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a b s t r a c t

The concept of an enabling ideal is introduced so that an ideal I is strongly lifting if and
only if it is lifting and enabling. These ideals are studied and their properties are described.
It is shown that a left duo ring is an exchange ring if and only if every ideal is enabling,
that Zhou’s δ-ideal is always enabling, and that the right singular ideal is enabling if and
only if it is contained in the Jacobson radical. The notion of a weakly enabling left ideal is
defined, and it is shown that a ring is an exchange ring if and only if every left ideal isweakly
enabling. Two related conditions, interesting in themselves, are investigated: the first gives
a new characterization of δ-small left ideals, and the second characterizes weakly enabling
left ideals. As an application (which motivated the paper), let M be an I-semiregular left
module where I is an enabling ideal. It is shown that m ∈ M is I-semiregular if and only if
m − q ∈ IM for some regular element q of M and, as a consequence, that if M is countably
generated and IM is δ-small inM, thenM ∼= ⊕

∞

i=1 Rei where e2i = ei ∈ R for each i.
© 2010 Elsevier B.V. All rights reserved.

Throughout this paper all rings are associative with unity, and all modules are unitary. We denote the Jacobson radical of a
ring R by J = J(R), the right and left socles by Sr and Sl, the right and left singular ideals by Zr and Zl, and the left δ-ideal
[8] by δ = δ(R). We write I ▹ R to indicate that I is an ideal (right and left) of R. The ring of integers is denoted by Z, and
we write Zn for the ring of integers modulo n. If X is a subset of Rwe write r(X) and l(X) for the right and left annihilators
of X in R. Modules are left modules unless otherwise indicated, and homomorphisms are written on the right. The notation
S ⊆

⊕ M indicates that S is a direct summand ofM.

1. Enabling ideals

Let I be an ideal of a ring R. Then I is called lifting if, for each a ∈ R, the condition a2−a ∈ I implies that a−e ∈ I for some
e2 = e ∈ R. In [6], the ideal I is called strongly lifting if for each a the idempotent e can be chosen so that e ∈ aR, (equivalently
e ∈ Ra, equivalently e ∈ aRa; see [6, Lemma 1]). The next result allows us to split the notion of strong lifting, and will be
used extensively below.

Lemma 1. Let I ▹ R. The following are equivalent.

(1) If a − e ∈ I, a ∈ R, e2 = e ∈ R, then a − f ∈ I for some f 2 = f ∈ Ra.
(2) If a − e ∈ I, a ∈ R, e2 = e ∈ R, then a − f ∈ I for some f 2 = f ∈ aRa.
(3) If a − e ∈ I, a ∈ R, e2 = e ∈ R, then a − f ∈ I for some f 2 = f ∈ aR.
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Proof. We need only prove (1)⇒(2). If x, y ∈ R write x ≡ y when x − y ∈ I. Given (1), let a ≡ e where e2 = e ∈ R.
We have a2 ≡ e so, replacing a by a2 in (1), we obtain g2

= g ∈ Ra2 such that g ≡ a2 ≡ a. Write g = ba2, b ∈ R,
where (since g = g2) we may assume that gb = b. Define f = aba ∈ aRa. Then f 2 = aba2ba = agba = aba = f , and
f = aba ≡ aba2 = ag ≡ a2 ≡ a. This proves (2). �

We remark that Lemma 1 is true for any left ideal I provided the idempotent e is central.
An ideal I ▹ R is called an enabling ideal of R if it satisfies the conditions in Lemma 1. Thus I = 0 and I = R are both

enabling ideals in any ring R. If I ▹ R is strongly lifting then it is both lifting and enabling, and we claim that the converse is
true. For if a2 − a ∈ I then, because I is lifting, there exists e2 = e ∈ R such that a− e ∈ I. But then there exists f 2 = f ∈ Ra
such that a − f ∈ I because I is enabling. Hence I is strong lifting, and we have proved that strongly lifting ‘‘splits’’ in the
following sense.

Theorem 2. If I ▹ R, then I is strongly lifting if and only if I is both lifting and enabling.

Since every strongly lifting ideal is enabling, Theorems 10 and 4 in [6], respectively, give the following examples.

Example 3. The right socle Sr and the left socle Sl are both enabling ideals.

Example 4. Every ideal in an exchange ring is enabling.

If R is commutative, the converse to Example 4 is true. In fact, we will show that a left duo ring R (left ideals are ideals) is
exchange if and only if every ideal is enabling. We return to this in Corollary 23.

While the Jacobson radical may not be lifting, it is always enabling. In fact, we have the following proposition.

Proposition 5. If I ▹ R and I ⊆ J then I is enabling. In particular, J is enabling.

Proof. Write r ≡ s to mean r − s ∈ I. If a ≡ e = e2 we must find f 2 = f ∈ Ra such that a ≡ f . We have e − a ∈ I ⊆ J, so
u = 1 − (e − a) is a unit in R and u ≡ 1. Moreover ue = ae so e = e2 = e(u−1ae). Hence f = eu−1a is an idempotent in Ra,
and f ≡ ea ≡ a2 ≡ a, as required. �

An enabling ideal need not be contained in the Jacobson radical. For example, if F is a field and R =

[
F F
0 F

]
then

Sr =

[
0 F
0 F

]
is enabling by Example 3, but Sr * J because J =

[
0 F
0 0

]
. However there is one important class of enabling

ideals that must lie in the Jacobson radical. An ideal I ▹ R is said to be idempotent-free if 0 is the only idempotent in I.

Proposition 6. If I ▹ R is idempotent-free, then I ⊆ J(R) if and only if I is enabling.

Proof. The forward implication is Proposition 5. For the converse, assume that I is enabling but I * J. Then I * M for some
maximal left ideal M of R, so R = I + M, say 1 = x + m where x ∈ I and m ∈ M. Thus m − 1 ∈ I so, since I is enabling,
there exists f 2 = f ∈ Rm with m − f ∈ I. But then 1 − f = (1 − m) + (m − f ) ∈ I. Since I is idempotent-free, it follows
that 1 = f ∈ Rm ⊆ M, a contradiction. �

We will improve on Proposition 6 later (Proposition 34).
It is worth noting that the proof of the reverse implication in Proposition 6 requires only that a− 1 ∈ I implies a− f ∈ I

for some f 2 = f ∈ Ra. We will return to ideals with this property in the next section where they will be called weakly
enabling.

Corollary 7. If 0 and 1 are the only idempotents in a ring R, and if I ▹ R is an enabling ideal, then I ⊆ J or I = R.

Proof. If I ≠ R is an enabling ideal, then I is idempotent-free by hypothesis, so I ⊆ J by Proposition 6. �

Thus, for example, the only enabling ideals of Z are 0 and Z.
The left singular ideal Zl = Zl(R) of a ring R is defined by Zl = {z ∈ R | l(z) is essential in RR}, with a similar definition for

the right singular ideal Zr . If Z denotes Zl or Zr , it is often a mystery whether Z ⊆ J. Since Z is idempotent-free in both cases,
we have the following corollary.

Corollary 8. If Z denotes Zl or Zr , then Z is enabling if and only if Z ⊆ J.

Recall that the second left singular ideal Z2
l = Z2

l (R) of a ring R is defined by Zl(R/Zl) = Z2
l /Zl. It follows in the same way

that Z2
l ⊆ J if and only if Z2

l is enabling.
The next example gives two important situations where the left singular ideal Zl is enabling. Call a ring R left principally

injective if every R-linear map Ra → R, a ∈ R, extends to R; and call R right Kasch if every simple right module embeds in
R, equivalently if l(T ) ≠ 0 for all maximal right ideals T of R.

Example 9. Let R be a ring.

(1) If l(a) = 0, a ∈ R, implies aR = R, then Zl is enabling.
(2) In particular, if R is right Kasch or left P-injective, then Zl is enabling.
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Proof. (1) If a ∈ Zl then the fact that l(1 − a) ∩ l(a) = 0 implies that l(1 − a) = 0. Hence (1 − a)R = R by hypothesis.
This proves that Zl ⊆ J so Corollary 8 applies.

(2) If R is left P-injective then aR = rl(a) for each a. Hence l(a) = 0 implies aR = r(0) = R, and (1) applies. Now assume
that R is right Kasch, and suppose that l(a) = 0 but aR ≠ R. Let T be a maximal right ideal such that aR ⊆ T . Then
bT = 0 for some 0 ≠ b ∈ R by the Kasch condition. Hence b ∈ l(a) = 0, a contradiction, and again we are done by
(1). �

Example 10. Neither ‘‘lifting’’ nor ‘‘enabling’’ implies the other.

Proof. Let p ≠ q be primes in Z, and let R = {
k
d ∈ Q | p - d and q - d}. Write P = pR and Q = qR. Then one verifies that

R/P ∼= Zp, R/Q ∼= Zq, and P ∩ Q = pqR = J(R) = J. Since P + Q = R, it follows from the Chinese remainder theorem that
R/J ∼= Zp × Zq. As R is a domain, it follows that J is not lifting so, by Proposition 5, J is an enabling ideal that is not lifting.

On the other hand, the ideal P is lifting because R/P ∼= Zp is a field, but P is not enabling by Proposition 6. �

Note that if p ∈ Z is a prime, the ideal pnZ of Z is another commutative example of a lifting ideal that is not enabling.

Proposition 11. Let A ⊆ I be ideals of R. Write r̄ = r + A in R̄ = R/A.

(1) If A is lifting and I is enabling in R, then Ī is enabling in R̄.
(2) If A is strongly lifting and Ī is enabling in R̄, then I is enabling in R.

Proof. (1) Let ā − ē ∈ Ī, ē2 = ē. As A is lifting we may assume that e2 = e. Since a − e ∈ I and I is enabling, there exists
f 2 = f ∈ Ra such that a − f ∈ I. Hence f̄ 2 = f̄ ∈ R̄ā and ā − f̄ ∈ Ī.

(2) Assume that Ī is enabling in R̄. If a− e ∈ I, e2 = e, we want g2
= g ∈ Ra such that a− g ∈ I. We have ā− ē ∈ Ī, ē2 = ē

so, by hypothesis, let f̄ 2 = f̄ ∈ R̄ā satisfy ā − f̄ ∈ Ī. As A is lifting we may assume that f 2 = f . Write f̄ = r̄ ā, r ∈ R, and
observe that (ra)2 − ra ∈ A. Since A is strongly lifting, there exists g2

= g ∈ Ra such that g − ra ∈ A ⊆ I. Hence, if ≡
denotes congruence modulo I, we have g ≡ ra ≡ f ≡ a; that is a − g ∈ I . �

Corollary 12. If J is lifting and J ⊆ I ▹ R, then I is enabling in R if and only if I/J is enabling in R/J.

Proof. It follows by Proposition 11 because J is strongly lifting whenever it is lifting. �

Corollary 13. Let A ⊆ I be ideals of R where A is strongly lifting and I/A ⊆ J(R/A). Then:

(1) The ideal I is enabling;
(2) I is strongly lifting if and only if it is lifting.

Proof. Since (1) implies (2), it is enough to prove (1). But I/A is enabling by hypothesis, so I is enabling by (2) of
Proposition 11. �

Following Zhou [8, Lemma 1.2] a submodule K ⊆ M is called δ-small in M if the following equivalent conditions are
satisfied.

(1) If M = K + X where M/X is singular then X = M.
(2) If M = K + X then M = Y ⊕ X where Y ⊆ K and Y is semisimple and projective.

Note that (2) implies that a δ-small left ideal which is a direct summand is semisimple.
Zhou defines δ(M) to be the sum of all δ-small submodules of M and shows that δ is a preradical in the category of left

R-modules. In particular δ(RR) is an ideal of R which we will call the left δ-ideal of R, and denote by δ = δ(R). Zhou goes
on to show [8, Theorem 1.6 and Corollary 1.7] that δ(R) is the intersection of the essential, maximal left ideals of R, and that
J(R/Sl) = δ/Sl. In particular, δ ⊇ J. Since Sl is strongly lifting [6, Theorem 10], the following result follows fromCorollary 13.

Corollary 14. If R is any ring then δ(R) is enabling.

Note that the ideal δ(R) need not be lifting. To see this, let p ≠ q be primes in Z, and let R = {
k
d ∈ Q | p - d and q - d} be the

ring in Example 10. Then pR and qR are the only maximal ideals in R, and they are essential in R, so δ(R) = pR ∩ qR = J(R).
Hence δ(R) is not lifting by Example 10.

We conclude this section with some results about related rings. The first result is clear from the definitions.

Proposition 15. Let Ik ▹ Rk where each Rk is a ring. Then ΠkIk is enabling in the direct product ΠkRk if and only if Ik is enabling
in Rk for each k.

Proposition 16. Let g2
= g ∈ R. If I ▹ R is enabling, then gIg ▹ gRg is enabling.

Proof. Let a ∈ gRg and assume that a − e ∈ gIg where e2 = e ∈ gRg. Then a ∈ R and a − e ∈ I so, by hypothesis,
there exists f 2 = f ∈ aRa with f − a ∈ I. As a ∈ gRg, it follows that f ∈ gRg, and hence that f − a ∈ gRg. Finally
f ∈ aRa = (ag)R(ga) = a(gRg)a, completing the proof. �

If R is a general ring (possibly no unity), we define enabling ideals of R in the same way. Then an argument similar to the
proof of Proposition 16 shows that if I ▹ R is enabling then I ∩ S ▹ S is enabling for any left or right ideal S of R.
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Proposition 17. Let T =

[
R V
0 S

]
be a split-null extension. If I ▹ R and K ▹ S, and if

[
I V
0 K

]
is enabling in T , then I and K

are enabling in R and S respectively.

Proof. Let a− e ∈ I where e2 = e ∈ R, and let b− f ∈ K where f 2 = f ∈ S. Thenwe have
[
a 0
0 b

]
−

[
e 0
0 f

]
∈

[
I V
0 K

]
.

By hypothesis, there exists
[
p v
0 q

]2

=

[
p v
0 q

]
∈ T

[
a 0
0 b

]
such that

[
p v
0 q

]
−

[
a 0
0 b

]
∈

[
I V
0 K

]
. It follows that

p2 = p ∈ Ra with p − a ∈ I, and q2 = q ∈ Sb with q − b ∈ K . �

In particular, if Tn(R) denotes the ring of upper triangular matrices over R, and if I ▹ R and Tn(I) is enabling in Tn(R), then I
is enabling in R. We do not know if the converse is true.

Question. If I ▹ R is enabling, is Mn(I) ▹ Mn(R) enabling where Mn(R) is the matrix ring.

Question. If I ▹ R is enabling, is I[x] ▹ R[x] enabling?

Question. If I ▹ R is enabling, is I[[x]] ▹ R[[x]] enabling?

2. Weakly enabling left ideals

In the discussion following Proposition 6, we mentioned a class of ideals with a weakened enabling requirement. Other
characterizations are given in the following lemma.

Lemma 18. The following are equivalent for a left ideal L of a ring R.

(1) If a − 1 ∈ L, a ∈ R, then a − f ∈ L for some f 2 = f ∈ Ra.
(2) If a − 1 ∈ L, a ∈ R, then a − f ∈ L for some f 2 = f ∈ aRa.
(3) If a − 1 ∈ L, a ∈ R, then a − f ∈ L for some f 2 = f ∈ aR.

Proof. We prove (1)⇒(2) and (3)⇒ (2). Write x ≡ y to mean that x − y ∈ L.
(1)⇒(2). If a ≡ 1 one verifies that a2 ≡ 1, so (1) produces g2

= g ∈ Ra2 such that g ≡ a2. Write g = ba2, b ∈ R, where
(since g = g2) we may assume that gb = b. If we define f = aba ∈ aRa, then f 2 = aba2ba = agba = aba = f ,
so it remains to show that f ≡ a. Since 1 ≡ a2 we obtain b ≡ ba2 = g ≡ a2 ≡ a. Since a ≡ 1, we have
f = aba ≡ (ab)1 = ab ≡ a2 ≡ 1 ≡ a. This proves (2).

(3)⇒(2). If a ≡ 1 then a2 ≡ 1 so (3) produces g2
= g ∈ a2R such that g ≡ a2. Write g = a2c, c ∈ R, where cg = c. If

we define h = aca then h2
= h ∈ aRa as before. Note that, since a ≡ 1, we have ah = a2ca = ga ≡ g ≡ 1. Finally, define

f = h + ah − hah. Then f 2 = f ∈ aRa and f ≡ h + 1 − h · 1 = 1 ≡ a, proving (2). �

A left ideal L is called weakly enabling if the conditions in Lemma 18 are satisfied for every a ∈ R. A left ideal L is called
strongly lifting [6] if a2 − a ∈ L implies e − a ∈ L for some e2 = e ∈ Ra, and, in this case, L is weakly enabling because
a − 1 ∈ L implies a2 − a ∈ L. Obviously enabling ideals are weakly enabling both as a left and a right ideal, but we do not
have an example showing that the converse is not true.

It turns out that weakly enabling left ideals admit a characterization in terms of the following important notion. If N is a
submodule of a moduleM, we call N a partial summand1 ofM if the following condition holds:

If M = N + X, X a submodule then M = S + X for some S ⊆
⊕ M with S ⊆ N.

As the terminology suggests, every direct summand N ofM is a partial summand (take S = N), and every small submodule
is a partial summand. In fact, if N is a partial summand ofM, and K is small inM, then N + K is a partial summand. Indeed,
ifM = (N + K) + X thenM = N + X because K is small, and so there exists S ⊆

⊕ M such that S ⊆ N ⊆ N + K . We note in
passing that by [5, Proposition 2.9 ] a projective module has the finite exchange property if and only if every submodule is
a partial summand.

Before proceeding, we recall a lemma [4, Lemma 1.16] which will be used several times below.

Lemma 19. Let M be a projective module and assume that M = P +K where P and K are submodules and P is a direct summand
of M. Then there exists Q ⊆ K such that M = P ⊕ Q .

A left ideal L is called a left partial summand of R if it is a partial summand of RR; that is

(1) If R = L + X, X a left ideal, then R = Re + X for some e2 = e ∈ L.
By Lemma 19 this is equivalent to

(2) If R = L + X, X a left ideal, then R = Re ⊕ Rf for some e2 = e ∈ L and f 2 = f ∈ X .
These left partial summands are precisely the weakly enabling left ideals.

1 In [1] a partial summand ofM is said to be DM inM.
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Theorem 20. The following conditions are equivalent for a left ideal L of a ring R.

(1) L is weakly enabling.
(2) L is a left partial summand of R.

Proof. (1)⇒(2). Let R = L + RX, say 1 = a + x, a ∈ L, x ∈ X . Then x − 1 ∈ L so, by (1), there exists f 2 = f ∈ Rx such that
x − f ∈ L. Hence f ∈ X and 1− f = (1 − x) + (x − f ) ∈ L, so R = R(1 − f ) + X . This shows that L is a left partial summand
of RR.

(2)⇒(1). Let a − 1 ∈ L; we must find g2
= g ∈ Ra such that a − g ∈ L. We have R = L + Ra so (2) gives R = Re + Ra

where e2 = e ∈ L. Since R is projective, Lemma 19, gives R = Re⊕Rf where f 2 = f ∈ Ra. Let 1 = re+ sf where r, s ∈ R and
consider g = f +sf − fsf . Then g2

= g ∈ Ra and 1−g = (1− f )(1−sf ) = (1− f )re ∈ L.Hence a−g = (a−1)+(1−g) ∈ L,
as required. �

For an ideal, Theorem 20 shows that ‘‘partial summand’’ is a left–right symmetric concept.

Theorem 21. If I ▹ R the following are equivalent.

(1) I is weakly enabling as a left ideal.
(2) I is weakly enabling as a right ideal.
(3) I is a left partial summand of R.
(4) I is a right partial summand of R.

Proof. (1)⇔(3) and (2)⇔(4) follow from Theorem 20, and (1)⇔(2) follows from Lemma 18. �

With this we can give a new characterization of exchange rings.

Theorem 22. The following are equivalent for a ring R.

(1) R is an exchange ring.
(2) Every left ideal of R is a weakly enabling left ideal.

Proof. (1)⇒(2). Every left ideal of an exchange ring is strongly lifting [6, Theorem 4], hence weakly enabling.
(2)⇒(1). Given (2), every left ideal of R is a left partial summand of R by Theorem 20. But then [5, Proposition 2.9] shows

that RR has the finite exchange property, that is, R is an exchange ring. �

Corollary 23. A left duo ring R is an exchange ring if and only if every ideal is enabling.

Proof. If R is exchange, use Example 4. Conversely, if L ⊆ R is a left ideal then, by hypothesis, L ▹ R so L is enabling. But then
L is weakly enabling as a left ideal and Theorem 22 applies. �

If R is a ring in which every ideal is a left and right partial summand, we do not know whether every ideal is enabling in
R. This clearly holds for commutative rings; indeed, it holds much more generally. The following notion is needed.

Following [3], a moduleM is said to have the summand-sum property (SSP) if K +L is a direct summand ofM whenever
both K and L are direct summands. We say that a ring has left SSP if the module RR has the SSP. Clearly any von Neumann
regular ring is left and right SSP, as is every ring in which 0 and 1 are the only idempotents. More generally, any ring with all
idempotents central is left and right SSP (if e2 = e and f 2 = f , and we let g = e + f − ef , then g2

= g and Re + Rf = Rg).

However, if R =

[
S V
0 T

]
is any split-null extension and both S and T have no idempotents except 0 and 1, then R has left

SSP but idempotents are not central. Indeed, except for 0 and 1, the only idempotents in R are of the form e =

[
1 x
0 0

]
and

f =

[
0 y
0 1

]
, and one verifies that Re + Rf = R in every case.

We can now state one situation where left partial summands are enabling. The proof requires the following sufficient
condition that an ideal I ▹ R is enabling.

Lemma 24. Let I ▹ R and let a − e ∈ I where a ∈ R and e2 = e ∈ R. Assume that

Ra + R(1 − e) + I = Rg + R(1 − e) + I for some g2
= g ∈ Ra.

Then there exists f 2 = f ∈ Ra such that a − f ∈ I.

Proof. Write R/I = R̄ and r̄ = r + I for all r ∈ R. Since ā2 = ā and ḡ ∈ R̄ā, we obtain ḡ ā = ḡ. We claim that also āḡ = ā. To
see this, write a = rg+s(1−e)+xwhere r, s ∈ R and x ∈ I. Since ā = ēweobtain ā = ā2 = r̄ ḡ ā+s̄(1̄−ē)ā+x̄ā = r̄ ḡ ā = r̄ ḡ,
and it follows that āḡ = ā.

Now define f = g + ag − gag. Then f 2 = f ∈ Ra and f̄ = ḡ + āḡ − ḡ āḡ = ḡ + ā − ḡ2
= ā. This proves the Lemma. �

Theorem 25. Let R be a left SSP ring. If I ▹ R then I is weakly enabling if and only if I is enabling.
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Proof. By Theorem 20 it is enough to show that, if I ▹ R is a left partial summand then I is enabling. So let a − e ∈ I where
e2 = e; we want f 2 = f ∈ Ra such that a − f ∈ I. We have 1 = (e − a) + a + (1 − e), so R = I + Ra + R(1 − e).
Since I is a left partial summand, there exists S ⊆

⊕ R such that S ⊆ I and R = S + [Ra + R(1 − e)]. Now rewrite this as
R = Ra+ [S + R(1− e)], and observe that S + R(1− e) is a summand of R because R is left SSP. Hence Lemma 19 applies to
give a summand Rg ⊆ Ra, g2

= g, such that R = Rg ⊕ [S + R(1 − e)]. Since S ⊆ I this gives R = Rg + R(1 − e) + I. But we
also have R = Ra + R(1 − e) + I. Since g2

= g ∈ Ra, we are done by Lemma 24. �

The proof of Proposition 17 goes through to give the following example.

Example 26. If I ⊆ R and K ⊆ S are left ideals and X =

[
I V
0 K

]
⊆

[
R V
0 S

]
is a weakly enabling left ideal, then the same

is true for I ⊆ R and K ⊆ S.

3. δ-small ideals

We are going to characterize the ideals I ▹ R such that I is a δ-small left ideal in terms of the following notion. If M is a
module, a submodule N is said to be summand-small in M if it satisfies the following condition.

If M = N + X, X a submodule then X ⊆
⊕ M.

Hence small submodules are summand-small, as are δ-small submodules, and submodules of summand-small submodules
are again summand-small. A moduleM is summand-small in itself if and only ifM is semisimple, and every submodule of a
semisimplemoduleM is summand-small inM.However, the Prüfer groupZp∞ has the property that every proper subgroup
is summand-small (in fact small) but Zp∞ is not semisimple.

If M is projective, Lemma 19 yields the following stronger condition that a submodule N ⊆ M is summand-small inM.

Lemma 27. If M is projective the following are equivalent for N ⊆ M.

(1) N is summand-small in M.

(2) If M = N + X, X a submodule, then M = S ⊕ X for some S ⊆ N. 2

In particular, summand-small submodules of M are partial summands.

The following examples show that partial summands of a projective module need not be summand-small, and that in
general, summand-small submodules need not be partial summands.

Example 28. Partial summands of a projective module need not be summand-small.

Proof. Let R =

[
F F
0 F

]
where F is a field, take M = RR, and take N =

[
0 F
0 F

]
. Then N is a partial summand of RM (it

is a direct summand), but N is not summand-small in M. In fact, if X =

[
F F
0 0

]
then M = N + X but X is not a direct

summand ofM. �

Example 29. Summand-small submodules need not be partial summands.

Proof. Let ZM = Z2 ⊕ Z8. Then the direct summands ofM are 0,M, Z(1, 1), Z(1, 4), Z2 ⊕ 0 and 0⊕ Z8. Let N = Z(1, 2). If
M = N + X then X must beM, 0⊕ Z8 or Z(1, 1), and so X ⊆

⊕ M. This shows that N is a summand-small inM. But N is not
a partial summand because there does not exist a direct summand S ⊆ N such thatM = S + X whenever M = N + X . �

We have the following implications among submodule properties N ⊆ M that we have defined:

(1) ‘‘δ-small’’ ⇒ ‘‘summand-small’’
(2) ‘‘δ-small’’ ⇒ ‘‘partial summand’’
(3) If M is projective: ‘‘summand-small’’ ⇒ ‘‘partial summand’’ (by Lemma 27).

We can now extend the fact that the sum of a partial summand and a small submodule is again a partial summand.

Proposition 30. Let M be projective, and let K be summand-small in M. If N is a partial summand of M, then N + K is a partial
summand of M.

2 In [1] such a submodule N is said to be SDM inM.
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Proof. Let M = (N + K) + X; we want S ⊆
⊕ M such that M = S + X and S ⊆ N + K . We have M = (N + X) + K so,

as K is summand-small in M, we have N + X ⊆
⊕ M. But then, since M is projective, Lemma 19 provides Q ⊆ K such that

M = (N + X) ⊕ Q .
On the other hand, N is a partial summand of N + X by [1, Lemma 3.2] because N is a partial summand ofM. This means

that N + X = S1 + X where S1 ⊆
⊕ (N + X) and S1 ⊆ N. SinceM = (N + X) ⊕ Q , it follows that S1 + Q ⊆

⊕ M. Now write
S = S1 + Q . We have shown that S ⊆

⊕ M, and clearly S = S1 + Q ⊆ N + K . Finally,

S + X = (S1 + Q ) + X = (S1 + X) + Q = (N + X) + Q = M.

Hence we are done with S = S1 + Q . �

Theorem 31. The following are equivalent for a left ideal L of R.

(1) L is δ-small in R.
(2) L is summand-small in R.
(3) L is weakly enabling, and Re is summand-small in R whenever e2 = e ∈ L.

Proof. (1)⇒(2). This is clear as δ -small submodules are all summand-small.
(2)⇒(3). If L is as in (2), then L is a partial summand by Lemma 27, so L is weakly enabling by Theorem 20. If e2 = e ∈ L

then Re is summand-small in R by (2).
(3)⇒(1). Let R = L + X, where R/X is singular; we must show that X = R. Since L is a partial summand of R by (3) and

Theorem 20, we have R = Re + X where e2 = e ∈ L. But then X ⊆
⊕ R as Re is summand-small, so R/X is both projective

and singular. Hence X = R. �

Let us say that an ideal I ▹ R is left summand-small in R if it is summand-small in RR, and that I is left δ-small if it is
δ-small in RR.

Corollary 32. An ideal is left δ-small if and only if it is left summand-small.

The next result shows that any left δ-small ideal is enabling.

Theorem 33. The following are equivalent for I ▹ R :

(1) I is left δ-small in R.
(2) I is enabling and Re is summand-small in R whenever e2 = e ∈ I.

Proof. (2)⇒(1) is clear by Theorem 31.
(1)⇒(2). If e2 = e ∈ I then Re is summand-small by (1).

To show that I is enabling, let a − e ∈ I where e2 = e; we must find f 2 = f ∈ Ra such that a − f ∈ I. We have
1 = (e − a) + a + (1 − e), so R = I + K where K = Ra + R(1 − e). Since I is a left summand-small, Lemma 27 shows
that R = S ⊕ K where S ⊆ I. In particular K is projective so, since R(1 − e) is a summand of K , applying Lemma 19 gives
K = Q ⊕ R(1 − e) for some Q ⊆ Ra. But then Q is a summand of RR (as K is), so K = Rg ⊕ R(1 − e) where g2

= g ∈ Ra.
Hence Ra + R(1 − e) = K = Rg ⊕ R(1 − e), and we are done by Lemma 24. �

Since δ(R) is itself δ-small in RR by [8, Theorem 1.6], Theorems 20, 31 and 33 show that δ(R) is enabling, giving a new
proof of Corollary 14. Also, δ(R) is an example of a δ-small left ideal that may not be strongly lifting (it may not be lifting;
see the discussion following Corollary 14).

Theorem 33 also implies that every left summand-small ideal is enabling, but the converse is false. Let R =

[
F F
0 F

]
where F is a field. Then I =

[
0 F
0 F

]
is enabling (in fact strongly lifting as R is an exchange ring). But if X =

[
F F
0 0

]
then

I + X = R but X is not a summand of RR. Indeed, apart from 0 and 1, the only idempotents π in X are π =

[
1 t
0 0

]
, t ∈ F ,

and Rπ = Fπ ≠ X for each t.
In Theorems 20 and 31, respectively, we have established the following implications for I ▹ R.

I is left summand-small ⇒ I is enabling ⇒ I is a left partial summand.

The converse to the first implication is false (example above), but we have no counter-example to the converse of the
second implication. Note that if I is a left partial summand then it is both left and right weakly enabling by Theorem 21
but, as mentioned above, we do not know if the converse is true. However, we do have the following result (extending
Proposition 6) when the ideal is idempotent-free.

Proposition 34. The following are equivalent for an idempotent-free ideal I of R :

(1) I ⊆ J(R).
(2) I is enabling.
(3) I is a left (right) partial summand of R.
(4) I is left (right) summand-small in R.
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Proof. (1)⇒(2). This is by Proposition 6.
(2)⇒(3). This is by Theorem 20.
(3)⇒(4). Let R = I + RX; we must show that X ⊆

⊕ R. By (3) there exists e2 = e ∈ I such that Re + X = R. Since e = 0
by hypothesis, we have X = R and (4) follows.

(4)⇒(1). If I * J then I * M for some maximal left ideal M. Thus R = I + M so Lemma 27 implies that R = Re ⊕ M for
some e2 = e ∈ I. Since I is idempotent-free this implies thatM = R, a contradiction. �

Note that the implications (1)⇒(2)⇒(3) in Proposition 34 all hold without the idempotent-free hypothesis.
Regarding (4) of Proposition 34, we have the following example.

Example 35. Being summand-small is not left–right symmetric for ideals in general.

Proof. Let R =

[
F F
0 F

]
where F is a field. and write Sr and Sl for the right and left socles of R. Thus Sr =

[
0 F
0 F

]
, so

Sr = δr because δr
Sr

= J( R
Sr

) = 0. Similarly δl = Sl =

[
F F
0 0

]
. If we let I = Sl ▹ R then I is left summand-small in R by

Theorem 31. But I is not right summand-small because I is not δ-small as a right ideal since δl ⊈ δr . �

Example 36. For an ideal I, neither strongly lifting nor left summand-small implies the other.

Proof. The ideal δ(R) is left summand-small because it is δ-small, but δ(R) may not be lifting (see the discussion following
Corollary 14).

Conversely, let I ▹ R be such that R = I ⊕ K for some left ideal K . Then I is strongly lifting by [6, Example 3]. But if

I is not semisimple then it is not δ-small by [8, Lemma 1.2] . For example, if R =

[
Z4 Z2
0 Z2

]
and I =

[
0 Z2
0 Z2

]
, then

I ▹ R, R = I ⊕ K for some left ideal K , but I * Sl =

[
2Z4 Z2
0 0

]
. For a commutative example, let R = FΛ where F is a field

and Λ is infinite, and choose e2 = e ∈ R − F (Λ). If I = Re then I is a direct summand ideal so, if I were δ-small, it would be
semisimple. But I * F (Λ)

= soc(R). �

The next result continues Proposition 11 by presenting more results about factor rings.

Proposition 37. Let I ▹ R. If K ⊇ I is a left ideal of R such that K/I ⊆ J(R/I), then

(1) If I is left summand-small in R then K is summand-small in RR;
(2) If I is a partial summand of RR then K is a partial summand of RR;
(3) If every left ideal in I is summand-small in RR, then every left ideal in K is a partial summand of RR.

Proof. Let I, K and R be as above, and write R̄ = R/I and r̄ = r + I for r ∈ R.

(1) Let R = K + RX; we must show that X ⊆
⊕

RR. Write 1 = k + x, k ∈ K , x ∈ X . Since 1̄ − x̄ = k̄ ∈ J(R̄), x̄ is a unit in R̄. It
follows that R = I + Rx, whence R = I + X . By hypothesis, X ⊆

⊕
RR, as required.

(2) Let R = K +R X; we want R = Re + X for some e2 = e ∈ K . If 1 = k + x, k ∈ K , x ∈ X, then (as above) x̄ is a unit in R̄,
so R = Rx + I. Write 1 = rx + a, r ∈ R, a ∈ I, so that rx − 1 ∈ I. As I is weakly enabling there exists f 2 = f ∈ Rrx such
that rx − f ∈ I. Since 1 − f = (1 − rx) + (rx − f ) ∈ I, we have R = I + Rf . But I ⊆ K so we have R = K + Rf . Finally,
since R is projective and Rf is a summand, Lemma 19 shows that there exists e2 = e ∈ K such that R = Re ⊕ Rf . Since
f ∈ X we have R = Re + X, as required.

(3) Let R = M + RX where M ⊆ K is a left ideal; we must show that R = Rh + X for some h2
= h ∈ M. Write

1 = m+x,m ∈ M, x ∈ X . Then 1−x ∈ M ⊆ K so, as in (1), x̄ is a unit in R̄.Hence R = Rx+ I, say 1 = rx+a, r ∈ R, a ∈ I.
Then rx − 1 ∈ I. So, as I is weakly enabling (it is left summand-small by hypothesis), there exists e2 = e ∈ Rrx ⊆ X
such that rx− e ∈ I. It follows that e− 1 ∈ I, whence Re+ I = R. Since I is left summand-small, let Re+ Rf = Rwhere
f 2 = f ∈ I. As e ∈ X, the modular law asserts that X = Re + (X ∩ Rf ) where X ∩ Rf ⊆ I.

Hence R = M + Re + (X ∩ Rf ). But X ∩ Rf is summand-small in RR by hypothesis, so R = (M + Re) ⊕ Rg where
g2

= g ∈ X ∩ Rf . In particular, M + Re is projective so, as Re is a direct summand of M + Re, Lemma 19 shows that
M + Re = L ⊕ Rewhere L ⊆ M. Hence R = (L ⊕ Re) ⊕ Rg = L + X because e ∈ X and g ∈ X . If L = Rh, h2

= h, we are
done because L ⊆ M. �

We summarize the implications for an ideal among the properties we have been discussing:

Strong Lifting
⇓

δ-small ⇔ Summand-small ⇒ Enabling ⇒ Weakly Enabling ⇔ Partial Summand
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4. I-semiregular modules

If I ▹ R the I-semiregular modules are an important generalization of the semiregular modules. Several theorems about
I-semiregular modules in general are strengthened if the ideal I is assumed to be enabling. Two such theorems (which
motivated the study of enabling ideals) are discussed in this section.

Following Zelmanowitz [7], an element q ∈ RM is called regular in the left module RM if q = (qλ)q for some
λ ∈ M∗

= hom(M, R). If M = RR this recovers the definition of a regular element: q = qbq for some b ∈ R. Zelmanowitz
proves the following lemma.

Lemma 38. Let q ∈ RM be a regular element, say q = (qλ)q for some λ ∈ M∗. If e = qλ then e2 = e, Rq ∼= Re, andM = Rq⊕K
where K = {k ∈ M | (kλ)q = 0}.

A version of the next lemma appears in [2, Proposition 2.2].

Lemma 39. Let R be a ring, let I ▹ R, and let RM be a left R-module. The following are equivalent for m ∈ M.

(1) There exists a decomposition M = P ⊕ Q where P is projective, P ⊆ Rm and Rm ∩ Q ⊆ IM.

(2) There exists λ ∈ M∗ such that mλ = e = e2 and (1 − e)m ∈ IM.

(3) There exists γ 2
= γ ∈ end(RM) such that Mγ ⊆ Rm,Mγ is projective, and m − mγ ∈ IM.

An elementm of amodule RM is called I-semiregular if it satisfies the conditions in Lemma39, andM is called an I-semiregular
module if every element is I -semiregular.

If I ▹ R and m is an I-semiregular element of a left module M, it is known that m − q ∈ IM for some regular element
q ∈ M. If I is enabling, the converse is true. More precisely, we have the following theorem.

Theorem 40. Let I ▹ R be an enabling ideal, and let RM be a module. The following are equivalent for m ∈ M.

(1) m is I-semiregular.
(2) There exists a regular element q ∈ Rm such that m − q ∈ IM.

(3) There exists a regular element q ∈ M such that m − q ∈ IM.

Proof. (1)⇒(2). Choose e = mλ as in part (2) of Lemma 39, and write q = em. Then qλ = e(mλ) = e2 = e, so
(qλ)q = eq = q. Hence q is regular, andm − q = (1 − e)m ∈ IM by (2) of Lemma 39.

(2)⇒(3). This is obvious.
(3)⇒(1). Assume that I is enabling and thatm−q ∈ IM where q is regular, say (qλ)q = qwhere λ : M → R.Write e = qλ

so that, by Lemma 38, e2 = e ∈ R, Rq ∼= Re, andM = Rq⊕K where K = {k ∈ M | (kλ)q = 0}. Thenmλ− e = (m− q)λ ∈ I
becausem− q ∈ IM. Since I is enabling, there exists f 2 = f ∈ R(mλ) such that f −mλ ∈ I. Write f = a(mλ), a ∈ R, where
we may assume that fa = a. Define p = am. Then pλ = a(mλ) = f , so (pλ)p = fp = p; that is p is regular.

For convenience, if x, y ∈ M we write x ≡ y to mean that x − y ∈ IM. Thus m ≡ q by hypothesis, whence mλ − qλ ∈ I.
Moreover, amλ − mλ = f − mλ ∈ I, so

aq = a(qλ)q ≡ a(mλ)q ≡ (mλ)q ≡ (qλ)q = q.

It follows that p = am ≡ aq ≡ q so, since q ≡ m, we have

p ≡ m and Rm + IM = Rp + IM.

Since p is regular, let M = Rp ⊕ W where W = {w | (wλ)p = 0}. Now let γ 2
= γ ∈ end(M) be such that Mγ = Rp and

M(1 − γ ) = W . Since Rp ⊆ Rm, the modular law gives

Rm = Rp ⊕ (Rm ∩ W ).

Since Rp is projective, it remains to show that Rm ∩ W ⊆ IM. But:

Rm ∩ W ⊆ (Rm + IM) ∩ W = (Rp + IM) ∩ W

so it suffices to show that (Rp + IM) ∩ W ⊆ IM. But if x = rp + n ∈ W , r ∈ R, n ∈ IM, then 0 = xγ = rp + nγ , whence
rp = −nγ ∈ IM. This means that x = rp + n ∈ IM, proving (1). �

Corollary 41. Let I ▹ R be enabling, and let m,m1 ∈ RM. If m is I-semiregular and m − m1 ∈ IM then m1 is also I -semiregular.

With Theorem 40we can give a structure theorem for countably generated I-semiregularmodulesM where IM is δ-small
in M. The result is analogous to [4, Theorem 1.12].

Theorem 42. Let RM be a countably generated, I -semiregular module, and let I ▹ R be an enabling ideal. If IM is δ-small in M,
then M ∼= ⊕

∞

i=1Rei where e2i = ei ∈ R. In particular M is projective.
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Proof. Let x1, x2, . . . be a generating set for M. It suffices to construct regular elements qi of M, submodules Wi ⊆ M, and
submodules Zi ⊆ IM such that, for each n ≥ 1,

(1n) M = Rq1 ⊕ · · · ⊕ Rqn ⊕ Wn

(2n) Rx1 + · · · + Rxn ⊆ Rq1 ⊕ · · · ⊕ Rqn + Zn.

Indeed, in that case ΣiRxi is a direct sum, and M ⊆ ΣiRxi ⊆ ⊕iRqi + ΣiZi ⊆ ⊕iRqi + IM. Hence M = ⊕iRqi + IM. As IM
is δ-small, [8, Lemma 1.2] shows that M = ⊕iRqi ⊕ S where S ⊆ IM is a projective, semisimple module. With this we are
done by Lemma 38.

Since I is enabling, Theorem 40 gives x1 = q1 + z1 where q1 is regular in M and z1 ∈ IM. Hence, by Lemma 38,
M = Rq1 ⊕ W1 where W1 = {w ∈ M | (wλ)q1 = 0}. Hence (11) and (21) hold with Z1 = Rz1.

Now assume inductively that qi,Wi and Zi have been constructed for each k = 1, 2, . . . , n so that (1n) and (2n) hold.
Write Pn = Rq1 ⊕ · · · ⊕ Rqn so thatM = Pn ⊕ Wn. Let π : M → M be the projection withMπ = Pn and ker(π) = Wn. It is
routine to verify that

Pn + Rxn+1 = Pn ⊕ Rxn+1(1 − π).

Define tn+1 = xn+1(1 − π). Then tn+1 ∈ Wn and Wn is I-semiregular by [1, Theorem 2.6], so tn+1 = qn+1 + zn+1 where
qn+1 ∈ Rtn+1, qn+1 is regular inWn (and so inM), and zn+1 ∈ IWn ⊆ IM.By Lemma38wehaveM = Rqn+1⊕K for someK , so
Wn = Rqn+1⊕(Rqn+1∩K), and (1n+1) follows ifwe takeWn+1 = Rqn+1∩K .Next xn+1 = xn+1π+tn+1 = xn+1π+qn+1+zn+1,
so Rxn+1 ⊆ Pn + Rqn+1 + Rzn+1. Using (2n) it follows that

Rx1 + · · · + Rxn+1 ⊆ Rq1 ⊕ · · · ⊕ Rqn+1 + Zn + Rzn+1,

and we obtain (2n+1) with Zn+1 = Zn + Rzn+1. This completes the proof of the theorem. �
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