . . . , R; j = 1, . . . , C; k = 1, . . . , K; s = 2, 3, 5;m = 2, 3, 5.
R∑
i=1

αi =
C∑
j=1

βj =
K∑
k=1

γk = 0
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Model 8:

pijk =

 C∏
j=1
βj

( K∏
k=1

γk

) ( S∏
s=1

ψs

)( M∏
m=1

θm

)
η.ξ

i =1, . . . R; j = 1, . . . , C; k = 1, . . . , K; s = 2, 3, 5;m = 2, 3, 5.
C∑
j=1

βj =
K∑
k=1

γk = 0

Model 9:

pijk =

 C∏
j=1
βj

( K∏
k=1

γk

)( S∏
s=1

ψs

)( M∏
m=1

θm

)
η.ξ .ν

i =1, . . . , R; j = 1, . . . , C; k = 1, . . . , K; s = 2, 3, 5;m = 2, 3, 5.
C∑
j=1

βj =
K∑
k=1

γk = 0

Model 10:

pijk =
( L∏
l=1
ωs

)( S∏
s=1

ψs

)( M∏
m=1

θm

)
l =1, . . . , 6; s = 1, . . . , 6;m = 1, . . . , 6

Parameters in the models and the corresponding symbols in design matrices are de�ned as:
α: row parameter (X); beta: column parameter (Y) ;
γ: layer parameter (Z); ψ: symmetry parameter (S);
ω: sub-symmetry parameter for XxZ (B);
θ: sub-symmetry parameter for XxY (W);
τ : conditional symmetry parameter for YxZ (CS)
δ: inverse diagonal matrix for XxZ (SSS);
ξ : diagonal asymmetry parameter (DA) ;
η : upper triangle parameter (CCS);
ν : main diagonal parameter (V).
Each model is in the log-linear form, therefore each has its associated degrees of freedom. The number

of parameters to be �t are, for instance, the degrees of freedom for Model (1), which are:

27 − [1 + 2 + 2 + 2 + 4 + 1 + 1 + 1] = 13.

Subsymmetry matrices are de�ned by each dimension as:

For XxY,W =

 1 2 3
2 4 5
3 5 6

, For XxZ , B =

 1 2 3
2 4 5
3 5 6

, For YxZ, S =
 1 2 3

2 4 5
3 5 6

.
V matrix corresponds to the cells on the main diagonal for XxYxZ.

V =



1 0 0
0 0 0
0 0 0
0 0 0
0 1 0
0 0 0
0 0 0
0 0 0
0 0 1



Brought to you by | Hacettepe Ueniversitesi
Authenticated

Download Date | 3/4/20 10:06 AM



Subsymmetry and asymmetry models for multiway square contingency tables | 199

The conditional factor variables are de�ned for the asymmetric associations as follows:
Conditional symmetry matrix:

For {YxZ /i =1,2}, CS =

 1 2 2
3 1 2
3 3 1

,
Upper triangle matrix:

For {YxZ /i =3}, CCS =

 1 2 2
0 1 2
0 0 1


Diagonal asymmetry matrix:

For {YxZ /i =1,2}, DA =

 5 1 2
3 5 1
4 3 5

,
Inverse diagonal matrix:

For {YxZ /i =1,2,3}, SSS =

 0 0 1
0 1 0
1 0 0

 Using these factors we analyze the models by GLM appoach.

3 Numerical example
The data in Table 1 are taken directly from Yamamoto et al. [15] and give results of the treatment group only in
randomized clinical trials conducted by a pharmaceutical company in anemic patients with cancer receiving
chemotherapy. The response is the patient’s hemoglobin (HB) concentration at baseline (before treatment)
and following 4 and 8 weeks of treatment. Hb response is classi�ed as> 10 g/dl, 8–10 g/dl and < 8 g/dl. The
reference ranges for hemoglobin concentration in adults are as: for men: 14.0–17.5 g/dL, for women: 12.3–
15.3 g/dL.

Table 1: Hemoglobin concentration at baseline, 4 weeks and 8 weeks in carcinomatous anemia patients from a randomized
clinical trial.

8 weeks
Baseline 4 weeks > 10 g/dl 8–10 g/dl < 8 g/dl
> 10 g/dl > 10 g/dl 77 7 1
8–10 g/dl > 10 g/dl 43 7 0
< 8 g/dl > 10 g/dl 3 0 0
> 10 g/dl 8–10 g/dl 3 8 1
8–10 g/dl 8–10 g/dl 17 16 5
< 8 g/dl 8–10 g/dl 3 8 1
> 10 g/dl < 8 g/dl 1 1 1
8–10 g/dl < 8 g/dl 0 2 3
< 8 g/dl < 8 g/dl 0 4 3

The Models (1–10) proposed here attampt to analyze what is the relationship between X, Y and Z taking
“Baseline” as the control.

The example of the design matrix is given for Model (8) in Table 2.
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Table 2: Design matrix of Model (8).

X Y Z
Parameter

Constant [Y =1] [Y = 2] [Z = 1] [Z = 2] S2 S3 S5 DA W2 W3 W5 CCS

1

1
1 1 1 0 1 0 0 0 0 5 0 0 0 0
2 1 1 0 0 1 1 0 0 1 0 0 0 0
3 1 1 0 0 0 0 1 0 2 0 0 0 0

2
1 1 0 1 1 0 1 0 0 3 1 0 0 0
2 1 0 1 0 1 0 0 0 5 1 0 0 0
3 1 0 1 0 0 0 0 1 1 1 0 0 0

3
1 1 0 0 1 0 0 1 0 4 0 1 0 0
2 1 0 0 0 1 0 0 1 3 0 1 0 0
3 1 0 0 0 0 0 0 0 5 0 1 0 0

2

1
1 1 1 0 1 0 0 0 0 5 1 0 0 0
2 1 1 0 0 1 1 0 0 1 1 0 0 0
3 1 1 0 0 0 0 1 0 2 1 0 0 0

2
1 1 0 1 1 0 1 0 0 3 0 0 0 0
2 1 0 1 0 1 0 0 0 5 0 0 0 0
3 1 0 1 0 0 0 0 1 1 0 0 0 0

3
1 1 0 0 1 0 0 1 0 4 0 0 1 0
2 1 0 0 0 1 0 0 1 3 0 0 1 0
3 1 0 0 0 0 0 0 0 5 0 0 1 0

3

1
1 1 1 0 1 0 0 0 0 0 0 1 0 1
2 1 1 0 0 1 1 0 0 0 0 1 0 2
3 1 1 0 0 0 0 1 0 0 0 1 0 2

2
1 1 0 1 1 0 1 0 0 0 0 0 1 0
2 1 0 1 0 1 0 0 0 0 0 0 1 1
3 1 0 1 0 0 0 0 1 0 0 0 1 2

3
1 1 0 0 1 0 0 1 0 0 0 0 0 0
2 1 0 0 0 1 0 0 1 0 0 0 0 0
3 1 0 0 0 0 0 0 0 0 0 0 0 1

Designmatrices are generated for eachmodel. Likelihood ratio chi-square valueswith associated degrees
of freedom, AIC and BIC are given in Table 3. Model comparisons, here in addition to the goodness of �t tests,
tend to give better information on what model represents the data better.

The results show that all models �t the data well. The smallest value for both AIC and BIC is obtained for
Model (8). Note that Model (8) and Model (9) are the conditional models that collapsed the baseline variable.
Recall that Model (8) is

pijk =

 C∏
j=1
βj

( K∏
k=1

γk

) ( S∏
s=1

ψs

)( M∏
m=1

θm

)
η.ξ .

Correspondingly, denote mijk expected frequencies, the Model (8) is represented as

Log(mijk) = Y + Z + S2 + S3 + S5 +W2 +W3 +W5 + DA + CCS.

In this model representation, “Baseline” is the control variable therefore it is not included in the parameters.
Model (8) tests the pijk = βjγkψ2ψ3ψ5θ2θ3θ5.η.ξ hypothesis and takes the table YxZ frequencies. The

probability that a subject at baseline has hemoglobin level> 10 g/dl is 13.10 more likely being> 10 g/dl at 4
and 8 consequtive weeks instead of 8–10 g/dl.
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Table 3:Model results under various models.

Model Terms Likelihood ra-
tio chi-square

Degrees of
freedom

P- value BIC AIC

1 Y, Z, S1, S2, B1, B2, B3, B4, CCS,
SSS, V

18.043 13 0.156 −51.771 −7.957

2 Y,Z, S1, S2, B1, B2, B3,
B4, V, CCS

19.531 14 0.146 −55.658 −8.469

3 Y, Z, S1, S2, B1, B2,
B3, B4, CC, CCS, V

19.443 13 0.110 −50.059 −6.557

4 Y, Z, S2, S3, S5, B2,
B3, B5, V

20.268 14 0.122 −54.922 −7.73

5 Y, Z, V2, S2, S3, S5, B2,
B3, B5, CS, CCS, SSS

19.953 13 0.096 −49.865 −6.047

6 B,Y,Z, S2, S3, S5, B2, B3
B5, W2, W3, W5, V

12.943 10 0.227 −40.763 −7.057

7 B, Y, S2, S3, S5, W2, W3,
W5, V, CS, CCS

20.825 13 0.076 −48.990 −5.175

8 Y, Z, S2, S3, S5 ,DA, W2, W3, W5,
CCS

17.623 14 0.225 −57.565 −10.38

9 Y, Z, S2, S3, S5, DA, W2, W5, CCS, V 15.694 13 0.266 −54.124 −10.306
10 B1, B2, B3, B4, B5, B6

S1, S2, S3, S4, S5, S6
W1, W2, W3, W4, W5, W6

13.293 11 0.275 −45.780 −8.707

Table 4: Parameter estimates under Model (8).

Parameter Estimate Std. Error Z Sig.
95% Con�dence Interval

Lower Bound Upper Bound
Constant 1.377 0.560 2.460 0.014 0.280 2.474
[Y = 1] 1.181 0.376 3.146 0.002 0.445 1.918
[Y = 2] 0.502 0.343 1.462 0.144 −0.171 1.175
[Y = 3] 0a . . . . .
[Z = 1] 1.375 0.374 3.674 0.000 0.641 2.108
[Z = 2] 0.576 0.339 1.702 0.089 −0.087 1.240
[Z = 3] 0a . . . . .
S2 −1.026 0.331 −3.097 0.002 −1.675 −0.377
S3 −3.283 0.769 −4.269 0.000 −4.790 −1.776
S5 −0.607 0.422 −1.439 0.150 −1.433 0.220
W2 −0.679 0.156 −4.361 0.000 −0.985 −0.374
W3 −2.298 0.511 −4.499 0.000 −3.299 −1.297
W5 −0.669 0.317 −2.107 0.035 −1.291 −0.047
CCS −0.198 0.404 −0.491 0.624 −0.990 0.593
DA 0.087 0.089 0.975 0.329 −0.088 0.261
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Table 5: Odds Ratios under Model (8).

Baseline
ODDS RATIOS > 10 g/dl 8–10 g/dl < 8 g/dl

θ11 13.10 13.10 7.78
θ12 3.37 3.37 4.24
θ21 3.99 4.02 6.35
θ22 5.69 5.66 3.36

Table 6: Parameter estimates under Model (9).

Parameter Estimate Std. Error Z Sig.
95% Con�dence Interval

Lower Bound Upper Bound
Constant 1.638 0.609 2.690 0.007 0.445 2.832
[Y = 1] 1.225 0.380 3.225 0.001 0.481 1.970
[Y = 2] 0.529 0.347 1.524 0.127 −0.151 1.210
[Y = 3] 0a . . . . .
[Z = 1] 1.392 0.366 3.799 0.000 0.674 2.110
[Z = 2] 0.590 0.335 1.762 0.078 −0.066 1.247
[Z = 3] 0a . . . . .
S2 −1.252 0.376 −3.332 0.001 −1.988 −0.515
S3 −3.502 0.792 −4.422 0.000 −5.054 −1.949
S5 −0.800 0.458 −1.749 0.080 −1.697 0.096
W2 −1.065 0.325 −3.277 0.001 −1.701 −0.428
W3 −2.642 0.573 −4.607 0.000 −3.765 −1.518
W5 −0.916 0.371 −2.471 0.013 −1.642 −0.189
CCS −0.141 0.420 −0.337 0.736 −0.965 0.682
DA 0.111 0.093 1.197 0.231 −0.071 0.294
V −0.479 0.350 −1.371 0.170 −1.165 0.206

TheHBconcentration tends todecrease frombaseline throughout 8weeks, since themaximumlikelihood
estimates are less than 1.

Table 7: Odds Ratios under Model (9).

Baseline
ODDS RATIOS > 10 g/dl 8–10 g/dl < 8 g/dl

θ11 14.76 14.76 12.21
θ12 2.44 3.94 3.75
θ21 3.07 4.93 4.91
θ22 9.67 5.98 3.07

Therefore, under the model (9), the conditional probability that when a patient’s Hb concentration at 4
week is> 10 g/dl, the probability that a patient’s HB the probability that a patient’s level> 10 g/dl at baseline
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instead of 8 weeks and 4 weeks is 14.76 times higher than a patient’s Hemoglobin level > 10 g/dl instead of
8–10 g/dl at 8 weeks.

The odds ratios greater than one under model (8) and model (9) indicate that the HB concentration at
level> 10 g/dl is more likely to occur at baseline instead of after 4 and 8 weeks.

Table 8: Expected frequencies under Model (8).

8 weeks
Baseline 4 weeks > 10 g/dl 8–10 g/dl <8g/dl
> 10 g/dl > 10 g/dl 78.83 8.98 0.58
8–10 g/dl > 10 g/dl 6.10 9.12 1.97
< 8 g/dl > 10 g/dl 0.08 0.5 0.6
> 10 g/dl 8–10 g/dl 39.96 4.56 0.29
8–10 g/dl 8–10 g/dl 12.04 17.99 3.89
<8g/dl 8–10 g/dl 0.43 2.56 3.13

> 10 g/dl < 8g/dl 4.21 0.56 0.03
8–10 g/dl < 8g/dl 4.76 4.89 1.23
< 8 g/dl < 8 g/dl 0.59 3.85 3.25

Table 9: Expected frequencies under Model (9).

8 weeks
Baseline 4 weeks > 10 g/dl 8–10 g/dl < 8 g/dl
> 10 g/dl > 10 g/dl 76.19 10.11 0.66
8–10 g/dl > 10 g/dl 4.84 9.45 1.51
< 8 g/dl > 10 g/dl 0.06 0.42 0.64
> 10 g/dl 8–10 g/dl 42.44 3.49 0.23
8–10 g/dl 8–10 g/dl 14.05 17.04 4.39
< 8 g/dl 8–10 g/dl 0.39 2.33 3.59
> 10 g/dl < 8 g/dl 4.36 0.49 0.03
8–10 g/dl < 8 g/dl 4.02 5.45 1.18
< 8 g/dl < 8 g/dl 0.62 4.17 2.77

4 Conclusions
We considered subsymmetry models for multiway square contingency tables in which the main diagonal
is not of interest. The models are established to analyze square multidimensional contingency tables with
ordered categories.We see from the results that themodels described here can be applied to amultiway table.
We applied models to the patient’s hemoglobin concentration data set to illustrate the proposedmodels. The
responsewas the patient’s hemoglobin (Hb) concentration at baseline (before treatment) and following 4
weeks and 8 weeks of treatment. The primary goal was to compare the baselines levels to 4th and 8th weeks
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taking the baseline as a layer variable. We were interested in considering the changing status of patient’s Hb
concentration frombaseline through time. But onewished to seewhether there was an asymmetric transition
of those concentrations or not, when the value of those concentration at baseline was given. The advantages
of the models proposed here are that they are capable of analyzing the conditional odds ratios as well as the
parameter estimates. Extensions to k-way tables are straightforward.
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